JP2009230927A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2009230927A
JP2009230927A JP2008072425A JP2008072425A JP2009230927A JP 2009230927 A JP2009230927 A JP 2009230927A JP 2008072425 A JP2008072425 A JP 2008072425A JP 2008072425 A JP2008072425 A JP 2008072425A JP 2009230927 A JP2009230927 A JP 2009230927A
Authority
JP
Japan
Prior art keywords
fuel cell
gas
steam
reformer
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008072425A
Other languages
Japanese (ja)
Inventor
Katsunori Sakai
勝則 酒井
Takeshi Kuwabara
武 桑原
Takuya Moroishi
拓也 諸石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T Rad Co Ltd
Original Assignee
T Rad Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T Rad Co Ltd filed Critical T Rad Co Ltd
Priority to JP2008072425A priority Critical patent/JP2009230927A/en
Publication of JP2009230927A publication Critical patent/JP2009230927A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Abstract

<P>PROBLEM TO BE SOLVED: To improve a thermal efficiency of a fuel cell system formed by combining a reformer and a fuel cell. <P>SOLUTION: This fuel cell system is equipped with: an internal heating type reformer 2 to generate a hydrogen-rich reformed gas from a mixture of steam and fuel gas; a fuel cell 7 to generate power using the reformed gas obtained in the reformer 2 as fuel; and a cooling water system 9 to cool the fuel cell 7. The fuel cell 7 is formed to be operated in a temperature range evaporating a part of the cooling water circulating in the cooling water system 9, a steam separator 30 to separate steam from the cooling water is provided in the cooling water system 9, and a steam supply system 35 to mix the steam separated in the steam separator 30 with a raw material gas and supply it to the reformer 2 is provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は水蒸気と燃料ガスの混合物から水素リッチな改質ガスを生成する内部加熱型の改質器と、前記改質器で得られた改質ガスを燃料として発電する燃料電池と、燃料電池を冷却する冷却水系統を備えた燃料電池システムに関する。   The present invention relates to an internal heating type reformer that generates a hydrogen-rich reformed gas from a mixture of water vapor and fuel gas, a fuel cell that generates electricity using the reformed gas obtained by the reformer, and a fuel cell. The present invention relates to a fuel cell system provided with a cooling water system for cooling the fuel.

水蒸気と燃料ガスの混合物から水素リッチな改質ガスを生成する改質器と、改質器で生成した水素リッチな改質ガスを燃料として発電する燃料電池を備えた燃料電池システムが知られている。燃料電池には種々の形式のものが存在するが、その中でも固体高分子型の燃料電池(PEFC)が有望視されている。   A fuel cell system including a reformer that generates hydrogen-rich reformed gas from a mixture of water vapor and fuel gas, and a fuel cell that generates electricity using the hydrogen-rich reformed gas generated by the reformer as fuel is known. Yes. There are various types of fuel cells. Among them, a polymer electrolyte fuel cell (PEFC) is considered promising.

水素リッチな改質ガスを生成する改質装置が特許文献1に記載されている。この改質装置は、燃料を燃焼して水蒸気を発生する水蒸気発生手段と、水蒸気発生手段で発生した水蒸気と原料ガスを混合した原料−水蒸気混合物を改質触媒の存在下に水蒸気改質して水素リッチな改質ガスを生成する内部加熱型の改質器を備えている。なお原料ガスとしては都市ガス、天然ガス、メタンガスなどが使用される。   Patent Document 1 discloses a reformer that generates a hydrogen-rich reformed gas. This reformer reforms steam in the presence of a reforming catalyst into a steam generating means for combusting fuel to generate steam, and a raw material-steam mixture obtained by mixing the steam generated by the steam generating means and the source gas. An internal heating type reformer that generates a hydrogen-rich reformed gas is provided. In addition, city gas, natural gas, methane gas, etc. are used as source gas.

改質器には外部加熱型と内部加熱型がある。外部加熱型はバーナ等の燃焼装置で発生した燃焼ガスで改質器の壁面を外部から加熱し、その壁を通して改質器内部に改質反応に必要な熱を供給する方式である。内部加熱型は改質器の原料供給側に酸化触媒を充填した部分酸化反応層を設け、そこに空気を供給して原料ガスの一部を酸化し、その酸化熱を改質反応に必要な熱として利用する方式である。したがって、内部加熱型の改質器を採用する場合は、バーナ等による燃焼装置は改質器に水蒸気を供給する水蒸気発生手段だけに用いられる。   There are two types of reformers: an external heating type and an internal heating type. The external heating type is a system in which the wall of the reformer is heated from the outside with combustion gas generated by a combustion device such as a burner, and heat necessary for the reforming reaction is supplied into the reformer through the wall. In the internal heating type, a partial oxidation reaction layer filled with an oxidation catalyst is provided on the raw material supply side of the reformer, air is supplied to oxidize part of the raw material gas, and the oxidation heat is required for the reforming reaction. It is a method used as heat. Therefore, when an internal heating type reformer is employed, a combustion apparatus using a burner or the like is used only for the steam generating means for supplying steam to the reformer.

運転温度が70℃程度の一般的な定置用の固体高分子型の燃料電池を用いて発電する燃料電池システムの場合、現状技術で発電効率33%(HHV)、熱効率45%(HHV)を達成している。しかし、この熱効率は燃料電池の排熱をその冷却水から回収することにより達成されるものであるが、燃料電池の70℃程度の低温の排熱回収は給湯設備との組み合わせによるシステムに限定されている。   In the case of a fuel cell system that generates electricity using a general stationary polymer electrolyte fuel cell with an operating temperature of about 70 ° C., the current technology achieves a power generation efficiency of 33% (HHV) and a thermal efficiency of 45% (HHV). is doing. However, this thermal efficiency is achieved by recovering the exhaust heat of the fuel cell from its cooling water. However, recovering the exhaust heat at a low temperature of about 70 ° C. of the fuel cell is limited to a system in combination with a hot water supply facility. ing.

図4は従来の改質装置と、固体高分子型の燃料電池と、給湯設備とを組み合わせた燃料電池システムの例を示すプロセスフロー図である。この例における改質装置1は、外部加熱型の改質器2、水蒸気発生手段3、エジェクターで構成される混合器4、シフトコンバータ5及びCO低減器(PROX)6を備えている。   FIG. 4 is a process flow diagram showing an example of a fuel cell system that combines a conventional reformer, a solid polymer fuel cell, and hot water supply equipment. The reformer 1 in this example includes an external heating type reformer 2, a steam generating means 3, a mixer 4 composed of an ejector, a shift converter 5 and a CO reducer (PROX) 6.

図4に示す固体高分子型の燃料電池7は、運転温度が70℃程度の一般的な定置用の固体高分子型の燃料電池であり、改質装置1から供給される水素リッチな改質ガスと空気を反応させて発電し、その電力はインバータ8を経て家庭内給電系統に供給される。燃料電池7を冷却してその排熱を回収するため、燃料電池7の内部には冷却水系統9の冷却水が流通する。   A solid polymer fuel cell 7 shown in FIG. 4 is a general stationary polymer electrolyte fuel cell having an operating temperature of about 70 ° C., and is rich in hydrogen reforming supplied from the reformer 1. Gas and air are reacted to generate electric power, and the electric power is supplied to the home power supply system via the inverter 8. In order to cool the fuel cell 7 and recover the exhaust heat, the cooling water of the cooling water system 9 flows inside the fuel cell 7.

冷却水系統9は冷却水タンク10、循環配管11及びポンプ12を備え、循環配管11の途中に貯湯槽13が設けられる。ポンプ12を運転すると冷却水タンク10の冷却水が循環配管11により燃料電池7に供給され、燃料電池7で熱交換し加熱された冷却水は貯湯槽13で熱回収されて冷却水タンク10に戻る。   The cooling water system 9 includes a cooling water tank 10, a circulation pipe 11 and a pump 12, and a hot water storage tank 13 is provided in the middle of the circulation pipe 11. When the pump 12 is operated, the cooling water in the cooling water tank 10 is supplied to the fuel cell 7 through the circulation pipe 11, and the cooling water heated by exchanging heat in the fuel cell 7 is recovered in the hot water storage tank 13 and is stored in the cooling water tank 10. Return.

一方、燃料電池7のアノードから排出するアノード排ガスは水素を20%程度含有するので、配管14で改質装置1に供給し熱源として利用される。具体的には、改質装置1を構成する水蒸気発生手段3と外部加熱型の改質器2をそれぞれ加熱するバーナ15にアノード排ガス(及び配管16からの空気)が供給される。   On the other hand, since the anode exhaust gas discharged from the anode of the fuel cell 7 contains about 20% of hydrogen, it is supplied to the reformer 1 via the pipe 14 and used as a heat source. Specifically, the anode exhaust gas (and the air from the pipe 16) is supplied to the burner 15 that heats the steam generating means 3 and the external heating type reformer 2 constituting the reformer 1 respectively.

水蒸気発生手段3にはポンプ17および配管18により純水等の水が供給される。水蒸気発生手段3ではバーナ15の燃焼により水が加熱されて水蒸気を発生し、その水蒸気が混合器4に供給される。混合器4は供給された水蒸気の吸引力により配管19から流入する原料ガスを吸引し、生成する原料−水蒸気混合物が改質器2に供給される。なお原料ガスは脱硫装置20で硫黄成分を除去されてから配管19を経て混合器4に供給される。   Water such as pure water is supplied to the water vapor generating means 3 through a pump 17 and a pipe 18. In the water vapor generating means 3, water is heated by the combustion of the burner 15 to generate water vapor, and the water vapor is supplied to the mixer 4. The mixer 4 sucks the raw material gas flowing from the pipe 19 by the suction force of the supplied water vapor, and the raw material-water vapor mixture to be generated is supplied to the reformer 2. The raw material gas is supplied to the mixer 4 through the pipe 19 after the sulfur component is removed by the desulfurizer 20.

改質器2で原料ガスが改質触媒の存在下に水蒸気改質されて水素リッチな改質ガスを生成する。生成した改質ガスは、シフト触媒を備えたシフトコンバータ5でCO(一酸化炭素)を除去した後、さらにCO低減器6に供給され、そこで僅かに残留するCOをppmオーダまで低減してから燃料電池7に供給される。   In the reformer 2, the raw material gas is steam reformed in the presence of the reforming catalyst to generate a hydrogen-rich reformed gas. The generated reformed gas is supplied to a CO reducer 6 after CO (carbon monoxide) is removed by a shift converter 5 equipped with a shift catalyst, and after remaining CO is slightly reduced to ppm order. It is supplied to the fuel cell 7.

図5は従来の改質装置と、固体高分子型の燃料電池と、給湯設備とを組み合わせた燃料電池システムの他の例を示すプロセスフロー図である。この例が図4の例と異なる部分は、改質装置1を構成する改質器が内部加熱型の改質器2とされることのみで、そのほかは同様に構成される。従って同じ部分には同一符号を付し、重複する説明は省略する。   FIG. 5 is a process flow diagram showing another example of a fuel cell system in which a conventional reformer, a solid polymer fuel cell, and a hot water supply facility are combined. The only difference between this example and the example of FIG. 4 is that the reformer constituting the reformer 1 is the internal heating type reformer 2, and the rest of the configuration is the same. Accordingly, the same parts are denoted by the same reference numerals, and redundant description is omitted.

内部加熱型の改質器2は、前述のように改質器の原料供給側に酸化触媒を充填した部分酸化反応層を設け、そこに空気を供給して原料ガスの一部を酸化し、その酸化熱を改質反応に必要な熱として利用する方式なので、アノード排ガスを燃焼するバーナ15は水蒸気発生手段3だけを加熱する。一方、改質器2の酸化用空気は配管21から供給される。   As described above, the internal heating type reformer 2 is provided with a partial oxidation reaction layer filled with an oxidation catalyst on the raw material supply side of the reformer, and supplies air to oxidize a part of the raw material gas. Since the oxidation heat is used as heat necessary for the reforming reaction, the burner 15 that burns the anode exhaust gas heats only the steam generation means 3. On the other hand, the oxidizing air of the reformer 2 is supplied from the pipe 21.

特開2004−155650号公報JP 2004-155650 A

図4または図5に示すような改質装置1と、燃料電池7と、貯湯槽13等の給湯設備とを組み合わせた従来の燃料電池システムでは、システムとしての有効性を生かすために、給湯の需要変動に適合もしくは追従するような燃料電池の発電パターン(もしくは発電運転パターン)を採用せざるを得ないという問題がある。   In the conventional fuel cell system in which the reformer 1 as shown in FIG. 4 or FIG. 5, the fuel cell 7, and the hot water supply facility such as the hot water storage tank 13 are combined, in order to take advantage of the effectiveness of the system, There is a problem that a fuel cell power generation pattern (or power generation operation pattern) that conforms to or follows demand fluctuations must be adopted.

具体的には、現在、日本で大規模実証試験が行われている1KW級の家庭発電用の燃料電池システムを例にとると、標準的な家庭が消費する1日分の湯を貯湯槽で所定温度に昇温するために必要な加熱時間は半日程度でよいので、それに適合させる燃料電池システムの稼働率も低くならざるを得ない。さらに、燃料電池システムの稼働率は、湯の需要量が少ない夏季には一層低下し、このように稼働率の低いことが定置用の燃料電池システムの普及拡大の障害の一つになっている。   Specifically, taking a 1KW class fuel cell system for home power generation that is currently undergoing a large-scale demonstration test in Japan as an example, the hot water for a day consumed by a standard household is stored in a hot water tank. Since the heating time required for raising the temperature to the predetermined temperature may be about half a day, the operating rate of the fuel cell system adapted to the heating time must be lowered. Furthermore, the operating rate of the fuel cell system is further lowered in the summer when there is little demand for hot water, and such a low operating rate is one of the obstacles to the spread of stationary fuel cell systems. .

さらに、従来の燃料電池システムでは燃料電池のアノード排ガスで水蒸気を発生させているので、他の熱負荷設備の熱源としてアノード排ガスを利用することができない。そこで本発明はこのような従来の燃料電池システムにおける問題を解決することを課題とし、そのための新しい燃料電池システムを提供することを目的とする。   Furthermore, in the conventional fuel cell system, since water vapor is generated from the anode exhaust gas of the fuel cell, the anode exhaust gas cannot be used as a heat source for other heat load equipment. Accordingly, an object of the present invention is to solve such problems in the conventional fuel cell system, and to provide a new fuel cell system therefor.

前記課題を解決する本発明の燃料電池システムは、水蒸気と燃料ガスの混合物から水素リッチな改質ガスを生成する内部加熱型の改質器と、前記改質器で得られた改質ガスを燃料として発電する燃料電池と、前記燃料電池を冷却する冷却水系統を備えた燃料電池システムである。そして、前記燃料電池は、冷却水系統を循環する冷却水の一部を蒸発できる温度領域で運転するように構成され、前記冷却水系統に蒸発により生成する水蒸気を冷却水から分離する蒸気分離器が設けられ、前記蒸気分離器で分離された水蒸気を原料ガスと混合して前記改質器に供給するための水蒸気供給系統が設けられていることを特徴とする(請求項1)。   The fuel cell system of the present invention that solves the above problems includes an internally heated reformer that generates hydrogen-rich reformed gas from a mixture of water vapor and fuel gas, and reformed gas obtained by the reformer. The fuel cell system includes a fuel cell that generates power as fuel and a cooling water system that cools the fuel cell. The fuel cell is configured to operate in a temperature range in which a part of the cooling water circulating in the cooling water system can be evaporated, and a steam separator that separates the water vapor generated by evaporation in the cooling water system from the cooling water And a steam supply system for mixing the steam separated by the steam separator with a raw material gas and supplying the mixture to the reformer (Claim 1).

上記燃料電池システムにおいて、前記燃料電池のアノード排ガスを熱負荷設備に供給するように構成することができる(請求項2)。   In the fuel cell system, the anode exhaust gas of the fuel cell can be supplied to a heat load facility (claim 2).

上記熱負荷設備はガスヒートポンプ式の冷暖房設備であり、前記アノード排ガスを前記ガスヒートポンプ式の冷暖房設備を構成する水素エンジンの燃料として供給するように構成することができる(請求項3)。   The heat load equipment is a gas heat pump type air conditioning equipment, and the anode exhaust gas can be configured to be supplied as a fuel for a hydrogen engine constituting the gas heat pump type air conditioning equipment.

前記熱負荷設備は吸収式ガス冷暖房設備であり、前記アノード排ガスを前記吸収式ガス冷暖房設備の再生器加熱用の燃料として供給するように構成することができる(請求項4)。   The heat load facility is an absorption gas cooling / heating facility, and the anode exhaust gas can be configured to be supplied as fuel for regenerator heating of the absorption gas cooling / heating facility.

前記熱負荷設備はバイオマスエタノール製造設備であり、前記アノード排ガスをバイオマスエタノール製造設備の加熱用の燃料として供給するように構成することができる(請求項5)。   The heat load facility is a biomass ethanol production facility, and the anode exhaust gas can be configured to be supplied as a fuel for heating the biomass ethanol production facility (Claim 5).

上記バイオマスエタノール製造設備を設けた燃料電池システムにおいて、前記蒸気分離器で分離された水蒸気をバイオマスエタノール製造設備の熱源として供給するための水蒸気供給系統を設けることができる(請求項6)。   In the fuel cell system provided with the biomass ethanol production facility, a water vapor supply system for supplying the water vapor separated by the steam separator as a heat source of the biomass ethanol production facility can be provided.

上記バイオマスエタノール製造設備を設けた燃料電池システムにおいて、バイオマスエタノール製造設備で生成したエタノールの少なくとも一部を改質器に原料ガスとして供給するように構成することができる(請求項7)。   In the fuel cell system provided with the biomass ethanol production facility, at least a part of the ethanol generated in the biomass ethanol production facility can be supplied to the reformer as a raw material gas.

本発明の燃料電池システムは、請求項1に記載のように、燃料電池が冷却水系統を循環する冷却水の一部を蒸発できる温度領域、例えば100℃以上、好ましくは150℃以上の中温もしくは高温の温度領域で運転するように構成され、燃料電池の冷却水系統に設けられた蒸気分離器で分離した水蒸気を原料ガスと混合して前記改質器に供給するための水蒸気供給系統が設けられている。   According to the fuel cell system of the present invention, the temperature range in which the fuel cell can evaporate a part of the cooling water circulating in the cooling water system, for example, a medium temperature of 100 ° C. or higher, preferably 150 ° C. or higher, A steam supply system is provided that is configured to operate in a high temperature range and mixes the steam separated by the steam separator provided in the cooling water system of the fuel cell with the raw material gas and supplies it to the reformer. It has been.

このように構成すると、燃料電池の排熱を利用して改質器へ水蒸気を供給できるので、水蒸気発生のための燃料消費が実質的に不要になる。さらに燃料電池のアノード排ガスを水蒸気発生用として消費しなくてよいので、それを他の熱負荷設備の熱源として利用できる。そのため高い熱効率を有する燃料電池システムを構築することが可能になる。さらに、冷却水系統における蒸気分離器が一種のバッファー機能を有するので、水蒸気供給系統による水蒸気供給は冷却水系統の温度変動に大きく影響されることがない。そのため電力需要の変化などに左右されることなく、改質器への水蒸気供給量の制御を独立的に行うことができる。   If comprised in this way, since water vapor | steam can be supplied to a reformer using the exhaust heat of a fuel cell, the fuel consumption for water vapor | steam generation | occurrence | production becomes substantially unnecessary. Furthermore, since the anode exhaust gas of the fuel cell does not have to be consumed for generating steam, it can be used as a heat source for other heat load equipment. Therefore, it becomes possible to construct a fuel cell system having high thermal efficiency. Furthermore, since the steam separator in the cooling water system has a kind of buffer function, the steam supply by the steam supply system is not greatly affected by temperature fluctuations in the cooling water system. Therefore, it is possible to independently control the amount of steam supplied to the reformer without being affected by changes in power demand.

上記燃料電池システムにおいて、請求項2に記載のように、前記燃料電池のアノード排ガスを熱負荷設備に供給するように構成すると、高い熱効率を有する燃料電池システムを構築することが可能になる。   If the fuel cell system is configured to supply the anode exhaust gas of the fuel cell to a heat load facility as described in claim 2, it is possible to construct a fuel cell system having high thermal efficiency.

請求項3に記載のように、前記熱負荷設備がガスヒートポンプ式の冷暖房設備である場合、前記ガスヒートポンプ式の冷暖房設備を構成する水素エンジンの燃料を前記アノード排ガスで賄うことができる。   According to a third aspect of the present invention, when the heat load facility is a gas heat pump type air conditioner, the fuel of the hydrogen engine constituting the gas heat pump type air conditioner can be covered with the anode exhaust gas.

請求項4に記載のように、前記熱負荷設備が吸収式ガス冷暖房設備である場合、前記吸収式ガス冷暖房設備の再生器加熱用の燃料を前記アノード排ガスで賄うことができる。   As described in claim 4, when the heat load facility is an absorption gas cooling / heating facility, fuel for regenerator heating of the absorption gas cooling / heating facility can be covered by the anode exhaust gas.

請求項5に記載のように、前記熱負荷設備がバイオマスエタノール製造設備である場合、バイオマスエタノール製造設備の加熱用燃料を前記アノード排ガスで賄うことができる。   As described in claim 5, when the heat load facility is a biomass ethanol production facility, fuel for heating the biomass ethanol production facility can be covered with the anode exhaust gas.

上記バイオマスエタノール製造設備を設けた燃料電池システムにおいて、請求項6に記載のように、前記蒸気分離器で分離された水蒸気をバイオマスエタノール製造設備の熱源として供給するための水蒸気供給系統を設けることができる。このように構成すると、燃料電池システムの熱効率をさらに向上させることができる。   In the fuel cell system provided with the biomass ethanol production facility, a water vapor supply system for supplying the water vapor separated by the steam separator as a heat source of the biomass ethanol production facility may be provided as described in claim 6. it can. With this configuration, the thermal efficiency of the fuel cell system can be further improved.

上記バイオマスエタノール製造設備を設けた燃料電池システムにおいて、請求項7に記載のように、バイオマスエタノール製造設備で生成したエタノールの少なくとも一部を改質器の原料ガスとして供給するように構成することができる。このように構成すると、改質器の原料ガスをバイオマスエタノール製造設備から供給できるので、燃料電池システムのエネルギー消費量を一層低減することができる。   The fuel cell system provided with the biomass ethanol production facility may be configured to supply at least a part of the ethanol generated in the biomass ethanol production facility as a raw material gas for the reformer as described in claim 7. it can. If comprised in this way, since the raw material gas of a reformer can be supplied from biomass ethanol manufacturing equipment, the energy consumption of a fuel cell system can be reduced further.

次に図面に基づいて本発明の最良の実施形態を説明する。図1は本発明の燃料電池システムの1例を示すプロセスフロー図である。なお図1の実施形態において図5の従来例と同じ部分には同一符号を付し、重複する説明は省略する。   Next, the best mode for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a process flow diagram showing an example of a fuel cell system of the present invention. In the embodiment of FIG. 1, the same parts as those in the conventional example of FIG.

本実施形態では、改質装置1を構成する改質器2として図5の例と同様な内熱型の改質器2を用いている。しかし燃料電池7は運転温度領域が150℃程度である中温型の固体高分子型の燃料電池(PEFC)を用いている。そして燃料電池7を冷却する冷却水系統9には、図5の例のような冷却水タンク10は設けないが、代わりに蒸気分離器30が設けられる。   In the present embodiment, an internal heat type reformer 2 similar to the example of FIG. 5 is used as the reformer 2 constituting the reformer 1. However, the fuel cell 7 uses a medium temperature solid polymer fuel cell (PEFC) whose operating temperature range is about 150 ° C. The cooling water system 9 for cooling the fuel cell 7 is not provided with the cooling water tank 10 as in the example of FIG. 5, but is provided with a steam separator 30 instead.

燃料電池7から蒸気分離器30に戻る循環配管11には、温度調整器34または圧力調整部34aからの制御信号により駆動する三方調整弁31が設けられる。三方調整弁31の接続部Bは配管32を介して図5の例と同様な給湯設備としての貯湯槽13の入口側に連通し、貯湯槽13の出口側は配管33を介して蒸気分離器30に連通している。   The circulation pipe 11 returning from the fuel cell 7 to the vapor separator 30 is provided with a three-way regulating valve 31 driven by a control signal from the temperature regulator 34 or the pressure regulator 34a. The connection part B of the three-way regulating valve 31 communicates with the inlet side of a hot water tank 13 as a hot water supply facility similar to the example of FIG. 5 through a pipe 32, and the outlet side of the hot water tank 13 is connected with a steam separator through a pipe 33. 30.

上記のように本実施形態では、燃料電池7から流出する冷却水が蒸気分離器30に流入し、そこで水蒸気を発生させて熱回収すると共に、燃料電池7から流出する冷却水の少なくとも一部を貯湯槽13に熱源として供給し熱回収している。なお貯湯槽13(及び三方調整弁31)は必要に応じて省略することもできる。   As described above, in this embodiment, the cooling water flowing out from the fuel cell 7 flows into the steam separator 30, where water vapor is generated and heat is recovered, and at least a part of the cooling water flowing out from the fuel cell 7 is recovered. Heat is recovered by supplying the hot water tank 13 as a heat source. The hot water tank 13 (and the three-way adjustment valve 31) can be omitted as necessary.

上記のように貯湯槽13による熱回収を行うようにシステムを構成した場合は、蒸気分離器30における水蒸気発生が確実に行われるように三方調整弁31を制御することができる。例えば燃料電池7から流出する冷却水の温度が低くなった場合には、蒸気分離器30の温度または圧力が低下するので、温度調整器34または圧力調整部34aからの制御信号により、貯湯槽13を循環する冷却水の流量を減らすように三方調整弁31を制御することができる。   When the system is configured to perform heat recovery by the hot water tank 13 as described above, the three-way regulating valve 31 can be controlled so that water vapor generation in the steam separator 30 is reliably performed. For example, when the temperature of the cooling water flowing out from the fuel cell 7 becomes low, the temperature or pressure of the steam separator 30 decreases, so that the hot water storage tank 13 is controlled by a control signal from the temperature regulator 34 or the pressure regulator 34a. The three-way regulating valve 31 can be controlled so as to reduce the flow rate of the cooling water that circulates.

蒸気分離器30で分離した水蒸気は水蒸気供給系統35を経て改質装置1を構成する混合器4に供給される。水蒸気供給系統35は蒸気分離器30の上部と混合器4の蒸気供給部との間を連通する配管36と、配管36に設けた蒸気制御弁37と、蒸気制御弁37を制御する流量制御部38が設けられる。なお蒸気分離器30に必要に応じて純水等の水を補給するため、ポンプ30aを設けた配管30bが接続される。流量制御部38は蒸気制御弁37に制御信号を出力するが、例えば燃料電池7の負荷に応じた水蒸気量が改質器2に供給されるように蒸気制御弁37に制御信号を出力することができる。   The steam separated by the steam separator 30 is supplied to the mixer 4 constituting the reformer 1 through the steam supply system 35. The steam supply system 35 includes a pipe 36 that communicates between the upper part of the steam separator 30 and the steam supply unit of the mixer 4, a steam control valve 37 provided in the pipe 36, and a flow rate control unit that controls the steam control valve 37. 38 is provided. A pipe 30b provided with a pump 30a is connected to supply the steam separator 30 with water such as pure water as necessary. The flow rate control unit 38 outputs a control signal to the steam control valve 37. For example, the flow rate control unit 38 outputs a control signal to the steam control valve 37 so that a steam amount corresponding to the load of the fuel cell 7 is supplied to the reformer 2. Can do.

本実施形態では、熱負荷設備としてのガスヒートポンプ式の冷暖房設備40に燃料電池7のアノード排ガスを熱源(もしくは燃料源)として供給している。具体的には、燃料電池7のアノード排ガスを配管46により前記冷暖房設備40を構成する水素エンジン41に燃料として供給する。ガスヒートポンプ式の冷暖房設備40は、水素を燃料として回転する水素エンジン41、水素エンジン41で駆動されるコンプレッサ42、コンプレッサで圧縮された作動媒体を蒸発させる蒸発器43、作動媒体の膨張弁44および凝縮器45等を備えている。   In the present embodiment, the anode exhaust gas of the fuel cell 7 is supplied as a heat source (or a fuel source) to a gas heat pump type heating / cooling facility 40 as a heat load facility. Specifically, the anode exhaust gas of the fuel cell 7 is supplied as fuel to the hydrogen engine 41 constituting the cooling / heating facility 40 through the pipe 46. A gas heat pump type air conditioner 40 includes a hydrogen engine 41 that rotates using hydrogen as a fuel, a compressor 42 that is driven by the hydrogen engine 41, an evaporator 43 that evaporates the working medium compressed by the compressor, an expansion valve 44 for the working medium, and A condenser 45 and the like are provided.

次に、図1の燃料電池システムの作用を説明する。配管19から供給した原料ガスと配管36から供給した水蒸気が混合器4で混合され、混合器4の出口から流出する原料−水蒸気混合物が改質器2に供給される。改質器2に供給された原料ガスの一部は酸化触媒の作用により燃焼し、改質器2内部を改質反応温度(例えば700℃程度)に昇温する。残りの大部分の原料ガスは改質触媒の作用により水蒸気と反応して水蒸気改質され、水素リッチな改質ガスを生成する。   Next, the operation of the fuel cell system of FIG. 1 will be described. The raw material gas supplied from the pipe 19 and the water vapor supplied from the pipe 36 are mixed in the mixer 4, and the raw material-water vapor mixture flowing out from the outlet of the mixer 4 is supplied to the reformer 2. Part of the raw material gas supplied to the reformer 2 is combusted by the action of the oxidation catalyst, and the temperature inside the reformer 2 is raised to the reforming reaction temperature (for example, about 700 ° C.). Most of the remaining raw material gas reacts with steam by the action of the reforming catalyst and is steam reformed to produce hydrogen-rich reformed gas.

生成した改質ガスにはCOが含まれているので、シフト触媒を充填したシフトコンバータ5でCOを除去され、さらに改質ガスに残留するCOがCO低減器6でPPmオーダまで低減された後、アンモニア除去器6aで原料ガス由来のアンモニアが除去されてから燃料電池7に供給される。   Since the generated reformed gas contains CO, after the CO is removed by the shift converter 5 filled with the shift catalyst, the CO remaining in the reformed gas is further reduced to the PPm order by the CO reducer 6. The ammonia derived from the raw material gas is removed by the ammonia remover 6 a and then supplied to the fuel cell 7.

燃料電池7は供給される改質ガスに含まれる水素と、別に供給される空気中の酸素とを反応させて発電し、その電力はインバータ8で交流に変換されて家庭内の受電系統などに供給される。一方、燃料電池7は蒸気分離器30から循環配管11で送られてくる冷却水で冷却され、内部の熱交換により加熱されて燃料電池7から流出する冷却水は、循環配管11に設けた三方調整弁31を経て蒸気分離器30に戻り、一部は三方調整弁31から分かれて貯湯槽13を経由してから蒸気分離器30に戻る。   The fuel cell 7 generates electric power by reacting hydrogen contained in the supplied reformed gas with oxygen in the air supplied separately, and the electric power is converted into alternating current by the inverter 8 to be used in a power receiving system in the home. Supplied. On the other hand, the fuel cell 7 is cooled by the cooling water sent from the steam separator 30 through the circulation pipe 11, and the cooling water heated by the internal heat exchange and flowing out of the fuel cell 7 is supplied to the three-way circulation pipe 11. It returns to the steam separator 30 through the regulating valve 31, and a part is separated from the three-way regulating valve 31, passes through the hot water storage tank 13, and then returns to the steam separator 30.

蒸気分離器30で分離された水蒸気は、水蒸気供給系統35により改質装置1の混合器4に供給される。その際、水蒸気供給系統35に設けた流量調整部37からの制御信号により、蒸気制御弁38の開度が調整されて混合器4への水蒸気供給量が制御される。一方、燃料電池7から排出するアノード排ガスは未反応の水素が20%程度含まれているが、配管46からガスヒートポンプ式の冷暖房設備40に供給することにより、未反応の水素が熱源として回収される。   The steam separated by the steam separator 30 is supplied to the mixer 4 of the reformer 1 by the steam supply system 35. At that time, the opening degree of the steam control valve 38 is adjusted by the control signal from the flow rate adjusting unit 37 provided in the steam supply system 35, and the steam supply amount to the mixer 4 is controlled. On the other hand, the anode exhaust gas discharged from the fuel cell 7 contains about 20% of unreacted hydrogen. By supplying the gas to the gas heat pump type air conditioning equipment 40 from the pipe 46, the unreacted hydrogen is recovered as a heat source. The

図2は本発明の燃料電池システムの他の例を示すプロセスフロー図である。なお図2の実施形態において図1の例と異なる部分は、燃料電池7から排出されるアノード排ガスが吸収式ガス冷暖房設備50に供給されることであり、そのほかは同様に構成される。従って図1と同じ部分には同一符号を付し、重複する説明は省略する。   FIG. 2 is a process flow diagram showing another example of the fuel cell system of the present invention. 2 is different from the example of FIG. 1 in that the anode exhaust gas discharged from the fuel cell 7 is supplied to the absorption gas cooling and heating equipment 50, and the other configuration is the same. Therefore, the same parts as those in FIG.

本実施形態では、燃料電池7のアノード排ガスを熱負荷設備としての吸収式ガス冷暖房設備50の熱源(もしくは燃料)として供給している。具体的には、燃料電池7のアノード排ガスを配管46により吸収式ガス冷暖房設備50を構成する再生器51の加熱用燃料として供給している。このように構成することにより、燃料電池7から排出するアノード排ガスは、配管46から吸収式ガス冷暖房設備50に供給され、未反応の水素が熱源として回収される。   In this embodiment, the anode exhaust gas of the fuel cell 7 is supplied as a heat source (or fuel) of the absorption gas cooling / heating facility 50 as a heat load facility. Specifically, the anode exhaust gas of the fuel cell 7 is supplied by a pipe 46 as a heating fuel for the regenerator 51 that constitutes the absorption gas cooling and heating equipment 50. With this configuration, the anode exhaust gas discharged from the fuel cell 7 is supplied from the pipe 46 to the absorption gas cooling / heating facility 50, and unreacted hydrogen is recovered as a heat source.

なお、本実施形態における吸収式ガス冷暖房設備50は、再生器51、再生器51で生成する水蒸気を凝縮する凝縮器52、凝縮器52で凝縮した水を蒸発させる蒸発器53、吸収器54および冷却塔55及び凝縮器52に循環する作動媒体で冷暖房を行う室内機56を備えている。   The absorption gas cooling and heating equipment 50 in this embodiment includes a regenerator 51, a condenser 52 that condenses water vapor generated by the regenerator 51, an evaporator 53 that evaporates water condensed by the condenser 52, an absorber 54, and An indoor unit 56 that performs cooling and heating with a working medium circulating to the cooling tower 55 and the condenser 52 is provided.

図3は本発明の燃料電池システムのさらに他の例を示すプロセスフロー図である。なおこの実施形態の特徴部分は、燃料電池7から排出されるアノード排ガスが熱負荷設備としてのバイオマスエタノール製造設備60に供給されること、バイオマスエタノール製造設備60で生成したエタノールの少なくとも一部を改質器2に原料ガスとして供給すること、および燃料電池7の排熱を水蒸気に変換した一部をバイオマスエタノール製造設備60の熱源として供給することであり、そのほかは図1の例と同様に構成される。従って図1と同じ部分には同一符号を付し、重複する説明は省略する。   FIG. 3 is a process flow diagram showing still another example of the fuel cell system of the present invention. The characteristic part of this embodiment is that anode exhaust gas discharged from the fuel cell 7 is supplied to a biomass ethanol production facility 60 as a heat load facility, and at least a part of ethanol generated by the biomass ethanol production facility 60 is modified. It is to supply to the gasifier 2 as a raw material gas, and to supply a part of the exhaust heat of the fuel cell 7 converted to water vapor as a heat source of the biomass ethanol production facility 60, and the other configuration is the same as the example of FIG. Is done. Therefore, the same parts as those in FIG.

バイオマスエタノール製造設備60は、バイオマスの原料となる木片等を粉砕・乾燥する粉砕乾燥装置61、糖化装置62、発酵装置63、蒸留装置64及び脱水装置65を備えている。本実施形態では、燃料電池7のアノード排ガスを熱負荷設備としてのバイオマスエタノール製造設備60の熱源(もしくは燃料)として供給している。   The biomass ethanol production facility 60 includes a pulverizing and drying device 61, a saccharifying device 62, a fermentation device 63, a distillation device 64, and a dehydrating device 65 that pulverize and dry wood chips or the like as biomass raw materials. In this embodiment, the anode exhaust gas of the fuel cell 7 is supplied as a heat source (or fuel) of the biomass ethanol production facility 60 as a heat load facility.

具体的には、燃料電池7のアノード排ガスを配管46によりバイオマスエタノール製造設備60を構成する蒸留装置64の蒸留操作の熱源として供給している。なおバイオマス原料に木質が使用される場合、糖化装置62は300℃程度の温度が必要になるので、その熱源として、アノード排ガスを点線で示すように糖化装置62の加熱用バーナに供給することもできる。   Specifically, the anode exhaust gas of the fuel cell 7 is supplied as a heat source for the distillation operation of the distillation apparatus 64 constituting the biomass ethanol production facility 60 through the pipe 46. When wood is used as the biomass raw material, the saccharification device 62 needs to have a temperature of about 300 ° C. Therefore, as the heat source, the anode exhaust gas may be supplied to the heating burner of the saccharification device 62 as shown by the dotted line. it can.

バイオマスエタノール製造設備60を構成する粉砕乾燥装置61(例えば105℃)、糖化装置62(例えば90℃)及び発酵装置63(例えば60℃)には、それぞれ所定の温度に制御するための熱交換器が設けられる。そこで本実施形態では、蒸気分離器30で分離された水蒸気を水蒸気供給系統35で改質装置1の混合器4に供給すると共に、バイオマスエタノール製造設備60の粉砕乾燥装置61、糖化装置62及び発酵装置63の各熱交換器に別の水蒸気供給系統66で水蒸気の一部を供給している。   A heat exchanger for controlling each of the pulverization and drying device 61 (for example, 105 ° C.), the saccharification device 62 (for example, 90 ° C.), and the fermentation device 63 (for example, 60 ° C.) constituting the biomass ethanol production facility 60 to a predetermined temperature. Is provided. Therefore, in the present embodiment, the steam separated by the steam separator 30 is supplied to the mixer 4 of the reformer 1 by the steam supply system 35, and the pulverizing and drying device 61, the saccharification device 62, and the fermentation of the biomass ethanol production facility 60 are supplied. A part of the water vapor is supplied to each heat exchanger of the apparatus 63 by another water vapor supply system 66.

水蒸気供給系統66は、蒸気分離器30の上部とバイオマスエタノール製造設備60の前記各装置とを連通する配管67、配管67に設けた蒸気制御弁68及び蒸気制御弁68を制御する流量制御部69を有する。なお蒸気制御弁68と流量制御部69の作用は前記水蒸気供給系統35における蒸気制御弁38と流量制御部37の作用と同様である。   The steam supply system 66 includes a pipe 67 that connects the upper part of the steam separator 30 and the above-described devices of the biomass ethanol production facility 60, a steam control valve 68 provided in the pipe 67, and a flow rate control unit 69 that controls the steam control valve 68. Have The operations of the steam control valve 68 and the flow rate control unit 69 are the same as the operations of the steam control valve 38 and the flow rate control unit 37 in the water vapor supply system 35.

本実施形態では上記のように、燃料電池7から排出するアノード排ガスが配管46からバイオマスエタノール製造設備60に供給されてその熱回収が行われる。また燃料電池7の排熱を水蒸気に変換してバイオマスエタノール製造設備60の熱源として供給することにより、燃料電池7の排熱の熱回収が行われる。   In the present embodiment, as described above, the anode exhaust gas discharged from the fuel cell 7 is supplied from the pipe 46 to the biomass ethanol production facility 60 and the heat recovery is performed. Further, the exhaust heat of the fuel cell 7 is converted into water vapor and supplied as a heat source of the biomass ethanol production facility 60, whereby heat recovery of the exhaust heat of the fuel cell 7 is performed.

一方、バイオマスエタノール製造設備60で生成したエタノールの少なくとも一部は、配管67a、混合器4を経由して改質器2に原料ガスとして供給されるので、改質器2には他から原料ガスを供給する必要がなくなるか、または他から改質器2に供給する原料ガスの量を減少させることができる。   On the other hand, since at least a part of the ethanol generated in the biomass ethanol production facility 60 is supplied as a raw material gas to the reformer 2 via the pipe 67a and the mixer 4, the raw material gas is supplied to the reformer 2 from the other. Or the amount of the raw material gas supplied to the reformer 2 from the other can be reduced.

本発明の燃料電池システムは、燃料電池の排熱を回収しアノード排ガスを熱負荷設備の熱源として用いる家庭用などの燃料電池システムとして利用できる。   The fuel cell system of the present invention can be used as a fuel cell system for home use that recovers exhaust heat of the fuel cell and uses the anode exhaust gas as a heat source of the heat load facility.

本発明の燃料電池システムの1例を示すプロセスフロー図。The process flow figure showing one example of the fuel cell system of the present invention. 本発明の燃料電池システムの他の例を示すプロセスフロー図。The process flow figure which shows the other example of the fuel cell system of this invention. 本発明の燃料電池システムのさらに他の例を示すプロセスフロー図。The process flow figure which shows the further another example of the fuel cell system of this invention.

従来の燃料電池システムの1例を示すプロセスフロー図。The process flow figure which shows one example of the conventional fuel cell system. 従来の燃料電池システムの他の例を示すプロセスフロー図。The process flow figure which shows the other example of the conventional fuel cell system.

符号の説明Explanation of symbols

1 改質装置
2 改質器
3 水蒸気発生手段
4 混合器
5 シフトコンバータ
6 CO低減器
7 燃料電池
8 インバータ
9 冷却水系統
10 冷却水タンク
DESCRIPTION OF SYMBOLS 1 Reformer 2 Reformer 3 Steam generation means 4 Mixer 5 Shift converter 6 CO reducer 7 Fuel cell 8 Inverter 9 Cooling water system 10 Cooling water tank

11 循環配管
12 ポンプ
13 貯湯槽
14 配管
15 バーナ
16 配管
17 ポンプ
18,19 配管
20 脱硫装置
21 配管
DESCRIPTION OF SYMBOLS 11 Circulation piping 12 Pump 13 Hot water storage tank 14 Piping 15 Burner 16 Piping 17 Pump 18, 19 Piping 20 Desulfurization device 21 Piping

30 蒸気分離器
30a ポンプ
30b 配管
31 三方調整弁
32,33 配管
34 温度調整器
34a 圧力調整部
35 水蒸気供給系統
36 配管
37 蒸気制御弁
38 流量制御部
30 Steam Separator 30a Pump 30b Piping 31 Three-way Adjusting Valve 32, 33 Piping 34 Temperature Regulator 34a Pressure Adjusting Unit 35 Steam Supply System 36 Piping 37 Steam Control Valve 38 Flow Control Unit

40 ガスヒートポンプ式の冷暖房設備
41 水素エンジン
42 コンプレッサ
43 蒸発器
44 膨張弁
45 凝縮器
46 配管
40 Gas Heat Pump Type Heating and Cooling Equipment 41 Hydrogen Engine 42 Compressor 43 Evaporator 44 Expansion Valve 45 Condenser 46 Piping

50 吸収式ガス冷暖房設備
51 再生器
52 凝縮器
53 蒸発器
54 吸収器
55 冷却塔
56 室内機
50 Absorption-type gas cooling and heating equipment 51 Regenerator 52 Condenser 53 Evaporator 54 Absorber 55 Cooling tower 56 Indoor unit

60 バイオマスエタノール製造設備
61 粉砕乾燥装置
62 糖化装置
63 発酵装置
64 蒸留装置
65 脱水装置
66 水蒸気供給系統
67 配管
67a 配管
68 蒸気制御弁
69 流量制御部
60 Biomass ethanol production equipment 61 Grinding and drying device 62 Saccharification device 63 Fermentation device 64 Distillation device 65 Dehydration device 66 Steam supply system 67 Piping 67a Piping 68 Steam control valve 69 Flow control unit

Claims (7)

水蒸気と燃料ガスの混合物から水素リッチな改質ガスを生成する内部加熱型の改質器2と、前記改質器2で得られた改質ガスを燃料として発電する燃料電池7と、前記燃料電池7を冷却する冷却水系統9を備えた燃料電池システムにおいて、
前記燃料電池7は冷却水系統9を循環する冷却水の一部を蒸発できる温度領域で運転されるように構成され、前記冷却水系統9に蒸発により生成する水蒸気を冷却水から分離する蒸気分離器30が設けられ、前記蒸気分離器30で分離された水蒸気を原料ガスと混合して前記改質器2に供給するための水蒸気供給系統35が設けられていることを特徴とする燃料電池システム。
An internally heated reformer 2 that generates hydrogen-rich reformed gas from a mixture of water vapor and fuel gas, a fuel cell 7 that generates electricity using the reformed gas obtained in the reformer 2 as fuel, and the fuel In the fuel cell system including the cooling water system 9 for cooling the battery 7,
The fuel cell 7 is configured to be operated in a temperature range in which a part of the cooling water circulating in the cooling water system 9 can be evaporated, and the steam separation for separating the water vapor generated by the evaporation in the cooling water system 9 from the cooling water. The fuel cell system is provided with a steam supply system 35 for supplying the reformer 2 with the steam separated by the steam separator 30 by mixing with the raw material gas. .
請求項1において、前記燃料電池7のアノード排ガスを熱負荷設備に供給するように構成したことを特徴とする燃料電池システム。   2. The fuel cell system according to claim 1, wherein the anode exhaust gas of the fuel cell 7 is supplied to a heat load facility. 請求項2において、前記熱負荷設備はガスヒートポンプ式の冷暖房設備40であり、前記アノード排ガスを前記ガスヒートポンプ式の冷暖房設備40を構成する水素エンジン41の燃料として供給するように構成したことを特徴とする燃料電池システム。   3. The heat load equipment according to claim 2, wherein the heat load equipment is a gas heat pump type air conditioning equipment 40, and the anode exhaust gas is supplied as fuel of a hydrogen engine 41 constituting the gas heat pump type air conditioning equipment 40. A fuel cell system. 請求項2において、前記熱負荷設備は吸収式ガス冷暖房設備50であり、前記アノード排ガスを前記吸収式ガス冷暖房設備50の再生器51の加熱用燃料として供給するように構成したことを特徴とする燃料電池システム。   3. The heat load facility according to claim 2, wherein the heat load facility is an absorption gas cooling / heating facility 50, and the anode exhaust gas is supplied as a heating fuel for the regenerator 51 of the absorption gas cooling / heating facility 50. Fuel cell system. 請求項2において、前記熱負荷設備はバイオマスエタノール製造設備60であり、前記アノード排ガスをバイオマスエタノール製造設備60の加熱用燃料として供給するように構成したことを特徴とする燃料電池システム。   3. The fuel cell system according to claim 2, wherein the heat load facility is a biomass ethanol production facility 60, and the anode exhaust gas is supplied as a heating fuel for the biomass ethanol production facility 60. 請求項5において、前記蒸気分離器30で分離された水蒸気をバイオマスエタノール製造設備60の熱源として供給するための水蒸気供給系統66が設けられていることを特徴とする燃料電池システム。   6. The fuel cell system according to claim 5, further comprising a water vapor supply system 66 for supplying the water vapor separated by the vapor separator 30 as a heat source of the biomass ethanol production facility 60. 請求項5または請求項6において、バイオマスエタノール製造設備60で生成したエタノールの少なくとも一部を改質器2に原料ガスとして供給するように構成されていることを特徴とする燃料電池システム。   7. The fuel cell system according to claim 5, wherein at least a part of ethanol produced by the biomass ethanol production facility 60 is supplied to the reformer 2 as a raw material gas.
JP2008072425A 2008-03-19 2008-03-19 Fuel cell system Pending JP2009230927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008072425A JP2009230927A (en) 2008-03-19 2008-03-19 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008072425A JP2009230927A (en) 2008-03-19 2008-03-19 Fuel cell system

Publications (1)

Publication Number Publication Date
JP2009230927A true JP2009230927A (en) 2009-10-08

Family

ID=41246113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008072425A Pending JP2009230927A (en) 2008-03-19 2008-03-19 Fuel cell system

Country Status (1)

Country Link
JP (1) JP2009230927A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5586809B2 (en) * 2012-04-06 2014-09-10 パナソニック株式会社 Hydrogen purification apparatus, hydrogen generation apparatus, and fuel cell system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308230A (en) * 1997-05-02 1998-11-17 Nippon Telegr & Teleph Corp <Ntt> Power generating device for fuel cell
JP2000340238A (en) * 1999-05-31 2000-12-08 Nippon Shokuryo Kk Energy supply system of dwelling house or the like using photovoltaic power generation and fuel cell power generation
JP2006073416A (en) * 2004-09-03 2006-03-16 Kansai Electric Power Co Inc:The Absorption-type refrigerator composite fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308230A (en) * 1997-05-02 1998-11-17 Nippon Telegr & Teleph Corp <Ntt> Power generating device for fuel cell
JP2000340238A (en) * 1999-05-31 2000-12-08 Nippon Shokuryo Kk Energy supply system of dwelling house or the like using photovoltaic power generation and fuel cell power generation
JP2006073416A (en) * 2004-09-03 2006-03-16 Kansai Electric Power Co Inc:The Absorption-type refrigerator composite fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5586809B2 (en) * 2012-04-06 2014-09-10 パナソニック株式会社 Hydrogen purification apparatus, hydrogen generation apparatus, and fuel cell system

Similar Documents

Publication Publication Date Title
JP5331819B2 (en) MCFC power generation system
US9373856B2 (en) Method of recycling and tapping off hydrogen for power generation apparatus
JP4644704B2 (en) Fuel cell system
KR101339672B1 (en) Heating and cooling system using heat from fuel cell
US8445155B2 (en) Complex power generation system and method for supplying heated water thereof
CN102456897A (en) Combined electricity-heat-cold supply system based on fuel cell
KR20130137786A (en) Heating/cooling system by waste heat of fuel cell : trigeneration
JP4744971B2 (en) Low quality waste heat recovery system
WO2022193545A1 (en) Fuel cell system directly utilizing methanol reformed gas and operating method of fuel cell system
KR101397622B1 (en) Waste heat recovery system for cooling tower of power plant by using feul cell
KR20130139007A (en) Fuel cell driving system by using absorption heat pump
CN115995575B (en) Fuel cell system based on carbon trapping and heat storage sharing and thermoelectric decoupling method
JP2004018343A (en) Method for generating electric power and hydrogen together from hydrocarbon fuel, its plant and its exhaust heat recovery-type reformer
JP2009230927A (en) Fuel cell system
JP2008078144A (en) Fuel cell-gas turbine generator set and combined generator set
JP2009170189A (en) Fuel cell system and method of recovering flocculated water in the fuel cell system
CN115939445B (en) High-efficiency solid oxide fuel cell cogeneration system and cogeneration method
KR100623942B1 (en) System for molten carbonate fuel cells
JPH0613093A (en) Heat and electric power combined supply system and building provided with this supplying system
JP2006156015A (en) Fuel cell system and fuel gas supply method
JP2007115715A (en) Fuel cell power generating system
JP2006107957A (en) Fuel cell system
Moh'd A et al. Electricity and hydrogen production by integrating two kinds of fuel cells with copper chlorine thermo-chemical cycle
JP2001210340A (en) Exhaust heat recovery system of solid polymer type fuel cell
JP2001210343A (en) Hot water storage/hot water supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130312