JP2009231525A - Light-emitting module, and illuminator - Google Patents

Light-emitting module, and illuminator Download PDF

Info

Publication number
JP2009231525A
JP2009231525A JP2008074952A JP2008074952A JP2009231525A JP 2009231525 A JP2009231525 A JP 2009231525A JP 2008074952 A JP2008074952 A JP 2008074952A JP 2008074952 A JP2008074952 A JP 2008074952A JP 2009231525 A JP2009231525 A JP 2009231525A
Authority
JP
Japan
Prior art keywords
light emitting
semiconductor light
divided region
light
phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008074952A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Yoshikubo
光宏 吉久保
Akio Kasakura
暁夫 笠倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Koizumi Lighting Technology Corp
Original Assignee
Mitsubishi Chemical Corp
Koizumi Lighting Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Koizumi Lighting Technology Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2008074952A priority Critical patent/JP2009231525A/en
Publication of JP2009231525A publication Critical patent/JP2009231525A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light-emitting module which is useful for forming an illuminator using a semiconductor light-emitting element and a phosphor, and capable of avoiding as further as possible light emission from the semiconductor light-emitting element or the phosphor from being separated. <P>SOLUTION: The present invention relates to a light-emitting module comprising a plurality of semiconductor light-emitting devices each comprising at least a package, a semiconductor light-emitting element and a phosphor. Each of the packages includes an opening part that is opened in an emission direction of the semiconductor light-emitting device and at least one divided area portion and another divided area portion defined by dividing the inside of the package into two or more areas. When one semiconductor light-emitting device is defined as a reference, each of the plurality of semiconductor light-emitting devices is disposed while being deviated, with respect to the neighboring semiconductor light-emitting device, just at a predetermined angle defined by dividing 360° with the number of semiconductor light-emitting devices provided in the light-emitting module, in a rotating direction within an opening plane of the opening part. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体発光素子からの発光により外部に対して発光する発光モジュール、およびそれを備える照明装置に関する。   The present invention relates to a light emitting module that emits light to the outside by light emission from a semiconductor light emitting element, and an illumination device including the same.

昨今においては、省エネルギー性やその他の様々な目的のために、従来の照明装置に代えて半導体発光素子である発光ダイオード(LED)を用いた照明装置が広く提案されてきている。また、従来の光源では実現困難であった色調可変照明の光源としてもLEDは期待されている。その一例として、赤色LED、緑色LED、青色LEDを一つのパッケージにすることで白色光を出力する照明装置が開示されている(例えば、特許文献1等を参照。)。この技術においては、上記三種類のLEDに供給される駆動電流を各LEDの順方向電圧に応じて調整することで、各LEDの発光効率を一定にし、白色光の輝度の安定化を図るために、また様々な色調の光を出射するように工夫されている。   In recent years, lighting devices using light emitting diodes (LEDs), which are semiconductor light emitting elements, have been widely proposed in place of conventional lighting devices for energy saving and various other purposes. Further, LEDs are also expected as a light source for color tone variable illumination that has been difficult to achieve with conventional light sources. As an example, a lighting device that outputs white light by making red LED, green LED, and blue LED into one package is disclosed (see, for example, Patent Document 1). In this technology, by adjusting the drive current supplied to the three types of LEDs according to the forward voltage of each LED, the luminous efficiency of each LED is made constant and the brightness of white light is stabilized. In addition, it is devised to emit light of various colors.

また、LEDを利用した照明技術として、青色LEDと赤色および緑色発色のための蛍光体を用いて赤色、青色、緑色の光を発光する半導体発光装置を組み合わせて、LEDの出力を制御することで、黒体輻射軌跡をトレースし、自然光に近い白色光を出射する技術が開示されている(例えば、特許文献1〜3、非特許文献1等を参照。)。
特開2007−59260号 特開2007−265818号 特開2007−299590号 http://techon.nikkeibp.co.jp/article/NEWS/20070704/135373/(日経BPnetのTech−onの記事報道)
In addition, as a lighting technology using LEDs, by combining a blue LED and a semiconductor light emitting device that emits red, blue, and green light using phosphors for red and green coloring, the output of the LED is controlled. A technique for tracing a black body radiation locus and emitting white light close to natural light is disclosed (see, for example, Patent Documents 1 to 3, Non-Patent Document 1 and the like).
JP 2007-59260 A JP 2007-265818 A JP 2007-299590 http://techon.nikkeibp.co.jp/article/NEWS/20070704/135373/ (Tech-on report on Nikkei BPnet Tech-on)

赤色半導体発光素子、緑色半導体発光素子、青色半導体発光素子等の様々な半導体発光素子をそのまま光源として用いた照明装置では、一般的に半導体発光素子の配向角が狭いため、各半導体発光素子の出力光の合成が難しく、合成光の照射面では光の分離が生じる場合がある。また、様々な半導体発光素子と蛍光体とを併せて用いた照明装置においても、蛍光体による光の散乱があるものの、やはり合成光の照射面での光の分離が生じてしまう場合がある。   In an illumination device using various semiconductor light emitting elements such as a red semiconductor light emitting element, a green semiconductor light emitting element, and a blue semiconductor light emitting element as a light source as they are, the output angle of each semiconductor light emitting element is generally low because the orientation angle of the semiconductor light emitting element is generally narrow. It is difficult to synthesize light, and light separation may occur on the surface irradiated with the synthesized light. Further, even in an illumination device using various semiconductor light emitting elements and phosphors in combination, there is a case where light is also separated on the irradiated surface of the synthesized light although there is light scattering by the phosphors.

特に、半導体発光素子を用いた照明装置では、凸レンズ等のレンズ素子が用いられる場合もあり、そのような場合には、合成光の照射面での光の分離が顕著となりやすい。   In particular, in a lighting device using a semiconductor light emitting element, a lens element such as a convex lens may be used. In such a case, the separation of light on the irradiated surface of the synthesized light tends to be remarkable.

本発明では、上記した問題に鑑み、半導体発光素子及び蛍光体を用いた照明装置の形成にあたり有用な発光モジュールであって、半導体発光素子又は蛍光体からの発光の分離を可及的に回避することが可能な発光モジュールを提供することを目的とする。   In view of the above-described problems, the present invention is a light-emitting module that is useful in forming a lighting device using a semiconductor light-emitting element and a phosphor, and avoids the separation of light emission from the semiconductor light-emitting element or the phosphor as much as possible. An object of the present invention is to provide a light emitting module that can be used.

上記課題を解決するために、本発明では、半導体発光素子が実装されているパッケージからの発光により外部に対して発光する半導体発光装置を複数備える発光モジュールにおいて、パッケージからの光の出力面を複数に分割し、それぞれに半導体発光素子と蛍光部とを対応させて配置させ、更に、モジュール内での半導体発光装置の向きをそれぞれ均等に回転方向においてずれた状態とした。このようにすることで、半導体発光素子等から発せられた光の合成を均一に行い、照射面での光の分離を抑制しようとするものである。   In order to solve the above problems, in the present invention, in a light emitting module including a plurality of semiconductor light emitting devices that emit light to the outside by light emission from a package on which a semiconductor light emitting element is mounted, a plurality of output surfaces of light from the package are provided. The semiconductor light emitting elements and the fluorescent portions were arranged in correspondence with each other, and the directions of the semiconductor light emitting devices in the module were equally shifted in the rotation direction. By doing in this way, the light emitted from the semiconductor light emitting element or the like is uniformly synthesized and the separation of the light on the irradiation surface is suppressed.

詳細には、本発明は、少なくともパッケージ、半導体発光素子、及び蛍光体を備え、該半導体発光素子からの発光及び該発光で励起し蛍光する該蛍光体からの発光により、もしくは該半導体発光素子からの発光で励起し蛍光する該蛍光体からの発光により、外部に対して光を出射する半導体発光装置を複数備える発光モジュールである。そして、前記半導体発光装置の各々における前記パッケージは、該半導体発光装置の出射方向に開口する開口部と、該パッケージ内部を2以上に分割して画定され且つ該開口部の一部である分割開口部において開口する、少なくとも一の分割領域部及び他の分割領域部とを有している。更に、前記一の分割領域部及び前記他の分割領域部の各々は、一又は複数の前記半導体発光素子と、前記半導体発光素子に電力を供給する電力供給部と、前記蛍光体と、各分割領域部を封止する透光性材料とを含む蛍光部と、を有する。このように構成される本発明に係る発光モジュールでは、前記複数の半導体発光装置の各々は、一の半導体発光装置を基準としたときに、前記パッケージ内の前記一の分割領域部と前記他の分割領域部との相対位置関係が、隣接する該半導体発光装置に対して、前記開口部の開口面内での回転方向において、360度を前記発光モジュールに備えられる該半導体発光装置の数で除して定義される所定角度ずつ、ずれた状態で配置される。   Specifically, the present invention includes at least a package, a semiconductor light emitting element, and a phosphor, and emits light from the semiconductor light emitting element and emits light from the phosphor that is excited and fluorescent by the light emission, or from the semiconductor light emitting element. The light emitting module includes a plurality of semiconductor light emitting devices that emit light to the outside by light emission from the phosphor that is excited and fluorescent by the light emission of The package in each of the semiconductor light emitting devices has an opening that opens in the emission direction of the semiconductor light emitting device, and a divided opening that is defined by dividing the inside of the package into two or more and is a part of the opening At least one divided region portion and another divided region portion that are opened in the portion. Further, each of the one divided region portion and the other divided region portion includes one or a plurality of the semiconductor light emitting elements, a power supply unit that supplies power to the semiconductor light emitting elements, the phosphor, and each divided portion. A fluorescent portion including a light-transmitting material that seals the region portion. In the light emitting module according to the present invention configured as described above, each of the plurality of semiconductor light emitting devices has the one divided region portion in the package and the other when the one semiconductor light emitting device is used as a reference. The relative positional relationship with the divided region portion is 360 degrees with respect to the adjacent semiconductor light emitting device in the rotation direction within the opening surface of the opening portion divided by the number of the semiconductor light emitting devices provided in the light emitting module. Are arranged in a shifted state by a predetermined angle defined as above.

上記発光モジュールに含まれる半導体発光装置においては、装置からの出力光を出射するための開口部を2以上に分割するように、パッケージ内部に少なくとも一の分割領域部と他の分且つ領域部が画定される。これらの分割領域部における開口部分は上記分割開口部として定義され、この分割開口部は上記発光装置本体の開口部の一部を占めることになる。ここで、各分割領域部には、半導体発光素子とそれに対応する電力供給部、及び蛍光体と透光性材料を含む蛍光部とが備えられる。従って、各半導体発光素子からの出力光は蛍光体を励起し蛍光させた後、蛍光体による発光とともに透光性材料を経て、対応する分割領域部の分割開口部から外部へ至ることになる。   In the semiconductor light emitting device included in the light emitting module, at least one divided region portion and another portion and a region portion are provided in the package so as to divide the opening for emitting output light from the device into two or more. Defined. The opening portions in these divided region portions are defined as the divided opening portions, and the divided opening portions occupy a part of the opening portions of the light emitting device main body. Here, each divided region portion is provided with a semiconductor light emitting element, a corresponding power supply portion, and a fluorescent portion including a phosphor and a translucent material. Accordingly, the output light from each semiconductor light emitting element excites the phosphor to cause it to fluoresce, and then travels through the translucent material together with the light emitted from the phosphor, and reaches the outside from the divided opening of the corresponding divided region.

このように上記半導体発光装置では、一つのパッケージに一又は複数の半導体発光素子とそれに対応する電力供給部と蛍光部とが組合せになって、その複数組合せがパッケージ化された状態となっている。そして、各蛍光部から出力される光がそれぞれの分割開口部から出射方向に沿って出力される。尚、好ましくは、上記発光モジュールにおいて、半導体発光素子は一種類のみであり、各分割領域部に設けられる蛍光体は、それぞれ異なる。このように構成することで、電力供給部を介した半導体発光素子への供給電力の制御を容易にしながら、各分割領域部から異なるスペクトルの発光を行うことができ、それは、発光モジュールとしての発光制御の容易化に資する。   Thus, in the semiconductor light emitting device, one or a plurality of semiconductor light emitting elements, a corresponding power supply unit, and a fluorescent unit are combined in one package, and the plurality of combinations are packaged. . And the light output from each fluorescence part is output along an output direction from each division | segmentation opening part. Preferably, in the light emitting module, there is only one type of semiconductor light emitting element, and the phosphors provided in each divided region portion are different. With this configuration, it is possible to emit light having different spectra from each divided region portion while facilitating control of the power supplied to the semiconductor light emitting element via the power supply portion. Contributes to easy control.

ここで、上記発光モジュールにおいては、設けられる複数の半導体発光装置での一の分割領域部と他の分割領域部との相対位置関係(以下、「分割領域部関係」とも称する。)が、一の半導体発光装置を基準として互いに異なるように設置される。詳細には、発光モジュールに配置された半導体発光装置の分割領域部関係が、隣接する半導体発光装置同士において、所定角度ずつ回転してずれた状態となることで、換言すると均等に分割領域部関係が回転され且つずれた状態とされることで、個々の半導体発光装置の分割領域部関係を異ならしめる。これにより、発光モジュール単位で考えると、一の分割領域部から出される発光と他の分割領域部から出される発光との合成が、よりむら無く均一に行われるため、最終的に発光モジュールから出射される合成光においては、効果的に光の分離が抑制されることになる。   Here, in the light emitting module, the relative positional relationship (hereinafter also referred to as “divided region portion relationship”) between one divided region portion and another divided region portion in a plurality of semiconductor light emitting devices provided is one. The semiconductor light emitting devices are installed differently from each other. More specifically, the relationship between the divided region portions of the semiconductor light emitting devices arranged in the light emitting module is shifted by a predetermined angle between adjacent semiconductor light emitting devices, in other words, the divided region portion relationship equally. Is rotated and shifted, thereby making the relationship between the divided regions of the individual semiconductor light emitting devices different. As a result, when considered in units of light emitting modules, the light emitted from one divided region and the light emitted from the other divided region are combined evenly and uniformly, and finally emitted from the light emitting module. In the synthesized light, the separation of light is effectively suppressed.

ここで、上記の発光モジュールにおいて、前記複数の半導体発光装置は、環状に且つ各半導体発光装置の間隔は等角に配置され、そして、前記半導体発光装置の各々の前記パッケージにおける一の分割領域部と他の分割領域部とは、前記蛍光部から出力される光のスペクトルが互いに異なり、且つ該一の分割領域部の各々が、環状に配置された前記半導体
発光装置の内側に配置されるようにしてもよい。従って、他の分割領域部の各々については、環状に配置された前記半導体発光装置の外側に配置される。このように発光モジュールにおいて複数の半導体発光装置を配置することで、各半導体発光装置からの発光が均一に合成されやすくなり、以て、最終的に発光モジュールから出射される合成光において、効果的に光の分離が抑制されることになる。
Here, in the light emitting module, the plurality of semiconductor light emitting devices are arranged in an annular shape and the intervals between the semiconductor light emitting devices are equiangular, and one divided region portion in each package of the semiconductor light emitting device And the other divided region portions have different spectrums of light output from the fluorescent portion, and each of the one divided region portions is disposed inside the semiconductor light emitting device arranged in a ring shape. It may be. Therefore, each of the other divided region portions is arranged outside the semiconductor light emitting device arranged in a ring shape. By arranging a plurality of semiconductor light emitting devices in the light emitting module in this way, the light emitted from each semiconductor light emitting device can be easily combined uniformly, so that the combined light finally emitted from the light emitting module is effective. Therefore, the separation of light is suppressed.

尚、上記発光モジュールにおける半導体発光装置の環状配置については、半導体発光装置が2個の場合も含まれる。即ち、2個の半導体発光装置を横に並置し、且つ各半導体発光装置の一の分割領域部が対向するように配置された状態も、180度の等角で2個の半導体発光装置を配置したことに相当する。   The annular arrangement of the semiconductor light emitting devices in the light emitting module includes the case where there are two semiconductor light emitting devices. That is, the two semiconductor light emitting devices are arranged side by side, and two semiconductor light emitting devices are arranged at an equiangular angle of 180 degrees in a state where one divided region of each semiconductor light emitting device is opposed. This is equivalent to

また、上記発光モジュールにおける半導体発光装置の配置については、次のように行ってもよい。即ち、前記複数の半導体発光装置は、直線状に且つ各半導体発光装置の間隔は等距離に配置され、そして、前記半導体発光装置の各々の前記パッケージにおける一の分割領域部と他の分割領域部とは、前記蛍光部から出力される光のスペクトルが互いに異なるようにしてもよい。このように発光モジュールにおいて複数の半導体発光装置を配置することでも、各半導体発光装置からの発光が均一に合成されやすくなり、以て、最終的に発光モジュールから出射される合成光において、効果的に光の分離が抑制されることになる。   In addition, the semiconductor light emitting device in the light emitting module may be arranged as follows. That is, the plurality of semiconductor light emitting devices are arranged in a straight line and the intervals between the semiconductor light emitting devices are equidistant, and one divided region portion and another divided region portion in each package of the semiconductor light emitting device The spectrum of light output from the fluorescent part may be different from each other. By arranging a plurality of semiconductor light emitting devices in the light emitting module in this manner, the light emitted from the semiconductor light emitting devices can be easily combined uniformly, and therefore effective in the combined light finally emitted from the light emitting module. Therefore, the separation of light is suppressed.

ここで、上述までの発光モジュールにおいて、前記一の分割領域部の各々が有する前記電力供給部は、互いに直列に接続され、且つ前記他の分割領域部の各々が有する前記電力供給部は、互いに直列に、且つ前記一の分割領域部の各々が有する前記電力供給部とは独立して接続されるようにしてもよい。このように各電力供給部の電気的接続を行うことで、上記発光モジュールにおける発光の制御を容易に行うことができる。   Here, in the light emitting module described above, the power supply units included in each of the one divided region units are connected in series to each other, and the power supply units included in each of the other divided region units are connected to each other. You may make it connect in series and the said electric power supply part which each of said one division area part has independently. As described above, by electrically connecting the power supply units, it is possible to easily control light emission in the light emitting module.

また、上述までの発光モジュールにおいて、前記一の分割領域部の各々が有する前記電力供給部が供給する電流値と、前記他の分割領域部の各々が有する前記電力供給部が供給する電流値との総和は一定に制御されてもよい。このように電流値の総和の一定制御を行うことで、発光を行う2つの分割領域部が備えられる半導体発光素子からの最終的な発光量を一定とすることができる。これにより、各分割領域部からの発光の合成による合成光のスペクトルを変化させながら、発光モジュールとしての発光量を一定に保持することが容易となる。   In the light emitting module described above, a current value supplied by the power supply unit included in each of the one divided region units, and a current value supplied by the power supply unit included in each of the other divided region units, May be controlled to be constant. Thus, by performing constant control of the total sum of the current values, the final light emission amount from the semiconductor light emitting element provided with the two divided region portions that emit light can be made constant. Thereby, it becomes easy to keep the light emission amount as a light emitting module constant while changing the spectrum of the synthesized light by the synthesis of the light emission from each divided region portion.

そして、上述までの発光モジュールを一又は複数用いて構成される照明装置も有用である。このようにモジュール化された発光モジュールを組み合わせることで、様々な照明装置を容易に設計することができる。   And the illuminating device comprised using the light emitting module to the above-mentioned one or more is also useful. By combining the light emitting modules modularized in this way, various lighting devices can be easily designed.

半導体発光素子及び蛍光体を用いた照明装置の形成にあたり有用な発光モジュールであって、半導体発光素子又は蛍光体からの発光の分離を可及的に回避することができる。   The light emitting module is useful for forming a lighting device using a semiconductor light emitting element and a phosphor, and separation of light emission from the semiconductor light emitting element or the phosphor can be avoided as much as possible.

ここで、本発明に係る発光モジュールの実施例について、明細書添付の図面に基づいて説明する。尚、当該実施例は本発明に係る発光モジュールの一例を示すものであり、本発明の権利範囲をそれに限定するものではない。   Here, an embodiment of a light emitting module according to the present invention will be described based on the drawings attached to the specification. In addition, the said Example shows an example of the light emitting module which concerns on this invention, and does not limit the scope of the right of this invention to it.

ここで、図1Aは、本発明に係る発光モジュール30(後述する図7を参照。)を構成する半導体発光装置(以下、単に「発光装置」と言う。)8内の、パッケージ1の概略構
成の斜視図であり、図1Bは、パッケージ1に設けられた半導体発光素子3A、3Bに電力を供給する配線20A、20Bの実装状態を示す図である。また、図1Cは、図1A及び図1Bに示す発光装置8を電気的記号を用いて模式化した図である。更に、図2は、図1Aに示す発光装置8において、上記配線20A、20Bを含む面で切断した場合の断面図である。
Here, FIG. 1A is a schematic configuration of the package 1 in a semiconductor light emitting device (hereinafter simply referred to as “light emitting device”) 8 constituting a light emitting module 30 (see FIG. 7 described later) according to the present invention. FIG. 1B is a diagram illustrating a mounting state of wirings 20A and 20B that supply power to the semiconductor light emitting elements 3A and 3B provided in the package 1. FIG. FIG. 1C is a diagram schematically showing the light-emitting device 8 shown in FIGS. 1A and 1B using electrical symbols. Further, FIG. 2 is a cross-sectional view of the light emitting device 8 shown in FIG. 1A when cut along a plane including the wirings 20A and 20B.

図1Aに示すように、発光装置8はパッケージ1を含んで構成され、該パッケージ1は、基板2上に配置された環状且つ円錐台形状のリフレクタ10を有する。このリフレクタ10は後述する各分割領域部12からの出力光の一部を、発光装置8の出射方向に導く機能を有するとともに、パッケージ1の本体としての機能も果たす。尚、リフレクタ10の円錐台形状の上面側は、発光装置8による光の出射方向となり、開口部13を形成している。一方で、リフレクタ10の円錐台形状の下面側は基板2が配置され、詳細は後述するが各半導体発光素子への電力供給のための配線が敷設等されている(当該配線は図1Aには図示せず)。   As shown in FIG. 1A, the light emitting device 8 includes a package 1, and the package 1 has an annular and frustoconical reflector 10 disposed on a substrate 2. The reflector 10 has a function of guiding a part of output light from each divided region portion 12 described later in the emission direction of the light emitting device 8 and also functions as a main body of the package 1. In addition, the upper surface side of the truncated cone shape of the reflector 10 becomes a light emitting direction by the light emitting device 8 and forms an opening 13. On the other hand, the substrate 2 is disposed on the lower surface side of the truncated cone shape of the reflector 10, and although details will be described later, wiring for supplying power to each semiconductor light emitting element is laid or the like (the wiring is shown in FIG. 1A). Not shown).

そして、この環状のリフレクタ10の内部の空間を図1A、図2に示すように均等に二つの領域に分割する間仕切り11が、基板2に対して垂直に設けられている。この間仕切り11によって、リフレクタ10内に2つの分割領域部12A、12Bが画定されるとともに、分割領域部12Aの開口部は、リフレクタ10の開口部13の右半分を占め、分割領域部12Bの開口部は、リフレクタ10の開口部13の左半分を占めることになる。本出願においては、分割領域部12Aの開口部を、分割開口部13Aと称し、分割領域部12Bの開口部を、分割開口部13Bと称する。即ち、開口部13は、間仕切り11によって分割開口部13Aと13Bに分割されたことになる。   And the partition 11 which divides | segments the space inside this cyclic | annular reflector 10 equally into two area | regions as shown to FIG. 1A and FIG. The partition 11 defines two divided region portions 12A and 12B in the reflector 10, and the opening portion of the divided region portion 12A occupies the right half of the opening portion 13 of the reflector 10, and the opening of the divided region portion 12B. The part occupies the left half of the opening 13 of the reflector 10. In the present application, the opening of the divided region portion 12A is referred to as a divided opening portion 13A, and the opening portion of the divided region portion 12B is referred to as a divided opening portion 13B. That is, the opening 13 is divided into the divided openings 13A and 13B by the partition 11.

この分割領域部12A、12Bには、それぞれ半導体発光素子であり近紫外光を出力光とする近紫外半導体発光素子3A、3Bがそれぞれ4個ずつ設けられている。この近紫外半導体発光素子3A、3B(これらの近紫外半導体発光素子を包括的に参照する場合は近紫外半導体発光素子3と称する。)は、対となる配線20A、20B(包括的に配線20と称する場合もある。)にそれぞれ接続され、電力供給を受けることで発光を行う。尚、各分割領域部での配線20への近紫外半導体発光素子3の接続は、図1Bに示すように、配線20Aの上に4個の近紫外半導体発光素子3Aが実装され、配線20Bの上に4個の近紫外半導体発光素子3Bが実装される。そして、各分割領域における4個の半導体発光素子3は、対応する配線に対して順方向に並列接続されている。   Each of the divided region portions 12A and 12B is provided with four near-ultraviolet semiconductor light-emitting elements 3A and 3B each of which is a semiconductor light-emitting element and outputs near-ultraviolet light as output light. These near-ultraviolet semiconductor light-emitting elements 3A and 3B (when these near-ultraviolet semiconductor light-emitting elements are comprehensively referred to are referred to as near-ultraviolet semiconductor light-emitting elements 3), paired wirings 20A and 20B (generally wiring 20 Are connected to each other and emit light when receiving power supply. As shown in FIG. 1B, four near-ultraviolet semiconductor light-emitting elements 3A are mounted on the wiring 20A to connect the near-ultraviolet semiconductor light-emitting element 3 to the wiring 20 in each divided region. Four near-ultraviolet semiconductor light emitting elements 3B are mounted thereon. The four semiconductor light emitting elements 3 in each divided region are connected in parallel to the corresponding wiring in the forward direction.

これらの近紫外半導体発光素子3A、3Bの実装状態を模式化して示すと図1Cのようになる。即ち、分割領域部12Aに配置される4つの近紫外半導体発光素子3Aに対しては、配線20Aより電力供給が行われ、分割領域部12Bに配置される4つの近紫外半導体発光素子3Bに対しては、配線20Bより電力供給が行われる。このとき、各近紫外半導体発光素子3に印加される電圧は3.3V〜3.9Vの範囲で、供給電流は40mA〜200mAの範囲となる。この電力供給については、発光モジュール30全体の発光強度を考慮して行われてもよく、その点については後述する。   The mounting state of these near-ultraviolet semiconductor light-emitting elements 3A and 3B is schematically shown in FIG. 1C. That is, power is supplied from the wiring 20A to the four near ultraviolet semiconductor light emitting elements 3A arranged in the divided region portion 12A, and the four near ultraviolet semiconductor light emitting elements 3B arranged in the divided region portion 12B are supplied. Thus, power is supplied from the wiring 20B. At this time, the voltage applied to each near ultraviolet semiconductor light emitting element 3 is in the range of 3.3V to 3.9V, and the supply current is in the range of 40 mA to 200 mA. This power supply may be performed in consideration of the light emission intensity of the entire light emitting module 30, which will be described later.

ここで、近紫外半導体発光素子3の基板2への実装について、図3に基づいて説明する。基板2は、近紫外半導体発光素子3を含む発光装置8を保持するための基部であり、メタルベース部材2A、メタルベース部材2A上に形成された絶縁層2D、および絶縁層2D上に形成された対配線20C、20Dを有している。近紫外半導体発光素子3は、相対する底面および上面に一対の電極であるp電極及びn電極を有しており、対配線20Cの上面に、AuSnの共晶半田5を介して近紫外半導体発光素子3の底面側の電極が接合されている。近紫外半導体発光素子3の上面側の電極は、金属製のワイヤ6によって、もう一方の対配線20Dに接続されている。これらの対配線20C、20Dの対で、図1Bに
示される一つ対の配線20Aあるいは20Bをなし、各分割領域部の4個の近紫外半導体発光素子3への電力供給が行われる。
Here, mounting of the near-ultraviolet semiconductor light-emitting element 3 on the substrate 2 will be described with reference to FIG. The substrate 2 is a base for holding the light emitting device 8 including the near ultraviolet semiconductor light emitting element 3, and is formed on the metal base member 2A, the insulating layer 2D formed on the metal base member 2A, and the insulating layer 2D. The pair wirings 20C and 20D are provided. The near-ultraviolet semiconductor light-emitting element 3 has a p-electrode and an n-electrode as a pair of electrodes on opposite bottom and top surfaces, and near-ultraviolet semiconductor light emission via the AuSn eutectic solder 5 on the top surface of the pair wiring 20C. The electrode on the bottom side of the element 3 is joined. The electrode on the upper surface side of the near-ultraviolet semiconductor light emitting element 3 is connected to the other pair wiring 20 </ b> D by a metal wire 6. The pair of wirings 20C and 20D form a pair of wirings 20A or 20B shown in FIG. 1B, and power is supplied to the four near-ultraviolet semiconductor light-emitting elements 3 in each divided region.

尚、近紫外半導体発光素子3と基板2の一対の対配線20C、20Dとの電気的接続は、図3に示す形態に限られず、近紫外半導体発光素子3における電極の組の配置に応じて適宜方法で行なうことができる。例えば、近紫外半導体発光素子3の片面のみに電極の組が設けられている場合は、電極が設けられている面を上に向けて近紫外半導体発光素子3を設置し、各組の電極と各対配線20C、20Dとを例えば金製のワイヤ6でそれぞれ接続することによって、対配線20C、20Dと近紫外半導体発光素子3とを電気的に接続することができる。また、近紫外半導体発光素子3がフリップチップ(フェースダウン)の場合は、近紫外半導体発光素子3の電極と対配線20C、20Dとを金バンプや半田で接合することによって電気的に接続することができる。   Note that the electrical connection between the near-ultraviolet semiconductor light-emitting element 3 and the pair of wirings 20C and 20D on the substrate 2 is not limited to the form shown in FIG. An appropriate method can be used. For example, when a set of electrodes is provided only on one surface of the near-ultraviolet semiconductor light-emitting element 3, the near-ultraviolet semiconductor light-emitting element 3 is installed with the surface on which the electrode is provided facing upward. The pair wirings 20C and 20D and the near-ultraviolet semiconductor light emitting element 3 can be electrically connected by connecting the respective pair wirings 20C and 20D with, for example, gold wires 6. When the near-ultraviolet semiconductor light-emitting element 3 is flip-chip (face-down), the electrodes of the near-ultraviolet semiconductor light-emitting element 3 and the pair wirings 20C and 20D are electrically connected by bonding with gold bumps or solder. Can do.

ここで、近紫外半導体発光素子3は、電力が供給されることにより近紫外領域(発光波長360nm〜430nmの領域)の光を発光し、後述する蛍光部14A、14B(包括的に蛍光部14と称する場合もある。)を励起するものである。中でも、GaN系化合物半導体を使用したGaN系半導体発光素子が好ましい。なぜなら、GaN系半導体発光素子は、この領域の光を発するのに、発光出力や外部量子効率が格段に大きく、後述の蛍光体と組み合わせることによって、非常に低電力で非常に明るい発光が得られるからである。GaN系半導体発光素子においては、AlxGayN発光層、GaN発光層、またはInxGayN発光層を有しているものが好ましい。GaN系半導体発光素子においては、それらの中でInxGayN発光層を有するものが、発光強度が非常に強いので、特に好ましく、InxGayN層とGaN層の多重量子井戸構造のものが、発光強度が非常に強いので、特に好ましい。   Here, the near-ultraviolet semiconductor light-emitting element 3 emits light in the near-ultraviolet region (emission wavelength region of 360 nm to 430 nm) when power is supplied, and the fluorescent portions 14A and 14B (to be comprehensively described, the fluorescent portion 14) described later. It may also be referred to as “). Among these, a GaN-based semiconductor light-emitting element using a GaN-based compound semiconductor is preferable. This is because the GaN-based semiconductor light-emitting device emits light in this region, but the light output and external quantum efficiency are remarkably large, and when combined with a phosphor described later, very light emission can be obtained with very low power. Because. In the GaN-based semiconductor light emitting device, one having an AlxGayN light emitting layer, a GaN light emitting layer, or an InxGayN light emitting layer is preferable. Among the GaN-based semiconductor light-emitting elements, those having an InxGayN light-emitting layer are particularly preferable because the emission intensity is very strong, and those having a multiple quantum well structure of an InxGayN layer and a GaN layer have a very high emission intensity. It is particularly preferable because it is strong.

なお、上記組成式においてx+yの値は通常0.8〜1.2の範囲の値である。GaN系半導体発光素子において、これら発光層にZnやSiをドープしたものやドーパント無しのものが発光特性を調節する上で好ましいものである。   In the above composition formula, the value of x + y is usually in the range of 0.8 to 1.2. In the GaN-based semiconductor light-emitting device, those in which these light-emitting layers are doped with Zn or Si and those without a dopant are preferable for adjusting the light emission characteristics.

GaN系半導体発光素子はこれら発光層、p層、n層、電極、及び基板を基本構成要素としたものであり、発光層をn型とp型のAlxGayN層、GaN層、またはInxGayN層などでサンドイッチにしたヘテロ構造を有しているものが、発光効率が高く、好ましく、さらにヘテロ構造を量子井戸構造にしたものが、発光効率がさらに高く、より好ましい。   A GaN-based semiconductor light-emitting element has these light-emitting layer, p-layer, n-layer, electrode, and substrate as basic components, and the light-emitting layer is an n-type or p-type AlxGayN layer, GaN layer, or InxGayN layer. Those having a sandwiched heterostructure are preferable because of high emission efficiency, and those having a heterostructure having a quantum well structure are more preferable because of higher emission efficiency.

また、GaN系半導体発光素子を形成するためのGaN系結晶層の成長方法としては、HVPE法、MOVPE法、MBE法などが挙げられる。厚膜を形成する場合はHVPE法が好ましいが、薄膜を形成する場合はMOVPE法やMBE法が好ましい。   Further, examples of the growth method of the GaN-based crystal layer for forming the GaN-based semiconductor light emitting device include the HVPE method, the MOVPE method, and the MBE method. When forming a thick film, the HVPE method is preferable, but when forming a thin film, the MOVPE method or the MBE method is preferable.

そして、図3に示すように、基板2上には、この近紫外半導体発光素子3から発せられる光の一部を吸収して異なる波長の光を発する複数あるいは単独の蛍光体及び前記蛍光体を封止する透光性材料を含有する蛍光部14が、近紫外半導体発光素子3を覆って設けられている。尚、図3ではリフレクタ10の記載は省略されているが、このような形態もパッケージから構成される半導体発光装置の一形態となり得る。近紫外半導体発光素子3から発せられた光の一部は、蛍光部14内の発光物質(蛍光体)に励起光として一部又は全部が吸収される。より具体的に発光装置8における蛍光部について図2に基づいて説明すると、分割領域部12Aにおいては、蛍光部14Aが近紫外半導体発光素子3Aを覆い、且つその蛍光部14Aは分割開口部13Aにて露出される。また、分割領域部12Bにおいては、蛍光部14Bが近紫外半導体発光素子3Bを覆い、且つその蛍光部14Bは分割開口部13Bにて露出される。従って、各蛍光部からの出力光は、各分割開口部から外部
に出射される。
As shown in FIG. 3, on the substrate 2, a plurality of or single phosphors that absorb part of the light emitted from the near-ultraviolet semiconductor light-emitting element 3 and emit light of different wavelengths and the phosphors A fluorescent part 14 containing a light-transmitting material to be sealed is provided so as to cover the near-ultraviolet semiconductor light-emitting element 3. Although the description of the reflector 10 is omitted in FIG. 3, such a form can also be a form of a semiconductor light emitting device constituted by a package. Part or all of the light emitted from the near-ultraviolet semiconductor light-emitting element 3 is absorbed as excitation light by the light-emitting substance (phosphor) in the fluorescent portion 14. More specifically, the fluorescent portion in the light emitting device 8 will be described with reference to FIG. 2. In the divided region portion 12A, the fluorescent portion 14A covers the near-ultraviolet semiconductor light emitting element 3A, and the fluorescent portion 14A is formed in the divided opening portion 13A. Exposed. In the divided region portion 12B, the fluorescent portion 14B covers the near ultraviolet semiconductor light emitting element 3B, and the fluorescent portion 14B is exposed at the divided opening 13B. Therefore, output light from each fluorescent part is emitted to the outside from each divided opening.

次に、蛍光部14について詳細に説明する。本実施例に係る発光装置8は、白色光を出力することを目的とし、特に、発光装置8の発光色が、UCS(u、v)表色系(CIE1960)のuv色度図において、黒体輻射軌跡からの偏差duvが、−0.02≦duv≦0.02を満たすように、赤色蛍光体、緑色蛍光体、青色蛍光体の3数種の蛍光体を採用する。具体的には以下に挙げられるものを使用することができる。尚、本発明における黒体輻射軌跡からの偏差duvは、JIS Z8725(光源の分布温度及び色温度・相関色温度の測定方法)の5.4項の備考の定義に従う。   Next, the fluorescent part 14 will be described in detail. The light emitting device 8 according to the present embodiment is intended to output white light. In particular, the light emission color of the light emitting device 8 is black in the uv chromaticity diagram of the UCS (u, v) color system (CIE 1960). Three kinds of phosphors of a red phosphor, a green phosphor, and a blue phosphor are employed so that the deviation duv from the body radiation locus satisfies −0.02 ≦ duv ≦ 0.02. Specifically, the following can be used. The deviation duv from the black body radiation locus in the present invention follows the definition in the remarks in Section 5.4 of JIS Z8725 (Measurement method of light source distribution temperature and color temperature / correlated color temperature).

本発明に好適な赤色蛍光体が発する蛍光の具体的な波長の範囲を例示すると、主発光ピーク波長が通常570nm以上、好ましくは580nm以上、特に好ましくは610nm以上であり、また、通常700nm以下、好ましくは680nm以下、特に好ましくは660nm以下である。また、主発光ピークの半値幅は、通常1nm以上、好ましくは10nm以上、特に好ましくは30nm以上であり、また通常120nm以下、好ましくは110nm以下、特に好ましくは100nm以下である。   Illustrating the specific wavelength range of the fluorescence emitted by the red phosphor suitable for the present invention, the main emission peak wavelength is usually 570 nm or more, preferably 580 nm or more, particularly preferably 610 nm or more, and usually 700 nm or less. Preferably it is 680 nm or less, Especially preferably, it is 660 nm or less. The half width of the main emission peak is usually 1 nm or more, preferably 10 nm or more, particularly preferably 30 nm or more, and is usually 120 nm or less, preferably 110 nm or less, particularly preferably 100 nm or less.

赤色蛍光体としては、例えば、赤色破断面を有する破断粒子から構成され、赤色領域の発光を行なう(Mg,Ca,Sr,Ba)2Si58:Euで表されるユウロピウム付活ア
ルカリ土類シリコンナイトライド系蛍光体、規則的な結晶成長形状としてほぼ球形状を有する成長粒子から構成され、赤色領域の発光を行なう(Y,La,Gd,Lu)22S:Euで表されるユウロピウム付活希土類オキシカルコゲナイド系蛍光体等が挙げられる。
The red phosphor is composed of, for example, fractured particles having a red fracture surface, and emits light in the red region (Mg, Ca, Sr, Ba) 2 Si 5 N 8 : europium activated alkaline earth represented by Eu. Silicon nitride-based phosphor, which is composed of growing particles having a substantially spherical shape as a regular crystal growth shape, and emits light in the red region (Y, La, Gd, Lu) 2 O 2 S: represented by Eu And europium activated rare earth oxychalcogenide phosphors.

さらに、Ti、Zr、Hf、Nb、Ta、W、及びMoよりなる群から選ばれる少なくも1種の元素を含有する酸窒化物および/または酸硫化物を含有する蛍光体であって、Al元素の一部または全てがGa元素で置換されたアルファサイアロン構造をもつ酸窒化物を含有する蛍光体も用いることができる。なお、これらは酸窒化物および/または酸硫化物を含有する蛍光体である。   And a phosphor containing oxynitride and / or oxysulfide containing at least one element selected from the group consisting of Ti, Zr, Hf, Nb, Ta, W, and Mo, A phosphor containing an oxynitride having an alpha sialon structure in which some or all of the elements are substituted with Ga elements can also be used. These are phosphors containing oxynitride and / or oxysulfide.

また、そのほか、赤色蛍光体としては、(La,Y)22S:Eu等のEu付活酸硫化物蛍光体、Y(V,P)O4:Eu、Y23:Eu等のEu付活酸化物蛍光体、(Ba,Sr,Ca,Mg)2SiO4:Eu,Mn、(Ba,Mg)2SiO4:Eu,Mn等のEu,Mn
付活珪酸塩蛍光体、(Ca,Sr)S:Eu等のEu付活硫化物蛍光体、YAlO3:Eu
等のEu付活アルミン酸塩蛍光体、LiY9(SiO4)62:Eu、Ca28(SiO4)62:Eu、(Sr,Ba,Ca)3SiO5:Eu、Sr2BaSiO5:Eu等のEu付活珪
酸塩蛍光体、(Y,Gd)3Al512:Ce、(Tb,Gd)3Al512:Ce等のCe付活アルミン酸塩蛍光体、(Ca,Sr,Ba)2Si58:Eu、(Mg,Ca,Sr,Ba)
SiN2:Eu、(Mg,Ca,Sr,Ba)AlSiN3:Eu等のEu付活窒化物蛍光体、(Mg,Ca,Sr,Ba)AlSiN3:Ce等のCe付活窒化物蛍光体、(Sr,Ca,Ba,Mg)10(PO4)6Cl2:Eu,Mn等のEu,Mn付活ハロリン酸塩蛍光体、Ba3MgSi28:Eu,Mn、(Ba,Sr,Ca,Mg)3(Zn,Mg)Si28:Eu,Mn等のEu,Mn付活珪酸塩蛍光体、3.5MgO・0.5MgF2・GeO2:Mn等のMn付活ゲルマン酸塩蛍光体、Eu付活αサイアロン等のEu付活酸窒化物蛍光体、(Gd,Y,Lu,La)23:Eu,Bi等のEu,Bi付活酸化物蛍光体、(Gd,Y
,Lu,La)22S:Eu,Bi等のEu,Bi付活酸硫化物蛍光体、(Gd,Y,Lu,La)VO4:Eu,Bi等のEu,Bi付活バナジン酸塩蛍光体、SrY24:Eu,Ce等のEu,Ce付活硫化物蛍光体、CaLa24:Ce等のCe付活硫化物蛍光体、(Ba,Sr,Ca)MgP27:Eu,Mn、(Sr,Ca,Ba,Mg,Zn)227
:Eu,Mn等のEu,Mn付活リン酸塩蛍光体、(Y,Lu)2WO6:Eu,Mo等のEu,Mo付活タングステン酸塩蛍光体、(Ba,Sr,Ca)xSiyz:Eu,Ce(但
し、x、y、zは、1以上の整数)等のEu,Ce付活窒化物蛍光体、(Ca,Sr,B
a,Mg)10(PO4)6(F,Cl,Br,OH)2:Eu,Mn等のEu,Mn付活ハロリン酸塩蛍光体、((Y,Lu,Gd,Tb)1-xScxCey)2(Ca,Mg)1-r(Mg,Zn)2+rSiz-qGeqO12+δ等のCe付活珪酸塩蛍光体等を用いることも可能である。
Other red phosphors include Eu-activated oxysulfide phosphors such as (La, Y) 2 O 2 S: Eu, Y (V, P) O 4 : Eu, Y 2 O 3 : Eu, etc. Eu-activated oxide phosphors of (Ba, Sr, Ca, Mg) 2 SiO 4 : Eu, Mn, (Ba, Mg) 2 SiO 4 : Eu, Mn such as Eu, Mn
Activated silicate phosphor, Eu activated sulfide phosphor such as (Ca, Sr) S: Eu, YAlO 3 : Eu
Eu-activated aluminate phosphor such as LiY 9 (SiO 4 ) 6 O 2 : Eu, Ca 2 Y 8 (SiO 4 ) 6 O 2 : Eu, (Sr, Ba, Ca) 3 SiO 5 : Eu, Eu-activated silicate phosphors such as Sr 2 BaSiO 5 : Eu, (Y, Gd) 3 Al 5 O 12 : Ce, (Tb, Gd) 3 Al 5 O 12 : Ce-activated aluminate fluorescence such as Ce Body, (Ca, Sr, Ba) 2 Si 5 N 8 : Eu, (Mg, Ca, Sr, Ba)
Eu-activated nitride phosphors such as SiN 2 : Eu, (Mg, Ca, Sr, Ba) AlSiN 3 : Eu, Ce-activated nitride phosphors such as (Mg, Ca, Sr, Ba) AlSiN 3 : Ce (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu, Mn-activated halophosphate phosphors such as Eu and Mn, Ba 3 MgSi 2 O 8 : Eu, Mn, (Ba, Sr) , Ca, Mg) 3 (Zn, Mg) Si 2 O 8 : Eu, Mn activated silicate phosphor such as Eu, Mn, 3.5Mn activated germane such as 3.5MgO · 0.5MgF 2 · GeO 2 : Mn Acid activated phosphor, Eu activated oxynitride phosphor such as Eu activated α sialon, (Gd, Y, Lu, La) 2 O 3 : Eu, Bi activated oxide phosphor such as Eu, Bi, ( Gd, Y
, Lu, La) 2 O 2 S: Eu, Bi-activated oxysulfide phosphors such as Eu and Bi, (Gd, Y, Lu, La) VO 4 : Eu, Bi-activated vanadic acid such as Eu, Bi, etc. Salt phosphor, SrY 2 S 4 : Eu, Ce activated sulfide phosphor such as Eu, Ce, CaLa 2 S 4 : Ce activated sulfide phosphor such as Ce, (Ba, Sr, Ca) MgP 2 O 7 : Eu, Mn, (Sr, Ca, Ba, Mg, Zn) 2 P 2 O 7
: Eu, Mn activated phosphor phosphor such as Eu, Mn, (Y, Lu) 2 WO 6 : Eu, Mo activated tungstate phosphor such as Eu, Mo, (Ba, Sr, Ca) x Si y N z : Eu, Ce activated nitride phosphor such as Eu, Ce (where x, y, z are integers of 1 or more), (Ca, Sr, B)
a, Mg) 10 (PO 4 ) 6 (F, Cl, Br, OH) 2 : Eu, Mn-activated halophosphate phosphor such as Eu, Mn, ((Y, Lu, Gd, Tb) 1-x sc x Ce y) 2 (Ca , Mg) 1-r (Mg, Zn) can be used for 2 + r Si zq GeqO 12+ δ Ce -activated silicate phosphor such like.

また、赤色蛍光体としては、β−ジケトネート、β−ジケトン、芳香族カルボン酸、または、ブレンステッド酸等のアニオンを配位子とする希土類元素イオン錯体からなる赤色有機蛍光体、ペリレン系顔料(例えば、ジベンゾ{[f,f']−4,4',7,7'−テトラフェニル}ジインデノ[1,2,3−cd:1',2',3'−lm]ペリレン)、アントラキノン系顔料、レーキ系顔料、アゾ系顔料、キナクリドン系顔料、アントラセン系顔料、イソインドリン系顔料、イソインドリノン系顔料、フタロシアニン系顔料、トリフェニルメタン系塩基性染料、インダンスロン系顔料、インドフェノール系顔料、シアニン系顔料、ジオキサジン系顔料を用いることも可能である。   Further, as red phosphors, β-diketonates, β-diketones, aromatic carboxylic acids, red organic phosphors composed of rare earth element ion complexes having an anion such as Bronsted acid as a ligand, perylene pigments ( For example, dibenzo {[f, f ′]-4,4 ′, 7,7′-tetraphenyl} diindeno [1,2,3-cd: 1 ′, 2 ′, 3′-lm] perylene), anthraquinone series Pigment, lake pigment, azo pigment, quinacridone pigment, anthracene pigment, isoindoline pigment, isoindolinone pigment, phthalocyanine pigment, triphenylmethane basic dye, indanthrone pigment, indophenol It is also possible to use pigments, cyanine pigments, and dioxazine pigments.

本発明に好適な緑色蛍光体が発する蛍光の具体的な波長の範囲を例示すると、主発光ピーク波長が通常500nm以上、好ましくは510nm以上、特に好ましくは520nm以上であり、また、通常580nm以下、好ましくは570nm以下、特に好ましくは560nm以下である。また、主発光ピークの半値幅が通常1nm以上、好ましくは10nm以上、特に好ましくは30nm以上であり、また、通常120nm以下、好ましくは90nm以下、特に好ましくは60nm以下である。   Illustrating the specific wavelength range of the fluorescence emitted by the green phosphor suitable for the present invention, the main emission peak wavelength is usually 500 nm or more, preferably 510 nm or more, particularly preferably 520 nm or more, and usually 580 nm or less, Preferably it is 570 nm or less, Especially preferably, it is 560 nm or less. Further, the half width of the main emission peak is usually 1 nm or more, preferably 10 nm or more, particularly preferably 30 nm or more, and is usually 120 nm or less, preferably 90 nm or less, particularly preferably 60 nm or less.

このような緑色蛍光体として、例えば、破断面を有する破断粒子から構成され、緑色領域の発光を行なう(Mg,Ca,Sr,Ba)Si222:Euで表されるユウロピウム
付活アルカリ土類シリコンオキシナイトライド系蛍光体、破断面を有する破断粒子から構成され、緑色領域の発光を行なう(Ba,Ca,Sr,Mg)2SiO4:Euで表されるユウロピウム付活アルカリ土類シリケート系蛍光体等が挙げられる。
As such a green phosphor, for example, europium activation represented by (Mg, Ca, Sr, Ba) Si 2 O 2 N 2 : Eu that is composed of fractured particles having a fracture surface and emits light in the green region. An alkaline earth silicon oxynitride phosphor, composed of fractured particles having a fracture surface, emits green light (Ba, Ca, Sr, Mg) 2 SiO 4 : europium activated alkaline earth expressed by Eu Silicate phosphors and the like.

また、そのほか、緑色蛍光体としては、Sr4Al1425:Eu、(Ba,Sr,Ca)
Al24:Eu等のEu付活アルミン酸塩蛍光体、(Sr,Ba)Al2Si28:Eu、(Ba,Mg)2SiO4:Eu、(Ba,Sr,Ca,Mg)2SiO4:Eu、(Ba,Sr,Ca)2(Mg,Zn)Si27:Eu等のEu付活珪酸塩蛍光体、Y2SiO5:Ce,Tb等のCe,Tb付活珪酸塩蛍光体、Sr227−Sr225:Eu等のEu付活硼酸リン酸塩蛍光体、Sr2Si38−2SrCl2:Eu等のEu付活ハロ珪酸塩蛍光体、Zn2SiO4:Mn等のMn付活珪酸塩蛍光体、CeMgAl1119:Tb、Y3Al512
Tb等のTb付活アルミン酸塩蛍光体、Ca28(SiO4)62:Tb、La3Ga5Si
14:Tb等のTb付活珪酸塩蛍光体、(Sr,Ba,Ca)Ga24:Eu,Tb,Sm等のEu,Tb,Sm付活チオガレート蛍光体、Y3(Al,Ga)512:Ce、(Y,G
a,Tb,La,Sm,Pr,Lu)3(Al,Ga)512:Ce等のCe付活アルミン酸
塩蛍光体、Ca3Sc2Si312:Ce、Ca3(Sc,Mg,Na,Li)2Si312:Ce等のCe付活珪酸塩蛍光体、CaSc24:Ce等のCe付活酸化物蛍光体、SrSi222:Eu、(Sr,Ba,Ca)Si222:Eu、Eu付活βサイアロン等のEu付活酸窒化物蛍光体、BaMgAl1017:Eu,Mn等のEu,Mn付活アルミン酸塩蛍光体、SrAl24:Eu等のEu付活アルミン酸塩蛍光体、(La,Gd,Y)22S:Tb等のTb付活酸硫化物蛍光体、LaPO4:Ce,Tb等のCe,Tb付活リン酸
塩蛍光体、ZnS:Cu,Al、ZnS:Cu,Au,Al等の硫化物蛍光体、(Y,G
a,Lu,Sc,La)BO3:Ce,Tb、Na2Gd227:Ce,Tb、(Ba,S
r)2(Ca,Mg,Zn)B26:K,Ce,Tb等のCe,Tb付活硼酸塩蛍光体、Ca8Mg(SiO4)4Cl2:Eu,Mn等のEu,Mn付活ハロ珪酸塩蛍光体、(Sr,Ca
,Ba)(Al,Ga,In)24:Eu等のEu付活チオアルミネート蛍光体やチオガレ
ート蛍光体、(Ca,Sr)8(Mg,Zn)(SiO4)4Cl2:Eu,Mn等のEu,Mn付
活ハロ珪酸塩蛍光体等を用いることも可能である。
In addition, as the green phosphor, Sr 4 Al 14 O 25 : Eu, (Ba, Sr, Ca)
Eu activated aluminate phosphors such as Al 2 O 4 : Eu, (Sr, Ba) Al 2 Si 2 O 8 : Eu, (Ba, Mg) 2 SiO 4 : Eu, (Ba, Sr, Ca, Mg ) 2 SiO 4 : Eu, (Ba, Sr, Ca) 2 (Mg, Zn) Si 2 O 7 : Eu-activated silicate phosphor such as Eu, Y 2 SiO 5 : Ce, Tb, etc. with Ce, Tb Activated silicate phosphor, Sr 2 P 2 O 7 —Sr 2 B 2 O 5 : Eu-activated borate phosphate phosphor such as Eu, Sr 2 Si 3 O 8 -2SrCl 2 : Eu-activated halo such as Eu Silicate phosphor, Zn 2 SiO 4 : Mn-activated silicate phosphor such as Mn, CeMgAl 11 O 19 : Tb, Y 3 Al 5 O 12 :
Tb-activated aluminate phosphor such as Tb, Ca 2 Y 8 (SiO 4 ) 6 O 2 : Tb, La 3 Ga 5 Si
O 14 : Tb activated silicate phosphor such as Tb, (Sr, Ba, Ca) Ga 2 S 4 : Eu, Tb, Sm activated thiogallate phosphor such as Eu, Tb, Sm, Y 3 (Al, Ga) ) 5 O 12 : Ce, (Y, G
a, Tb, La, Sm, Pr, Lu) 3 (Al, Ga) 5 O 12 : Ce-activated aluminate phosphor such as Ce, Ca 3 Sc 2 Si 3 O 12 : Ce, Ca 3 (Sc, Mg, Na, Li) 2 Si 3 O 12 : Ce-activated silicate phosphor such as Ce, Ce-activated oxide phosphor such as CaSc 2 O 4 : Ce, SrSi 2 O 2 N 2 : Eu, (Sr , Ba, Ca) Si 2 O 2 N 2 : Eu, Eu-activated oxynitride phosphors such as Eu-activated β sialon, BaMgAl 10 O 17 : Eu, Mn-activated aluminate phosphors such as Eu and Mn SrAl 2 O 4 : Eu activated aluminate phosphor such as Eu, (La, Gd, Y) 2 O 2 S: Tb activated oxysulfide phosphor such as Tb, LaPO 4 : Ce, Tb, etc. Ce, Tb-activated phosphate phosphors, sulfide phosphors such as ZnS: Cu, Al, ZnS: Cu, Au, Al, (Y, G
a, Lu, Sc, La) BO 3 : Ce, Tb, Na 2 Gd 2 B 2 O 7 : Ce, Tb, (Ba, S
r) 2 (Ca, Mg, Zn) B 2 O 6 : Ce, Tb activated borate phosphor such as K, Ce, Tb, Ca 8 Mg (SiO 4 ) 4 Cl 2 : Eu such as Eu, Mn, Mn-activated halosilicate phosphor, (Sr, Ca
, Ba) (Al, Ga, In) 2 S 4 : Eu and other Eu-activated thioaluminate phosphors and thiogallate phosphors, (Ca, Sr) 8 (Mg, Zn) (SiO 4 ) 4 Cl 2 : Eu It is also possible to use Eu, Mn activated halosilicate phosphors, etc.

また、緑色蛍光体としては、ピリジン−フタルイミド縮合誘導体、ベンゾオキサジノン系、キナゾリノン系、クマリン系、キノフタロン系、ナルタル酸イミド系等の蛍光色素、テルビウム錯体等の有機蛍光体を用いることも可能である。   In addition, as the green phosphor, it is also possible to use a pyridine-phthalimide condensed derivative, a benzoxazinone-based, a quinazolinone-based, a coumarin-based, a quinophthalone-based, a nartaric imide-based fluorescent dye, or an organic phosphor such as a terbium complex. is there.

本発明に好適な青色蛍光体が発する蛍光の具体的な波長の範囲を例示すると、主発光ピーク波長が通常430nm以上、好ましくは440nm以上であり、また、通常500nm以下、好ましくは480nm以下、特に好ましくは460nm以下である。また、主発光ピークの半値幅が通常1nm以上、好ましくは10nm以上、特に好ましくは30nm以上で有り、また通常100nm以下、好ましくは80nm以下、特に好ましくは70nm以下である。   Illustrating the specific wavelength range of the fluorescence emitted by the blue phosphor suitable for the present invention, the main emission peak wavelength is usually 430 nm or more, preferably 440 nm or more, and usually 500 nm or less, preferably 480 nm or less, particularly Preferably it is 460 nm or less. Further, the half width of the main emission peak is usually 1 nm or more, preferably 10 nm or more, particularly preferably 30 nm or more, and is usually 100 nm or less, preferably 80 nm or less, particularly preferably 70 nm or less.

このような青色蛍光体としては、規則的な結晶成長形状としてほぼ六角形状を有する成長粒子から構成され、青色領域の発光を行なうBaMgAl1017:Euで表されるユウロピウム付活バリウムマグネシウムアルミネート系蛍光体、規則的な結晶成長形状としてほぼ球形状を有する成長粒子から構成され、青色領域の発光を行なう(Ca,Sr,Ba)5(PO4)3Cl:Euで表されるユウロピウム付活ハロリン酸カルシウム系蛍光体、規則
的な結晶成長形状としてほぼ立方体形状を有する成長粒子から構成され、青色領域の発光を行なう(Ca,Sr,Ba)259Cl:Euで表されるユウロピウム付活アルカリ土
類クロロボレート系蛍光体、破断面を有する破断粒子から構成され、青緑色領域の発光を行なう(Sr,Ca,Ba)Al24:Euまたは(Sr,Ca,Ba)4Al1425:Eu
で表されるユウロピウム付活アルカリ土類アルミネート系蛍光体等が挙げられる。
As such a blue phosphor, europium-activated barium magnesium aluminate represented by BaMgAl 10 O 17 : Eu, which is composed of growing particles having a substantially hexagonal shape as a regular crystal growth shape and emits light in a blue region. System phosphor, composed of growing particles having a substantially spherical shape as a regular crystal growth shape, and emits light in a blue region with a europium represented by (Ca, Sr, Ba) 5 (PO 4 ) 3 Cl: Eu An active calcium halophosphate phosphor is composed of growing particles having a substantially cubic shape as a regular crystal growth shape, and emits light in a blue region (Ca, Sr, Ba) 2 B 5 O 9 Cl: Eu. Europium-activated alkaline earth chloroborate phosphor, composed of fractured particles having a fracture surface, and emitting light in the blue-green region (Sr, Ca, Ba) A l 2 O 4 : Eu or (Sr, Ca, Ba) 4 Al 14 O 25 : Eu
Europium-activated alkaline earth aluminate phosphors represented by

また、そのほか、青色蛍光体としては、Sr227:Sn等のSn付活リン酸塩蛍光
体、Sr4Al1425:Eu、BaMgAl1017:Eu、BaAl813:Eu等のEu付活アルミン酸塩蛍光体、SrGa24:Ce、CaGa24:Ce等のCe付活チオガレート蛍光体、(Ba,Sr,Ca)MgAl1017:Eu、BaMgAl1017:Eu,Tb,Sm等のEu,Tb,Sm付活アルミン酸塩蛍光体、(Ba,Sr,Ca)MgAl1017:Eu,Mn等のEu,Mn付活アルミン酸塩蛍光体、(Sr,Ca,Ba,Mg)10(PO4)6Cl2:Eu、(Ba,Sr,Ca)5(PO4)3(Cl,F,Br,OH):Eu,Mn,Sb等のEu,Tb,Sm付活ハロリン酸塩蛍光体、BaAl2Si28:Eu、(Sr,Ba)3MgSi28:Eu等のEu付活珪酸塩蛍光体、Sr227:Eu等のE
u付活リン酸塩蛍光体、ZnS:Ag、ZnS:Ag,Al等の硫化物蛍光体、Y2Si
5:Ce等のCe付活珪酸塩蛍光体、CaWO4等のタングステン酸塩蛍光体、(Ba,
Sr,Ca)BPO5:Eu,Mn、(Sr,Ca)10(PO4)6・nB23:Eu、2SrO・0.84P25・0.16B23:Eu等のEu,Mn付活硼酸リン酸塩蛍光体、Sr2Si38・2SrCl2:Eu等のEu付活ハロ珪酸塩蛍光体等を用いることも可能である。
In addition, as the blue phosphor, Sn-activated phosphate phosphors such as Sr 2 P 2 O 7 : Sn, Sr 4 Al 14 O 25 : Eu, BaMgAl 10 O 17 : Eu, BaAl 8 O 13 : Eu-activated aluminate phosphors such as Eu, Ce-activated thiogallate phosphors such as SrGa 2 S 4 : Ce, CaGa 2 S 4 : Ce, (Ba, Sr, Ca) MgAl 10 O 17 : Eu, BaMgAl 10 O 17 : Eu, Tb, Sm activated aluminate phosphor such as Eu, Tb, Sm, (Ba, Sr, Ca) MgAl 10 O 17 : Eu, Mn activated aluminate phosphor such as Eu, Mn (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu, (Ba, Sr, Ca) 5 (PO 4 ) 3 (Cl, F, Br, OH): Eu, Mn, Sb, etc. of Eu, Tb, Sm-activated halophosphate phosphor, BaAl 2 Si 2 O 8: Eu, (Sr, B ) 3 MgSi 2 O 8: Eu-activated silicate phosphors such as Eu, Sr 2 P 2 O 7 : Eu , etc. E of
u-activated phosphate phosphor, sulfide phosphor such as ZnS: Ag, ZnS: Ag, Al, Y 2 Si
O 5 : Ce-activated silicate phosphor such as Ce, tungstate phosphor such as CaWO 4 , (Ba,
Sr, Ca) BPO 5: Eu , Mn, (Sr, Ca) 10 (PO 4) 6 · nB 2 O 3: Eu, 2SrO · 0.84P 2 O 5 · 0.16B 2 O 3: Eu such as Eu , Mn-activated borate phosphate phosphors, Eu-activated halosilicate phosphors such as Sr 2 Si 3 O 8 .2SrCl 2 : Eu, and the like can also be used.

また、青色蛍光体としては、例えば、ナフタル酸イミド系、ベンゾオキサゾール系、スチリル系、クマリン系、ピラゾリン系、トリアゾール系化合物の蛍光色素、ツリウム錯体等の有機蛍光体等を用いることも可能である。   In addition, as the blue phosphor, for example, naphthalic acid imide-based, benzoxazole-based, styryl-based, coumarin-based, pyrazoline-based, triazole-based compound fluorescent dyes, thulium complexes and other organic phosphors can be used .

なお、上述の赤色、緑色、青色蛍光体は、所望の発光スペクトル、色温度、色度座標、演色性、発光効率などに応じて適宜組み合わせて用いてもよい。   Note that the red, green, and blue phosphors described above may be used in appropriate combination according to a desired emission spectrum, color temperature, chromaticity coordinates, color rendering properties, luminous efficiency, and the like.

本発明の発光装置8は、上述の近紫外半導体発光素子3および蛍光体を含む蛍光部14を備えていればよく、そのほかの構成は特に制限されない。近紫外半導体発光素子3および蛍光部14は、通常、近紫外半導体発光素子3の発光によって蛍光体が励起されて発光
を生じ、この発光が、外部に取り出されるように配置されることになる。このような構造を有する場合、上述の近紫外半導体発光素子3および蛍光体は、通常は透光性材料(封止材料)で封止保護される。具体的には、この封止材料は、上記蛍光部14に含まれることで蛍光体を分散させて発光部分を構成したり、近紫外半導体発光素子3、蛍光体および基板2間を接着したりする目的で採用される。
The light-emitting device 8 of the present invention only needs to include the above-described near-ultraviolet semiconductor light-emitting element 3 and the fluorescent portion 14 including a phosphor, and other configurations are not particularly limited. The near-ultraviolet semiconductor light-emitting element 3 and the fluorescent part 14 are usually arranged so that the phosphor is excited by the light emission of the near-ultraviolet semiconductor light-emitting element 3 to emit light, and the emitted light is extracted outside. When having such a structure, the near-ultraviolet semiconductor light-emitting element 3 and the phosphor described above are usually sealed and protected with a light-transmitting material (sealing material). Specifically, the sealing material is included in the fluorescent part 14 to disperse the fluorescent material to form a light emitting part, or to bond the near ultraviolet semiconductor light emitting element 3, the fluorescent material, and the substrate 2 together. It is adopted for the purpose.

そして、使用される透光性材料としては、通常、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂等が挙げられるが、近紫外半導体発光素子3はその出力光の波長が360nm〜430nmの近紫外領域にあるため、その出力光に対して充分な透明性と耐久性のある樹脂が封止材料として好ましい。そこで、封止材料として、具体的には、ポリ(メタ)アクリル酸メチル等の(メタ)アクリル樹脂;ポリスチレン、スチレン−アクリロニトリル共重合体等のスチレン樹脂;ポリカーボネート樹脂;ポリエステル樹脂;フェノキシ樹脂;ブチラール樹脂;ポリビニルアルコール;エチルセルロース、セルロースアセテート、セルロースアセテートブチレート等のセルロース系樹脂;エポキシ樹脂;フェノール樹脂;シリコーン樹脂等が挙げられる。また、無機系材料、例えば、金属アルコキシド、セラミック前駆体ポリマー若しくは金属アルコキシドを含有する溶液をゾル−ゲル法により加水分解重合して成る溶液又はこれらの組み合わせを固化した無機系材料、例えばシロキサン結合を有する無機系材料やガラスを用いることもできる。   And as a translucent material used, although a thermoplastic resin, a thermosetting resin, a photocurable resin etc. are normally mentioned, the near-ultraviolet semiconductor light-emitting device 3 has the wavelength of the output light of 360 nm-430 nm. Since it is in the near-ultraviolet region, a resin having sufficient transparency and durability against the output light is preferable as the sealing material. Therefore, specific examples of the sealing material include (meth) acrylic resins such as poly (meth) methyl acrylate; styrene resins such as polystyrene and styrene-acrylonitrile copolymers; polycarbonate resins; polyester resins; phenoxy resins; Resin; Polyvinyl alcohol; Cellulose resins such as ethyl cellulose, cellulose acetate, cellulose acetate butyrate; Epoxy resin; Phenol resin; Silicone resin Further, an inorganic material such as a siloxane bond formed by solidifying a solution obtained by hydrolytic polymerization of a solution containing an inorganic material such as a metal alkoxide, ceramic precursor polymer or metal alkoxide by a sol-gel method, or a combination thereof. The inorganic material and glass which have can also be used.

これらのうち、耐熱性、耐紫外線(UV)性等の点から、珪素含有化合物であるシリコーン樹脂や金属アルコキシド、セラミック前駆体ポリマー若しくは金属アルコキシドを含有する溶液をゾル−ゲル法により加水分解重合して成る溶液またはこれらの組み合わせを固化した無機系材料、例えばシロキサン結合を有する無機系材料が好ましい。特に、以下の特徴(1)〜(3)のうち1つ以上を、好ましくは全てを有するシリコーン系材料やシリコーン樹脂(以下「本発明のシリコーン系材料」と称す場合がある。)が好ましい。   Among these, from the viewpoints of heat resistance, ultraviolet resistance (UV) resistance, etc., a solution containing a silicone resin, a metal alkoxide, a ceramic precursor polymer or a metal alkoxide, which is a silicon-containing compound, is hydrolytically polymerized by a sol-gel method. An inorganic material obtained by solidifying the solution or a combination thereof, for example, an inorganic material having a siloxane bond is preferable. In particular, a silicone material or a silicone resin (hereinafter sometimes referred to as “silicone material of the present invention”) having one or more of the following features (1) to (3), preferably all, is preferred.

(1)固体Si−核磁気共鳴(NMR)スペクトルにおいて、下記(i)および/または(ii)のピークを少なくとも1つ有する。
(i)ピークトップの位置がケミカルシフト−40ppm以上、0ppm以下の領域にあり、ピークの半値幅が0.3ppm以上、3.0ppm以下であるピーク。
(ii)ピークトップの位置がケミカルシフト−80ppm以上、−40ppm未満の領域にあり、ピークの半値幅が0.3ppm以上5.0ppm以下であるピーク。
(2)珪素含有率が20重量%以上である。
(3)シラノール含有率が0.01重量%以上、10重量%以下である。
(1) The solid Si-nuclear magnetic resonance (NMR) spectrum has at least one of the following peaks (i) and / or (ii).
(I) A peak whose peak top is in the region of chemical shift −40 ppm or more and 0 ppm or less, and whose peak half-value width is 0.3 ppm or more and 3.0 ppm or less.
(Ii) A peak whose peak top position is in a region where the chemical shift is −80 ppm or more and less than −40 ppm, and the half width of the peak is 0.3 ppm or more and 5.0 ppm or less.
(2) The silicon content is 20% by weight or more.
(3) The silanol content is 0.01% by weight or more and 10% by weight or less.

ここで、上記封止剤としてのシリコーン系材料については、上記の通り、珪素含有率が20重量%以上であるものが好ましい。従来のシリコーン系材料の基本骨格は炭素−炭素及び炭素−酸素結合を基本骨格としたエポキシ樹脂等の有機樹脂であるが、これに対し本発明のシリコーン系材料の基本骨格はガラス(ケイ酸塩ガラス)などと同じ無機質のシロキサン結合である。このシロキサン結合を有するシリコーン系材料は、(I)結合エネルギーが大きく、熱分解・光分解しにくいため、耐光性が良好である、(II)電気的に若干分極している、(III)鎖状構造の自由度は大きく、フレキシブル性に富む構造が可能で
あり、シロキサン鎖中心に自由回転可能である、(IV)酸化度が大きく、これ以上酸化されない、(V)電気絶縁性に富む等の優れた特徴を有する。
Here, as for the silicone-based material as the sealing agent, as described above, those having a silicon content of 20% by weight or more are preferable. The basic skeleton of the conventional silicone-based material is an organic resin such as an epoxy resin having carbon-carbon and carbon-oxygen bonds as the basic skeleton, whereas the basic skeleton of the silicone-based material of the present invention is glass (silicate). It is the same inorganic siloxane bond as glass). This silicone-based material having a siloxane bond has (I) a large bond energy and is difficult to be thermally decomposed or photodegraded, so that it has good light resistance, (II) is slightly electrically polarized, (III) chain The degree of freedom of the structure is large and a flexible structure is possible, and it can freely rotate around the center of the siloxane chain. (IV) High oxidation degree, no further oxidation, (V) High electrical insulation, etc. It has excellent characteristics.

これらの特徴から、シロキサン結合が3次元的に、しかも高架橋度で結合した骨格で形成されるシリコーン系材料は、ガラス或いは岩石などの無機質に近く、耐熱性・耐光性に富む保護皮膜となることが理解できる。特にメチル基を置換基とするシリコーン系材料は、紫外領域に吸収を持たないため光分解が起こりにくく、耐光性に優れる。   Because of these characteristics, a silicone-based material formed with a skeleton in which siloxane bonds are three-dimensionally bonded with a high degree of crosslinking is close to an inorganic material such as glass or rock, and becomes a protective film rich in heat resistance and light resistance. Can understand. In particular, a silicone-based material having a methyl group as a substituent has no absorption in the ultraviolet region, so that photolysis hardly occurs and has excellent light resistance.

本発明のシリコーン系材料の珪素含有率は、上述の様に20重量%以上であるが、中でも25重量%以上が好ましく、30重量%以上がより好ましい。一方、上限としては、SiO2のみからなるガラスの珪素含有率が47重量%であるという理由から、通常47重
量%以下の範囲である。
As described above, the silicon content of the silicone-based material of the present invention is 20% by weight or more, preferably 25% by weight or more, and more preferably 30% by weight or more. On the other hand, the upper limit is usually in the range of 47% by weight or less because the silicon content of the glass composed solely of SiO 2 is 47% by weight.

このように構成される発光装置8は、間仕切り11で分割された二つの分割領域部12A、12Bにそれぞれ、4個の近紫外半導体発光素子3を光源とする近紫外光によって励起される蛍光部14が設けられ、且つリフレクタ10の内部において二つの分割領域部12A、12Bが、その出力光の出射口、即ち分割開口部13A、13Bを並べて一体的に設けられている。そして、各蛍光部14A、14Bからの出力光である白色光は、それぞれ分割開口部13A、13Bから外部に出射される。ここで、この分割開口部から放出される各白色光は、蛍光体を含む蛍光部14を介して得られるため、近紫外半導体発光素子3A、3Bからの出力光が充分に散乱され、配光がランバーシアン的となり出射される。これにより、上記3種類の蛍光体からの一次光を合成して白色にすることができると共に、均一な白色が得られるため、発光装置8が発する合成光においては均一な白色光と照度が得られることになる。   The light-emitting device 8 configured in this way is divided into two divided region portions 12A and 12B divided by the partition 11, and fluorescent portions excited by near-ultraviolet light using four near-ultraviolet semiconductor light-emitting elements 3 as light sources, respectively. 14, and two divided region portions 12 </ b> A and 12 </ b> B are integrally provided in the reflector 10 by arranging the output light output ports, that is, the divided opening portions 13 </ b> A and 13 </ b> B. And the white light which is the output light from each fluorescence part 14A, 14B is radiate | emitted outside from the division | segmentation opening part 13A, 13B, respectively. Here, since each white light emitted from this divided opening is obtained through the fluorescent part 14 including the phosphor, the output light from the near-ultraviolet semiconductor light emitting elements 3A and 3B is sufficiently scattered, and the light distribution Is emitted as Lambertian. As a result, primary light from the three types of phosphors can be synthesized to be white, and uniform white can be obtained. Therefore, uniform white light and illuminance are obtained in the synthesized light emitted from the light emitting device 8. Will be.

ここで、分割領域部12Aから出力される白色光(以下、「白色光A」と言う。)と分割領域部12Bから出力される白色光(以下、「白色光B」と言う。)のスペクトルは、互いに異なるように、蛍光部14Aに含まれる蛍光体と蛍光部14Bに含まれる蛍光体とが適宜選択される。また、白色光A、Bに対応するxy色度図(CIE1931)上の色度点をWL、WHで表すものとすると、図4、5に示すように、色度点WLの相関色温度は
2600K、色度点WHの相関色温度は9000Kとする。また、色度点WLは、黒体輻射軌跡BBLからの偏差duvが+0.005であり、色度点WHは、黒体輻射軌跡BBL
からの偏差duvが+0.01であるとする。尚、図5は、図4の要部拡大図であり、図中に示されている黒体輻射からの偏差の範囲−0.02≦duv≦0.02は、UCS表色系(CIE1960)からxy色度図(CIE1931)上へ変換したものである。
Here, the spectrum of white light (hereinafter referred to as “white light A”) output from the divided region portion 12A and white light (hereinafter referred to as “white light B”) output from the divided region portion 12B. Are appropriately selected from the phosphors included in the fluorescent part 14A and the phosphors included in the fluorescent part 14B. If the chromaticity points on the xy chromaticity diagram (CIE1931) corresponding to the white light A and B are represented by W L and W H , the correlation between the chromaticity points W L as shown in FIGS. color temperature 2600K, correlated color temperature of the chromaticity point W H has a 9000K. Further, the chromaticity point W L has a deviation duv from a blackbody radiation locus BBL is +0.005, the chromaticity point W H is the black body radiation locus BBL
The deviation duv from is assumed to be +0.01. FIG. 5 is an enlarged view of the main part of FIG. 4, and the range of deviation from black body radiation −0.02 ≦ duv ≦ 0.02 shown in FIG. 4 is the UCS color system (CIE 1960). To xy chromaticity diagram (CIE1931).

上記の場合において、分割領域部12Aからの白色光Aと分割領域部12Bからの白色光Bの相関色温度が異なるように設定し、且つ白色光A、Bに対応する色度点それぞれの黒体輻射軌跡BBLからの偏差duvを−0.02≦duv≦0.02に収めることで、発光装置8の出力光が実質的に黒体輻射軌跡BBLに沿っているといってよく、且つ各分割領域部に設けられた近紫外半導体発光素子3A、3Bの光出射時間、駆動電流値または電力量といった駆動条件を制御することで、白色光A、Bごとにそのエネルギー比を自由に変化させ、発光装置8の最終的な出力光である合成光の色度点を、上記色度点WLと色
度点WHとを結ぶ直線上の任意の色度点に対応する相関色温度に調整することができる。
即ち、発光装置8においては、配線20A、20Bを介して、対応するそれぞれの分割領域部12A、12Bに設けられた近紫外半導体発光素子3への供給電力をそれぞれ制御することで、発光装置8の出力光である合成光の相関色温度を2600Kから9000Kの間の任意の値に調整でき、且つその合成光の色度点は実質的に黒体輻射軌跡BBLに沿っているため、人間の視覚に対して極めて自然に近い白色光を提供し、且つ2600Kから9000Kにわたって色温度を自在に可変することが可能となる。
In the above case, the correlated color temperatures of the white light A from the divided area portion 12A and the white light B from the divided area portion 12B are set to be different from each other, and the chromaticity points corresponding to the white lights A and B are black. By keeping the deviation duv from the body radiation locus BBL within −0.02 ≦ duv ≦ 0.02, it can be said that the output light of the light emitting device 8 is substantially along the black body radiation locus BBL, and By controlling the driving conditions such as the light emission time, driving current value, and electric energy of the near ultraviolet semiconductor light emitting elements 3A and 3B provided in the divided region part, the energy ratio can be freely changed for each of the white light A and B. the chromaticity point of which is the final output light of the light emitting device 8 synthesized light, the correlated color temperature corresponding to any chromaticity point on the straight line connecting the above chromaticity point W L and the chromaticity point W H Can be adjusted.
That is, in the light emitting device 8, the power supplied to the near ultraviolet semiconductor light emitting elements 3 provided in the corresponding divided region portions 12A and 12B is controlled via the wirings 20A and 20B, respectively. Since the correlated color temperature of the synthesized light, which is the output light, can be adjusted to an arbitrary value between 2600K and 9000K, and the chromaticity point of the synthesized light is substantially along the black body radiation locus BBL, It is possible to provide white light that is very natural to the human eye and to freely change the color temperature from 2600K to 9000K.

また、発光装置8において合成光としての白色光を出力するために、上述までの実施例では、近紫外半導体発光素子3と赤色、緑色、青色蛍光体を組合せ、それを各分割領域部12に図1等に示すように配置した。勿論、白色光を出力するために、その他の半導体発光素子と蛍光体の組合せを採用し、各分割領域部12に配置するようにしてもよい。そこで、上述までの近紫外半導体発光素子3と赤色、緑色、青色蛍光体との組合せを組合せAとすると、それ以外の白色光が得られる組合せとして、青色半導体発光素子と赤色、緑色蛍光体との組合せ(組合せB)、青色半導体発光素子と黄色蛍光体との組合せ(組合せC
)も、図1等に示す分割領域部12に配置可能である。組合せBおよびCによって白色光を出力する技術そのものは公知のものであるので、それらの詳細な説明は省略する。
Further, in order to output white light as synthesized light in the light emitting device 8, in the above-described embodiments, the near ultraviolet semiconductor light emitting element 3 and the red, green, and blue phosphors are combined, and these are divided into the divided region portions 12. Arranged as shown in FIG. Of course, in order to output white light, other combinations of semiconductor light emitting elements and phosphors may be adopted and arranged in each divided region portion 12. Therefore, if the combination of the near-ultraviolet semiconductor light-emitting element 3 and the red, green, and blue phosphors described above is a combination A, the combination of the blue semiconductor light-emitting element, the red, and the green phosphors is obtained as other combinations that obtain white light. Combination (combination B), combination of blue semiconductor light emitting element and yellow phosphor (combination C)
) Can also be arranged in the divided region portion 12 shown in FIG. Since the technology for outputting white light by the combination B and C is known, detailed description thereof will be omitted.

ここで、上記組合せA、B、Cにおいて、蛍光体の濃度を調整することで得られる白色光の色温度と、その発光効率との相関を図6に示す。図6の横軸は色温度(K)を表し、縦軸は発光効率(lm/W)を表す。そして、図中の線LAは組合せAに対応し、線LBは組合せBに対応し、線LCは組合せCに対応している。図6から分かるように、上記3つの組合せの中で、組合せAに対応する線LAの傾きが最も小さく、ほぼ水平な直線状態になっており、組合せCに対応する線LCの傾きが最も大きくなっている。この各直線の傾きが大きくなるほど、色温度を変化させようとするとき、その発光効率が大きく変動することを意味する。   Here, in the combinations A, B, and C, FIG. 6 shows the correlation between the color temperature of white light obtained by adjusting the phosphor concentration and the light emission efficiency. The horizontal axis in FIG. 6 represents the color temperature (K), and the vertical axis represents the luminous efficiency (lm / W). The line LA in the figure corresponds to the combination A, the line LB corresponds to the combination B, and the line LC corresponds to the combination C. As can be seen from FIG. 6, among the above three combinations, the slope of the line LA corresponding to the combination A is the smallest, almost horizontal linear state, and the slope of the line LC corresponding to the combination C is the largest. It has become. The greater the slope of each straight line, the greater the variation in the light emission efficiency when trying to change the color temperature.

従って、該直線の傾きの増大は、色温度を変化させたとき、半導体発光素子に供給する電力が一定のままであれば、当該半導体発光素子の輝度が大きく変動することを意味する。換言すると、該直線の傾きが比較的大きいときは、輝度を安定化させるために半導体発光素子への供給電力も確実に制御する必要性が高くなり、その結果発光装置8の駆動制御全体が煩雑になる可能性が高い。従って、安定した輝度の発光装置8を構成するためには、可及的に図6に示す直線の傾きが小さい組合せ、即ち近紫外半導体発光素子3と対応する三色の蛍光体の組合せAを採用することが好ましい。但し、このことは、本発明に係る発光装置8に、組合せB、Cやその他の半導体発光素子と蛍光体の組合せを適用することを排除するものではない。   Therefore, an increase in the slope of the straight line means that the luminance of the semiconductor light emitting element greatly fluctuates if the power supplied to the semiconductor light emitting element remains constant when the color temperature is changed. In other words, when the inclination of the straight line is relatively large, it is necessary to surely control the power supplied to the semiconductor light emitting element in order to stabilize the luminance. As a result, the overall drive control of the light emitting device 8 is complicated. Is likely to be. Therefore, in order to construct the light emitting device 8 having a stable luminance, a combination with the smallest inclination of the straight line shown in FIG. 6 as much as possible, that is, the combination A of the three-color phosphors corresponding to the near ultraviolet semiconductor light emitting element 3 is used. It is preferable to adopt. However, this does not exclude applying combinations B and C or other combinations of semiconductor light emitting elements and phosphors to the light emitting device 8 according to the present invention.

尚、組み合わせB、Cにおいての白色化は蛍光体励起源である青色半導体発光素子の光そのものを青色光として混色に利用しているがために、低色温度領域を出すために赤や緑あるいは黄色の蛍光体量を増加させ青色光の占める割合を減ずる必要がある。また、青色光は蛍光体変換光より効率がよいため、青色光の占める割合が減るほど効率が落ちることになる。一方、組み合わせAのごとく近紫外半導体発光素子を用いた場合、近紫外光は殆ど白色化には寄与せず大半が蛍光体の励起に使用され白色化はもっぱら青、緑、赤の蛍光体変換光となる。従って、色温度を変化させるために蛍光体の組成比を変えても発光効率には大きく影響が現れない。   Note that whitening in the combinations B and C uses the light of the blue semiconductor light emitting element, which is a phosphor excitation source, as blue light for color mixing, so red, green, or It is necessary to increase the amount of yellow phosphor and reduce the proportion of blue light. Also, since blue light is more efficient than phosphor converted light, the efficiency decreases as the proportion of blue light decreases. On the other hand, when a near-ultraviolet semiconductor light-emitting element is used as in combination A, near-ultraviolet light hardly contributes to whitening and most is used for excitation of the phosphor, and whitening is exclusively converted to blue, green, and red phosphors. It becomes light. Therefore, even if the composition ratio of the phosphor is changed in order to change the color temperature, the luminous efficiency is not greatly affected.

このように本実施例に係る発光装置8によれば、色温度が2600Kと9000Kの間の色温度となる白色光を容易に出力することが可能であり、また、図2等に示す構造を採用することにより、各分割領域部12からの出力光の合成光が、照射面で分離する虞を十分に抑制することが可能である。   As described above, according to the light emitting device 8 according to the present embodiment, white light having a color temperature between 2600 K and 9000 K can be easily output, and the structure shown in FIG. By adopting, it is possible to sufficiently suppress the possibility that the combined light of the output light from each divided region portion 12 is separated on the irradiation surface.

ここで、上述に示すように構成され、2つの色温度間の色温度となる白色光を容易に出力できる発光装置8を複数用いて構成される発光モジュール30の構成について、図7に基づいて説明する。図7(a)は、発光モジュール30の具体的構成を示す図であり、図7(b)は、図7(a)に示す発光モジュール上の5台の発光装置8の配置状態を模式的に示す図である。発光モジュール30は、具体的には、環状のベース31上に、同様に環状に配置される。このとき、図7(b)に示すように、5台の発光装置8は、ベース31の中心Oを中心点として同一円周上に等角配置される。従って、隣接する発光装置8間の角度θ(以下、「所定配置角θ」と言う。)は、全て中心Oの一周360度を発光装置8の台数である5で除した角度、即ち72度となる。   Here, the configuration of the light emitting module 30 configured as described above and configured using a plurality of light emitting devices 8 that can easily output white light having a color temperature between two color temperatures is described with reference to FIG. explain. Fig.7 (a) is a figure which shows the specific structure of the light emitting module 30, and FIG.7 (b) is typical about the arrangement | positioning state of the five light-emitting devices 8 on the light emitting module shown to Fig.7 (a). FIG. Specifically, the light emitting module 30 is similarly annularly arranged on the annular base 31. At this time, as shown in FIG. 7B, the five light emitting devices 8 are equiangularly arranged on the same circumference with the center O of the base 31 as the center point. Accordingly, the angle θ between the adjacent light emitting devices 8 (hereinafter, referred to as “predetermined arrangement angle θ”) is an angle obtained by dividing 360 degrees of one rotation of the center O by 5, which is the number of the light emitting devices 8, that is, 72 degrees. It becomes.

ここで、図7(b)に示すように、各発光装置8における間仕切り11と、発光装置8が配置される環状の半径とは直交し、且つ分割領域部12Aが該環状の内側に位置し、分割領域部12Bが該環状の外側に位置するように、発光モジュール30においては5台の発光装置8の配置が行われている。その結果、発光モジュール30においては、隣接する
発光装置8との間仕切り11の向きのずれは、発光装置8の開口部13の開口面内における一の回転方向に、上記所定配置角度θずつ回転された状態となり、以て、分割領域部12Aと分割領域部12Bとの相対位置関係を代表する間仕切り11の向きが、発光装置8ごとに異なった状態となる。
Here, as shown in FIG. 7B, the partition 11 in each light emitting device 8 and the annular radius where the light emitting device 8 is arranged are orthogonal to each other, and the divided region portion 12A is located inside the annular. The five light emitting devices 8 are arranged in the light emitting module 30 so that the divided region portion 12B is positioned outside the annular shape. As a result, in the light emitting module 30, the deviation of the direction of the partition 11 from the adjacent light emitting device 8 is rotated by the predetermined arrangement angle θ in one rotation direction within the opening surface of the opening 13 of the light emitting device 8. Thus, the direction of the partition 11 representing the relative positional relationship between the divided region portion 12A and the divided region portion 12B is different for each light emitting device 8.

このように間仕切り11の向きを、所定配置角ずつずらした状態で5台の発光装置8を配置することで、各発光装置8の分割領域部12Aと分割領域部12Bとからの発光がムラを抑えて合成されやすくなるため、発光モジュール30からの発光として照射される発光の、照射面における分離を回避することが可能となる。特に、発光装置8の開口部13発上に凸レンズ等のレンズ素子を設けた場合においても、発光の分離を回避することが可能となる。   By arranging the five light emitting devices 8 in such a manner that the direction of the partition 11 is shifted by a predetermined arrangement angle, the light emission from the divided region portion 12A and the divided region portion 12B of each light emitting device 8 becomes uneven. Since it is easy to suppress and synthesize | combine, it becomes possible to avoid isolation | separation in the irradiation surface of light emission irradiated as light emission from the light emitting module 30. FIG. In particular, even when a lens element such as a convex lens is provided on the opening 13 of the light emitting device 8, it is possible to avoid separation of light emission.

また、発光モジュール30においては、各発光装置8が有する5つの分割領域部12Aの配線20Aは直列に結線されて、配線34を形成し、5つの分割領域部12Bの配線20Bは直列に結線されて、配線35を形成している。更に、各発光装置8のグランド線も各発光装置8を直列に結線することで、配線36を形成している。図8には、これらの配線34〜36によって結線された5台の発光装置8の状態を模式的に示す。そして、これらの配線34〜36に対して、各発光装置8を発光させるための電力を供給する電極32、33が設けられている。このように各発光装置8のそれぞれの分割領域部12A、12Bを直列に結線することで、発光モジュール30の発光制御を容易に行うことができる。   Further, in the light emitting module 30, the wirings 20A of the five divided region portions 12A included in each light emitting device 8 are connected in series to form the wiring 34, and the wirings 20B of the five divided region portions 12B are connected in series. Thus, the wiring 35 is formed. Furthermore, the ground line of each light emitting device 8 is also connected to each light emitting device 8 in series to form a wiring 36. In FIG. 8, the state of the five light-emitting devices 8 connected by these wiring 34-36 is shown typically. Electrodes 32 and 33 for supplying electric power for causing each light emitting device 8 to emit light are provided for these wirings 34 to 36. Thus, the light emission control of the light emitting module 30 can be easily performed by connecting the respective divided region portions 12A and 12B of each light emitting device 8 in series.

図9には、示すように発光モジュール30の発光制御のために各発光装置8に供給される電流の一例が示されており、特に図9(a)は配線34を介して各発光装置8の分割領域部12A内に配置される近紫外半導体発光素子3Aに供給される電流の推移を示しており、図9(b)は配線35を介して各発光装置8の分割領域部12B内に配置される近紫外半導体発光素子3Bに供給される電流の推移を示している。本実施例では、各近紫外半導体発光素子3には、矩形状の電流が供給され、且つ近紫外半導体発光素子3A側に供給される電流量と、近紫外半導体発光素子3B側に供給される電流量の総和は一定になるように制御される。尚、図9に示す状態は、近紫外半導体発光素子3A側に供給される電流量は該総和の25%であり、近紫外半導体発光素子3B側に供給される電流量は該総和の75%であり、その結果、各発光装置8の分割領域部12Aからの発光強度と各発光装置8の分割領域部12Bからの発光強度との比は、1:3となる。   FIG. 9 shows an example of a current supplied to each light emitting device 8 for light emission control of the light emitting module 30 as shown in FIG. 9. In particular, FIG. 9A shows each light emitting device 8 via the wiring 34. 9B shows the transition of the current supplied to the near-ultraviolet semiconductor light emitting element 3A arranged in the divided region portion 12A. FIG. 9B shows the change in the divided region portion 12B of each light emitting device 8 through the wiring 35. The transition of the electric current supplied to the near ultraviolet semiconductor light emitting element 3B arrange | positioned is shown. In the present embodiment, a rectangular current is supplied to each near-ultraviolet semiconductor light-emitting element 3, and the amount of current supplied to the near-ultraviolet semiconductor light-emitting element 3A and the near-ultraviolet semiconductor light-emitting element 3B are supplied. The total amount of current is controlled to be constant. In the state shown in FIG. 9, the amount of current supplied to the near ultraviolet semiconductor light emitting element 3A side is 25% of the sum, and the amount of current supplied to the near ultraviolet semiconductor light emitting element 3B side is 75% of the sum. As a result, the ratio between the light emission intensity from the divided region portion 12A of each light emitting device 8 and the light emission intensity from the divided region portion 12B of each light emitting device 8 is 1: 3.

このように近紫外半導体発光素子3A側に供給される電流量と、近紫外半導体発光素子3B側に供給される電流量の総和を一定にしながら、各半導体素子側に供給でされる電流量の比を調整することで、発光モジュール30としての発光強度は一定としながら、分割領域部12Aと分割領域部12Bからの発光強度の比率を変化させることができる。その結果、図4及び図5に示したように、発光モジュール30の出力光を、発光強度を一定のままで、その相関色温度を2600Kから9000Kの間の任意の値に調整できる。また、上述したように、その合成光の色度点は実質的に黒体輻射軌跡BBLに沿っているため、人間の視覚に対して極めて自然に近い白色光を提供し、且つ2600Kから9000Kにわたって色温度を自在に可変することが可能となる。   As described above, the total amount of current supplied to the near ultraviolet semiconductor light emitting element 3A side and current supplied to the near ultraviolet semiconductor light emitting element 3B side is kept constant, while the amount of current supplied to each semiconductor element side is constant. By adjusting the ratio, it is possible to change the ratio of the light emission intensity from the divided region portion 12A and the divided region portion 12B while keeping the light emission intensity as the light emitting module 30 constant. As a result, as shown in FIGS. 4 and 5, the output color of the light emitting module 30 can be adjusted to an arbitrary value between 2600K and 9000K while maintaining the emission intensity constant. Further, as described above, since the chromaticity point of the combined light is substantially along the black body radiation locus BBL, it provides white light that is very close to human vision, and extends from 2600K to 9000K. The color temperature can be freely changed.

尚、分割領域部12Aと分割領域部12Bからの発光強度の比率の変化については、段階的に変化させてもよく、また連続的に変化させてもよい。前者の場合は、発光モジュールの出力光は、相関色温度が異なる複数の出力光を有し、ユーザがいずれかの相関色温度の出力を選択する等して、該発光モジュール30を利用する。また後者の場合は、ユーザが好みの相関色温度となるように任意の比率を選択する等して、該発光モジュール30を利用する。   In addition, about the change of the ratio of the emitted light intensity from 12 A of division area parts, and the division area part 12B, you may change in steps and may change continuously. In the former case, the output light of the light emitting module has a plurality of output lights having different correlated color temperatures, and the light emitting module 30 is used by the user selecting an output of one of the correlated color temperatures. In the latter case, the light emitting module 30 is used by selecting an arbitrary ratio so that the user has a desired correlated color temperature.

また、近紫外半導体発光素子3A、3Bの駆動制御については、上述以外の駆動制御も採用可能である。例えば、近紫外半導体発光素子3A、3Bへの供給電流量の総和を一定にせず、近紫外半導体素子ごとに独立に電力供給することにより、各々の入力電流を制御するようにしてもよい。   Further, drive control other than those described above can be employed for drive control of the near-ultraviolet semiconductor light emitting elements 3A and 3B. For example, the input current may be controlled by supplying power independently for each near-ultraviolet semiconductor element without making the sum of the currents supplied to the near-ultraviolet semiconductor light emitting elements 3A and 3B constant.

<変形例>
次に、図10A〜図10Cに基づいて、本発明に係る発光モジュール30の変形例について説明する。尚、これらの図においては、説明を簡略化するために各発光装置に電力を供給する配線等の記載は省略している。先ず、図10Aに示す発光モジュール30では、2台の発光装置8がベース31に設置されている。このときベース31は長方形の形状を有しており、その長手中心線を挟んで2台の発光装置8が線対称に配置される。そして、図10Aにおいて左側の発光装置8と右側の発光装置8とでは、分割領域部12Aと分割領域部12Bとの相対関係が180度回転してずれた状態となるように、各発光装置8の間仕切り11の向きが調整されている。この結果、図10Aに示す発光モジュール30では、各発光装置8の分割領域部12Aが内側に配置され、各発光装置8の分割領域部12Bが外側に配置されることになる。
<Modification>
Next, based on FIG. 10A-FIG. 10C, the modification of the light emitting module 30 which concerns on this invention is demonstrated. In these drawings, for the sake of simplification of description, description of wiring and the like for supplying power to each light emitting device is omitted. First, in the light emitting module 30 shown in FIG. 10A, two light emitting devices 8 are installed on the base 31. At this time, the base 31 has a rectangular shape, and the two light emitting devices 8 are arranged symmetrically with respect to the longitudinal center line. In FIG. 10A, the light emitting device 8 on the left side and the light emitting device 8 on the right side have each light emitting device 8 so that the relative relationship between the divided region portion 12A and the divided region portion 12B is shifted by 180 degrees. The direction of the partition 11 is adjusted. As a result, in the light emitting module 30 shown in FIG. 10A, the divided region portion 12A of each light emitting device 8 is disposed on the inner side, and the divided region portion 12B of each light emitting device 8 is disposed on the outer side.

このように発光モジュール30が形成される場合でも、各発光装置8からの出力光が合成されやすくなり、以て発光モジュール30からの発光として照射される発光の、照射面における分離を回避することが可能となる。尚、図10Aに示す発光モジュール30は、言い換えると、2台の発光装置8を環状に、即ち180度の間隔を持って環状に配置させたものと言うこともできる。   Even in the case where the light emitting module 30 is formed in this way, the output light from each light emitting device 8 is easily synthesized, thereby avoiding separation of light emitted as light emitted from the light emitting module 30 on the irradiation surface. Is possible. In addition, the light emitting module 30 shown in FIG. 10A can also be said to be obtained by arranging two light emitting devices 8 in a ring shape, that is, in a ring shape with an interval of 180 degrees.

次に、図10Bに示す発光モジュール30では、4台の発光装置8がベース31に設置されている。このときベース31は長方形の形状を有しており、隣接する発光装置8の間の距離が等しくなるように4台の発光装置8が線対称に配置される。そして、図10Aにおいて最も左側の発光装置8を基準とすると、そこから分割領域部12Aと分割領域部12Bとの相対関係が90度回転してずれた状態となるように、各発光装置8の間仕切り11の向きが調整されている。この結果、図10Bに示す発光モジュール30では、全ての発光装置8において間仕切り11の向きが異なり、且つ隣接する発光装置8同士では、間仕切り11の向きのずれ量はいずれも等しくなるように調整されている。このように発光モジュール30が形成される場合でも、各発光装置8からの出力光が均一に合成されやすくなり、以て発光モジュール30からの発光として照射される発光の、照射面における分離を回避することが可能となる。   Next, in the light emitting module 30 shown in FIG. 10B, four light emitting devices 8 are installed on the base 31. At this time, the base 31 has a rectangular shape, and the four light emitting devices 8 are arranged in line symmetry so that the distances between the adjacent light emitting devices 8 are equal. Then, when the leftmost light emitting device 8 in FIG. 10A is used as a reference, the relative relationship between the divided region portion 12A and the divided region portion 12B is rotated by 90 degrees and shifted from there. The direction of the partition 11 is adjusted. As a result, in the light emitting module 30 shown in FIG. 10B, the direction of the partition 11 is different in all the light emitting devices 8, and the amount of deviation in the direction of the partition 11 is adjusted to be equal between the adjacent light emitting devices 8. ing. Even in the case where the light emitting module 30 is formed in this way, the output light from each light emitting device 8 is easily synthesized uniformly, thereby avoiding separation of light emitted as light emitted from the light emitting module 30 on the irradiation surface. It becomes possible to do.

また、図10Bに示すように1つのベース31に同時に4台の発光装置8を配置させる代わりに、図10Cに示すように1つのベース31に1台の発光装置8を配置させ、且つ隣接するベースに配置された発光装置8間における間仕切り11の向きは、上記と同様に90度ずつ回転してずれた状態とする。この場合、4つのベース31とそれらに配置された4台の発光装置8とを含めて、発光モジュール30が形成されることになる。   Further, instead of simultaneously arranging four light emitting devices 8 on one base 31 as shown in FIG. 10B, one light emitting device 8 is arranged on one base 31 and adjacent to each other as shown in FIG. 10C. The direction of the partition 11 between the light emitting devices 8 arranged on the base is set to be in a state of being rotated by 90 degrees in the same manner as described above. In this case, the light emitting module 30 is formed including the four bases 31 and the four light emitting devices 8 arranged on them.

本発明の実施例に係る発光モジュールに含まれる半導体発光装置(発光装置)の概略構成の斜視図である。1 is a perspective view of a schematic configuration of a semiconductor light emitting device (light emitting device) included in a light emitting module according to an embodiment of the present invention. 図1Aに示すパッケージ内の半導体発光素子に電力を供給する配線の実装状態を示す図である。It is a figure which shows the mounting state of the wiring which supplies electric power to the semiconductor light-emitting device in the package shown to FIG. 1A. 図1A及び図1Bに示す発光装置を電気的記号を用いて模式化した図である。It is the figure which modeled the light-emitting device shown to FIG. 1A and 1B using the electrical symbol. 図1に示す半導体発光装置の断面図である。It is sectional drawing of the semiconductor light-emitting device shown in FIG. 図1に示す半導体発光装置での半導体発光素子と基板との接続関係を示す図である。It is a figure which shows the connection relation of the semiconductor light-emitting element and board | substrate in the semiconductor light-emitting device shown in FIG. 図1に示す半導体発光装置において、各分割領域部からの出力光に設定される白色光の色度点と黒体輻射軌跡との関係を示す図である。In the semiconductor light emitting device shown in FIG. 1, it is a figure which shows the relationship between the chromaticity point of the white light set to the output light from each division area part, and a black body radiation locus. 図4に示す白色光の色度点と黒体輻射軌跡との関係についての要部拡大図である。FIG. 5 is an enlarged view of a main part of a relationship between a chromaticity point of white light and a black body radiation locus shown in FIG. 4. 図1に示す半導体発光装置において採用が可能な、各種半導体発光素子と蛍光体との組み合わせについて、出力光の色温度と発光効率との相関関係を示す図である。It is a figure which shows the correlation with the color temperature of output light, and luminous efficiency about the combination of the various semiconductor light-emitting devices and fluorescent substance which can be employ | adopted in the semiconductor light-emitting device shown in FIG. 図7(a)は本発明の実施例に係る発光モジュールの構成を示す図であり、図7(b)は該発光モジュールにおける半導体発光装置の配置について簡略に示す図である。FIG. 7A is a diagram showing a configuration of a light emitting module according to an embodiment of the present invention, and FIG. 7B is a diagram simply showing an arrangement of semiconductor light emitting devices in the light emitting module. 図7に示す発光モジュールでの、半導体発光装置間の電力供給のための配線の状態を示す図である。It is a figure which shows the state of the wiring for the electric power supply between semiconductor light-emitting devices in the light-emitting module shown in FIG. 図7及び図8に示す発光モジュールへの供給電流の一態様を示す図である。It is a figure which shows the one aspect | mode of the electric current supplied to the light emitting module shown in FIG.7 and FIG.8. 本発明の実施例に係る発光モジュールにおける半導体発光装置の配置状態の変形例を示す第一の図である。It is a 1st figure which shows the modification of the arrangement state of the semiconductor light-emitting device in the light-emitting module which concerns on the Example of this invention. 本発明の実施例に係る発光モジュールにおける半導体発光装置の配置状態の変形例を示す第二の図である。It is a 2nd figure which shows the modification of the arrangement state of the semiconductor light-emitting device in the light-emitting module which concerns on the Example of this invention. 本発明の実施例に係る発光モジュールにおける半導体発光装置の配置状態の変形例を示す第三の図である。It is a 3rd figure which shows the modification of the arrangement state of the semiconductor light-emitting device in the light-emitting module which concerns on the Example of this invention.

符号の説明Explanation of symbols

1・・・・パッケージ
2・・・・基板
3、3A、3B・・・・近紫外半導体発光素子
5・・・・共晶半田
6・・・・ワイヤー
8・・・・半導体発光装置(発光装置)
10・・・・リフレクタ
11・・・・間仕切り
12、12A、12B・・・・分割領域部
13・・・・開口部
13A、13B・・・・分割開口部
14、14A、14B・・・・蛍光部
20、20A、20B・・・・配線
20C、20D・・・・対配線
30・・・・発光モジュール
31・・・・ベース
32、33・・・・電極
34、35、36・・・・配線
DESCRIPTION OF SYMBOLS 1 ... Package 2 ... Substrate 3, 3A, 3B ... Near ultraviolet semiconductor light emitting element 5 ... Eutectic solder 6 ... Wire 8 ... Semiconductor light emitting device (light emission) apparatus)
10... Reflector 11... Partition 12, 12 A, 12 B... Divided region 13... Opening 13 A, 13 B. Fluorescent part 20, 20A, 20B ... Wiring 20C, 20D ... Pair wiring 30 ... Light emitting module 31 ... Base 32, 33 ... Electrode 34, 35, 36 ... ·wiring

Claims (6)

少なくともパッケージ、半導体発光素子、及び蛍光体を備え、該半導体発光素子からの発光及び該発光で励起し蛍光する該蛍光体からの発光により、もしくは該半導体発光素子からの発光で励起し蛍光する該蛍光体からの発光により、外部に対して光を出射する半導体発光装置を複数備える発光モジュールであって、
前記半導体発光装置の各々における前記パッケージは、該半導体発光装置の出射方向に開口する開口部と、該パッケージ内部を2以上に分割して画定され且つ該開口部の一部である分割開口部において開口する、少なくとも一の分割領域部及び他の分割領域部とを有し、
前記一の分割領域部及び前記他の分割領域部の各々は、
一又は複数の前記半導体発光素子と、
前記半導体発光素子に電力を供給する電力供給部と、
前記蛍光体と、各分割領域部を封止する透光性材料とを含む蛍光部と、を有し、
前記複数の半導体発光装置の各々は、一の半導体発光装置を基準としたときに、前記パッケージ内の前記一の分割領域部と前記他の分割領域部との相対位置関係が、隣接する該半導体発光装置に対して、前記開口部の開口面内での回転方向において、360度を前記発光モジュールに備えられる該半導体発光装置の数で除して定義される所定角度ずつ、ずれた状態で配置される、
発光モジュール。
At least a package, a semiconductor light emitting element, and a phosphor. The light emitted from the semiconductor light emitting element and the light emitted from the phosphor excited and fluorescent by the light emission, or excited and fluorescent by the light emission from the semiconductor light emitting element. A light emitting module including a plurality of semiconductor light emitting devices that emit light to the outside by light emission from a phosphor,
The package in each of the semiconductor light emitting devices includes an opening that opens in an emission direction of the semiconductor light emitting device, and a divided opening that is defined by dividing the inside of the package into two or more and is a part of the opening Having at least one divided region portion and another divided region portion that are open,
Each of the one divided region portion and the other divided region portion is
One or more of the semiconductor light emitting elements;
A power supply unit for supplying power to the semiconductor light emitting element;
A fluorescent portion including the phosphor and a translucent material that seals each divided region portion;
Each of the plurality of semiconductor light emitting devices has a relative positional relationship between the one divided region portion and the other divided region portion in the package adjacent to each other when one semiconductor light emitting device is used as a reference. Arranged with respect to the light emitting device at a predetermined angle defined by dividing 360 degrees by the number of the semiconductor light emitting devices provided in the light emitting module in the rotation direction within the opening surface of the opening. To be
Light emitting module.
前記複数の半導体発光装置は、環状に且つ各半導体発光装置の間隔は等角に配置され、
前記半導体発光装置の各々の前記パッケージにおける一の分割領域部と他の分割領域部とは、前記蛍光部から出力される光のスペクトルが互いに異なり、且つ該一の分割領域部の各々が、環状に配置された前記半導体発光装置の内側に配置される、
請求項1に記載の発光モジュール。
The plurality of semiconductor light emitting devices are annularly arranged and the intervals between the semiconductor light emitting devices are equiangular,
The one divided region portion and the other divided region portion in the package of each of the semiconductor light emitting devices are different from each other in the spectrum of light output from the fluorescent portion, and each of the one divided region portion is annular. Disposed inside the semiconductor light emitting device disposed in
The light emitting module according to claim 1.
前記複数の半導体発光装置は、直線状に且つ各半導体発光装置の間隔は等距離に配置され、
前記半導体発光装置の各々の前記パッケージにおける一の分割領域部と他の分割領域部とは、前記蛍光部から出力される光のスペクトルが互いに異なる、
請求項1に記載の発光モジュール。
The plurality of semiconductor light emitting devices are arranged in a straight line and at equal intervals between the semiconductor light emitting devices,
The one divided region portion and the other divided region portion in each of the packages of the semiconductor light emitting device have mutually different spectra of light output from the fluorescent portion,
The light emitting module according to claim 1.
前記一の分割領域部の各々が有する前記電力供給部は、互いに直列に接続され、
前記他の分割領域部の各々が有する前記電力供給部は、互いに直列に、且つ前記一の分割領域部の各々が有する前記電力供給部とは独立して接続される、
請求項1から請求項3の何れかに記載の発光モジュール。
The power supply units included in each of the one divided region units are connected in series with each other,
The power supply units included in each of the other divided region units are connected in series with each other and independently of the power supply unit included in each of the one divided region unit.
The light emitting module according to any one of claims 1 to 3.
前記一の分割領域部の各々が有する前記電力供給部が供給する電流値と、前記他の分割領域部の各々が有する前記電力供給部が供給する電流値との総和は一定に制御される、
請求項1から請求項4の何れかに記載の発光モジュール。
The sum of the current value supplied by the power supply unit included in each of the one divided region unit and the current value supplied by the power supply unit included in each of the other divided region units is controlled to be constant.
The light emitting module according to any one of claims 1 to 4.
請求項1から請求項5の何れかに記載の発光モジュールを一又は複数備える、照明装置。   An illumination device comprising one or a plurality of light emitting modules according to claim 1.
JP2008074952A 2008-03-24 2008-03-24 Light-emitting module, and illuminator Pending JP2009231525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008074952A JP2009231525A (en) 2008-03-24 2008-03-24 Light-emitting module, and illuminator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008074952A JP2009231525A (en) 2008-03-24 2008-03-24 Light-emitting module, and illuminator

Publications (1)

Publication Number Publication Date
JP2009231525A true JP2009231525A (en) 2009-10-08

Family

ID=41246601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008074952A Pending JP2009231525A (en) 2008-03-24 2008-03-24 Light-emitting module, and illuminator

Country Status (1)

Country Link
JP (1) JP2009231525A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093395A1 (en) 2010-01-29 2011-08-04 三菱化学株式会社 Light control apparatus for white led light emitting device, and lighting system
JP2011159515A (en) * 2010-02-02 2011-08-18 Hitachi Ltd Lighting system
JP2011159809A (en) * 2010-02-01 2011-08-18 Mitsubishi Chemicals Corp White light-emitting device
JP2011175950A (en) * 2010-01-29 2011-09-08 Mitsubishi Chemicals Corp Circuit board to mount semiconductor light emitting device, light emitting module, and lighting device
JP2011222723A (en) 2010-04-08 2011-11-04 Panasonic Electric Works Co Ltd Light-emitting device
JP2012009533A (en) * 2010-06-23 2012-01-12 Mitsubishi Chemicals Corp Semiconductor light emitting device mounted circuit board, light emitting module, and lighting apparatus
WO2012033180A1 (en) * 2010-09-08 2012-03-15 三菱化学株式会社 Light emitting apparatus, lighting apparatus, and lens
JP2012084234A (en) * 2010-10-06 2012-04-26 Panasonic Corp Light emitting device and projector
JP2012113959A (en) * 2010-11-24 2012-06-14 Panasonic Corp Light-emitting device
WO2012086792A1 (en) 2010-12-24 2012-06-28 三菱化学株式会社 Led light-emitting device, terminal number converter, and illumination device
CN102664229A (en) * 2012-06-05 2012-09-12 泉州万明光电有限公司 Light emitting diode light source structure
WO2013011594A1 (en) * 2011-07-15 2013-01-24 三菱化学株式会社 Circuit board for having semiconductor light emitting device mounted thereon, light emitting module, illuminating apparatus, and illuminating system
CN103062665A (en) * 2013-01-18 2013-04-24 北京飞亚视科技发展有限公司 LED module and LED lamp
JP2013172147A (en) * 2012-02-17 2013-09-02 Shogen Koden Kofun Yugenkoshi Light-emitting diode element
US8581488B2 (en) 2009-08-26 2013-11-12 Mitsubishi Chemical Corporation White light-emitting semiconductor devices
JP2013235739A (en) * 2012-05-09 2013-11-21 Panasonic Corp Lighting device
WO2014001019A1 (en) * 2012-06-28 2014-01-03 Osram Opto Semiconductors Gmbh Light-emitting diode module and motor vehicle headlight
EP2717337A1 (en) * 2011-06-03 2014-04-09 Mitsubishi Chemical Corporation Semiconductor light-emitting device, exhibit irradiation illumination device, meat irradiation illumination device, vegetable irradiation illumination device, fresh fish irradiation illumination device, general-use illumination device, and semiconductor light-emitting system
WO2014063891A1 (en) * 2012-10-25 2014-05-01 Osram Gmbh Led lighting module and luminaire
CN104517948A (en) * 2013-10-08 2015-04-15 松下知识产权经营株式会社 LED illuminating device and illuminating tool
JP2015079924A (en) * 2013-10-18 2015-04-23 シチズン電子株式会社 Semiconductor light-emitting device
US9101029B2 (en) 2010-08-18 2015-08-04 Mitsubishi Chemical Corporation LED light-emitting device and indicator provided with the LED light emitting device
EP2856008A4 (en) * 2012-06-01 2016-01-20 Revolution Display Inc Linear led lighting fixture with improved viewing angle
JP2016157694A (en) * 2010-07-19 2016-09-01 レンセレイアー ポリテクニック インスティテュート Full spectrum solid state white light source, method for manufacturing and applications
JPWO2014119313A1 (en) * 2013-01-31 2017-01-26 株式会社東芝 Light emitting device and LED bulb
JP2018093151A (en) * 2016-12-07 2018-06-14 シチズン電子株式会社 Light-emitting device
JP2019096573A (en) * 2017-11-28 2019-06-20 パナソニックIpマネジメント株式会社 Luminaire

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0830213A (en) * 1994-07-18 1996-02-02 Rohm Co Ltd Light emitting diode display device
JP2003195791A (en) * 2001-12-26 2003-07-09 Kenwood Corp Light emitting display device
JP2007027114A (en) * 2005-07-14 2007-02-01 Samsung Electronics Co Ltd Backlight unit and liquid crystal display device including above
JP2007059260A (en) * 2005-08-25 2007-03-08 Toshiba Lighting & Technology Corp Illumination device and illumination fixture
WO2007114614A1 (en) * 2006-03-31 2007-10-11 Seoul Semiconductor Co., Ltd. Light emitting device and lighting system having the same
JP2008060129A (en) * 2006-08-29 2008-03-13 Nec Lighting Ltd Full-color light-emitting diode

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0830213A (en) * 1994-07-18 1996-02-02 Rohm Co Ltd Light emitting diode display device
JP2003195791A (en) * 2001-12-26 2003-07-09 Kenwood Corp Light emitting display device
JP2007027114A (en) * 2005-07-14 2007-02-01 Samsung Electronics Co Ltd Backlight unit and liquid crystal display device including above
JP2007059260A (en) * 2005-08-25 2007-03-08 Toshiba Lighting & Technology Corp Illumination device and illumination fixture
WO2007114614A1 (en) * 2006-03-31 2007-10-11 Seoul Semiconductor Co., Ltd. Light emitting device and lighting system having the same
JP2008060129A (en) * 2006-08-29 2008-03-13 Nec Lighting Ltd Full-color light-emitting diode

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8829778B2 (en) 2009-08-26 2014-09-09 Mitsubishi Chemical Corporation White light-emitting semiconductor devices
US8581488B2 (en) 2009-08-26 2013-11-12 Mitsubishi Chemical Corporation White light-emitting semiconductor devices
US8508141B2 (en) 2010-01-29 2013-08-13 Mitsubishi Chemical Corporation Light control apparatus for light emitting device and illumination system
JP2011175950A (en) * 2010-01-29 2011-09-08 Mitsubishi Chemicals Corp Circuit board to mount semiconductor light emitting device, light emitting module, and lighting device
WO2011093395A1 (en) 2010-01-29 2011-08-04 三菱化学株式会社 Light control apparatus for white led light emitting device, and lighting system
JP2011159809A (en) * 2010-02-01 2011-08-18 Mitsubishi Chemicals Corp White light-emitting device
JP2011159515A (en) * 2010-02-02 2011-08-18 Hitachi Ltd Lighting system
JP2011222723A (en) 2010-04-08 2011-11-04 Panasonic Electric Works Co Ltd Light-emitting device
JP2012009533A (en) * 2010-06-23 2012-01-12 Mitsubishi Chemicals Corp Semiconductor light emitting device mounted circuit board, light emitting module, and lighting apparatus
US9722154B2 (en) 2010-07-19 2017-08-01 Rensselaer Polytechnic Institute Full spectrum solid state white light source, method for manufacturing and applications
JP2016157694A (en) * 2010-07-19 2016-09-01 レンセレイアー ポリテクニック インスティテュート Full spectrum solid state white light source, method for manufacturing and applications
US9101029B2 (en) 2010-08-18 2015-08-04 Mitsubishi Chemical Corporation LED light-emitting device and indicator provided with the LED light emitting device
JP2012109532A (en) * 2010-09-08 2012-06-07 Mitsubishi Chemicals Corp Light emitting apparatus, lighting apparatus, and lens
WO2012033180A1 (en) * 2010-09-08 2012-03-15 三菱化学株式会社 Light emitting apparatus, lighting apparatus, and lens
US8814385B2 (en) 2010-09-08 2014-08-26 Mitsubishi Chemical Corporation Light-emitting apparatus, lighting apparatus and lens
JP2012084234A (en) * 2010-10-06 2012-04-26 Panasonic Corp Light emitting device and projector
JP2012113959A (en) * 2010-11-24 2012-06-14 Panasonic Corp Light-emitting device
WO2012086792A1 (en) 2010-12-24 2012-06-28 三菱化学株式会社 Led light-emitting device, terminal number converter, and illumination device
EP3346512A1 (en) * 2011-06-03 2018-07-11 Citizen Electronics Co., Ltd Semiconductor light-emitting device, exhibit-irradiating illumination device, meat-irradiating illumination device, vegetable-irradiating illumination device, fresh fish-irradiating illumination device, general-purpose illumination device, and semiconductor light-emitting system
US9070843B2 (en) 2011-06-03 2015-06-30 Mitsubishi Chemical Corporation Semiconductor light-emitting device, exhibit-irradiating illumination device, meat-irradiating illumination device, vegetable-irradiating illumination device, fresh fish-irradiating illumination device, general-purpose illumination device, and semiconductor light-emitting system
EP2717337A4 (en) * 2011-06-03 2014-11-12 Mitsubishi Chem Corp Semiconductor light-emitting device, exhibit irradiation illumination device, meat irradiation illumination device, vegetable irradiation illumination device, fresh fish irradiation illumination device, general-use illumination device, and semiconductor light-emitting system
EP2717337A1 (en) * 2011-06-03 2014-04-09 Mitsubishi Chemical Corporation Semiconductor light-emitting device, exhibit irradiation illumination device, meat irradiation illumination device, vegetable irradiation illumination device, fresh fish irradiation illumination device, general-use illumination device, and semiconductor light-emitting system
CN103650185A (en) * 2011-07-15 2014-03-19 三菱化学株式会社 Circuit board for having semiconductor light emitting device mounted thereon, light emitting module, illuminating apparatus, and illuminating system
WO2013011594A1 (en) * 2011-07-15 2013-01-24 三菱化学株式会社 Circuit board for having semiconductor light emitting device mounted thereon, light emitting module, illuminating apparatus, and illuminating system
JP2013042099A (en) * 2011-07-15 2013-02-28 Mitsubishi Chemicals Corp Circuit board for mounting semiconductor light emitting device, light emitting module, lighting apparatus, and lighting system
US9332599B2 (en) 2011-07-15 2016-05-03 Mitsubishi Chemical Corporation Circuit board for supporting semiconductor light-emitting device mounted thereon, light-emitting module, lighting apparatus, and lighting system
JP2013172147A (en) * 2012-02-17 2013-09-02 Shogen Koden Kofun Yugenkoshi Light-emitting diode element
JP2013235739A (en) * 2012-05-09 2013-11-21 Panasonic Corp Lighting device
US9799703B2 (en) 2012-06-01 2017-10-24 Revolution Display, Llc Linear LED lighting fixture with improved viewing angle
EP2856008A4 (en) * 2012-06-01 2016-01-20 Revolution Display Inc Linear led lighting fixture with improved viewing angle
CN102664229A (en) * 2012-06-05 2012-09-12 泉州万明光电有限公司 Light emitting diode light source structure
US9553078B2 (en) 2012-06-28 2017-01-24 Osram Opto Semiconductors Gmbh Light-emitting diode module and motor vehicle headlight
WO2014001019A1 (en) * 2012-06-28 2014-01-03 Osram Opto Semiconductors Gmbh Light-emitting diode module and motor vehicle headlight
WO2014063891A1 (en) * 2012-10-25 2014-05-01 Osram Gmbh Led lighting module and luminaire
CN103062665A (en) * 2013-01-18 2013-04-24 北京飞亚视科技发展有限公司 LED module and LED lamp
JPWO2014119313A1 (en) * 2013-01-31 2017-01-26 株式会社東芝 Light emitting device and LED bulb
CN104517948A (en) * 2013-10-08 2015-04-15 松下知识产权经营株式会社 LED illuminating device and illuminating tool
JP2015079924A (en) * 2013-10-18 2015-04-23 シチズン電子株式会社 Semiconductor light-emitting device
JP2018093151A (en) * 2016-12-07 2018-06-14 シチズン電子株式会社 Light-emitting device
JP2019096573A (en) * 2017-11-28 2019-06-20 パナソニックIpマネジメント株式会社 Luminaire

Similar Documents

Publication Publication Date Title
JP2009231525A (en) Light-emitting module, and illuminator
JP5320993B2 (en) Lighting device
US8348456B2 (en) Illuminating device
WO2013011594A1 (en) Circuit board for having semiconductor light emitting device mounted thereon, light emitting module, illuminating apparatus, and illuminating system
JP5029203B2 (en) Lighting device
JP4767243B2 (en) White light source, backlight unit and LCD display
JP6396295B2 (en) Light source device and light emitting device
JP5176665B2 (en) Light emitting device, image display device, lighting device, and composite oxynitride
JP5104621B2 (en) Lighting equipment for plant cultivation
WO2007018260A1 (en) Phosphor and light-emitting device using same
JP2005228996A (en) Light-emitting device
JP2009289957A (en) Semiconductor light-emitting device and imaging device
JP2014524669A (en) Light emitting element for high current drive
EP2334147B1 (en) Illumination device
JP2011159809A (en) White light-emitting device
WO2011008627A2 (en) Single-color wavelength-converted light emitting devices
JP6223479B2 (en) Solid light emitter package, light emitting device, flexible LED strip, and luminaire
JP2011176300A (en) Semiconductor light emitting device, light emitting module, and lighting system
JP2008095091A (en) Fluorescent substance and its production method, fluorescent substance containing composition, light emitting device, image display device, and illuminating device
JP2011175950A (en) Circuit board to mount semiconductor light emitting device, light emitting module, and lighting device
JP5590092B2 (en) Phosphor, phosphor-containing composition, light emitting device, image display device and lighting device
JP2008266410A (en) Fluorescent substance, fluorescent substance-containing composition, manufacturing method of fluorescent substance, light emitting apparatus, image display device, and illuminating device
JP5648667B2 (en) Lighting equipment for plant cultivation
KR100990647B1 (en) White light emitting device and white light source module using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121211