JP2009228922A - Refrigerating device - Google Patents

Refrigerating device Download PDF

Info

Publication number
JP2009228922A
JP2009228922A JP2008071736A JP2008071736A JP2009228922A JP 2009228922 A JP2009228922 A JP 2009228922A JP 2008071736 A JP2008071736 A JP 2008071736A JP 2008071736 A JP2008071736 A JP 2008071736A JP 2009228922 A JP2009228922 A JP 2009228922A
Authority
JP
Japan
Prior art keywords
compressor
target
pressure side
side pressure
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008071736A
Other languages
Japanese (ja)
Other versions
JP5258338B2 (en
Inventor
茂生 ▲高▼田
Shigeo Takada
Takashi Ikeda
隆 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008071736A priority Critical patent/JP5258338B2/en
Publication of JP2009228922A publication Critical patent/JP2009228922A/en
Application granted granted Critical
Publication of JP5258338B2 publication Critical patent/JP5258338B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem in an operation of a compressor by a conventional invertor device that following capability can not be sufficiently secured though its purpose is promotion of increase of output frequency in shortage of refrigerating capacity and decrease of the output frequency in excess of refrigerating capacity. <P>SOLUTION: This refrigerating device comprising a refrigerant circuit constituted by communicating a compressor, a condenser, a throttle means and an evaporator by refrigerant pipes, and the invertor device of variable output frequency for driving the compressor, further includes a compressor operation time detecting means, a compressor target stop time setting means, a target low pressure-side pressure setting means, a low pressure-side pressure detecting means, and an invertor control means, thus the frequency of the invertor device is effectively changed, and the refrigerating device of high following capability of an indoor temperature and an operating state can be provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、冷凍装置に関するものであり、更に詳しくは圧縮機をインバータ制御する冷凍装置に関するものである。   The present invention relates to a refrigeration apparatus, and more particularly to a refrigeration apparatus for inverter-controlling a compressor.

従来の冷凍装置は、圧縮機の運転にインバータ装置が用いられており、蒸発器の負荷変動による低圧側圧力値の変化に追従して、圧縮機の適正運転の実現を図っている。
しかし、従前のインバータ装置による圧縮機の運転は、一般的に低圧側圧力値が高いときには能力不足傾向、低圧側圧力値が低いときには能力過剰傾向と考えることができ、能力不足傾向時に出力周波数の増大、能力過剰傾向時に出力周波数の減少を促進することを目的としているものの、その追従性が十分確保されなかった。また、運転立ち上げ時等冷凍能力が多く必要な場合にも、目標圧力により能力上限が抑制され、庫内温度が所定値になるまでの立ち上がり時間が長くかかることがあった。
これらの問題を解決するために、インバータ装置の出力周波数を圧縮機の発停頻度に基づいて制御する手法が、下記の特許文献1などによって知られている。
In the conventional refrigeration apparatus, an inverter device is used for the operation of the compressor, and the change in the low pressure side pressure value due to the load fluctuation of the evaporator is followed to realize the proper operation of the compressor.
However, the operation of a compressor by a conventional inverter device can generally be considered as a capacity shortage tendency when the low pressure side pressure value is high, and an overcapacity tendency when the low pressure side pressure value is low. Although the aim is to promote a decrease in the output frequency when there is a tendency to increase or excess capacity, the followability has not been sufficiently secured. In addition, even when a large amount of refrigeration capacity is required, such as at the start of operation, the upper limit of the capacity is suppressed by the target pressure, and it may take a long time for the internal temperature to reach a predetermined value.
In order to solve these problems, a technique for controlling the output frequency of the inverter device based on the frequency of starting and stopping of the compressor is known from Patent Document 1 below.

特開2002−115923号公報JP 2002-115923 A

しかし、本手法では、発停頻度を運転・停止の回数で表している。すなわち、発停頻度を圧縮機の運転時間と停止時間の周期としていることから、運転中の制御には直接関係のない停止時間の計測が必要になる。また、運転時間が長く、良好な運転状態を維持している場合でも、わずかな停止時間があれば発停頻度の対象となり、冷凍装置の運転に制御がかかる可能性がある。   However, in this method, the frequency of start / stop is expressed as the number of operations / stops. That is, since the start / stop frequency is set as a cycle of the operation time and the stop time of the compressor, it is necessary to measure the stop time not directly related to the control during operation. Further, even when the operation time is long and a good operation state is maintained, if there is a short stop time, it becomes a target of the start / stop frequency, and the operation of the refrigeration apparatus may be controlled.

この発明は、前記した従来の問題点に鑑みてなされたものであって、圧縮機の運転時間に着目し、運転時間の長さまたは運転時間中のインバータ装置の平均周波数によって圧縮機駆動用のインバータ装置の周波数を効果的に変化させることにより、室内温度と運転状態の追従性の高い冷凍装置の提供を目的とするものである。 The present invention has been made in view of the conventional problems described above, and pays attention to the operation time of the compressor, and is used for driving the compressor according to the length of the operation time or the average frequency of the inverter device during the operation time. An object of the present invention is to provide a refrigeration apparatus having high followability between the room temperature and the operating state by effectively changing the frequency of the inverter device.

前記目的を達成するために、この発明に係る冷凍装置は、圧縮機、凝縮器、絞り手段および蒸発器を冷媒配管で連通した冷媒回路と、圧縮機駆動用に出力周波数可変のインバータ装置とを備えた冷凍装置において、圧縮機の運転時間を検出する圧縮機運転時間検出手段と、圧縮機の目標運転時間を設定する圧縮機目標運転時間設定手段と、圧縮機運転時間検出手段の検出値から求めた圧縮機運転時間と圧縮機目標運転時間設定手段の設定値とに基づいて、圧縮機の吸入側である低圧側圧力の目標値を設定する目標低圧側圧力設定手段と、低圧側圧力を検出する低圧側圧力検出手段と、低圧側圧力検出手段の検出値と目標低圧側圧力設定手段の設定値とに基づいてインバータ装置の出力周波数を制御するインバータ制御手段とを備えた構成としたものである。   In order to achieve the above object, a refrigeration apparatus according to the present invention comprises a refrigerant circuit in which a compressor, a condenser, a throttle means and an evaporator are connected by refrigerant piping, and an inverter device having a variable output frequency for driving the compressor. In the refrigeration apparatus provided, from the detected values of the compressor operating time detecting means for detecting the operating time of the compressor, the compressor target operating time setting means for setting the target operating time of the compressor, and the compressor operating time detecting means Based on the determined compressor operating time and the set value of the compressor target operating time setting means, the target low pressure side pressure setting means for setting the target value of the low pressure side pressure that is the suction side of the compressor, and the low pressure side pressure A low pressure side pressure detecting means for detecting, and an inverter control means for controlling the output frequency of the inverter device based on the detected value of the low pressure side pressure detecting means and the set value of the target low pressure side pressure setting means. It is intended.

この発明に係る冷凍装置によれば、検出された圧縮機の運転時間から求めた圧縮機運転時間と、設定された圧縮機の目標運転時間とに基づいて、低圧側圧力の目標値が設定され、この目標値と低圧側圧力検出値とに基づいてインバータ装置の出力周波数が制御されるので、インバータ装置の効率的な運転を行うことができる。従って、従来の冷凍機のように圧縮機がインバータ装置を有しているのにもかかわらず、実際の使用においては圧縮機の運転時間中のほとんどをインバータ装置が最大周波数下でかつ、短時間運転するようなことはなくなることから、冷凍機の消費電力量を削減することが可能となる。   According to the refrigeration apparatus according to the present invention, the target value of the low-pressure side pressure is set based on the compressor operation time obtained from the detected compressor operation time and the set target operation time of the compressor. Since the output frequency of the inverter device is controlled based on the target value and the low pressure side pressure detection value, the inverter device can be operated efficiently. Therefore, in spite of the fact that the compressor has an inverter device as in the conventional refrigerator, in the actual use, the inverter device is under the maximum frequency for a short time during the operation time of the compressor. Since there is no such thing as driving, it is possible to reduce the power consumption of the refrigerator.

実施の形態1.
図1はこの発明の実施の形態1における冷凍装置の構成を示すブロック図である。
図において、この実施の形態1の冷凍空調装置は、圧縮機1、凝縮器2、絞り手段3、蒸発器4が冷媒配管13にて環状に配管接続された冷媒回路を備えている。圧縮機1は、インバータ装置14により運転周波数可変に回転するモータ15により駆動される。
まず、インバータ制御手段9は圧縮機運転時間検出手段5に通信接続され、さらに圧縮機目標運転時間設定手段6とともに目標低圧側圧力設定手段7に通信接続される。目標低圧側圧力設定手段7は低圧側圧力検出手段8とともにインバータ制御手段9に通信接続され、インバータ制御手段9からの信号に応じてインバータ装置14によって圧縮機1の運転が行われる。
Embodiment 1 FIG.
1 is a block diagram showing a configuration of a refrigeration apparatus in Embodiment 1 of the present invention.
In the figure, the refrigerating and air-conditioning apparatus according to Embodiment 1 includes a refrigerant circuit in which a compressor 1, a condenser 2, a throttle means 3, and an evaporator 4 are annularly connected by a refrigerant pipe 13. The compressor 1 is driven by a motor 15 that rotates with an inverter device 14 so that the operation frequency is variable.
First, the inverter control means 9 is communicatively connected to the compressor operating time detecting means 5 and further connected to the target low pressure side pressure setting means 7 together with the compressor target operating time setting means 6. The target low pressure side pressure setting means 7 is connected to the inverter control means 9 together with the low pressure side pressure detection means 8, and the compressor 1 is operated by the inverter device 14 in response to a signal from the inverter control means 9.

次に、制御フローを図2に基づいて説明する。
なお、制御フロー中のPsは低圧側圧力を、fはインバータ周波数を示している。また、所定値1は低圧側圧力が十分に下がっている良好な運転状態にあり、室外機である冷凍機のみを停止させて、室内機であるクーラーを送風運転にするサーモOFF運転をするための低圧カット値であり、所定値2は複数の室内機のうちの1つが停止してしまった等、急激な低圧側圧力の低下が発生した場合に対応するために設定する値である。ここで、Ps所定値1、Ps所定値2、目標Ps下限値、目標Ps値、目標Ps上限値は、Ps所定値1<Ps所定値2<目標Ps下限値≦目標Ps値≦目標Ps上限値の関係にある。
さらに、制御フロー中の所定運転時間1は圧縮機が最高出力にて運転し、短時間で停止するような過剰運転を防止するために設定する時間であり、所定運転時間2は圧縮機の運転が長時間に亘るような能力不足が懸念されるダラダラ運転を防止するために設定する時間である。ここで、所定運転時間1と所定運転時間2は、所定運転時間1<所定運転時間2の関係にある。
Next, the control flow will be described with reference to FIG.
Note that Ps in the control flow indicates the low-pressure side pressure, and f indicates the inverter frequency. Further, the predetermined value 1 is in a good operation state in which the low-pressure side pressure is sufficiently lowered, and only the refrigerator that is the outdoor unit is stopped, and the thermo-OFF operation is performed so that the cooler that is the indoor unit is in the blowing operation. The predetermined value 2 is a value that is set to cope with a sudden drop in the low-pressure side pressure, such as when one of the plurality of indoor units has stopped. Here, Ps predetermined value 1, Ps predetermined value 2, target Ps lower limit value, target Ps value, target Ps upper limit value are: Ps predetermined value 1 <Ps predetermined value 2 <target Ps lower limit value ≦ target Ps value ≦ target Ps upper limit There is a value relationship.
Further, the predetermined operation time 1 in the control flow is a time set to prevent excessive operation such that the compressor operates at the maximum output and stops in a short time, and the predetermined operation time 2 is the operation of the compressor. Is a time set to prevent a dull operation where there is a fear of insufficient capability over a long period of time. Here, the predetermined operation time 1 and the predetermined operation time 2 have a relationship of predetermined operation time 1 <predetermined operation time 2.

冷凍装置は、S1の電源投入によるスタート後、S2で低圧側圧力を目標Ps下限値に、compフラグ、運転タイマ、停止タイマを0に設定し、S3に進む。ここでcompフラグとは、圧縮機の運転状態を確認するコマンドであり、0と1とで表わされ、0が停止、1が運転を示す。
S3では、圧縮機が運転状態にあるかどうかをcompフラグによって確認し、compフラグが1である場合にはS4に、compフラグが0である場合にはS5に進む。
S4では、低圧側圧力がPs所定値1を超えているか否かを判断し、超えている場合にはS6に進み、そうでない場合にはS7に進む。なお、所定値1については、冷媒飽和温度換算で、目標低圧飽和温度より5℃〜20℃低い温度で、例えば5℃〜−50℃相当の圧力の間で所定値2の圧力を超えない任意の圧力を選択すればよい。
S6では、停止タイマが0になっているかどうかを確認し、0でない、すなわち圧縮機が停止状態にある場合にはS8に進み、運転状態にある場合にはS10に進む。
S8では、停止タイマの数値が所定停止時間を超えているか否かを判断し、超えている場合にはS9に進み、そうでない場合にはS10に進む。なお、所定停止時間については、デフロスト期間や強制停止の期間を鑑み、おおむね30分程度の任意の時間を選択すればよい。
S9では、圧縮機が長期停止した状態にあることから、S1の電源投入時と同様に低圧側圧力を目標Ps下限値にするとともに、compフラグを1に、停止タイマを0に設定して、S10に進む。
S10では、再度compフラグにより、圧縮機が本当に運転状態にあるのかを確認し、compフラグが1すなわち圧縮機が運転状態にある場合には、S11に進み、そうでない場合にはS12に進む。
The refrigeration apparatus starts after the power is turned on in S1, sets the low pressure side pressure to the target Ps lower limit value in S2, sets the comp flag, operation timer, and stop timer to 0, and proceeds to S3. Here, the comp flag is a command for confirming the operation state of the compressor, and is represented by 0 and 1, where 0 indicates stop and 1 indicates operation.
In S3, it is confirmed by the comp flag whether the compressor is in an operating state. If the comp flag is 1, the process proceeds to S4, and if the comp flag is 0, the process proceeds to S5.
In S4, it is determined whether or not the low-pressure side pressure exceeds Ps predetermined value 1, and if so, the process proceeds to S6, and if not, the process proceeds to S7. The predetermined value 1 is an arbitrary value that does not exceed the pressure of the predetermined value 2 at a temperature that is 5 ° C. to 20 ° C. lower than the target low pressure saturation temperature, for example, between 5 ° C. and −50 ° C. The pressure may be selected.
In S6, it is confirmed whether or not the stop timer is 0. If it is not 0, that is, if the compressor is in a stopped state, the process proceeds to S8, and if it is in an operating state, the process proceeds to S10.
In S8, it is determined whether or not the value of the stop timer exceeds a predetermined stop time. If it exceeds, the process proceeds to S9, and if not, the process proceeds to S10. As for the predetermined stop time, an arbitrary time of about 30 minutes may be selected in view of the defrost period and the forced stop period.
In S9, since the compressor has been in a state of being stopped for a long time, the low pressure side pressure is set to the target Ps lower limit value as in the case of turning on the power of S1, the comp flag is set to 1, the stop timer is set to 0, Proceed to S10.
In S10, it is confirmed again by the comp flag whether the compressor is really in operation. If the comp flag is 1, that is, if the compressor is in operation, the process proceeds to S11, and if not, the process proceeds to S12.

S11では、目標圧力がPs所定値2を超えているか否かを判断し、超えている場合にはS13に進み、そうでない場合にはS26より始まる運転時間フローに進む。このことにより、後述する停止中における目標Psの設定だけでなく、運転中に複数の室内機のうちの1つが停止してしまった場合にも目標Psの設定を行うことができ、圧縮機の効率よい運転を実現することができる。
なお、所定値2については、冷媒飽和温度換算で、目標低圧飽和温度と目標低圧飽和温度より5℃〜20℃低い温度との間で、例えば10℃〜−45℃相当の圧力の間で目標Ps下限値を超えない任意の圧力を選択すればよい。
S12では、圧縮機が停止(compフラグが0)の状態であることから、圧縮機の運転をするために目標圧力を目標Ps上限値と目標Ps下限値の間の任意の初期値にし、運転タイマを0にして運転時間の計測を開始する。
S13では、運転タイマの数値が所定運転時間2を超えているか否かを判断し、超えている場合にはS14に進み、そうでない場合にはS18に進む。なお、所定運転時間2については、30分〜1時間程度の任意の時間を選択すればよい。
S14では、圧縮機がダラダラ運転をしており、かえって冷凍庫内が冷えていない状態を示していることから、現在の目標Psを所定値だけ下げた圧力値を目標Psとする設定をし、S15に進む。なお、所定値については、0.01MPa程度の任意の圧力を選択すればよい。
S15では、S14で設定した目標Psが目標Ps下限値より低いか否かを判断し、目標Psが目標Ps下限値より低くない場合、すなわち適正な圧力設定が行われている場合にはS16に進み、そうでない場合にはS17に進む。
S17では、目標Psが目標Ps下限値を下回る不適切な圧力設定がされていること示していることから、目標Psを目標Ps下限値とする設定にして、S16に進む。
S16では、圧力値の設定を変更したことから、運転タイマを0にリセットし、S18に進む。
In S11, it is determined whether or not the target pressure exceeds Ps predetermined value 2. If it exceeds, the process proceeds to S13, and if not, the process proceeds to an operation time flow starting from S26. Thus, the target Ps can be set not only when the target Ps is stopped, which will be described later, but also when one of the plurality of indoor units stops during operation. Efficient operation can be realized.
Note that the predetermined value 2 is a target between a target low pressure saturation temperature and a temperature lower by 5 ° C. to 20 ° C. than the target low pressure saturation temperature, for example, a pressure corresponding to 10 ° C. to −45 ° C. Any pressure that does not exceed the lower limit of Ps may be selected.
In S12, since the compressor is in a stopped state (comp flag is 0), the target pressure is set to an arbitrary initial value between the target Ps upper limit value and the target Ps lower limit value in order to operate the compressor. Set the timer to 0 and start measuring the operation time.
In S13, it is determined whether or not the value of the operation timer exceeds the predetermined operation time 2. If it exceeds, the process proceeds to S14, and if not, the process proceeds to S18. In addition, about the predetermined operation time 2, what is necessary is just to select arbitrary time about 30 minutes-1 hour.
In S14, since the compressor is in a dull operation and the inside of the freezer is not cooled, the pressure value obtained by reducing the current target Ps by a predetermined value is set as the target Ps. Proceed to For the predetermined value, an arbitrary pressure of about 0.01 MPa may be selected.
In S15, it is determined whether or not the target Ps set in S14 is lower than the target Ps lower limit value. If the target Ps is not lower than the target Ps lower limit value, that is, if appropriate pressure setting is performed, the process proceeds to S16. If not, the process proceeds to S17.
In S17, since it is shown that the target Ps is set to an inappropriate pressure below the target Ps lower limit value, the target Ps is set to the target Ps lower limit value, and the process proceeds to S16.
In S16, since the setting of the pressure value has been changed, the operation timer is reset to 0, and the process proceeds to S18.

S18では、現在の圧縮機の圧力が目標Psを超えているか否かを判断し、超えている場合にはS19に進み、そうでない場合にはS20に進む。
S19では、冷凍庫内の冷えが足らないことを示していることから、圧縮機の運転を促進させるために、目標fを現在の目標fから所定値だけ上げた周波数とする設定をし、S23に進む。なお、所定値については、低圧側圧力の目標値との差にもよるが、おおむね1Hz〜2Hz程度の周波数を設定すればよい。
S20では、現在の圧縮機の圧力が目標Psより低いか否かを判断し、低い場合にはS21に進み、そうでない場合にはS22に進む。
S21では、冷凍庫内が冷えすぎていることを示していることから、圧縮機の運転を抑制するために、目標fを現在の目標fから所定値だけ下げた周波数とする設定をし、S22に進む。なお、所定値については、S19と同様の任意の周波数を設定すればよい。
S22では、任意に決定した所定時間が経過したか否かを判断し、所定時間を経過している場合にはS3に戻り、再度、低圧側圧力とインバータ周波数の設定を行い、所定時間を経過していない場合には所定時間を経過するまでS22の判断を行う。なお、所定時間については、冷媒制御の安定性に関わるが、おおむね30秒〜1分程度の間の任意の時間を選択すればよい。
In S18, it is determined whether or not the current pressure of the compressor exceeds the target Ps. If it exceeds, the process proceeds to S19, and if not, the process proceeds to S20.
In S19, since it indicates that the freezer is not cold enough, in order to promote the operation of the compressor, the target f is set to a frequency that is increased by a predetermined value from the current target f, and in S23 move on. In addition, about a predetermined value, although depending on the difference with the target value of a low voltage | pressure side pressure, what is necessary is just to set the frequency of about 1 Hz-2 Hz.
In S20, it is determined whether or not the current compressor pressure is lower than the target Ps. If it is low, the process proceeds to S21, and if not, the process proceeds to S22.
In S21, since the inside of the freezer is too cold, in order to suppress the operation of the compressor, the target f is set to a frequency lower than the current target f by a predetermined value, and the process goes to S22. move on. In addition, what is necessary is just to set the arbitrary frequencies similar to S19 about a predetermined value.
In S22, it is determined whether or not an arbitrarily determined predetermined time has elapsed. If the predetermined time has elapsed, the process returns to S3 to set the low pressure side pressure and the inverter frequency again, and the predetermined time has elapsed. If not, the determination in S22 is performed until a predetermined time has elapsed. In addition, about predetermined time, although related to stability of refrigerant | coolant control, what is necessary is just to select arbitrary time between about 30 second-about 1 minute.

次に、運転中ではあるが低圧側圧力がPs所定値1以下の場合に行われるフローについて説明する。
S7では、運転スイッチは押されているものの、低圧側圧力が十分に下がっている状態であることから、目標fを0にし、S23に進む。
S23では、再度compフラグにより、圧縮機が本当に運転状態にあるのかを確認し、compフラグが1すなわち圧縮機が運転状態にある場合には、S24に進み、そうでない場合にはS3に戻る。
S24では、運転を停止するためにcompフラグを0にし、停止タイマの計測を開始し、S25に進む。
S25では、S24の停止タイマの計測開始後、所定停止時間を経過しているか否かを判断し、経過している場合にはS26に進み、経過していない場合には所定時間を経過するまでS25の判断を行う。なお、所定停止時間については、 圧縮機の再起動を制御するなど、目的に応じて再運転を禁止する場合に必要な任意の時間を選択すればよい。
Next, a flow that is performed when the low pressure side pressure is equal to or less than the Ps predetermined value 1 during operation will be described.
In S7, although the operation switch is pressed, the low-pressure side pressure is sufficiently lowered, so the target f is set to 0 and the process proceeds to S23.
In S23, it is confirmed again by the comp flag whether the compressor is really in operation. If the comp flag is 1, that is, if the compressor is in operation, the process proceeds to S24, and if not, the process returns to S3.
In S24, the comp flag is set to 0 to stop the operation, the stop timer is started, and the process proceeds to S25.
In S25, it is determined whether or not a predetermined stop time has elapsed after the start of the measurement of the stop timer in S24. If it has elapsed, the process proceeds to S26, and if not, the predetermined time has elapsed. The determination of S25 is performed. As the predetermined stop time, any time required for prohibiting re-operation according to the purpose, such as controlling the restart of the compressor, may be selected.

S26では、運転タイマの数値が所定運転時間1の範囲内であるか否かを判断し、範囲内である場合にはS27に進み、範囲外である場合にはS28に進む。なお、所定運転時間1については、おおむね5分〜10分程度で所定運転時間2を超えない任意の時間を選択すればよい。
S27では、運転時間が短いにもかかわらず低圧側圧力が十分に低いいわゆる過剰運転状態であることを表していることから、運転を抑制するために現在の目標Psを所定値だけ上げた圧力値を目標Psとする設定をし、S29に進む。なお、所定値については、S14と同様に0.01MPa程度の任意の圧力を選択すればよい。
S29では、S27で設定した目標Psが目標Ps上限値を超えているか否かを判断し、目標Psが目標Ps上限値より低い場合、すなわち適正な圧力設定が行われている場合にはS30に進み、そうでない場合にはS31に進む。
S31では、目標Psが目標Ps上限値を上回る不適切な圧力設定がされていること示していることから、目標Psを目標Ps上限値とする設定にして、S30に進む。
In S26, it is determined whether or not the value of the operation timer is within the range of the predetermined operation time 1. If it is within the range, the process proceeds to S27, and if it is out of the range, the process proceeds to S28. In addition, about the predetermined operation time 1, what is necessary is just to select the arbitrary time which does not exceed the predetermined operation time 2 in about 5 minutes-about 10 minutes.
In S27, since the low pressure side pressure is sufficiently low in spite of the short operation time, it represents a so-called excessive operation state, so that the pressure value obtained by increasing the current target Ps by a predetermined value to suppress the operation. Is set as the target Ps, and the process proceeds to S29. In addition, about a predetermined value, what is necessary is just to select the arbitrary pressures of about 0.01 MPa similarly to S14.
In S29, it is determined whether or not the target Ps set in S27 exceeds the target Ps upper limit value. If the target Ps is lower than the target Ps upper limit value, that is, if an appropriate pressure is set, the process proceeds to S30. If not, the process proceeds to S31.
Since it is shown in S31 that the target Ps is set to an inappropriate pressure that exceeds the target Ps upper limit value, the target Ps is set to the target Ps upper limit value, and the process proceeds to S30.

S30では、圧力値の設定を変更したことから、運転タイマを0にリセットし、S32に進む。
S32では、運転状態を確認するためにcompフラグが1であるか否かを判断し、compフラグが1すなわち圧縮機が運転状態にある場合には、S22に進み、そうでない場合にはS3に戻る。
S28では、運転タイマの数値が所定運転時間2を超えているか否かを判断し、
超えている場合にはS33に進み、そうでない場合にはS30に進む。
S33では、低圧側圧力は低いものの運転時間が必要以上に長すぎるダラダラ運転であることを示していることから、運転を促進させるために現在の目標Psを所定値だけ下げた圧力値を目標Psとする設定をし、S34に進む。なお、所定値については、S14と同様に0.01MPa程度の任意の圧力を選択すればよい。
S34では、S33で設定した目標Psが目標Ps下限値より低いか否かを判断し、目標Psが目標Ps下限値より高い場合、すなわち適正な圧力設定が行われている場合にはS30に進み、そうでない場合にはS35に進む。
S35では、目標Psが目標Ps下限値を下回る不適切な圧力設定がされていること示していることから、目標Psを目標Ps下限値とする設定にして、S30に進む。
In S30, since the setting of the pressure value has been changed, the operation timer is reset to 0, and the process proceeds to S32.
In S32, it is determined whether or not the comp flag is 1 in order to confirm the operation state. If the comp flag is 1, that is, if the compressor is in the operation state, the process proceeds to S22, and if not, the process proceeds to S3. Return.
In S28, it is determined whether or not the value of the operation timer exceeds the predetermined operation time 2,
If so, the process proceeds to S33, and if not, the process proceeds to S30.
In S33, although the low pressure side pressure is low, it indicates that the operation time is excessively longer than necessary. Therefore, in order to promote the operation, the pressure value obtained by lowering the current target Ps by a predetermined value is set to the target Ps. And proceed to S34. In addition, about a predetermined value, what is necessary is just to select the arbitrary pressures of about 0.01 MPa similarly to S14.
In S34, it is determined whether or not the target Ps set in S33 is lower than the target Ps lower limit value. If the target Ps is higher than the target Ps lower limit value, that is, if appropriate pressure setting is performed, the process proceeds to S30. If not, the process proceeds to S35.
In S35, since it is shown that the target Ps is set to an inappropriate pressure below the target Ps lower limit value, the target Ps is set to the target Ps lower limit value, and the process proceeds to S30.

最後に、S3にてcompフラグが0である場合、すなわち圧縮機が停止状態にある場合に行われるフローについて説明する。
S5では、運転が停止していることから、目標fを0にし、S36に進む。
S36では、再度compフラグにより、圧縮機が本当に停止状態にあるのかを確認し、compフラグが1すなわち圧縮機が運転状態にある場合には、S37に進み、そうでない場合にはS3に戻る。
S37では、運転を停止するためにcompフラグを0にし、停止タイマの計測を開始し、S38に進む。
S38では、S37の停止タイマの計測開始後、所定停止時間を経過しているか否かを判断し、経過している場合にはS3に戻り、経過していない場合には所定時間を経過するまでS38の判断を行う。なお、所定停止時間については、 S25と同じ任意の時間を選択すればよい。
Finally, the flow performed when the comp flag is 0 in S3, that is, when the compressor is in a stopped state, will be described.
In S5, since the operation is stopped, the target f is set to 0 and the process proceeds to S36.
In S36, it is confirmed again by the comp flag whether the compressor is really stopped. If the comp flag is 1, that is, if the compressor is operating, the process proceeds to S37, and if not, the process returns to S3.
In S37, the comp flag is set to 0 to stop the operation, the stop timer is started, and the process proceeds to S38.
In S38, it is determined whether or not a predetermined stop time has elapsed after the start of the stop timer measurement in S37. If it has elapsed, the process returns to S3, and if not, the predetermined time has elapsed. The determination in S38 is performed. In addition, what is necessary is just to select the same arbitrary time as S25 about predetermined stop time.

以上のように、冷凍装置が、圧縮機1の運転時間を検出する圧縮機運転時間検出手段5と、圧縮機1の目標運転時間を設定する圧縮機目標運転時間設定手段6と、圧縮機運転時間検出手段5の検出値から求めた圧縮機運転時間と圧縮機目標運転時間設定手段6の設定値とに基づいて圧縮機1の吸入側である低圧側圧力を設定する目標低圧側圧力設定手段7と、圧縮機1の吸入側である低圧側圧力を検出する低圧側圧力検出手段8と、低圧側圧力検出手段8の検出値と目標低圧側圧力設定手段7の設定値とに基づいてインバータ装置14を駆動するインバータ制御手段9とを備えているので、インバータ装置の効率的な運転を行うことができる。
従って、従来の冷凍機のように圧縮機がインバータ装置を有しているのにもかかわらず、実際の使用においては圧縮機の運転時間中のほとんどを最大周波数下でのインバータ装置駆動により運転するようなことはなくなることから、冷凍機の消費電力量を削減することが可能となる。
また、圧縮機運転時間検出手段5の検出値から求めた圧縮機運転時間と圧縮機目標運転時間設定手段6の設定値とに基づいて、検出した圧縮機運転時間が圧縮機目標運転時間設定手段6の設定値よりも長い場合には低圧側圧力を下げ、低圧側圧力が下限値に近づくようインバータ装置14の出力周波数を制御することを特徴とする冷凍装置の制御機能を備えているので、圧縮機の長期停止後、圧縮機の運転を開始する際には、低圧側圧力が下限値に近づくように最大周波数下でインバータ装置の駆動を行うことができる。
更に、初期運転開始時や霜取後の運転再開時など、冷し込みが必要な場合にも対応することが可能となる。
As described above, the refrigeration apparatus includes the compressor operation time detection means 5 that detects the operation time of the compressor 1, the compressor target operation time setting means 6 that sets the target operation time of the compressor 1, and the compressor operation. Target low pressure side pressure setting means for setting the low pressure side pressure on the suction side of the compressor 1 based on the compressor operation time obtained from the detection value of the time detection means 5 and the set value of the compressor target operation time setting means 6 7, an inverter based on the low pressure side pressure detection means 8 for detecting the low pressure side pressure that is the suction side of the compressor 1, the detected value of the low pressure side pressure detection means 8, and the set value of the target low pressure side pressure setting means 7 Since the inverter control means 9 for driving the device 14 is provided, the inverter device can be operated efficiently.
Therefore, in spite of the fact that the compressor has an inverter device as in the conventional refrigerator, most of the operation time of the compressor is operated by driving the inverter device under the maximum frequency in actual use. Since this is no longer the case, the power consumption of the refrigerator can be reduced.
Further, based on the compressor operating time obtained from the detected value of the compressor operating time detecting means 5 and the set value of the compressor target operating time setting means 6, the detected compressor operating time is compressor target operating time setting means. Since it has a control function of the refrigeration system characterized by controlling the output frequency of the inverter device 14 so that the low-pressure side pressure is lowered when the set value is longer than 6 and the low-pressure side pressure approaches the lower limit value, When starting the operation of the compressor after the compressor has been stopped for a long time, the inverter device can be driven at the maximum frequency so that the low-pressure side pressure approaches the lower limit value.
Furthermore, it is possible to cope with the case where cooling is necessary, such as when the initial operation is started or when the operation is resumed after defrosting.

実施の形態2.
次にこの発明の実施の形態2を図面に基づいて説明する。図3はこの発明の実施の形態2における冷凍装置の構成を示すブロック図である。まず、インバータ制御手段9はインバータ平均周波数検出手段10に通信接続され、さらにインバータ運転周波数範囲設定手段11とともに目標低圧側圧力設定手段7に通信接続される。目標低圧側圧力設定手段7は低圧側圧力検出手段8とともにインバータ制御手段9に通信接続され、インバータ制御手段9からの信号に応じてインバータ装置14によって圧縮機1の運転が行われる。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 3 is a block diagram showing the configuration of the refrigeration apparatus in Embodiment 2 of the present invention. First, the inverter control means 9 is communicatively connected to the inverter average frequency detection means 10 and further connected to the target low pressure side pressure setting means 7 together with the inverter operating frequency range setting means 11. The target low pressure side pressure setting means 7 is connected to the inverter control means 9 together with the low pressure side pressure detection means 8, and the compressor 1 is operated by the inverter device 14 in response to a signal from the inverter control means 9.

次に、制御フローを図4に基づいて説明する。
なお、制御フロー中のPsは低圧側圧力を、fはインバータ周波数を示している。制御フロー中の最適f1と最適f2は、それぞれ最適周波数下限と最適周波数上限を表し、最適f1<最適f2の関係にある。また、初期目標Ps上限値は、当該冷凍機設計時に想定した目標Ps上限値を表す。
S39のスタート後、まず、S40にて圧縮機が運転状態にあるかどうかをcompフラグによって確認し、compフラグが1である場合にはS41に、compフラグが0である場合にはS43に進む。
S41では、圧縮機の累積運転時間を運転タイマの数値から算出し、インバータ装置の累積fを本フロー開始前までのfの和に現在設定されている目標fを足し込むことで算出する。その後、S42に進む。
S42では、同一制御周期内での累積fの累積を抑制するために所定時間を経過しているか否かを判断し、所定時間を経過している場合にはS43に進み、所定時間を経過していない場合には所定時間を経過するまでS42の判断を行う。なお、所定時間については、冷媒制御の安定性にかかわるが、おおむね30秒〜1分程度の任意の時間を選択すればよい。
Next, the control flow will be described with reference to FIG.
Note that Ps in the control flow indicates the low-pressure side pressure, and f indicates the inverter frequency. Optimum f1 and optimum f2 in the control flow represent an optimum frequency lower limit and an optimum frequency upper limit, respectively, and have an optimum f1 <optimal f2 relationship. The initial target Ps upper limit value represents the target Ps upper limit value assumed when the refrigerator is designed.
After the start of S39, first, in S40, it is confirmed by the comp flag whether the compressor is in an operating state. If the comp flag is 1, the process proceeds to S41, and if the comp flag is 0, the process proceeds to S43. .
In S41, the cumulative operation time of the compressor is calculated from the numerical value of the operation timer, and the cumulative f of the inverter device is calculated by adding the currently set target f to the sum of f before the start of this flow. Thereafter, the process proceeds to S42.
In S42, it is determined whether or not a predetermined time has elapsed in order to suppress accumulation of the accumulation f within the same control cycle. If the predetermined time has elapsed, the process proceeds to S43, and the predetermined time has elapsed. If not, the determination in S42 is performed until a predetermined time has elapsed. In addition, about predetermined time, although related to stability of refrigerant | coolant control, what is necessary is just to select arbitrary time of about 30 seconds-about 1 minute.

S43では、再度compフラグが0であるか否かの判断を行い、運転が停止しており平均fを計算する場合にはS44に進み、運転が継続している場合にはS40に戻る。
S44では、累積fの値が0であるか否かの判断を行い、累積fが0である場合には、データの蓄積が始まったばかりであるか、又は停止状態が継続していることから、再度S40に戻り、そうでない場合には、S45に進む。
S45では、目標Psが目標Ps上限値になっているか否かの判断を行い、上限値になっている場合、すなわち制御が必要な場合はS46に進み、そうでない場合にはS52に進む。
S46では、制御を行うための平均fを算出し、S47に進む。具体的には、まず、S41で算出した累積運転時間をS42の所定時間で除し、周波数を累積した回数を算出する。その後、S41で算出した累積fを前記回数で除すことにより平均fを算出する。
In S43, it is determined again whether or not the comp flag is 0. If the operation is stopped and the average f is calculated, the process proceeds to S44, and if the operation is continued, the process returns to S40.
In S44, it is determined whether or not the value of the accumulated f is 0. If the accumulated f is 0, the accumulation of data has just started, or the stopped state continues. The process returns to S40 again, and if not, the process proceeds to S45.
In S45, it is determined whether or not the target Ps is the target Ps upper limit value. If the target Ps is the upper limit value, that is, if control is required, the process proceeds to S46, and if not, the process proceeds to S52.
In S46, an average f for performing the control is calculated, and the process proceeds to S47. Specifically, first, the cumulative operation time calculated in S41 is divided by the predetermined time in S42 to calculate the number of times of frequency accumulation. Thereafter, the average f is calculated by dividing the cumulative f calculated in S41 by the number of times.

S47では、平均fが最適f1より低いか否かを判断し、低い場合にはS48に進み、そうでない場合にはS49に進む。ここで、最適f1は圧縮機の特性によるが、おおむね25Hz〜30Hz程度の間で最適f2を超えないの任意の周波数を設定すればよい。
S48では、平均fが最適f下限値を下回っており、インバータ装置があまり稼動していないことを示していることから、運転時間は短くなるが運転期間中のインバータ周波数を増加する運転を促進するために、現在の目標Ps上限値を所定値だけ下げた圧力値を目標Ps上限値とする設定をし、S50に進む。なお、所定値については、0.01MPa程度の任意の圧力を選択すればよい。
S50では、S48で設定した目標Ps上限値が目標Ps下限値より低いか否かを判断し、低い場合にはS51に進み、そうでない場合にはS52に進む。
S51では、目標Ps上限値が目標下限値を下回る不適切な圧力設定がされていることを示していることから、目標Ps上限値を目標Ps下限値とする設定にして、S52に進む。
S52では、圧力値の設定を変更したことから、累積fを0にリセットし、S40のスタート後の作業に戻る。
S49では、平均fが最適f2を超えているか否かを判断し、超えている場合にはS53に進み、そうでない場合にはS40のスタート後の作業に戻る。ここで、最適f2は圧縮機の特性によるが、おおむね75Hz〜80Hz程度の間の任意の周波数を設定すればよい。
S53では、平均fが最適f上限値を超えており、インバータ装置が稼動しすぎていることを示していることから、運転を抑制するために現在の目標Ps上限値を所定値だけ上げた圧力値を目標Ps上限値とする設定をし、S54に進む。なお、所定値については、S48と同様に0.01MPa程度の任意の圧力を選択すればよい。
S54では、S53で設定した目標Ps上限値が初期目標Ps上限値を超えているか否かを判断し、超えている場合にはS55に進み、そうでない場合にはS52に進む。
S55では、目標Ps上限値が初期目標Ps上限値を超えており、冷凍機を設計した時の想定よりも、さらに抑制した運転条件を設定しようとしていることから、目標Ps上限値を初期目標Ps上限値とする設定にしてS52に進む。
In S47, it is determined whether or not the average f is lower than the optimum f1, and if low, the process proceeds to S48, and if not, the process proceeds to S49. Here, the optimum f1 depends on the characteristics of the compressor, but an arbitrary frequency that does not exceed the optimum f2 between about 25 Hz to 30 Hz may be set.
In S48, since the average f is below the optimum f lower limit value, indicating that the inverter device is not operating much, the operation time is shortened, but the operation to increase the inverter frequency during the operation period is promoted. Therefore, the pressure value obtained by lowering the current target Ps upper limit value by a predetermined value is set as the target Ps upper limit value, and the process proceeds to S50. For the predetermined value, an arbitrary pressure of about 0.01 MPa may be selected.
In S50, it is determined whether or not the target Ps upper limit set in S48 is lower than the target Ps lower limit. If lower, the process proceeds to S51, and if not, the process proceeds to S52.
In S51, since it is shown that an inappropriate pressure setting in which the target Ps upper limit value is lower than the target lower limit value is set, the target Ps upper limit value is set as the target Ps lower limit value, and the process proceeds to S52.
In S52, since the setting of the pressure value is changed, the accumulated f is reset to 0, and the process returns to the operation after the start of S40.
In S49, it is determined whether or not the average f exceeds the optimum f2, and if so, the process proceeds to S53, and if not, the process returns to the operation after the start of S40. Here, although the optimum f2 depends on the characteristics of the compressor, an arbitrary frequency between approximately 75 Hz and 80 Hz may be set.
In S53, since the average f exceeds the optimum f upper limit value, which indicates that the inverter device is operating too much, the pressure obtained by increasing the current target Ps upper limit value by a predetermined value in order to suppress the operation. The value is set as the target Ps upper limit value, and the process proceeds to S54. As for the predetermined value, an arbitrary pressure of about 0.01 MPa may be selected as in S48.
In S54, it is determined whether or not the target Ps upper limit set in S53 exceeds the initial target Ps upper limit. If it exceeds, the process proceeds to S55, and if not, the process proceeds to S52.
In S55, the target Ps upper limit value exceeds the initial target Ps upper limit value, and an attempt is made to set a more suppressed operating condition than assumed when the refrigerator was designed. Therefore, the target Ps upper limit value is set to the initial target Ps. Set to the upper limit value and proceed to S52.

以上のように、冷凍装置が、圧縮機運転時間中のインバータ装置14の運転中出力周波数の平均周波数を検出するインバータ平均周波数検出手段10と、インバータ装置14の運転中周波数の目標周波数範囲を設定するインバータ運転周波数範囲設定手段11と、インバータ平均周波数検出手段10の検出値から求めたインバータ平均周波数とインバータ運転周波数範囲設定手段11の設定値とに基づいて圧縮機の吸入側である低圧側圧力を設定する目標低圧側圧力設定手段7と、圧縮機の吸入側である低圧側圧力を検出する低圧側圧力検出手段8と、低圧側圧力検出手段8の検出値と目標低圧側圧力設定手段7の設定値とに基づいてインバータ装置14を駆動するインバータ制御手段9とを備えているので、インバータ装置の効率的な運転を行うことができる。
特に、インバータ周波数が低い状態で連続運転するよりも、ある程度の周波数以下では運転せず発停を繰り返す方が効率としては向上するので、目標低圧の上限値に着目することで簡易に目標を達成できる。
As described above, the refrigeration apparatus sets the inverter average frequency detection means 10 that detects the average frequency of the output frequency during operation of the inverter device 14 during the compressor operation time, and the target frequency range of the frequency during operation of the inverter device 14. The inverter operating frequency range setting means 11, the inverter average frequency obtained from the detected value of the inverter average frequency detecting means 10, and the low pressure side pressure which is the suction side of the compressor based on the set value of the inverter operating frequency range setting means 11 Target low pressure side pressure setting means 7, low pressure side pressure detection means 8 for detecting the low pressure side pressure which is the suction side of the compressor, detection value of the low pressure side pressure detection means 8 and target low pressure side pressure setting means 7 Since the inverter control means 9 for driving the inverter device 14 based on the set value of the inverter device 14 is provided, the inverter device can be operated efficiently. It can be carried out.
In particular, it is more efficient to repeat starting and stopping without operating at a certain frequency or lower than continuous operation with a low inverter frequency, so the target is easily achieved by focusing on the upper limit value of the target low pressure. it can.

実施の形態3.
図5はこの発明の実施の形態3における冷凍装置の構成を示すブロック図であり、請求項1の低圧側圧力が目標低圧側圧力設定手段により設定される際に低圧側圧力の上限値および下限値が低圧側圧力変化幅設定手段によって設定されることを表す図である。
インバータ制御手段9は圧縮機運転時間検出手段5に通信接続され、さらに圧縮機目標運転時間設定手段6とともに目標低圧側圧力設定手段7に通信接続される。目標低圧側圧力設定手段7には低圧側圧力変化幅設定手段12があり、低圧側圧力の上限値および下限値を外部から設定する。目標低圧側圧力設定手段7は低圧側圧力検出手段8とともにインバータ制御手段9に通信接続され、インバータ制御手段9からの信号に応じてインバータ装置14によって圧縮機1の運転が行われる。
Embodiment 3 FIG.
FIG. 5 is a block diagram showing a configuration of a refrigeration apparatus according to Embodiment 3 of the present invention. When the low-pressure side pressure is set by the target low-pressure side pressure setting means, the upper limit value and the lower limit of the low-pressure side pressure are set. It is a figure showing that a value is set by the low voltage | pressure side pressure change width setting means.
The inverter control means 9 is communicatively connected to the compressor operating time detecting means 5 and further connected to the target low pressure side pressure setting means 7 together with the compressor target operating time setting means 6. The target low pressure side pressure setting means 7 has a low pressure side pressure change width setting means 12 which sets an upper limit value and a lower limit value of the low pressure side pressure from the outside. The target low pressure side pressure setting means 7 is connected to the inverter control means 9 together with the low pressure side pressure detection means 8, and the compressor 1 is operated by the inverter device 14 in response to a signal from the inverter control means 9.

なお、制御フローについては、目標Ps下限値と目標Ps上限値が目標低圧側圧力設定手段12によって外部から設定されること以外は、実施の形態1または実施の形態2と同様の制御フローに基づいて実施される。 The control flow is based on the same control flow as in the first or second embodiment except that the target Ps lower limit value and the target Ps upper limit value are set from the outside by the target low pressure side pressure setting means 12. Implemented.

以上のように、冷凍装置が圧縮機1の吸入側である低圧側圧力を低下させる目標低圧側圧力設定手段7において設定する低圧側圧力について、上限値および下限値を設定する低圧側圧力変化幅設定手段12を備えているので、冷凍機の故障を誘発するような無謀な運転状態を未然に防止することが可能となるとともに、目的に応じた運転範囲を絞り込んで設定できるため無駄な運転を抑制できる。   As described above, the low pressure side pressure change range for setting the upper limit value and the lower limit value for the low pressure side pressure set in the target low pressure side pressure setting means 7 for reducing the low pressure side pressure on the suction side of the compressor 1 by the refrigeration apparatus Since the setting means 12 is provided, it is possible to prevent a reckless operation state that may cause a refrigerator failure, and it is possible to narrow down and set the operation range according to the purpose. Can be suppressed.

実施の形態4.
図6はこの発明の実施の形態4における冷凍装置の構成を示すブロック図であり、請求項2の低圧側圧力が目標低圧側圧力設定手段により設定される際に低圧側圧力の上限値および下限値が低圧側圧力変化幅設定手段によって設定されることを表す図である。
インバータ制御手段9はインバータ平均周波数検出手段10に通信接続され、さらにインバータ運転周波数範囲設定手段11とともに目標低圧側圧力設定手段7に通信接続される。目標低圧側圧力設定手段7には低圧側圧力変化幅設定手段12があり、低圧側圧力の上限値および下限値を外部から設定する。目標低圧側圧力設定手段7は低圧側圧力検出手段8とともにインバータ制御手段9に通信接続され、インバータ制御手段9からの信号に応じてインバータ装置14によって圧縮機1の運転が行われる。
Embodiment 4 FIG.
6 is a block diagram showing a configuration of a refrigeration apparatus according to Embodiment 4 of the present invention. When the low-pressure side pressure is set by the target low-pressure side pressure setting means according to claim 2, the upper limit value and the lower limit of the low-pressure side pressure are shown. It is a figure showing that a value is set by the low voltage | pressure side pressure change width setting means.
The inverter control means 9 is communicatively connected to the inverter average frequency detection means 10 and further connected to the target low pressure side pressure setting means 7 together with the inverter operating frequency range setting means 11. The target low pressure side pressure setting means 7 has a low pressure side pressure change width setting means 12 which sets an upper limit value and a lower limit value of the low pressure side pressure from the outside. The target low pressure side pressure setting means 7 is connected to the inverter control means 9 together with the low pressure side pressure detection means 8, and the compressor 1 is operated by the inverter device 14 in response to a signal from the inverter control means 9.

なお、制御フローについては、目標Ps下限値と目標Ps上限値が目標低圧側圧力設定手段12によって外部から設定されること以外は、実施の形態1または実施の形態2と同様の制御フローに基づいて実施される。 The control flow is based on the same control flow as in the first or second embodiment except that the target Ps lower limit value and the target Ps upper limit value are set from the outside by the target low pressure side pressure setting means 12. Implemented.

以上のように、冷凍装置が圧縮機1の吸入側である低圧側圧力を低下させる目標低圧側圧力設定手段7において設定する低圧側圧力について、上限値および下限値を設定する低圧側圧力変化幅設定手段12を備えているので、冷凍機の故障を誘発するような無謀な運転状態を未然に防止することが可能となるとともに、目的に応じた運転範囲を絞り込んで設定できるため無駄な運転を抑制できる。   As described above, the low pressure side pressure change range for setting the upper limit value and the lower limit value for the low pressure side pressure set in the target low pressure side pressure setting means 7 for reducing the low pressure side pressure on the suction side of the compressor 1 by the refrigeration apparatus. Since the setting means 12 is provided, it is possible to prevent a reckless operation state that may cause a refrigerator failure, and it is possible to narrow down and set the operation range according to the purpose. Can be suppressed.

この発明における実施の形態1の構成図である。It is a block diagram of Embodiment 1 in this invention. この発明における実施の形態1の制御フロー図である。It is a control flowchart of Embodiment 1 in this invention. この発明における実施の形態2の構成図である。It is a block diagram of Embodiment 2 in this invention. この発明における実施の形態2の制御フロー図である。It is a control flow figure of Embodiment 2 in this invention. この発明における実施の形態3の構成図である。It is a block diagram of Embodiment 3 in this invention. この発明における実施の形態4の構成図である。It is a block diagram of Embodiment 4 in this invention.

符号の説明Explanation of symbols

1 圧縮機
2 凝縮器
3 絞り手段
4 蒸発器
5 圧縮機運転時間検出手段
6 圧縮機目標運転時間設定手段
7 目標低圧側圧力設定手段
8 低圧側圧力検出手段
9 インバータ制御手段
10 インバータ平均周波数検出手段
11 インバータ運転周波数範囲設定手段
12 低圧側圧力変更幅設定手段
13 冷媒回路
14 インバータ装置
15 モータ
1 Compressor 2 Condenser 3 Throttling means 4 Evaporator
5 Compressor operating time detection means
6 Compressor target operating time setting means
7 Target low pressure side pressure setting means
8 Low pressure side pressure detection means
9 Inverter control means
10 Inverter average frequency detection means 11 Inverter operating frequency range setting means 12 Low pressure side pressure change width setting means 13 Refrigerant circuit 14 Inverter device 15 Motor

Claims (3)

圧縮機、凝縮器、絞り手段および蒸発器を冷媒配管で連通した冷媒回路と、圧縮機駆動用に出力周波数可変のインバータ装置とを備えた冷凍装置において、
前記圧縮機の運転時間を検出する圧縮機運転時間検出手段と、
圧縮機の目標運転時間を設定する圧縮機目標運転時間設定手段と、
前記圧縮機運転時間検出手段の検出値から求めた圧縮機運転時間と前記圧縮機目標運転時間設定手段の設定値とに基づいて、前記圧縮機の吸入側である低圧側圧力の目標値を設定する目標低圧側圧力設定手段と、
前記低圧側圧力を検出する低圧側圧力検出手段と、
前記低圧側圧力検出手段の検出値と前記目標低圧側圧力設定手段の設定値とに基づいて前記インバータ装置の出力周波数を制御するインバータ制御手段と、
を備えたことを特徴とする冷凍装置。
In a refrigeration apparatus comprising a refrigerant circuit in which a compressor, a condenser, a throttle means, and an evaporator are communicated with each other by refrigerant piping, and an inverter device having a variable output frequency for driving the compressor,
Compressor operating time detecting means for detecting the operating time of the compressor;
Compressor target operating time setting means for setting the target operating time of the compressor;
Based on the compressor operating time obtained from the detected value of the compressor operating time detecting means and the set value of the compressor target operating time setting means, a target value of the low pressure side pressure which is the suction side of the compressor is set. Target low pressure side pressure setting means,
Low pressure side pressure detecting means for detecting the low pressure side pressure;
Inverter control means for controlling the output frequency of the inverter device based on the detection value of the low pressure side pressure detection means and the set value of the target low pressure side pressure setting means;
A refrigeration apparatus comprising:
圧縮機、凝縮器、絞り手段および蒸発器を冷媒配管で連通した冷媒回路と、圧縮機駆動用に出力周波数可変のインバータ装置とを備えた冷凍装置において、
前記圧縮機運転時間中の前記インバータ装置の平均出力周波数を検出するインバータ平均周波数検出手段と、
前記インバータ装置の出力周波数の目標周波数範囲を設定するインバータ運転周波数範囲設定手段と、
前記インバータ平均周波数検出手段の検出値と前記インバータ運転周波数範囲設定手段の設定値とに基づいて、前記圧縮機の吸入側である低圧側圧力の目標値を設定する目標低圧側圧力設定手段と、
前記低圧側圧力を検出する低圧側圧力検出手段と、
前記低圧側圧力検出手段の検出値と前記目標低圧側圧力設定手段の設定値とに基づいて前記インバータ装置の出力周波数を制御するインバータ制御手段と、
を備えたことを特徴とする冷凍装置。
In a refrigeration apparatus comprising a refrigerant circuit in which a compressor, a condenser, a throttle means, and an evaporator are communicated with each other by refrigerant piping, and an inverter device having a variable output frequency for driving the compressor,
Inverter average frequency detection means for detecting an average output frequency of the inverter device during the compressor operation time;
Inverter operating frequency range setting means for setting a target frequency range of the output frequency of the inverter device;
Target low pressure side pressure setting means for setting a target value of the low pressure side pressure that is the suction side of the compressor based on the detection value of the inverter average frequency detection means and the setting value of the inverter operating frequency range setting means;
Low pressure side pressure detecting means for detecting the low pressure side pressure;
Inverter control means for controlling the output frequency of the inverter device based on the detection value of the low pressure side pressure detection means and the set value of the target low pressure side pressure setting means;
A refrigeration apparatus comprising:
目標低圧側圧力設定手段により設定される低圧側圧力の上限値および下限値を外部から設定する低圧側圧力変化幅設定手段を有することを特徴とする請求項1または請求項2記載の冷凍装置。 3. The refrigeration apparatus according to claim 1, further comprising low-pressure side pressure change width setting means for externally setting an upper limit value and a lower limit value of the low-pressure side pressure set by the target low-pressure side pressure setting means.
JP2008071736A 2008-03-19 2008-03-19 Refrigeration equipment Active JP5258338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008071736A JP5258338B2 (en) 2008-03-19 2008-03-19 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008071736A JP5258338B2 (en) 2008-03-19 2008-03-19 Refrigeration equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012261598A Division JP5404898B2 (en) 2012-11-29 2012-11-29 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2009228922A true JP2009228922A (en) 2009-10-08
JP5258338B2 JP5258338B2 (en) 2013-08-07

Family

ID=41244533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008071736A Active JP5258338B2 (en) 2008-03-19 2008-03-19 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP5258338B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021229770A1 (en) * 2020-05-14 2021-11-18

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273011A (en) * 1993-03-17 1994-09-30 Sanyo Electric Co Ltd Cool air drier
JPH07234044A (en) * 1994-02-24 1995-09-05 Matsushita Electric Ind Co Ltd Controlling device for protecting compressor of air conditioner
JP2003083660A (en) * 2001-09-11 2003-03-19 Sanden Corp Showcase cooler
JP2003222418A (en) * 2002-01-30 2003-08-08 Hitachi Ltd Refrigeration unit
JP2004132600A (en) * 2002-10-10 2004-04-30 Mitsubishi Electric Corp Refrigeration unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273011A (en) * 1993-03-17 1994-09-30 Sanyo Electric Co Ltd Cool air drier
JPH07234044A (en) * 1994-02-24 1995-09-05 Matsushita Electric Ind Co Ltd Controlling device for protecting compressor of air conditioner
JP2003083660A (en) * 2001-09-11 2003-03-19 Sanden Corp Showcase cooler
JP2003222418A (en) * 2002-01-30 2003-08-08 Hitachi Ltd Refrigeration unit
JP2004132600A (en) * 2002-10-10 2004-04-30 Mitsubishi Electric Corp Refrigeration unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021229770A1 (en) * 2020-05-14 2021-11-18
WO2021229770A1 (en) * 2020-05-14 2021-11-18 三菱電機株式会社 Refrigeration device

Also Published As

Publication number Publication date
JP5258338B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
CN109642754B (en) Refrigeration cycle device
AU2014253572B2 (en) Air-conditioning apparatus
JP5405076B2 (en) Air conditioning refrigeration system
EP1953477A1 (en) Refrigerator compressor operating method and refrigerator
JP2006266635A (en) Control device for cooling system
KR101954151B1 (en) Air conditioner and Method for controlling it
KR20040103487A (en) Cooling apparatus
JP2011169475A (en) Refrigerator and refrigerating device connected with the same
JP5900463B2 (en) Air conditioning system
JP2010078230A (en) Cooling system
JP2011007482A (en) Air conditioner
JP5404898B2 (en) Refrigeration equipment
JP5258338B2 (en) Refrigeration equipment
JP2002257425A (en) Refrigerating device
JP6949208B2 (en) Air conditioner
JP5212330B2 (en) Air conditioner
JP2017036872A (en) Refrigeration device
JP6615371B2 (en) Refrigeration cycle equipment
JP2015007485A (en) Capacity control method of compressor of refrigerator and capacity control device
KR20090097578A (en) Controlling method of air conditioner
JP2006118731A (en) Air conditioner
JP2005127654A (en) Freezer-refrigerator
JPH09229498A (en) Refrigeration apparatus and operation and control system of same
JP2008020190A (en) Refrigerating unit
WO2013077136A1 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20120402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5258338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250