JP2009228024A - Co-BASED ALLOY - Google Patents
Co-BASED ALLOY Download PDFInfo
- Publication number
- JP2009228024A JP2009228024A JP2008072104A JP2008072104A JP2009228024A JP 2009228024 A JP2009228024 A JP 2009228024A JP 2008072104 A JP2008072104 A JP 2008072104A JP 2008072104 A JP2008072104 A JP 2008072104A JP 2009228024 A JP2009228024 A JP 2009228024A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- phase
- based alloy
- heat treatment
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 49
- 239000000956 alloy Substances 0.000 title claims abstract description 49
- 238000010438 heat treatment Methods 0.000 claims abstract description 49
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 17
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 16
- 238000002844 melting Methods 0.000 claims abstract description 11
- 230000008018 melting Effects 0.000 claims abstract description 11
- 238000005266 casting Methods 0.000 claims abstract description 6
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 229910001068 laves phase Inorganic materials 0.000 claims abstract description 5
- 238000000265 homogenisation Methods 0.000 claims description 20
- 230000032683 aging Effects 0.000 claims description 10
- 229910000765 intermetallic Inorganic materials 0.000 claims description 8
- 238000011049 filling Methods 0.000 claims description 2
- 239000000203 mixture Substances 0.000 abstract description 7
- 229910052759 nickel Inorganic materials 0.000 abstract description 4
- 229910052804 chromium Inorganic materials 0.000 abstract description 3
- 230000000694 effects Effects 0.000 description 12
- 230000003647 oxidation Effects 0.000 description 10
- 238000007254 oxidation reaction Methods 0.000 description 10
- 238000005728 strengthening Methods 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910052758 niobium Inorganic materials 0.000 description 5
- 229910052715 tantalum Inorganic materials 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 230000006872 improvement Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 101000912561 Bos taurus Fibrinogen gamma-B chain Proteins 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
本発明は、ガスタービン部材、飛行機用エンジン部材、化学プラント部材、自動車エンジン部材、高温炉部材などの高温環境下で高強度が要求される各種部材に好適なCo基合金に関する。 The present invention relates to a Co-based alloy suitable for various members that require high strength under a high temperature environment, such as gas turbine members, airplane engine members, chemical plant members, automobile engine members, and high temperature furnace members.
高温環境下で使用される超合金には、Ni基合金、Co基合金、Fe基合金などが知られている。Ni基合金は、L12構造のγ’相(Ni3(Al、Ti))で析出強化されたものであり、温度上昇に伴い強度も高くなる逆温度依存性を示す。また、耐熱性、耐食性、耐酸化性、耐クリープ性などの高温特性にも優れている。そのため、Ni基合金は、高温環境下で高強度が要求される各種の用途に用いられる。しかしながら、Ni基合金は、被削性、熱間加工性に劣るという問題がある。
一方、特に耐食性、延性が必要な高温用途では、Ni基合金よりもCo基合金が用いられている。しかしながら、従来のCo基合金は、Ni基合金に比べて高温強度が低く、熱間加工性にも劣るという問題がある。
Ni-base alloys, Co-base alloys, Fe-base alloys, and the like are known as superalloys used in high-temperature environments. The Ni-based alloy is precipitation strengthened by a γ ′ phase (Ni 3 (Al, Ti)) having an L1 2 structure, and exhibits an inverse temperature dependency in which the strength increases as the temperature rises. It also has excellent high temperature characteristics such as heat resistance, corrosion resistance, oxidation resistance, and creep resistance. Therefore, Ni-based alloys are used for various applications that require high strength in a high temperature environment. However, Ni-based alloys have a problem that they are inferior in machinability and hot workability.
On the other hand, Co-based alloys are used rather than Ni-based alloys for high-temperature applications that particularly require corrosion resistance and ductility. However, the conventional Co-based alloy has a problem that the high-temperature strength is lower than that of the Ni-based alloy and the hot workability is inferior.
そこでこの問題を解決するために、従来から種々の提案がなされている。
例えば、特許文献1には、質量比でAl:0.1〜10%、W:3.0〜45%、残部が不可避的不純物を除きCoからなり、Co3(Al、W)のL12型金属間化合物が析出したCo基合金が開示されている。
同文献には、マトリックス中にCo3(Al、W)を均一微細に析出させることによって、高温強度が向上する点、及び、所定の組成に調整することによって熱間加工も可能になる点が記載されている。
In order to solve this problem, various proposals have heretofore been made.
For example, in Patent Document 1, Al: 0.1 to 10% by mass, W: 3.0 to 45%, the balance is made of Co except for inevitable impurities, and L 1 2 of Co 3 (Al, W). A Co-based alloy in which a type intermetallic compound is precipitated is disclosed.
The document discloses that high temperature strength is improved by precipitating Co 3 (Al, W) uniformly and finely in the matrix, and that hot working is also possible by adjusting to a predetermined composition. Are listed.
また、特許文献2には、Cr:26〜30質量%、Mo:6〜12質量%、C:0.3質量%以下、残部がCoからなり、水焼き入れ後の熱処理で単相組織になっている生体適合性Co基合金が開示されている。
同文献には、所定の組成を有するCo基合金に所定の熱処理を施すことによって、延性が向上する点が記載されている。
In Patent Document 2, Cr: 26 to 30% by mass, Mo: 6 to 12% by mass, C: 0.3% by mass or less, and the balance is made of Co, and a single phase structure is formed by heat treatment after water quenching. A biocompatible Co-based alloy is disclosed.
This document describes that ductility is improved by applying a predetermined heat treatment to a Co-based alloy having a predetermined composition.
強化相(γ'相)としてCo3(Al、W)を析出させたCo基合金は、Ni基合金と同等以上の高温強度特性を示す。しかしながら、Al及びWを含むCo基合金は、熱処理条件によっては加工に有害な第2相が析出し、熱間加工性を著しく低下させる場合がある。特に、鍛造用合金では熱間加工性が重要な特性となり、強度とのバランスが必須である。 A Co-based alloy in which Co 3 (Al, W) is precipitated as a strengthening phase (γ ′ phase) exhibits high-temperature strength characteristics equivalent to or higher than that of a Ni-based alloy. However, in the Co-based alloy containing Al and W, a second phase that is harmful to processing may precipitate depending on the heat treatment conditions, and the hot workability may be significantly reduced. In particular, forging alloys, hot workability is an important characteristic, and balance with strength is essential.
本発明が解決しようとする課題は、高温強度が高く、かつ、熱間加工性に優れたCo基合金を提供することにある。 The problem to be solved by the present invention is to provide a Co-based alloy having high high-temperature strength and excellent hot workability.
上記課題を解決するために本発明に係るCo基合金は、
0.1≦Cr≦20.0mass%、
1.0≦Al≦6.0mass%、
3.0≦W≦26.0mass%、
Ni≦50.0mass%、
を含み、残部がCo及び不可避的不純物からなり、
5.0≦Cr+Al≦20.0mass%
を満たし、
A7B6で表されるμ相とA2Bで表されるラーベス相からなる第2相の体積率が10%以下であることを要旨とする。
In order to solve the above-mentioned problems,
0.1 ≦ Cr ≦ 20.0 mass%,
1.0 ≦ Al ≦ 6.0 mass%,
3.0 ≦ W ≦ 26.0 mass%,
Ni ≦ 50.0 mass%,
And the balance consists of Co and inevitable impurities,
5.0 ≦ Cr + Al ≦ 20.0 mass%
The filling,
The gist is that the volume fraction of the second phase consisting of the μ phase represented by A 7 B 6 and the Laves phase represented by A 2 B is 10% or less.
Al及びWを含むCo基合金は、熱間加工性に有害な第2相が生成しやすい。特に、過剰のWを添加すると、粒内及び粒界に第2相が生成し、熱間加工性を著しく低下させる。
これに対し、Al量及びW量を所定の範囲にすると同時に、所定の条件下で均質化熱処理を施すと、熱間加工性に有害な第2相の少ないCo基合金が得られる。また、熱間加工後に所定の条件下で時効処理すると、Co3(Al、W)型の強化相が析出し、Ni基合金と同等以上の高温強度を示す。
A Co-based alloy containing Al and W tends to generate a second phase that is harmful to hot workability. In particular, when excessive W is added, a second phase is generated in the grains and at the grain boundaries, and hot workability is significantly reduced.
On the other hand, when the amount of Al and the amount of W are set within a predetermined range and at the same time a homogenization heat treatment is performed under a predetermined condition, a Co-based alloy having a small second phase harmful to hot workability can be obtained. In addition, when aging treatment is performed under predetermined conditions after hot working, a Co 3 (Al, W) type strengthening phase precipitates, and exhibits a high temperature strength equal to or higher than that of a Ni-based alloy.
以下に、本発明の一実施の形態について詳細に説明する。
[1. Co基合金]
[1.1 成分元素]
本発明に係るCo基合金は、以下のような元素を含み、残部がCo及び不可避的不純物からなる。添加元素の種類、その成分範囲、及び、その限定理由は、以下の通りである。
Hereinafter, an embodiment of the present invention will be described in detail.
[1. Co-based alloy]
[1.1 Component elements]
The Co-based alloy according to the present invention contains the following elements, with the balance being Co and inevitable impurities. The kind of additive element, its component range, and the reason for limitation are as follows.
(1) 0.1≦Cr≦20.0mass%。
Crは、耐酸化性を改善し、熱間加工性の向上を目的に添加する。そのためには、Cr含有量は、0.1mass%以上が好ましい。Cr含有量は、さらに好ましくは、2.0mass%以上、さらに好ましくは、4.0mass%以上である。
一方、過剰な添加は、融点低下の原因となり、加工性を低下させる。従って、Cr含有量は、20.0mass%以下が好ましい。Cr含有量は、さらに好ましくは、18.0mass%以下である。
なお、Cr含有量は、Al含有量との合計が後述する範囲内であるのが好ましい。
(1) 0.1 ≦ Cr ≦ 20.0 mass%.
Cr is added for the purpose of improving oxidation resistance and improving hot workability. For this purpose, the Cr content is preferably 0.1 mass% or more. The Cr content is more preferably 2.0 mass% or more, and further preferably 4.0 mass% or more.
On the other hand, excessive addition causes a decrease in melting point and reduces workability. Therefore, the Cr content is preferably 20.0 mass% or less. The Cr content is more preferably 18.0 mass% or less.
In addition, it is preferable that Cr content is in the range which the sum with Al content mentions later.
(2) 1.0≦Al≦6.0mass%。
Alは、Co3(Al、W)型のL12型金属間化合物安定化元素であり、準安定相であるL12型金属間化合物相(γ'相)を安定相として析出させるために必要な元素である。このような効果を得るためには、Al含有量は、1.0mass%以上が好ましい。
一方、Al含有量が過剰になると、融点が低下し、加工性を低下させる。従って、Al含有量は、6.0mass%以下が好ましい。
なお、「Co3(Al、W)型のL12型金属間化合物相(γ'相)」とは、Co、Al及びWのみからなるγ'相だけでなく、Coサイト及び/又は(Al、W)サイトの一部が他の元素により置換されたものも含まれる。
(2) 1.0 ≦ Al ≦ 6.0 mass%.
Al is a Co 3 (Al, W) type L1 2 type intermetallic compound stabilizing element, and is necessary for precipitating the L1 2 type intermetallic compound phase (γ ′ phase), which is a metastable phase, as a stable phase. Element. In order to obtain such an effect, the Al content is preferably 1.0 mass% or more.
On the other hand, when the Al content is excessive, the melting point is lowered and workability is lowered. Therefore, the Al content is preferably 6.0 mass% or less.
Incidentally, "Co 3 (Al, W) type L1 2 type intermetallic compound phase (gamma 'phase)" A, Co, gamma consists of only Al and W' not only phase, Co sites and / or (Al , W) Some of the sites are substituted with other elements.
(3) 3.0≦W≦26.0mass%。
Wは、Co3(Al、W)型のL12型金属間化合物安定化元素であり、高温強度特性の向上において有効である。このような効果を得るためには、W含有量は、3.0mass%以上が好ましい。W含有量は、さらに好ましくは、10.0mass%以上、さらに好ましくは、14.0mass%以上である。
一方、W含有量が過剰になると、粒内及び粒界に有害な第2相を形成し、熱間加工性を低下させる。従って、W含有量は、26.0mass%以下が好ましい。
(3) 3.0 ≦ W ≦ 26.0 mass%.
W is, Co 3 (Al, W) type is a L1 2 type intermetallic compound stabilizing element, is effective in improving the high temperature strength. In order to obtain such an effect, the W content is preferably 3.0 mass% or more. The W content is more preferably 10.0 mass% or more, and still more preferably 14.0 mass%.
On the other hand, if the W content is excessive, a second phase that is harmful to the grains and grain boundaries is formed, and hot workability is reduced. Therefore, the W content is preferably 26.0 mass% or less.
(4) Ni≦50.0mass%。
Niは、Coサイトを置換し、(Co、Ni)3(Al、W)型のL12型金属間化合物を生成する。また、Niは、母相(γ相)及び強化相(γ'相)に均等に分散し、強度向上にも効果があるので、必要に応じて添加することができる。強度向上の点から、Ni含有量は、好ましくは、1.0mass%以上、さらに好ましくは、5.0mass%以上である。
一方、Ni含有量が過剰になると、融点が低下し、加工性を低下させる。従って、Ni含有量は、50.0mass%以下が好ましい。強度向上の点から、Ni含有量は、さらに好ましくは、45.0mass%以下である。
(4) Ni ≦ 50.0 mass%.
Ni is replaced with Co site, to generate the (Co, Ni) 3 (Al , W) type L1 2 type intermetallic compound. Further, Ni is evenly dispersed in the matrix phase (γ phase) and the strengthening phase (γ ′ phase) and has an effect of improving the strength, and can be added as necessary. From the viewpoint of improving the strength, the Ni content is preferably 1.0 mass% or more, and more preferably 5.0 mass% or more.
On the other hand, when the Ni content is excessive, the melting point is lowered and workability is lowered. Therefore, the Ni content is preferably 50.0 mass% or less. From the viewpoint of improving the strength, the Ni content is more preferably 45.0 mass% or less.
[1.2 Cr+Al量]
Alは、γ'相を析出させるために、ある一定量以上が必要である。Alは耐酸化性改善にも効果があるので、母相の耐酸化性確保のためにCrと複合添加すると、Al2O3及びCr2O3の緻密な酸化スケール層が形成され、酸化の進行を抑制することができる。材料の酸化は、その進行によって粒界酸化を発生し、粒界破断を発生させるため、熱間加工性を低下させる。過剰の添加は、融点低下による高温強度、熱間加工性の低下をもたらすため、Cr含有量とAl含有量の合計量が、ある一定の範囲にあれば良い。
すなわち、耐酸化性を改善し、高い熱間加工性を得るためには、Cr+Al量は、5.0mass%以上が好ましい。
一方、Cr+Al量が過剰になると、融点が低下し、加工性を低下させる。従って、Cr+Al量は、20.0mass%以下が好ましい。
[1.2 Cr + Al content]
Al needs a certain amount or more in order to precipitate the γ ′ phase. Since Al is effective in improving oxidation resistance, when it is added in combination with Cr to ensure the oxidation resistance of the matrix phase, a dense oxide scale layer of Al 2 O 3 and Cr 2 O 3 is formed, and oxidation Progress can be suppressed. Oxidation of the material causes grain boundary oxidation due to its progress and causes grain boundary breakage, thus reducing hot workability. Excessive addition causes a decrease in the high-temperature strength and hot workability due to a decrease in melting point, so the total amount of Cr content and Al content may be in a certain range.
That is, in order to improve oxidation resistance and obtain high hot workability, the Cr + Al content is preferably 5.0 mass% or more.
On the other hand, when the amount of Cr + Al is excessive, the melting point is lowered and workability is lowered. Therefore, the Cr + Al amount is preferably 20.0 mass% or less.
[1.3 第2相]
第2相とは、A7B6で表されるμ相と、A2Bで表されるラーベス相からなる。これらは、いずれも、加工性を低下させる原因となる。溶解・鋳造後のCo基合金には、一般に、これらの第2相が含まれる。成分元素の含有量が適切でないと、熱処理を行っても第2相が残り、加工性を低下させる。一方、成分元素の含有量が適切であれば、後述する均質化熱処理によって第2相の量を低減することができる。
熱間加工性を向上させるためには、第2相の含有量は、少ないほどよい。実用上十分な加工性を得るためには、第2相の体積率は、10%以下が好ましい。
[1.3 Second phase]
The second phase consists of a μ phase represented by A 7 B 6 and a Laves phase represented by A 2 B. All of these cause deterioration of workability. The Co-base alloy after melting and casting generally includes these second phases. If the content of the component elements is not appropriate, the second phase remains even if heat treatment is performed, and the workability is lowered. On the other hand, if the content of the component elements is appropriate, the amount of the second phase can be reduced by a homogenization heat treatment described later.
In order to improve hot workability, the smaller the content of the second phase, the better. In order to obtain practically sufficient workability, the volume ratio of the second phase is preferably 10% or less.
なお、「A7B6化合物(μ相)」とは、Co7W6由来の化合物であり、Aサイト(Coサイト)がNi、Cr、Al、Fe等により、また、Bサイト(Wサイト)がTa、Nb、Ti、Zr等により、それぞれ置換された化合物も含まれる。
また、「A2B化合物(ラーベス相)」とは、Co2Ta、Co2Nb、又は、Co2Ti由来の化合物であり、Aサイト(Coサイト)がNi、Cr、Fe等により、また、Bサイト(Ta、Nb、Tiサイト)がTa、Nb、Ti、W、Zr等により、それぞれ置換された化合物も含まれる。
さらに、「第2相の体積率」とは、視野面積(倍率:100倍)に占める第2相の面積の割合をいう。
The “A 7 B 6 compound (μ phase)” is a compound derived from Co 7 W 6 , and the A site (Co site) is made of Ni, Cr, Al, Fe or the like, and the B site (W site). ) Are each substituted by Ta, Nb, Ti, Zr or the like.
The “A 2 B compound (Laves phase)” is a compound derived from Co 2 Ta, Co 2 Nb, or Co 2 Ti, and the A site (Co site) is made of Ni, Cr, Fe, etc. Also included are compounds in which the B site (Ta, Nb, Ti site) is substituted by Ta, Nb, Ti, W, Zr, etc., respectively.
Furthermore, the “volume ratio of the second phase” refers to the ratio of the area of the second phase to the visual field area (magnification: 100 times).
[1.4 その他の元素]
本発明に係るCo基合金は、上述した元素に加えて、さらに以下のような元素を含んでいても良い。付加的な添加元素の種類、その成分範囲、及び、その限定理由は、以下の通りである。
[1.4 Other elements]
The Co-based alloy according to the present invention may further contain the following elements in addition to the elements described above. The kind of additional additive element, its component range, and the limitation reason are as follows.
(6) 0.010≦C≦0.20mass%。
Cは、炭化物を析出させ、粒界強化に有効である。また、粒界が強化されることによって、熱間加工性及び高温強度を向上させる。このような効果を得るためには、C含有量は、0.010mass%以上が好ましい。
一方、C含有量が過剰になると、加工性を低下させる。従って、C含有量は、0.20mass%以下が好ましい。
(6) 0.010 ≦ C ≦ 0.20 mass%.
C precipitates carbides and is effective for grain boundary strengthening. Further, by strengthening the grain boundary, hot workability and high temperature strength are improved. In order to obtain such an effect, the C content is preferably 0.010 mass% or more.
On the other hand, when the C content is excessive, workability is reduced. Therefore, the C content is preferably 0.20 mass% or less.
(7) 0.010≦Ta≦7.5mass%。
(8) 0.010≦Nb≦4.0mass%。
(9) 0.010≦Ti≦2.0mass%。
(10)0.010≦Zr≦0.050mass%。
Ta、Nb、Ti、Zrは、いずれも、γ'相の固溶強化元素として働き、高温強度の改善に有効である。このような効果を得るためには、これらの元素の含有量は、それぞれ、上記の下限値以上が好ましい。
一方、これらの元素の含有量が過剰になると、熱間加工性を低下させる。従って、これらの元素の含有量は、それぞれ、上記の上限値以下が好ましい。
これらの元素は、いずれか1種を添加しても良く、あるいは、2種以上を添加しても良い。これらの元素の総量が過剰になると、熱間加工性を低下させる。これらの元素は、いずれも同様の効果が得られるが、元素によって同等の効果が得られる添加量が異なる。従って、これらの元素の総量は、次式を満たすことが好ましい。
Ta+1.8Nb+3.7Ti+2.0Zr≦8.0mass%
(7) 0.010 ≦ Ta ≦ 7.5 mass%.
(8) 0.010 ≦ Nb ≦ 4.0 mass%.
(9) 0.010 ≦ Ti ≦ 2.0 mass%.
(10) 0.010 ≦ Zr ≦ 0.050 mass%.
Ta, Nb, Ti, and Zr all act as solid solution strengthening elements for the γ ′ phase and are effective in improving the high-temperature strength. In order to obtain such an effect, the content of these elements is preferably not less than the above lower limit value.
On the other hand, when the content of these elements is excessive, hot workability is lowered. Therefore, the content of these elements is preferably not more than the above upper limit value.
Any one of these elements may be added, or two or more thereof may be added. When the total amount of these elements is excessive, hot workability is reduced. All of these elements can obtain the same effect, but the amount of addition for obtaining the same effect differs depending on the element. Therefore, the total amount of these elements preferably satisfies the following formula.
Ta + 1.8Nb + 3.7Ti + 2.0Zr ≦ 8.0 mass%
(11) 0.0001≦S≦0.0060mass%。
Sは、粒界に硫化物を生成し、熱間加工性を著しく低下させる。従って、S含有量は、0.0060mass%以下が好ましい。
熱間加工性を向上させるためには、Sは、少ないほどよい。しかしながら、必要以上の低減は、コスト上昇を招く。また、Sによる熱間加工性の低下は、後述するCa等を添加することにより抑制することができる。従って、S含有量は、0.0001mass%以上が好ましい。
(11) 0.0001 ≦ S ≦ 0.0060 mass%.
S produces sulfides at the grain boundaries and significantly reduces hot workability. Therefore, the S content is preferably 0.0060 mass% or less.
In order to improve hot workability, the smaller the S, the better. However, a reduction more than necessary causes an increase in cost. Moreover, the fall of the hot workability by S can be suppressed by adding Ca etc. which are mentioned later. Therefore, the S content is preferably 0.0001 mass% or more.
(12) 0.0001≦Ca≦0.15mass%。
(13) 0.0001≦Mg≦0.10mass%。
(14) 0.0001≦Ce≦0.10mass%。
(15) 0.0001≦Mn≦0.40mass%。
Ca、Mg、Ce及びMnは、いずれも、Sを固定し、熱間加工性の改善を促す。このような効果を得るためには、これらの元素の含有量は、それぞれ、0.0001mass%以上が好ましい。
一方、S量に対してこれらの元素の含有量が過剰になると、各元素の化合物を生成し、加工性を低下させる原因となる。従って、これらの元素の含有量は、それぞれ、上記の上限値以下が好ましい。
なお、これらの元素は、いずれか1種を添加しても良く、あるいは、2種以上を添加しても良い。
(12) 0.0001 ≦ Ca ≦ 0.15 mass%.
(13) 0.0001 ≦ Mg ≦ 0.10 mass%.
(14) 0.0001 ≦ Ce ≦ 0.10 mass%.
(15) 0.0001 ≦ Mn ≦ 0.40 mass%.
Ca, Mg, Ce and Mn all fix S and promote improvement in hot workability. In order to obtain such an effect, the content of these elements is preferably 0.0001 mass% or more.
On the other hand, when the content of these elements is excessive with respect to the amount of S, a compound of each element is generated, which causes a decrease in workability. Therefore, the content of these elements is preferably not more than the above upper limit value.
Any one of these elements may be added, or two or more thereof may be added.
(16) 0.0001≦B≦0.05mass%。
Bは、粒界を強化し、熱間加工性の改善に効果がある。このような効果を得るためには、B含有量は、0.0001mass%以上が好ましい。
一方、B含有量が過剰になると、加工性を低下させる原因となる。従って、B含有量は、0.05mass%以下が好ましい。
(16) 0.0001 ≦ B ≦ 0.05 mass%.
B strengthens the grain boundaries and is effective in improving hot workability. In order to obtain such an effect, the B content is preferably 0.0001 mass% or more.
On the other hand, when the B content is excessive, it causes a decrease in workability. Therefore, the B content is preferably 0.05 mass% or less.
(17) Fe≦5.0mass%。
Feは、Coと置換することで同等の特性が得られるので、コスト低減に有効である。しかしながら、Fe含有量が過剰になると、高温強度を低下させる。従って、Fe含有量は、5.0mass%以下が好ましい。
(17) Fe ≦ 5.0 mass%.
Since Fe can obtain equivalent characteristics by substituting Co, it is effective for cost reduction. However, when the Fe content is excessive, the high temperature strength is lowered. Therefore, the Fe content is preferably 5.0 mass% or less.
[2. Co基合金の製造方法]
[2.1 均質化熱処理]
本発明に係るCo基合金は、所定の組成となるように原料を配合し、溶解・鋳造した後、均質化熱処理(ソーキング処理)を施すことにより得られる。均質化熱処理とは、溶解・鋳造時に生じた凝固偏析を除去して成分を均一化するための熱処理をいう。成分を均一化することによって、熱間加工性を向上させることができる。
[2. Method for producing Co-based alloy]
[2.1 Homogenization heat treatment]
The Co-based alloy according to the present invention is obtained by blending raw materials so as to have a predetermined composition, melting and casting, and then performing a homogenization heat treatment (soaking process). The homogenization heat treatment refers to a heat treatment for removing solidification segregation generated during melting and casting to make the components uniform. By making the components uniform, hot workability can be improved.
均質化熱処理温度は、組成に応じて最適な温度を選択する。一般に、均質化熱処理温度が低すぎると、合金元素の拡散速度が小さいために、現実的な熱処理時間内で十分な効果が得られない。従って、均質化熱処理温度は、1000℃以上が好ましい。
一方、均質化熱処理温度が高くなりすぎると、粒界酸化が進行し、熱間加工性が低下する。従って、均質化熱処理温度は、1250℃以下が好ましい。
As the homogenization heat treatment temperature, an optimum temperature is selected according to the composition. In general, if the homogenization heat treatment temperature is too low, a sufficient effect cannot be obtained within a realistic heat treatment time because the diffusion rate of the alloy element is small. Accordingly, the homogenization heat treatment temperature is preferably 1000 ° C. or higher.
On the other hand, when the homogenization heat treatment temperature becomes too high, grain boundary oxidation proceeds, and hot workability deteriorates. Therefore, the homogenization heat treatment temperature is preferably 1250 ° C. or lower.
γ相単相となる温度で保持すると、通常、数時間程度で異相が消失し、γ相単相となる。しかしながら、溶解・鋳造時に生じた凝固偏析を除去するためには、さらに長時間の熱処理が必要である。一般に、均質化熱処理時間が長くなるほど、成分が均一化し、熱間加工性に有害な第2相の量を少なくすることができる。第2相の体積率を10%以下にするためには、均質化熱処理時間は、10時間以上が好ましい。 When kept at a temperature at which the γ phase becomes a single phase, the heterogeneous phase usually disappears within a few hours and becomes a γ phase single phase. However, in order to remove the solidification segregation that has occurred during melting and casting, a longer heat treatment is required. In general, the longer the homogenization heat treatment time, the more uniform the components and the smaller the amount of the second phase harmful to hot workability. In order to make the volume fraction of the second phase 10% or less, the homogenization heat treatment time is preferably 10 hours or more.
[2.2. 時効処理]
所定の条件下で均質化熱処理を行った後、冷却すると、γ単相であり、かつ、第2相の体積率が10%以下であるCo基合金が得られる。得られたCo基合金は、熱間加工により各種の形状に成形される。
また、成形後、(γ+γ')領域において時効処理すると、γ相中にCo3(Al、W)型のL12型金属間化合物からなるγ’相を析出させることができる。
時効処理条件は、特に限定されるものではなく、組成に応じて最適な条件を選択する。一般に、時効処理温度が高くなるほど、及び/又は、時効処理時間が高くなるほど、γ'相の析出量が多くなり、あるいは、γ'相の粒径が大きくなる。
通常、時効処理温度は、500〜1100℃(好ましくは、600〜1000℃)であり、時効処理時間は、1〜100時間、好ましくは10〜50時間程度である。
[2.2. Aging treatment]
When a homogenization heat treatment is performed under predetermined conditions and then cooled, a Co-based alloy having a γ single phase and a volume fraction of the second phase of 10% or less is obtained. The obtained Co-based alloy is formed into various shapes by hot working.
Further, after molding, can be precipitated (γ + γ ') when the aging treatment in the region, Co 3 (Al, W) type gamma consisting L1 2 type intermetallic compound of the gamma phase' phase.
The aging treatment conditions are not particularly limited, and optimum conditions are selected according to the composition. In general, the higher the aging treatment temperature and / or the higher the aging treatment time, the larger the precipitation amount of the γ ′ phase or the larger the particle size of the γ ′ phase.
Usually, the aging treatment temperature is 500 to 1100 ° C. (preferably 600 to 1000 ° C.), and the aging treatment time is 1 to 100 hours, preferably about 10 to 50 hours.
[3. Co基合金の作用]
Al及びWを含むCo基合金は、熱間加工性に有害な第2相が生成しやすい。特に、過剰のWを添加すると、粒内及び粒界に第2相が生成し、熱間加工性を著しく低下させる。
これに対し、Al量及びW量を所定の範囲にすると同時に、所定の条件下で均質化熱処理を施すと、熱間加工性に有害な第2相の少ないCo基合金が得られる。また、熱間加工後に所定の条件下で時効処理すると、Co3(Al、W)型の強化相が析出し、Ni基合金と同等以上の高温強度を示す。
[3. Action of Co-based alloy]
A Co-based alloy containing Al and W tends to generate a second phase that is harmful to hot workability. In particular, when excessive W is added, a second phase is generated in the grains and at the grain boundaries, and hot workability is significantly reduced.
On the other hand, when the amount of Al and the amount of W are set within a predetermined range and at the same time a homogenization heat treatment is performed under a predetermined condition, a Co-based alloy having a small second phase harmful to hot workability can be obtained. In addition, when aging treatment is performed under predetermined conditions after hot working, a Co 3 (Al, W) type strengthening phase precipitates, and exhibits a high temperature strength equal to or higher than that of a Ni-based alloy.
(実施例1〜32、比較例1〜13)
[1. 試料の作製]
表1及び表2に示す組成の合金を真空誘導炉で溶解し、50kgのインゴットを得た。ボトム側から試料を切り出し、各種試験に供した。
(Examples 1-32 and Comparative Examples 1-13)
[1. Preparation of sample]
Alloys having the compositions shown in Tables 1 and 2 were melted in a vacuum induction furnace to obtain 50 kg of ingots. Samples were cut out from the bottom side and subjected to various tests.
[2. 試験方法]
[2.1 第2相の体積率測定]
インゴットから1辺12mm、長さ30mmの直方体試料を切り出し、均質化熱処理を行った。
熱処理条件は、
(1) 900〜1300℃×16時間+空冷、
(2) 1200℃×6〜20時間+空冷、
の2種類とした。
熱処理後、鏡面に研磨した試料内部断面を光学顕微鏡(100倍)にて組織観察を行い、第2相の体積率を測定した。体積率は、撮影画像を画像解析することにより算出した。第2相の体積率が10%以下であるものを「○」、10%を超えるものを「×」と評価した。
[2. Test method]
[2.1 Volume ratio measurement of second phase]
A rectangular parallelepiped sample having a side of 12 mm and a length of 30 mm was cut out from the ingot and subjected to a homogenization heat treatment.
The heat treatment conditions are
(1) 900-1300 ° C. × 16 hours + air cooling,
(2) 1200 ° C. × 6 to 20 hours + air cooling,
The two types were as follows.
After the heat treatment, the internal cross section of the sample polished on the mirror surface was observed with an optical microscope (100 times), and the volume fraction of the second phase was measured. The volume ratio was calculated by analyzing the captured image. The case where the volume fraction of the second phase was 10% or less was evaluated as “◯”, and the case where the volume ratio exceeded 10% was evaluated as “X”.
[2.2 熱間加工性]
鋳造まま状態の試料、及び、900℃、1200℃又は1300℃で16時間の均質化熱処理を行った試料から、それぞれ引張試験片を切り出し、高温高速引張試験(グリーブル試験)を行った。試験条件は、以下の通りである。
引張試験温度:900〜1300℃の間で50℃間隔(9水準)
引張速度: 50.8mm/sec
昇温: 100秒
保持: 60秒
鍛造加工に必要な破断絞り40%以上が得られる温度を加工可能温度と定義し、加工可能温度の温度幅の広狭に応じて、熱間加工性をA〜Dで評価した。
[2.2 Hot workability]
Tensile test pieces were cut out from the as-cast sample and the sample subjected to the homogenization heat treatment at 900 ° C., 1200 ° C., or 1300 ° C. for 16 hours, and a high-temperature high-speed tensile test (greeble test) was performed. The test conditions are as follows.
Tensile test temperature: 900-1300 ° C, 50 ° C interval (9 levels)
Tensile speed: 50.8mm / sec
Temperature rise: 100 seconds Retention: 60 seconds The temperature at which a fracture drawing of 40% or more required for forging is obtained is defined as the workable temperature, and the hot workability is defined as A to depending on the temperature range of the workable temperature. D was evaluated.
[3. 結果]
[3.1 熱処理の有無による第2相体積率及び加工性の改善]
表3に、鋳造まま状態及び1200℃×16時間熱処理状態の第2相体積率及び熱間加工性の一例を示す。
比較例は、いずれも、鋳造まま状態では第2相体積率が10%を超えており、絞りが40%以上となる温度幅は、いずれも、100℃未満であった。また、1200℃×16時間熱処理状態でも、第2相体積率は10%を超えており、熱間加工性の改善も見られない。
[3. result]
[3.1 Improvement of second phase volume fraction and workability by presence or absence of heat treatment]
Table 3 shows an example of the second phase volume ratio and hot workability in the as-cast state and 1200 ° C. × 16 hours heat-treated state.
In all of the comparative examples, the second phase volume ratio exceeded 10% in the as-cast state, and the temperature range at which the drawing was 40% or more was less than 100 ° C. Even in the heat treatment state at 1200 ° C. for 16 hours, the volume fraction of the second phase exceeds 10%, and no improvement in hot workability is observed.
これに対し、実施例は、鋳造まま状態でも第2相体積率が10%以下になるものがある。また、鋳造まま状態において第2相体積率が10%を超えた材料であっても、1200℃×16時間熱処理状態では、いずれも第2相体積率が10%以下となった。
鋳造まま状態で第2相体積率が10%以下である材料は、熱処理を行わなくても優れた熱間加工性を有していた。このような材料に対してさらに熱処理を行うと、合金元素の偏析が緩和されることにより、熱間加工性がさらに改善された。
さらに、鋳造まま状態で第2相体積率が高い材料であっても、均質化熱処理を実施することにより熱間加工性が改善された。
In contrast, in some examples, the volume fraction of the second phase is 10% or less even in the as-cast state. Moreover, even if it was a material in which the second phase volume ratio exceeded 10% in the as-cast state, the second phase volume ratio was 10% or less in the heat treatment state at 1200 ° C. for 16 hours.
A material having a second phase volume ratio of 10% or less in an as-cast state had excellent hot workability without heat treatment. When further heat treatment was performed on such a material, the segregation of the alloy elements was alleviated, so that the hot workability was further improved.
Furthermore, even if the material has a high second phase volume ratio in an as-cast state, the hot workability is improved by performing the homogenization heat treatment.
[3.2 第2相体積率に及ぼす熱処理条件の影響]
表4に、第2相体積率に及ぼす熱処理温度の影響の一例を示す。また、表5に、第2相体積率に及ぼす熱処理時間の影響の一例を示す。
比較例は、いずれも、1000〜1200℃×16時間の熱処理を行っても第2相体積率は10%を超えていた。また、熱処理温度が1200℃である場合、20時間の熱処理を行っても、第2相体積率は、いずれも10%を超えていた。
これに対し、実施例は、鋳造まま状態において第2相体積率が10%を超える材料であっても、1000℃以上の均質化熱処理を行うことによって、第2相が固溶して第2相体積率が10%以下になり、組織が均質化された。また、熱処理温度が1200℃である場合、12時間以上の熱処理で、第2相体積率をほぼ10%以下にすることができた。
[3.2 Effect of heat treatment conditions on second phase volume fraction]
Table 4 shows an example of the influence of the heat treatment temperature on the second phase volume fraction. Table 5 shows an example of the influence of the heat treatment time on the second phase volume fraction.
In all of the comparative examples, the volume fraction of the second phase exceeded 10% even when heat treatment was performed at 1000 to 1200 ° C. × 16 hours. When the heat treatment temperature was 1200 ° C., the volume fraction of the second phase exceeded 10% even when the heat treatment was performed for 20 hours.
In contrast, in the example, even if the second phase volume fraction exceeds 10% in the as-cast state, the second phase is dissolved in the second phase by performing a homogenization heat treatment at 1000 ° C. or higher. The phase volume ratio became 10% or less, and the structure was homogenized. Further, when the heat treatment temperature was 1200 ° C., the second phase volume fraction could be reduced to about 10% or less by the heat treatment for 12 hours or more.
[3.3 熱間加工性に及ぼす熱処理条件の影響]
表6に、熱間加工性に及ぼす熱処理条件の影響の一例を示す。
比較例は、熱処理温度によらず第2相体積率が10%を超えたため、熱間加工性の改善が見られなかった。
これに対し、実施例は、いずれも1200℃で熱処理することによって、熱間加工性が改善した。しかしながら、1300℃×16時間の熱処理では、逆に熱間加工性が低下した。これは、熱処理温度が高すぎるために、材料の粒界酸化が内部まで進行し、粒界に起因する早期破断が生じたためと考えられる。表3〜6より、第2相体積率を10%以下とし、かつ、熱間加工性を向上させるためには、均質化熱処理温度は、1000〜1250℃が好ましいことがわかる。
[3.3 Effect of heat treatment conditions on hot workability]
Table 6 shows an example of the influence of heat treatment conditions on hot workability.
In the comparative example, since the second phase volume fraction exceeded 10% regardless of the heat treatment temperature, the hot workability was not improved.
On the other hand, in all the examples, the hot workability was improved by heat treatment at 1200 ° C. However, in the heat treatment at 1300 ° C. × 16 hours, the hot workability was decreased. This is presumably because the heat treatment temperature was too high, so that the grain boundary oxidation of the material progressed to the inside, and early breakage due to the grain boundary occurred. From Tables 3 to 6, it is found that the homogenization heat treatment temperature is preferably 1000 to 1250 ° C. in order to make the second phase volume ratio 10% or less and to improve the hot workability.
以上、本発明の実施の形態について詳細に説明したが、本発明は、上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改変が可能である。 The embodiment of the present invention has been described in detail above, but the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the present invention.
本発明に係るCo基合金は、ガスタービン部材、飛行機用エンジン部材、化学プラント部材、自動車エンジン部材、高温炉部材などの高温環境下で高強度が要求される各種部材に用いることができる。 The Co-based alloy according to the present invention can be used for various members that require high strength under a high temperature environment, such as gas turbine members, airplane engine members, chemical plant members, automobile engine members, and high temperature furnace members.
Claims (7)
1.0≦Al≦6.0mass%、
3.0≦W≦26.0mass%、
Ni≦50.0mass%、
を含み、残部がCo及び不可避的不純物からなり、
5.0≦Cr+Al≦20.0mass%
を満たし、
A7B6で表されるμ相とA2Bで表されるラーベス相からなる第2相の体積率が10%以下であるCo基合金。 0.1 ≦ Cr ≦ 20.0 mass%,
1.0 ≦ Al ≦ 6.0 mass%,
3.0 ≦ W ≦ 26.0 mass%,
Ni ≦ 50.0 mass%,
And the balance consists of Co and inevitable impurities,
5.0 ≦ Cr + Al ≦ 20.0 mass%
The filling,
A Co-based alloy in which the volume fraction of the second phase consisting of the μ phase represented by A 7 B 6 and the Laves phase represented by A 2 B is 10% or less.
をさらに含み、
0.010≦Ta≦7.5mass%、
0.010≦Nb≦4.0mass%、
0.010≦Ti≦2.0mass%、及び、
0.010≦Zr≦0.050mass%、
のいずれか1種以上をさらに含み、
Ta+1.8Nb+3.7Ti+2.0Zr≦8.0mass%
を満たす請求項1に記載のCo基合金。 0.010 ≦ C ≦ 0.20 mass%
Further including
0.010 ≦ Ta ≦ 7.5 mass%,
0.010 ≦ Nb ≦ 4.0 mass%,
0.010 ≦ Ti ≦ 2.0 mass%, and
0.010 ≦ Zr ≦ 0.050 mass%,
Any one or more of
Ta + 1.8Nb + 3.7Ti + 2.0Zr ≦ 8.0 mass%
The Co-based alloy according to claim 1, wherein:
をさらに含み、
0.0001≦Ca≦0.15mass%、
0.0001≦Mg≦0.10mass%、
0.0001≦Ce≦0.10mass%、及び、
0.0001≦Mn≦0.40mass%、
のいずれか1種以上をさらに含む請求項1又は2に記載のCo基合金。 0.0001 ≦ S ≦ 0.0060 mass%
Further including
0.0001 ≦ Ca ≦ 0.15 mass%,
0.0001 ≦ Mg ≦ 0.10 mass%,
0.0001 ≦ Ce ≦ 0.10 mass%, and
0.0001 ≦ Mn ≦ 0.40 mass%,
The Co-based alloy according to claim 1 or 2, further comprising at least one of the above.
をさらに含む請求項1から3までのいずれかに記載のCo基合金。 0.0001 ≦ B ≦ 0.05 mass%
The Co-based alloy according to any one of claims 1 to 3, further comprising:
をさらに含む請求項1から4までのいずれかに記載のCo基合金。 Fe ≦ 5.0 mass%
The Co-based alloy according to any one of claims 1 to 4, further comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008072104A JP5201334B2 (en) | 2008-03-19 | 2008-03-19 | Co-based alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008072104A JP5201334B2 (en) | 2008-03-19 | 2008-03-19 | Co-based alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009228024A true JP2009228024A (en) | 2009-10-08 |
JP5201334B2 JP5201334B2 (en) | 2013-06-05 |
Family
ID=41243760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008072104A Active JP5201334B2 (en) | 2008-03-19 | 2008-03-19 | Co-based alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5201334B2 (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010065319A (en) * | 2008-09-08 | 2010-03-25 | Alstom Technology Ltd | High-temperature-resistant cobalt-based superalloy |
JP2010275635A (en) * | 2009-05-14 | 2010-12-09 | General Electric Co <Ge> | Cobalt-nickel superalloy and related article |
WO2011040111A1 (en) | 2009-09-30 | 2011-04-07 | オリンパスメディカルシステムズ株式会社 | Endoscope device |
US20110268989A1 (en) * | 2010-04-29 | 2011-11-03 | General Electric Company | Cobalt-nickel superalloys, and related articles |
CN102274950A (en) * | 2011-08-26 | 2011-12-14 | 昆明理工大学 | Method for preparing in-situ grown Laves-phase surface reinforced steel matrix composite material |
JP2012041627A (en) * | 2010-08-23 | 2012-03-01 | Daido Steel Co Ltd | Co-BASED ALLOY |
CN102816965A (en) * | 2011-06-09 | 2012-12-12 | 通用电气公司 | Cobalt-nickel base alloy and method of making an article therefrom |
CN102816953A (en) * | 2011-06-09 | 2012-12-12 | 通用电气公司 | Alumina-Forming Cobalt-Nickel Base Alloy and Method of Making an Article Therefrom |
JP2013522475A (en) * | 2010-03-23 | 2013-06-13 | シーメンス アクティエンゲゼルシャフト | Metal bond coat and parts with high γ / γ ′ transition temperature |
WO2016016437A3 (en) * | 2014-08-01 | 2016-04-07 | Friedrich-Alexander-Universität Erlangen-Nürnberg | Cobalt-based super alloy |
EP3031938A1 (en) * | 2014-12-10 | 2016-06-15 | Rolls-Royce plc | Cobalt - nickel alloy |
CN105873708A (en) * | 2014-01-08 | 2016-08-17 | 西门子公司 | Manganese-containing, cobalt-based high-temperature solder alloy, powder, component and soldering method |
CN108315600A (en) * | 2018-04-12 | 2018-07-24 | 北京科技大学 | A kind of γ ' phases strengthen cobalt base superalloy and preparation method thereof |
CN108411163A (en) * | 2018-03-08 | 2018-08-17 | 东北大学 | A kind of γ ' phase enhanced type cobalt base superalloys of high intensity |
US20190003017A1 (en) * | 2016-01-08 | 2019-01-03 | Siemens Aktiengesellschaft | Gamma, gamma' cobalt based alloys for additive manufacturing methods or soldering, welding, powder and component |
KR20200002965A (en) * | 2017-04-21 | 2020-01-08 | 씨알에스 홀딩즈 인코포레이티드 | Precipitation Hardening Cobalt-Nickel Base Superalloys and Articles Made therefrom |
US10857595B2 (en) * | 2017-09-08 | 2020-12-08 | Mitsubishi Hitachi Power Systems, Ltd. | Cobalt based alloy additive manufactured article, cobalt based alloy product, and method for manufacturing same |
US11306372B2 (en) | 2019-03-07 | 2022-04-19 | Mitsubishi Power, Ltd. | Cobalt-based alloy powder, cobalt-based alloy sintered body, and method for producing cobalt-based alloy sintered body |
US11414728B2 (en) | 2019-03-07 | 2022-08-16 | Mitsubishi Heavy Industries, Ltd. | Cobalt based alloy product, method for manufacturing same, and cobalt based alloy article |
US11427893B2 (en) | 2019-03-07 | 2022-08-30 | Mitsubishi Heavy Industries, Ltd. | Heat exchanger |
KR20220138825A (en) | 2021-04-06 | 2022-10-13 | 다이도 토쿠슈코 카부시키가이샤 | Heat-resistant alloy component, material therefor, and methods for producing them |
CN115198122A (en) * | 2021-04-09 | 2022-10-18 | 泰州市新龙翔金属制品有限公司 | Hot processing method of medical cobalt-based alloy |
US11499208B2 (en) | 2019-03-07 | 2022-11-15 | Mitsubishi Heavy Industries, Ltd. | Cobalt based alloy product |
US11613795B2 (en) | 2019-03-07 | 2023-03-28 | Mitsubishi Heavy Industries, Ltd. | Cobalt based alloy product and method for manufacturing same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08127833A (en) * | 1994-10-31 | 1996-05-21 | Mitsubishi Steel Mfg Co Ltd | Nickel-base heat resistant alloy excellent in weldability |
WO2007032293A1 (en) * | 2005-09-15 | 2007-03-22 | Japan Science And Technology Agency | Cobalt-base alloy with high heat resistance and high strength and process for producing the same |
-
2008
- 2008-03-19 JP JP2008072104A patent/JP5201334B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08127833A (en) * | 1994-10-31 | 1996-05-21 | Mitsubishi Steel Mfg Co Ltd | Nickel-base heat resistant alloy excellent in weldability |
WO2007032293A1 (en) * | 2005-09-15 | 2007-03-22 | Japan Science And Technology Agency | Cobalt-base alloy with high heat resistance and high strength and process for producing the same |
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8764919B2 (en) | 2008-09-08 | 2014-07-01 | Alstom Technology Ltd | High-temperature-resistant cobalt-base superalloy |
JP2010065319A (en) * | 2008-09-08 | 2010-03-25 | Alstom Technology Ltd | High-temperature-resistant cobalt-based superalloy |
JP2010275635A (en) * | 2009-05-14 | 2010-12-09 | General Electric Co <Ge> | Cobalt-nickel superalloy and related article |
WO2011040111A1 (en) | 2009-09-30 | 2011-04-07 | オリンパスメディカルシステムズ株式会社 | Endoscope device |
US9074268B2 (en) | 2010-03-23 | 2015-07-07 | Siemens Aktiengesellschaft | Metallic bondcoat with a high gamma/gamma' transition temperature and a component |
JP2013522475A (en) * | 2010-03-23 | 2013-06-13 | シーメンス アクティエンゲゼルシャフト | Metal bond coat and parts with high γ / γ ′ transition temperature |
US20110268989A1 (en) * | 2010-04-29 | 2011-11-03 | General Electric Company | Cobalt-nickel superalloys, and related articles |
CN102234732A (en) * | 2010-04-29 | 2011-11-09 | 通用电气公司 | Cobalt-nickel superalloys, and related articles |
WO2012026354A1 (en) | 2010-08-23 | 2012-03-01 | 株式会社日立製作所 | Co-based alloy |
CN107012366A (en) * | 2010-08-23 | 2017-08-04 | 三菱日立电力系统株式会社 | Co based alloy forged parts |
JP2012041627A (en) * | 2010-08-23 | 2012-03-01 | Daido Steel Co Ltd | Co-BASED ALLOY |
CN103069028A (en) * | 2010-08-23 | 2013-04-24 | 株式会社日立制作所 | Co-based alloy |
EP2610360A4 (en) * | 2010-08-23 | 2014-03-19 | Hitachi Ltd | Co-based alloy |
EP2610360A1 (en) * | 2010-08-23 | 2013-07-03 | Hitachi, Ltd. | Co-based alloy |
US9034247B2 (en) * | 2011-06-09 | 2015-05-19 | General Electric Company | Alumina-forming cobalt-nickel base alloy and method of making an article therefrom |
US20120312426A1 (en) * | 2011-06-09 | 2012-12-13 | General Electric Company | Alumina-Forming Cobalt-Nickel Base Alloy and Method of Making an Article Therefrom |
CN102816953A (en) * | 2011-06-09 | 2012-12-12 | 通用电气公司 | Alumina-Forming Cobalt-Nickel Base Alloy and Method of Making an Article Therefrom |
CN102816965A (en) * | 2011-06-09 | 2012-12-12 | 通用电气公司 | Cobalt-nickel base alloy and method of making an article therefrom |
US11371120B2 (en) * | 2011-06-09 | 2022-06-28 | General Electric Company | Cobalt-nickel base alloy and method of making an article therefrom |
US10227678B2 (en) | 2011-06-09 | 2019-03-12 | General Electric Company | Cobalt-nickel base alloy and method of making an article therefrom |
CN102274950A (en) * | 2011-08-26 | 2011-12-14 | 昆明理工大学 | Method for preparing in-situ grown Laves-phase surface reinforced steel matrix composite material |
CN105873708A (en) * | 2014-01-08 | 2016-08-17 | 西门子公司 | Manganese-containing, cobalt-based high-temperature solder alloy, powder, component and soldering method |
US10456874B2 (en) | 2014-01-08 | 2019-10-29 | Siemens Aktiengesellschaft | Manganese-containing, cobalt-based high-temperature solder alloy, powder, component and soldering method |
CN105873708B (en) * | 2014-01-08 | 2019-04-19 | 西门子公司 | High-temperature solder alloy, powder, component and welding method based on cobalt, containing manganese |
WO2016016437A3 (en) * | 2014-08-01 | 2016-04-07 | Friedrich-Alexander-Universität Erlangen-Nürnberg | Cobalt-based super alloy |
EP3031938A1 (en) * | 2014-12-10 | 2016-06-15 | Rolls-Royce plc | Cobalt - nickel alloy |
US10094004B2 (en) | 2014-12-10 | 2018-10-09 | Rolls-Royce Plc | Alloy |
JP2019507247A (en) * | 2016-01-08 | 2019-03-14 | シーメンス アクティエンゲゼルシャフト | Additive manufacturing methods or gamma, gamma'-cobalt based alloys for soldering, welding, powders and parts |
US20190003017A1 (en) * | 2016-01-08 | 2019-01-03 | Siemens Aktiengesellschaft | Gamma, gamma' cobalt based alloys for additive manufacturing methods or soldering, welding, powder and component |
US11180830B2 (en) | 2016-01-08 | 2021-11-23 | Siemens Energy Global GmbH & Co. KG | γ, γ′ cobalt based alloys for additive manufacturing methods or soldering, welding, powder and component |
KR102403029B1 (en) * | 2017-04-21 | 2022-05-30 | 씨알에스 홀딩즈, 엘엘씨 | Precipitation hardenable cobalt-nickel based superalloys and articles made therefrom |
KR20200002965A (en) * | 2017-04-21 | 2020-01-08 | 씨알에스 홀딩즈 인코포레이티드 | Precipitation Hardening Cobalt-Nickel Base Superalloys and Articles Made therefrom |
CN111051548A (en) * | 2017-04-21 | 2020-04-21 | Crs 控股公司 | Precipitation hardenable cobalt-nickel based superalloys and articles made therefrom |
JP2020517821A (en) * | 2017-04-21 | 2020-06-18 | シーアールエス ホールディングス, インコーポレイテッドCrs Holdings, Incorporated | Precipitation hardened cobalt-nickel based superalloys and articles made therefrom |
US10857595B2 (en) * | 2017-09-08 | 2020-12-08 | Mitsubishi Hitachi Power Systems, Ltd. | Cobalt based alloy additive manufactured article, cobalt based alloy product, and method for manufacturing same |
US11325189B2 (en) | 2017-09-08 | 2022-05-10 | Mitsubishi Heavy Industries, Ltd. | Cobalt based alloy additive manufactured article, cobalt based alloy product, and method for manufacturing same |
CN108411163A (en) * | 2018-03-08 | 2018-08-17 | 东北大学 | A kind of γ ' phase enhanced type cobalt base superalloys of high intensity |
CN108315600A (en) * | 2018-04-12 | 2018-07-24 | 北京科技大学 | A kind of γ ' phases strengthen cobalt base superalloy and preparation method thereof |
US11306372B2 (en) | 2019-03-07 | 2022-04-19 | Mitsubishi Power, Ltd. | Cobalt-based alloy powder, cobalt-based alloy sintered body, and method for producing cobalt-based alloy sintered body |
US11414728B2 (en) | 2019-03-07 | 2022-08-16 | Mitsubishi Heavy Industries, Ltd. | Cobalt based alloy product, method for manufacturing same, and cobalt based alloy article |
US11427893B2 (en) | 2019-03-07 | 2022-08-30 | Mitsubishi Heavy Industries, Ltd. | Heat exchanger |
US11499208B2 (en) | 2019-03-07 | 2022-11-15 | Mitsubishi Heavy Industries, Ltd. | Cobalt based alloy product |
US11613795B2 (en) | 2019-03-07 | 2023-03-28 | Mitsubishi Heavy Industries, Ltd. | Cobalt based alloy product and method for manufacturing same |
KR20220138825A (en) | 2021-04-06 | 2022-10-13 | 다이도 토쿠슈코 카부시키가이샤 | Heat-resistant alloy component, material therefor, and methods for producing them |
CN115198144A (en) * | 2021-04-06 | 2022-10-18 | 大同特殊钢株式会社 | Heat-resistant alloy member, material used therefor, and method for producing same |
CN115198144B (en) * | 2021-04-06 | 2023-10-03 | 大同特殊钢株式会社 | Heat-resistant alloy member, material used therefor, and method for producing same |
CN115198122A (en) * | 2021-04-09 | 2022-10-18 | 泰州市新龙翔金属制品有限公司 | Hot processing method of medical cobalt-based alloy |
Also Published As
Publication number | Publication date |
---|---|
JP5201334B2 (en) | 2013-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5201334B2 (en) | Co-based alloy | |
JP5582532B2 (en) | Co-based alloy | |
JP6393993B2 (en) | Ni-base superalloy with high temperature strength and capable of hot forging | |
JP5232492B2 (en) | Ni-base superalloy with excellent segregation | |
JP5177559B2 (en) | Ni-based single crystal superalloy | |
JP4277113B2 (en) | Ni-base alloy for heat-resistant springs | |
JP5879181B2 (en) | Aluminum alloy with excellent high temperature characteristics | |
CN108118193B (en) | Method for producing Ni-based superalloy material | |
CN108118192B (en) | Method for producing Ni-based superalloy material | |
CA2901259A1 (en) | Nickel-cobalt alloy | |
JP2008069455A (en) | Cobalt-chromium-iron-nickel alloy strengthened by nitride | |
EP3208354B1 (en) | Ni-based superalloy for hot forging | |
JPWO2008111585A1 (en) | Ni-based single crystal superalloy and turbine blade using the same | |
JP6741876B2 (en) | Alloy plate and gasket | |
JP2003113434A (en) | Superalloy excellent in high-temperature sulfur corrosion resistance and manufacturing method therefor | |
JP2009114513A (en) | TiAl-BASED ALLOY | |
JP2019065344A (en) | Low thermal expansion alloy | |
WO2023243146A1 (en) | Ni-based alloy member manufacturing method | |
JP2010053419A (en) | Titanium alloy for heat resistant member having excellent creep resistance and high temperature fatigue strength | |
JP5521490B2 (en) | Spark plug electrode material | |
JP6425274B2 (en) | Ni-based heat-resistant alloy | |
JPH0310039A (en) | Ni-base single crystal superalloy having excellent high temperature strength and high temperature corrosion resistance | |
JP7319447B1 (en) | Aluminum alloy material and its manufacturing method | |
JP2015120956A (en) | Austenitic heat resistant casting alloy | |
JP7252621B2 (en) | High strength Ir alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100930 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100930 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120509 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120515 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130122 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130129 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5201334 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160222 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |