JP2009232706A - Apparatus for growing and proliferating coral - Google Patents

Apparatus for growing and proliferating coral Download PDF

Info

Publication number
JP2009232706A
JP2009232706A JP2008080604A JP2008080604A JP2009232706A JP 2009232706 A JP2009232706 A JP 2009232706A JP 2008080604 A JP2008080604 A JP 2008080604A JP 2008080604 A JP2008080604 A JP 2008080604A JP 2009232706 A JP2009232706 A JP 2009232706A
Authority
JP
Japan
Prior art keywords
coral
breeding
base
dome
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008080604A
Other languages
Japanese (ja)
Inventor
Yukio Kadomoto
之郎 門元
Kazuo Yoshida
和生 吉田
Satoru Nojima
哲 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Kyushu University NUC
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Mitsui Engineering and Shipbuilding Co Ltd filed Critical Kyushu University NUC
Priority to JP2008080604A priority Critical patent/JP2009232706A/en
Publication of JP2009232706A publication Critical patent/JP2009232706A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Farming Of Fish And Shellfish (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for growing and proliferating coral, which greatly improves an adhesion rate of coral and, while having low power consumption and excellent economic efficiency. <P>SOLUTION: A domed or pseudo-domed skeleton 12 is formed by iron bar-like bodies 11. Surfaces except the lower opening part 13 of the skeleton 12 are closed with iron net-like materials 14 having innumerable opening parts to form a domed or pseudo-domed coral adhesion base 2 and one or a plurality of plus terminals 5 are arranged in a standing condition in the coral adhesion base 2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、サンゴの産卵後の幼生を着生させて、サンゴの育成及び増殖を図るサンゴ育成増殖装置に関するものである。   The present invention relates to a coral breeding and breeding apparatus for growing corals to grow and proliferate by causing the larvae after coral spawning to grow.

サンゴの幼生は、通常、サンゴ礁の穴や裂け目等に着床し、生き残って成長したものがサンゴ礁の穴や裂け目の外に出てくるが、適切な岩場を見つけられずに死滅するものが、99%もあると云われている。この原因は、サンゴの幼生が着生できる期間が年に1週間程度の短期間であるため、偶然性が高いためである。   Coral larvae usually land in coral reef holes and crevices, and those that survive and grow out of the coral reef holes and crevices, but die without being able to find a suitable rocky place, It is said that there are 99%. This is because the chance that coral larvae can settle is a short period of about one week per year, and is highly contingent.

そこで、サンゴの幼生の着生率を高める方法として、円板状の着生板部と、これより小径のスペーサー部と、スペーサー部より小径の円錐状の連結・挿入部とをこの順に重ねて一体的に成型すると共に、円板状の着生板部から円錐状の連結・挿入部に達する円錐状の孔を有する琉球石灰岩製の着生促進基材を用いて人工的にサンゴの幼生の着床させるサンゴ礁の増殖方法が提案されている(例えば、特許文献1参照。)。   Therefore, as a method for increasing the rate of coral larvae, a disc-shaped epiplate, a spacer having a smaller diameter, and a conical connecting / inserting portion having a smaller diameter than the spacer are overlapped in this order. The coral larvae are artificially molded by using a base material for promoting the formation of Ryukyu limestone, which is molded integrally and has a conical hole that reaches the conical connection / insertion part from the disk-shaped formation plate part. A method for breeding coral reefs to be landed has been proposed (see, for example, Patent Document 1).

しかし、この方法は、着生促進基材を産卵1週間前に設置する必要があること、更に、大規模なサンゴ増殖法としては、適していない。すなわち、サンゴ礁の海域は広大であり、大量にサンゴを着生、育成するには、コスト面で問題がある。   However, this method is not suitable for a large-scale coral breeding method, because it is necessary to install a growth promoting base material one week before egg laying. In other words, the coral reef sea area is vast, and there is a problem in terms of cost to grow and grow a large amount of corals.

一方、サンゴ礁の造成方法として、複数の腕を放射状に設けた消波ブロック用の固定礁をサンゴの棲息する海域に敷設し、この固定礁の腕にコンクリート製の陣笠状の移動礁を被せ、この移動礁にサンゴ幼生が着生した後、観光用海中景観施設の海中に移設するサンゴ礁の造成方法が提案されている(例えば、特許文献2参照。)。   On the other hand, as a coral reef construction method, a fixed reef for a wave-dissipating block with a plurality of arms radially laid is laid in a sea area where corals inhabit, and a concrete Jinkasa-shaped moving reef is put on the arm of this fixed reef, A method for creating a coral reef has been proposed in which coral larvae grow on the reef and then relocated to the sea in a sightseeing underwater landscape facility (see, for example, Patent Document 2).

しかしながら、この方法は、固定礁の上に移動礁を乗せただけであるから、波や潮流等の外力により、移動礁が容易に転倒してしまうと言った問題を有する。また、移動礁がサンゴコンクリート製であるからサンゴの幼生の着床率向上には適していない。   However, this method has a problem that the moving reef easily falls down due to external forces such as waves and tidal currents because the moving reef is merely placed on the fixed reef. In addition, since the moving reef is made of coral concrete, it is not suitable for improving the coral larvae settlement rate.

また、非特許文献1の”Report of the Third Pemuteran Blorock Coral Reef Restoration Workshop ”によれば、インドネシア、バリ島北部、プムトゥランでは、海面下約3メートルから6メートルの砂地の海底に、建設用鉄筋を格子状に溶接した、大きな篭のような構造物を数多く置き、それに電流を流すワイヤーが鉄筋にしっかりと張りめぐらされ、陸上の電源設備につなげて電流を印加し、極度に破壊が進んだサンゴ礁の再生を促そうと言うものである。   In addition, according to “Report of the Third Pemuteran Blorock Coral Reef Restoration Workshop” in Non-Patent Document 1, in Indonesia, northern Bali, and Pemuteran, construction rebars are placed on the bottom of sandy ground at about 3 to 6 meters below sea level. A large coral reef that has been welded in a grid and has many large coral-like structures, and wires that carry current are tightly stretched around the rebar, and are connected to power equipment on land to apply current to the coral reef. It is said to encourage the regeneration of.

この格子状構造物に生きたサンゴの小片を植えつけると、サンゴは、通常の5倍から10倍の速さで成長を始め、色も鮮やかになり、暑い気候や汚染に対する回復力も増すと報告されている。   When planting live coral pieces in this lattice structure, the coral begins to grow 5 to 10 times faster than normal, and the color will be brighter and more resilient to hot weather and pollution. Has been.

しかし、この方式は、サンゴを植えつける手法であるため、サンゴの破片を採取したり、あるいは親株から子株を切断するものであるため、サンゴ自体が損傷を受け、移植後に生存し続けることが容易でない。そのため、特定のサンゴのみが育成されることになる。サンゴの種類は多種多様であり、できるだけ自然にサンゴを育成することが生物環境の破壊を招かず好ましい方法と云える。   However, since this method is a method of planting corals, coral fragments are collected or child stocks are cut from the parent strain, so it is easy for corals themselves to be damaged and continue to survive after transplantation. Not. Therefore, only specific corals will be nurtured. There are a wide variety of corals, and it is preferable to grow corals as naturally as possible without destroying the biological environment.

特開2003−61506号公報JP 2003-61506 A 特公平2−55011号公報Japanese Examined Patent Publication No. 2-55011 " Report of the Third Pemuteran Blorock Coral Reef Restoration Workshop "[online] Global Coral Reef Alliance (地球のさんご礁友の会)[2008 年 1月28日検索] インターネット<URI:http://www.globalcoral.org>"Report of the Third Pemuteran Blorock Coral Reef Restoration Workshop" [online] Global Coral Reef Alliance (Earth's Coral Reef Friends Association) [Search January 28, 2008] Internet <URI: http://www.globalcoral.org>

本発明は、このような問題を解消するためになされたものであり、その目的とするところは、サンゴの幼生の着生率を飛躍的に向上させる一方、電力消費の少ない経済性に富むサンゴ育成増殖装置を提供することにある。   The present invention has been made in order to solve such problems. The object of the present invention is to dramatically improve the establishment rate of coral larvae, while at the same time providing highly economical coral with low power consumption. It is to provide a breeding and breeding apparatus.

本願の請求項1に係るサンゴ育成増殖装置は、鉄製の棒状体によりドーム状又は擬似ドーム状の骨格を形成し、この骨格の下部開口部以外の面を無数の開孔部を有する鉄製の網状物で塞いでドーム状又は擬似ドーム状のサンゴ着生基盤を形成し、このサンゴ着生基盤の中に1又は複数本の陽極を立設させてサンゴ着生基盤に電流を印加することを特徴とする。   The coral breeding and breeding apparatus according to claim 1 of the present application forms a dome-like or pseudo-dome-like skeleton with an iron rod-like body, and an iron net-like shape having innumerable openings on the surface other than the lower opening of the skeleton. A dome-shaped or pseudo-dome-shaped coral-growing base is formed by blocking with an object, and one or a plurality of anodes are erected in the coral-growing base, and current is applied to the coral-growing base. And

本願の請求項2に係るサンゴ育成増殖装置は、網状物の開孔部の長径を30mm〜150mm、短径を12mm〜50mmとすることを特徴とする。   The coral breeding and proliferating apparatus according to claim 2 of the present application is characterized in that the long diameter of the opening portion of the mesh is 30 mm to 150 mm and the short diameter is 12 mm to 50 mm.

本願の請求項3に係るサンゴ育成増殖装置は、サンゴ着生基盤に印加する電流密度を1A/m2 〜20A/m2 とすることを特徴とする。 The coral breeding and proliferating apparatus according to claim 3 of the present application is characterized in that the current density applied to the coral growth base is 1 A / m 2 to 20 A / m 2 .

本願の請求項4に係るサンゴ育成増殖装置は、サンゴ着生基盤に印加する電流を初期は少なくし、その後徐々に増加させて電着物の組成をサンゴ幼生の着生に適した電着物とすることを特徴とする。   In the coral breeding and proliferating apparatus according to claim 4 of the present application, the current applied to the coral settlement base is initially reduced and then gradually increased to make the composition of the electrodeposit suitable for coral larvae settlement. It is characterized by that.

本願の請求項5に係るサンゴ育成増殖装置は、陽極の電極をチタン基材にMn系元素を被覆して形成した酸素発生電極とすることを特徴とする。   The coral growing and proliferating apparatus according to claim 5 of the present application is characterized in that the anode electrode is an oxygen generating electrode formed by coating a titanium base material with a Mn-based element.

本願の請求項6に係るサンゴ育成増殖装置は、サンゴ着生基盤に印加する直流電流を太陽光発電、風力発電、波力発電を利用して賄うことを特徴とする。   The coral breeding and breeding apparatus according to claim 6 of the present application is characterized in that the direct current applied to the coral growth base is covered by using solar power generation, wind power generation, and wave power generation.

本願の請求項1に係る発明は、鉄製の棒状体によりドーム状又は擬似ドーム状の骨格を形成し、この骨格の下部開口部以外の面を無数の開孔部を有する鉄製の網状物で塞いでドーム状又は擬似ドーム状のサンゴ着生基盤を形成し、このサンゴ着生基盤の中に1又は複数本の陽極を立設させてサンゴ着生基盤に電流を印加するので、陰極であるドーム状又は擬似ドーム状のサンゴ着生基盤と陽極との間を近接させることができる。このため、サンゴ着生基盤の表面に炭酸カルシウムや水酸化マグネシウム等の電着物を電着させる際の電圧上昇を抑制し、以て、電力消費を抑制することが可能になった。海水には電気抵抗があるため、両極の距離が離れるほど電圧上昇を招き、電力消費が多くなり、経済性を低下させることになる。   In the invention according to claim 1 of the present application, a dome-shaped or pseudo-dome-shaped skeleton is formed by an iron rod-like body, and a surface other than the lower opening portion of the skeleton is closed with an iron net-like object having innumerable apertures. A dome-shaped or pseudo-dome-shaped coral-growth base is formed, and one or more anodes are erected in the coral-growth base and current is applied to the coral-growth base. Or an artificial dome-shaped coral-growing substrate and the anode can be brought close to each other. For this reason, it became possible to suppress the voltage rise at the time of electrodepositing electrodeposits such as calcium carbonate and magnesium hydroxide on the surface of the coral growth base, thereby suppressing the power consumption. Since seawater has electrical resistance, the greater the distance between the two poles, the higher the voltage will be, resulting in increased power consumption and reduced economics.

サンゴ着生基盤の表面に電着した炭酸カルシウムや水酸化マグネシウム等の電着物は、自然海水から由来するものであるため、サンゴの幼生に対して極めて整合性が良いことからサンゴの幼生の着生が飛躍的に向上することになる。   Since electrodeposits such as calcium carbonate and magnesium hydroxide electrodeposited on the surface of the coral settlement base are derived from natural seawater, they are highly compatible with coral larvae, so coral larvae are not attached. Life will improve dramatically.

本願の請求項2に係る発明は、網状物の開孔部の長径を30mm〜150mm、短径を12mm〜50mmとするが、その理由は、開孔部の大きさによって炭酸カルシウムや水酸化マグネシウム等の電着物の蓄積量を変える必要があるからである。網状物である鋼材に外部から電流を印加するが、網状物を陰極とすることによって網状物に炭酸カルシウムや水酸化マグネシウム等の電着物が電着し、網状物の開孔部を徐々に狭め、サンゴ幼生の着生に適した細孔とすることにより、サンゴ幼生の着生率を飛躍的に向上させることができる。   In the invention according to claim 2 of the present application, the long diameter of the opening portion of the reticulate is 30 mm to 150 mm, and the short diameter is 12 mm to 50 mm. The reason is that calcium carbonate or magnesium hydroxide depends on the size of the opening portion. This is because it is necessary to change the accumulated amount of electrodeposits. A current is applied to the steel material, which is a mesh, from the outside. By using the mesh as a cathode, electrodeposits such as calcium carbonate and magnesium hydroxide are electrodeposited on the mesh, and the openings of the mesh are gradually narrowed. By making the pores suitable for the growth of coral larvae, the establishment rate of coral larvae can be dramatically improved.

本願の請求項3に係る発明は、サンゴ着生基盤に印加する電流密度を1A/m2 〜20A/m2 とするが、本願の請求項4に係る発明のように、サンゴ着生基盤に印加する電流を初期は少なくし、その後徐々に増加させることにより、陰極である網状物の開孔部の大きさ、電着物の組成を決定することができ、以て、サンゴ育成、増殖に適した強度を持った電着物を創生することができる。 In the invention according to claim 3 of the present application, the current density applied to the coral growth base is 1 A / m 2 to 20 A / m 2 , but as in the invention according to claim 4 of the present application, By reducing the applied current initially and then gradually increasing it, it is possible to determine the size of the openings of the mesh, which is the cathode, and the composition of the electrodeposits, making it suitable for coral growth and proliferation. Electrodeposits with high strength can be created.

本願の請求項5に係る発明は、陽極の電極をチタン基材にMn系元素を被覆して形成した酸素発生電極とするため、塩素の発生を抑制し、酸素の発生とすることができる。   In the invention according to claim 5 of the present application, since the anode electrode is an oxygen generation electrode formed by coating a Mn-based element on a titanium base material, generation of chlorine can be suppressed and generation of oxygen can be achieved.

通常、海水中で鋼材を陰極として電流を印加すると、陽極側では、酸素や塩素等の酸化剤が生成し、酸化腐食を起こし、電流が流れなくなる。そのため、一般に、陽極は、酸化に強い白金等の貴金属を被覆した電極を用いる。しかし、これらの電極は、海水中に適用する場合、塩素発生が優先する。塩素はサンゴ等の生物に対して毒性を示す。従って、塩素発生ではなく、酸素発生を優先する電極でなければならない。   Normally, when a current is applied with steel as a cathode in seawater, an oxidant such as oxygen or chlorine is generated on the anode side, causing oxidative corrosion and the current does not flow. Therefore, in general, an anode is an electrode coated with a noble metal such as platinum that is resistant to oxidation. However, when these electrodes are applied in seawater, chlorine generation has priority. Chlorine is toxic to corals and other organisms. Therefore, the electrode must give priority to oxygen generation rather than chlorine generation.

本願の請求項6に係る発明は、サンゴ着生基盤に印加する直流電流を太陽光発電、風力発電、波力発電を利用して賄う。これらの自然エネルギーを利用する場合は、一定電流ではなく、変動が生ずるが、電着物の作成には、問題とならない。サンゴの幼生着生、育成、増殖を効果的に行うには、陰極構造体に印加する電流密度を1A/m2 〜20A/m2 とすることが好ましいため、電流密度を確保できる制御システムを組み込むことが好ましい。 In the invention according to claim 6 of the present application, the direct current applied to the coral settlement base is covered using solar power generation, wind power generation, and wave power generation. When these natural energies are used, the current is not constant but fluctuates, but this does not pose a problem in the production of electrodeposits. For effective coral larval settlement, growth and proliferation, it is preferable to set the current density applied to the cathode structure to 1 A / m 2 to 20 A / m 2. Incorporation is preferred.

以下、本発明に係る実施の形態を図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に示すように、サンゴ育成増殖装置1は、ドーム状、すなわち、半円球状に形成されたサンゴ着生基盤2を有している。サンゴ着生基盤2は、その周囲に等間隔に設置した複数個(例えば、3乃至4個程度。)のコンクリートブロック3によって海底4に固定されている。   As shown in FIG. 1, the coral growing and breeding apparatus 1 has a coral growth base 2 formed in a dome shape, that is, a semicircular sphere. The coral settlement base 2 is fixed to the seabed 4 by a plurality of (for example, about 3 to 4) concrete blocks 3 installed at equal intervals around the coral settlement base 2.

サンゴ着生基盤の形状は、半円球状に限らず、例えば、円筒形、円柱形、円錐形、角柱形、角錐形、裁頭円錐形、裁頭角柱形等の擬似ドーム形でも支障がない。要は、サンゴ産卵時に海流に乗ってサンゴの卵が流漂してくるが、どの方向からでも着生可能な形状であれば良い。   The shape of the coral settlement base is not limited to a hemispherical shape, and there is no problem even if it is a pseudo dome shape such as a cylindrical shape, a cylindrical shape, a cone shape, a prism shape, a pyramid shape, a truncated cone shape, a truncated prism shape, etc. . In short, coral eggs drift on the ocean currents when laying corals, but any shape that can grow from any direction is acceptable.

サンゴ着生基盤2は、図2に示すように、鉄製の棒状体11により半円球状の骨格12を形成し、この骨格12の下部開口部13以外の面に無数の開孔部を有する鉄製の網状物14を取り付けた構造になっている。   As shown in FIG. 2, the coral growth base 2 is made of iron having a semicircular skeleton 12 formed of an iron rod-like body 11, and an infinite number of openings on the surface other than the lower opening 13 of the skeleton 12. The net-like material 14 is attached.

棒状体としては、丸棒や平鋼が望ましい。また、網状物としては、エキスパンドメタル、パンチングメタル、金網等が望ましい。その際、図5(a)に示すように、網状物14の開孔部15の長径L1 を30mm〜150mm、短径L2 を12mm〜50mmとすることが望ましい。更に、網状物14の開孔部15の長径L1 を30mm〜50mm、短径L2 を12mm〜22mmとすることが望ましい。その理由は、開孔部の大きさによって炭酸カルシウムや水酸化マグネシウム等の電着物の蓄積量を変える必要があるからである。 As the rod-like body, a round bar or a flat steel is desirable. Further, as the net-like material, an expanded metal, a punching metal, a wire net or the like is desirable. At this time, as shown in FIG. 5 (a), the major axis L 1 of the opening portion 15 of the mesh material 14 30Mm~150mm, it is desirable that the minor axis L 2 and 12Mm~50mm. Furthermore, it is desirable that the long diameter L 1 of the opening 15 of the net-like object 14 is 30 mm to 50 mm and the short diameter L 2 is 12 mm to 22 mm. The reason is that it is necessary to change the accumulation amount of electrodeposits such as calcium carbonate and magnesium hydroxide depending on the size of the opening.

サンゴの電着量は、下記数式(1)で示される。   The amount of coral electrodeposition is expressed by the following formula (1).

W=K×T×I (1)
ここで、W:電着量(g)
K:電着効率(海域実験による定数)
T:通電日数(日)
I:電流密度(mA/cm2
W = K × T × I (1)
Where W: electrodeposition amount (g)
K: Electrodeposition efficiency (constant by sea area experiment)
T: Number of energization days (days)
I: Current density (mA / cm 2 )

また、サンゴの電着厚さは、下記数式(2)で示される。   The electrodeposition thickness of the coral is expressed by the following mathematical formula (2).

t=W/ρ (2)
ここで、t:電着厚さ(cm)
W:電着量(g)
ρ:電着物の見掛け比重(約2.1g/cm3
t = W / ρ (2)
Where t: electrodeposition thickness (cm)
W: Electrodeposition amount (g)
ρ: Apparent specific gravity of the electrodeposit (about 2.1 g / cm 3 )

また、サンゴ育成増殖装置1は、図2に示すように、半円球状に形成されたサンゴ着生基盤2の中に複数本の陽極5を立設させて陰極であるサンゴ着生基盤2に電流を印加するようになっている。すなわち、半円球状に形成された骨格12の下部開口部13に直線状の鋼製の支持部材16を略水平に架橋し、この支持部材16上に複数本の陽極5を等間隔に立設させている。支持部材16は、図3に示すように、半円球状に形成された骨格12の中央に位置して直径方向に設けられている。支持部材16は、図3のように、一文字状でもよいが、陽極5を多数立設する場合には、図4に示すように、十文字状(放射状)することも考えられる。また、陽極5の数は、1本のことも考えられる。   In addition, as shown in FIG. 2, the coral breeding / growing apparatus 1 has a plurality of anodes 5 erected in a coral-growing base 2 formed in a semi-spherical shape so that the coral-growing base 2 serving as a cathode An electric current is applied. That is, a straight steel support member 16 is bridged substantially horizontally to the lower opening 13 of the semicircular skeleton 12 and a plurality of anodes 5 are erected at equal intervals on the support member 16. I am letting. As shown in FIG. 3, the support member 16 is provided in the diameter direction at the center of the skeleton 12 formed in a semispherical shape. As shown in FIG. 3, the support member 16 may have a single letter shape. However, when a large number of anodes 5 are erected, the support member 16 may have a cross letter shape (radial shape) as shown in FIG. Further, the number of anodes 5 may be one.

ところで、海水には電気抵抗があるため、両極の距離が離れるほど電圧上昇を招き、電力消費が多くなり、経済性を低下させるので、陽極5と陰極は、近接させることが望ましい。   By the way, since seawater has an electrical resistance, as the distance between the two poles increases, the voltage rises, the power consumption increases, and the economy is reduced. Therefore, it is desirable that the anode 5 and the cathode be close to each other.

また、海水中で鋼材を陰極として電流を印加すると、陽極側では、酸素や塩素等の酸化剤が生成し、酸化腐食を起こし、電流が流れなくなる。そのため、一般に、陽極は、酸化に強い白金等の貴金属を被覆した電極を用いる。しかし、これらの電極は、海水中に適用する場合、塩素発生が優先するので、塩素はサンゴ等の生物に対して毒性を示す。従って、塩素発生ではなく、酸素発生を優先する電極でなけらばならない。   In addition, when a current is applied using a steel material as a cathode in seawater, an oxidizing agent such as oxygen or chlorine is generated on the anode side, causing oxidative corrosion, and the current does not flow. Therefore, in general, an anode is an electrode coated with a noble metal such as platinum that is resistant to oxidation. However, when these electrodes are applied in seawater, the generation of chlorine has priority, so that chlorine is toxic to organisms such as corals. Therefore, the electrode must give priority to oxygen generation, not chlorine generation.

従って、陽極には、チタン基材にMn系元素を被覆して形成した酸素発生電極を適用する。例えば、チタン母材の表面に電解用材料(白金系貴金属)を表面処理し、二酸化マンガン(MnO2 )を表面処理したものを使用する。 Therefore, an oxygen generating electrode formed by coating a titanium base material with a Mn-based element is applied to the anode. For example, the surface of a titanium base material is surface-treated with an electrolysis material (platinum-based noble metal) and manganese dioxide (MnO 2 ) is used.

サンゴ着生基盤2に印加する電流密度は、1A/m2 〜20A/m2 とするが、好ましくは、1A/m2 〜10A/m2 とする。また、印加する電流は、初期(例えば、通電開始時から1〜3ヶ月間)は電流密度を低くして電着物の組成をカルシウム分を増加させ、電着物の強度を高め、そして、徐々に電流密度を増加させる。このように電流密度を制御することにより、陰極である網状物の開孔部の大きさ、電着物の組成を決定することができ、以て、サンゴ育成、増殖に適した強度を持った電着物を創生することができる。尚、電流密度と組成比率は、図6に示すとおりである。 The current density applied to the coral growth substrate 2 is 1 A / m 2 to 20 A / m 2, and preferably 1 A / m 2 to 10 A / m 2 . In addition, the applied current is initially (for example, for 1 to 3 months from the start of energization), the current density is decreased, the composition of the electrodeposit is increased in calcium, the strength of the electrodeposit is increased, and gradually Increase current density. By controlling the current density in this way, it is possible to determine the size of the apertures of the reticulate, which is the cathode, and the composition of the electrodeposit, so that the electric current has strength suitable for coral growth and proliferation. A kimono can be created. The current density and composition ratio are as shown in FIG.

また、サンゴ着生基盤2に印加する直流電流は、通常、商用電流を直流に変換して適用するが、例えば、太陽光発電、風力発電、波力発電を利用することも考えられる。尚、陰極構造体に印加する電流密度を1A/m2 〜20A/m2 とすることが好ましいため、電流密度を確保できる制御システムを組み込むことが好ましい。尚、この発明は、定電流方式であるため、電圧を規定しない。ケーブルの長さ、陽極の抵抗分、海水の濃度など電圧を決定する要因は多い。 Moreover, although the direct current applied to the coral settlement base 2 is usually applied by converting commercial current into direct current, for example, solar power generation, wind power generation, or wave power generation may be used. Since it is preferable that the current density applied to the cathode structure and 1A / m 2 ~20A / m 2 , it is preferred to incorporate a control system that can ensure the current density. In addition, since this invention is a constant current system, a voltage is not prescribed | regulated. There are many factors that determine voltage, such as cable length, anode resistance, and seawater concentration.

また、図1に示すように、それぞれの電極2,5に接続させたリード線6を海岸まで敷設し、陸地7に設けた直流変換器8で一般商業電源9から直流変換して供給するようになっている。   Further, as shown in FIG. 1, lead wires 6 connected to the respective electrodes 2 and 5 are laid to the coast, and are supplied by DC conversion from a general commercial power source 9 by a DC converter 8 provided on the land 7. It has become.

そして、陰極を構成しているサンゴ着生基盤2に電流密度が1A/m2 〜20A/m2 の電流を数ヶ月間にわたって印加すると、図5(b)に示すように、網状物14の表面が電着物20で覆われ、サンゴの幼生の着生となる。 When a current density of 1 A / m 2 to 20 A / m 2 is applied to the coral growth base 2 constituting the cathode for several months, as shown in FIG. The surface is covered with the electrodeposit 20 and coral larvae are settled.

鹿児島県大島群与論町周辺のサンゴ礁内に海岸より100m沖合の海底に直径1mの半円球型の構造体を設置した。半円球型の構造体の表面には、エキスパンドメタル(開孔部の長径L1 を30.5mm、短径L2 を12mm、厚さ2.3mm)を取り付け、これを陰極とする。また、半円球型の構造体の内部に電極面積1000cm2 を有するマンガン系電極を陽極として設置した。
それぞれの電極にリード線を海岸まで敷設し、一般商業電源から直流変換し、約3カ月間、4Aの電流を印加した。そして、半円球型の構造体表面は、厚さ2mmの電着物で覆われ、その裏側にサンゴの幼生が多数着生していることを観察した。
A hemispherical structure with a diameter of 1 m was installed in the coral reef around Oshima Gun Yoron-cho, Kagoshima Prefecture, 100 m offshore from the coast. On the surface of the hemispherical structure, an expanded metal (the major axis L 1 of the aperture is 30.5 mm, the minor axis L 2 is 12 mm, and the thickness is 2.3 mm) is used as a cathode. Further, a manganese-based electrode having an electrode area of 1000 cm 2 was installed as an anode inside the semispherical structure.
Lead wires were laid on each electrode to the shore, converted into direct current from a general commercial power source, and a current of 4 A was applied for about 3 months. The surface of the hemispherical structure was covered with an electrodeposit having a thickness of 2 mm, and it was observed that many coral larvae were deposited on the back side.

本発明に係るサンゴ育成増殖装置の概略構成図である。It is a schematic block diagram of the coral cultivation breeding device concerning the present invention. サンゴ育成増殖装置の拡大断面図である。It is an expanded sectional view of a coral breeding breeding device. 支持部材の平面図である。It is a top view of a supporting member. 支持部材の他の例を示す平面図である。It is a top view which shows the other example of a supporting member. (a)網状物の拡大図(b)網状物の表面に電着物が付着した様子を示す部分平面図である。(A) Enlarged view of reticulated object (b) It is a partial plan view showing a state where an electrodeposit is attached to the surface of the reticulated object. 電流密度と組成比率との関係を示す図である。It is a figure which shows the relationship between a current density and a composition ratio.

符号の説明Explanation of symbols

2 サンゴ着生基盤
5 陽極
11 鉄製の棒状体
12 骨格
13 下部開口部
14 鉄製の網状物
2 Coral settlement base 5 Anode 11 Iron rod 12 Frame 13 Lower opening 14 Iron mesh

Claims (6)

鉄製の棒状体によりドーム状又は擬似ドーム状の骨格を形成し、この骨格の下部開口部以外の面を無数の開孔部を有する鉄製の網状物で塞いでドーム状又は擬似ドーム状のサンゴ着生基盤を形成し、このサンゴ着生基盤の中に1又は複数本の陽極を立設させてサンゴ着生基盤に電流を印加することを特徴とするサンゴ育成増殖装置。   A dome-shaped or pseudo-dome-shaped skeleton is formed by an iron rod-shaped body, and the surface other than the lower opening of the skeleton is closed with an iron net-like object having numerous openings, and a dome-shaped or pseudo-dome-shaped coral is attached. A coral cultivating and breeding apparatus characterized in that a raw base is formed, and one or a plurality of anodes are erected in the coral base and a current is applied to the coral base. 網状物の開孔部の長径を30mm〜150mm、短径を12mm〜50mmとすることを特徴とする請求項1記載のサンゴ育成増殖装置。   2. The coral breeding and breeding apparatus according to claim 1, wherein the opening of the reticulate has a major axis of 30 to 150 mm and a minor axis of 12 to 50 mm. サンゴ着生基盤に印加する電流密度を1A/m2 〜20A/m2 とすることを特徴とする請求項1記載のサンゴ育成増殖装置。 The coral breeding and breeding apparatus according to claim 1, wherein the current density applied to the coral growth base is 1 A / m 2 to 20 A / m 2 . サンゴ着生基盤に印加する電流を初期は低くし、その後徐々に増加させて電着物の組成をサンゴ幼生の着生に適した電着物とすることを特徴とする請求項1記載のサンゴ育成増殖装置。   2. The coral breeding growth according to claim 1, wherein the current applied to the coral-growth substrate is initially reduced and then gradually increased to make the composition of the electrodeposit suitable for coral larvae-growth. apparatus. 陽極の電極をチタン基材にMn系元素を被覆して形成した酸素発生電極とすることを特徴とする請求項1記載のサンゴ育成増殖装置。   The coral breeding and breeding apparatus according to claim 1, wherein the anode electrode is an oxygen generating electrode formed by coating a Mn-based element on a titanium substrate. サンゴ着生基盤に印加する直流電流を太陽光発電、風力発電、波力発電を利用して賄うことを特徴とする請求項1記載のサンゴ育成増殖装置。   The coral breeding and breeding apparatus according to claim 1, wherein direct current applied to the coral settlement base is covered by using solar power generation, wind power generation, or wave power generation.
JP2008080604A 2008-03-26 2008-03-26 Apparatus for growing and proliferating coral Withdrawn JP2009232706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008080604A JP2009232706A (en) 2008-03-26 2008-03-26 Apparatus for growing and proliferating coral

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008080604A JP2009232706A (en) 2008-03-26 2008-03-26 Apparatus for growing and proliferating coral

Publications (1)

Publication Number Publication Date
JP2009232706A true JP2009232706A (en) 2009-10-15

Family

ID=41247463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008080604A Withdrawn JP2009232706A (en) 2008-03-26 2008-03-26 Apparatus for growing and proliferating coral

Country Status (1)

Country Link
JP (1) JP2009232706A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010047394A1 (en) * 2008-10-23 2010-04-29 三菱重工鉄構エンジニアリング株式会社 Coral cultivation method, manufacturing method for coral-growth substrate precipitated with electrodeposited minerals, and coral-growth substrate
JP2012075420A (en) * 2010-10-05 2012-04-19 Mitsubishi Heavy Industries Bridge & Steel Structures Engineering Co Ltd Coral growing method
CN107079841A (en) * 2017-06-22 2017-08-22 李建兴 A kind of seabed coral culture pedestal
KR20200044341A (en) * 2018-10-19 2020-04-29 강지혜 artificial fish-reef
CN113243319A (en) * 2021-05-21 2021-08-13 江苏绿岩生态技术股份有限公司 Ecological restoration method and growth auxiliary system for coral reef
GB2610697A (en) * 2021-07-15 2023-03-15 Ccell Renewables Ltd Artificial reef for coastal protection

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010047394A1 (en) * 2008-10-23 2010-04-29 三菱重工鉄構エンジニアリング株式会社 Coral cultivation method, manufacturing method for coral-growth substrate precipitated with electrodeposited minerals, and coral-growth substrate
US8720376B2 (en) 2008-10-23 2014-05-13 Mitsubishi Heavy Industries Bridge & Steel Structures Engineering Co., Ltd. Coral cultivation method, manufacturing method for coral-growth substrate precipitated with electrodeposited minerals, and coral-growth substrate
JP2012075420A (en) * 2010-10-05 2012-04-19 Mitsubishi Heavy Industries Bridge & Steel Structures Engineering Co Ltd Coral growing method
CN107079841A (en) * 2017-06-22 2017-08-22 李建兴 A kind of seabed coral culture pedestal
KR20200044341A (en) * 2018-10-19 2020-04-29 강지혜 artificial fish-reef
KR102170194B1 (en) * 2018-10-19 2020-10-26 강지혜 dome-shaped artificial fish-reef including oak
CN113243319A (en) * 2021-05-21 2021-08-13 江苏绿岩生态技术股份有限公司 Ecological restoration method and growth auxiliary system for coral reef
CN113243319B (en) * 2021-05-21 2024-01-26 江苏绿岩生态技术股份有限公司 Ecological restoration method and growth auxiliary system for coral reef
GB2610697A (en) * 2021-07-15 2023-03-15 Ccell Renewables Ltd Artificial reef for coastal protection

Similar Documents

Publication Publication Date Title
CN101960982B (en) Artificial macroalgae field in mixed seawater area and construction method thereof
JP2009232706A (en) Apparatus for growing and proliferating coral
CN105660475B (en) A kind of basalt fibre network suitable for coral reef restoration of the ecosystem
JP5476313B2 (en) Coral cultivation method
CN205962359U (en) A dish -shaped over -and -under type box with a net for ocean farming
JP2006254761A (en) Artificial fish bank and method for installing the same
CN102150608A (en) Plug-in artificial algal reef and method for constructing algal field by using same
JP2007267699A (en) Structure for forming coral reef
CN113243319B (en) Ecological restoration method and growth auxiliary system for coral reef
CN102652495A (en) Manual seaweed transplanting method and reef used for transplanting seaweed
KR101489428B1 (en) Abalone net cage culture farms
CN211523091U (en) Floating breakwater suitable for artificial island and provided with power generation system
JP5566842B2 (en) Coral cultivation method
JP2022538887A (en) modular floating area
JP4950146B2 (en) Coral growing device and coral growing method
CN104521842B (en) A kind of layer-stepping artificial reef body relying on wind power supply
CN108308079B (en) Four-hole circular truncated cone type beach combined construction reef and construction method thereof
CN113841648A (en) Artificial reef body for electrically stimulating growth of hermatypic coral
AU2021100992A4 (en) Nurtured.Co Artificial Reef Technology
JP2001178304A (en) Structure for artificial fishing bank
KR200393238Y1 (en) An artificial reef for purifying sea water and making sea weed field
JP2008022783A (en) Device for trapping and growing coral larva
KR101030597B1 (en) Vortex type artificial breeding reef for fish
KR100809917B1 (en) The artificial seaweeds using the clay brick
CN219240443U (en) Ecological foot groove with fish nest function

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607