JP2009227089A - Vehicle collision detecting device - Google Patents
Vehicle collision detecting device Download PDFInfo
- Publication number
- JP2009227089A JP2009227089A JP2008074454A JP2008074454A JP2009227089A JP 2009227089 A JP2009227089 A JP 2009227089A JP 2008074454 A JP2008074454 A JP 2008074454A JP 2008074454 A JP2008074454 A JP 2008074454A JP 2009227089 A JP2009227089 A JP 2009227089A
- Authority
- JP
- Japan
- Prior art keywords
- chamber
- gap
- pressure
- area
- pressure sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/0052—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes measuring forces due to impact
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R19/00—Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
- B60R19/02—Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
- B60R19/48—Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects combined with, or convertible into, other devices or objects, e.g. bumpers combined with road brushes, bumpers convertible into beds
- B60R19/483—Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects combined with, or convertible into, other devices or objects, e.g. bumpers combined with road brushes, bumpers convertible into beds with obstacle sensors of electric or electronic type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R21/01—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
- B60R2021/01006—Mounting of electrical components in vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R21/01—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
- B60R21/013—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
- B60R21/0136—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to actual contact with an obstacle, e.g. to vehicle deformation, bumper displacement or bumper velocity relative to the vehicle
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
Description
本発明は、車両用衝突検知装置に関し、特に、車両バンパにおける圧力変化に基づいて衝突物の種類を判別する車両用衝突検知装置に関する。 The present invention relates to a vehicle collision detection device, and more particularly to a vehicle collision detection device that determines the type of a collision object based on a pressure change in a vehicle bumper.
近年、歩行者を保護する目的で、車両バンパ部に衝突検知装置を取り付け、車両への衝突時に衝突物の種類を判別し、歩行者であると判別した場合には、歩行者を保護するための装置(例えば、アクティブフードやカウルエアバッグ)を作動させる技術が提案され、かつ、実用化が検討されている。 In recent years, for the purpose of protecting pedestrians, in order to protect pedestrians when a collision detection device is attached to the vehicle bumper, the type of collision object is determined at the time of collision with the vehicle, and it is determined that the vehicle is a pedestrian Techniques for operating these devices (for example, active hoods and cowl airbags) have been proposed, and their practical application has been studied.
即ち、衝突物が歩行者でない場合にフード上の保護装置(例えばアクティブフード)を作動させると様々な悪影響が生じる。例えば、3角コーンや工事中看板等の軽量落下物と衝突した場合に歩行者と区別できないと、保護装置を無駄に作動させて余分な修理費が発生する。また、コンクリートの壁や車両等の重量固定物と衝突した場合に歩行者と区別できなければ、フードが持ち上がった状態で後退していくのでフードが車室内に侵入し乗員に危害を与える虞がある。このように、衝突物の種類を正確に判別することが要求されている。 That is, when the collision object is not a pedestrian, various adverse effects occur when a protective device on the hood (for example, an active hood) is operated. For example, if it cannot be distinguished from a pedestrian when it collides with a lightweight fallen object such as a triangular cone or a signboard under construction, the protection device is activated wastefully and extra repair costs are generated. In addition, if it is indistinguishable from a pedestrian when it collides with a fixed wall such as a concrete wall or a vehicle, the hood will move backward with the hood lifted, so there is a risk that the hood may enter the passenger compartment and harm the passenger. is there. As described above, it is required to accurately determine the type of the collision object.
従来、車両バンパ内のアブソーバ部にチャンバ部材を配設し、衝突時におけるチャンバ空間内の圧力変化を検出することで衝突物の種類を判別するように構成された車両用衝突検知装置が提案されている(例えば、特許文献1,2参照)。
2. Description of the Related Art Conventionally, a vehicle collision detection device has been proposed in which a chamber member is disposed in an absorber portion in a vehicle bumper and a type of a collision object is determined by detecting a pressure change in the chamber space at the time of a collision. (For example, see
これら従来の車両用衝突検知装置では、車両バンパ内に配設され且つチャンバ空間が内部に形成されるチャンバ部材と、チャンバ空間内の圧力を検出する圧力センサとを有し、圧力センサの受圧部をチャンバ部材に設けられた取り付け穴からチャンバ空間内に差し込むようにして圧力センサをチャンバ部材に取り付け、圧力センサの検出結果に基づいて車両バンパへの衝突を検知するようにしている。 These conventional vehicle collision detection devices include a chamber member disposed in a vehicle bumper and having a chamber space formed therein, and a pressure sensor for detecting the pressure in the chamber space, and a pressure receiving portion of the pressure sensor. The pressure sensor is attached to the chamber member so as to be inserted into the chamber space from the mounting hole provided in the chamber member, and the collision with the vehicle bumper is detected based on the detection result of the pressure sensor.
チャンバ空間内には、例えば、空気が封入されており、そのチャンバ空間内に取り付け穴を介して圧力センサの受圧部が差し込まれている。かかる例では、圧力センサは、気体圧力を検出可能なセンサ装置であり、チャンバ空間内の空気の圧力変化を検出可能に構成されている。この場合、非衝突時にはチャンバ空間内の圧力は外部と同等、即ち、大気圧に維持されている必要がある。一方、圧力センサの受圧部を取り付け穴からチャンバ空間内に差し込んで取り付けることから、取り付け穴の面積は差し込まれる受圧部の径に対して機械的な公差が要求されている。
しかしながら、上記取り付け穴の面積はできるだけ大きい方が、圧力センサをチャンバ部材に取り付け易くなる反面、取り付け穴の面積が大きすぎると、衝突時にチャンバ空間内の圧力が抜けてしまうので、センサ精度の低下を招く虞がある。しかも、チャンバ部材には、上記取り付け穴以外にも、水抜き穴等他の穴が設けられることもある。 However, the larger the mounting hole area, the easier it is to attach the pressure sensor to the chamber member. On the other hand, if the mounting hole area is too large, the pressure in the chamber space will be lost at the time of collision, resulting in a decrease in sensor accuracy. There is a risk of inviting. Moreover, the chamber member may be provided with other holes such as a drain hole in addition to the mounting holes.
従来、必要とするセンサ精度やチャンバ体積との関係で、上記取り付け穴や水抜き穴の面積をどのようなものとするかについて有効な提案はなされていなかった。 Conventionally, no effective proposal has been made regarding the area of the mounting hole or the drainage hole in relation to the required sensor accuracy and chamber volume.
本発明は、上記課題に鑑みてなされたものであり、車両バンパ内に配設されたチャンバ内の圧力変化を検出する車両用衝突検知装置において、圧力センサのチャンバ部材への取り付けが容易な上に、圧力センサに必要とするセンサ精度を確実に確保することが可能な技術を提供することを目的とする。 The present invention has been made in view of the above problems, and in a vehicle collision detection device for detecting a pressure change in a chamber disposed in a vehicle bumper, the pressure sensor can be easily attached to a chamber member. Another object of the present invention is to provide a technique capable of reliably ensuring the sensor accuracy required for a pressure sensor.
以下、上記課題を解決するのに適した各手段につき、必要に応じて作用効果等を付記しつつ説明する。 Hereinafter, each means suitable for solving the above-described problems will be described with additional effects and the like as necessary.
1.車両バンパ内に配設され且つチャンバ空間が内部に形成されるチャンバ部材と、前記チャンバ空間内の圧力を検出する圧力センサとを有し、該圧力センサの受圧部を前記チャンバ部材に設けられた取り付け穴から前記チャンバ空間内に差し込んで取り付け、前記圧力センサの検出結果に基づいて前記車両バンパへの衝突を検知するように構成された車両用衝突検知装置において、
少なくとも前記取り付け穴と前記受圧部との間に隙間を設けたことを特徴とする車両用衝突検知装置。
1. A chamber member disposed in the vehicle bumper and having a chamber space formed therein; and a pressure sensor configured to detect a pressure in the chamber space, and a pressure receiving portion of the pressure sensor is provided in the chamber member. In the vehicle collision detection device configured to be inserted by being inserted into the chamber space from an attachment hole and configured to detect a collision with the vehicle bumper based on a detection result of the pressure sensor,
A vehicle collision detection device, wherein a gap is provided at least between the attachment hole and the pressure receiving portion.
手段1によれば、圧力センサの受圧部と取り付け穴との間に隙間を設けたので、圧力センサのチャンバ部材への取り付けが容易な上に、当該隙間を介してチャンバ空間内が外部と等圧に維持され易くなることから、圧力センサに必要とするセンサ精度を確保することが可能である。
According to the
2.前記隙間の面積が、前記チャンバ空間の体積に対し、前記圧力センサの目標とするセンサ精度との関係で規定される所定の関係式で画される閾値内に設定されることを特徴とする手段1に記載の車両用衝突検知装置。
2. The area of the gap is set within a threshold defined by a predetermined relational expression defined in relation to the target sensor accuracy of the pressure sensor with respect to the volume of the chamber space. The vehicle collision detection device according to
手段2によれば、上記隙間が大きすぎることで圧力センサの目標とするセンサ精度を確保し難くなることを防止することができ、隙間の面積が目標とするセンサ精度との関係で規定される所定の関係式で画されることから目標とするセンサ精度を確保するのが容易になる。
According to the
3.前記所定の関係式は、前記チャンバ空間の体積に対する速度バラツキと隙間の面積との関係から導かれることを特徴とする手段2に記載の車両用衝突検知装置。
3. The vehicle collision detection device according to
手段3によれば、圧力センサのセンサ精度の速度によるバラツキを防止でき、隙間面積の最適化により良好なセンサ精度を得ることができる。
According to the
4.前記チャンバ部材には、前記取り付け穴以外に前記チャンバ空間と外部とを連通させる他の穴が設けられ、当該他の穴の面積と前記隙間の面積とを合わせた合計面積が、前記チャンバ空間の体積に対し、前記閾値内に設定されることを特徴とする手段2又は3の何れか一つに記載の車両用衝突検知装置。
4). In addition to the mounting holes, the chamber member is provided with other holes that allow the chamber space to communicate with the outside, and the total area of the other holes and the gap is the total area of the chamber space. 4. The vehicle collision detection device according to any one of
手段4によれば、他の穴を含むチャンバ空間と外部とを連通させる穴(隙間)全体の面積の最適化により良好なセンサ精度を得ることができる。
According to the
5.前記他の穴は、前記チャンバ部材の水抜き穴であることを特徴とする手段3に記載の車両用衝突検知装置。
5). 4. The vehicle collision detection device according to
手段5によれば、水抜き穴を含むチャンバ空間と外部とを連通させる穴(隙間)全体の面積の最適化により良好なセンサ精度を得ることができる。
According to the
6.前記隙間の面積又は前記合計面積が、0.1mm2以上300mm2以下に設定されることを特徴とする手段2乃至5の何れか一つに記載の車両用衝突検知装置。
6). The vehicle collision detection device according to any one of
手段6によれば、圧力センサのチャンバ部材への取り付けが容易な上に、例えば、速度バラツキを±10%以下に抑えた良好なセンサ精度を得ることができる。
According to the
以下、本発明の車両用衝突検知装置を具体化した実施形態について図面を参照しつつ具体的に説明する。図1は、車両バンパ内に配置された本発明の実施形態の車両用衝突検知装置を車幅方向から見た断面図である。図2は、本実施形態の車両用衝突検知装置において、圧力センサをチャンバ部材へ取り付けた状態の概略を示す図である。尚、図2では、圧力センサ7のセンサ素子を有する本体が固定されるバンパレインフォースメント2等は省略されている。また、図示説明の便宜上、圧力センサ7とチャンバ部材1の向きや形状は図1とは異なるものにしている。
Hereinafter, an embodiment in which a vehicle collision detection device of the present invention is embodied will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view of a vehicle collision detection device according to an embodiment of the present invention disposed in a vehicle bumper as viewed from the vehicle width direction. FIG. 2 is a diagram schematically illustrating a state in which the pressure sensor is attached to the chamber member in the vehicle collision detection device of the present embodiment. In FIG. 2, the
本発明の実施形態に係る車両用衝突検知装置は、図1及び図2に示すように、車両バンパ内に配設され且つチャンバ空間11aが内部に形成されるチャンバ部材1と、チャンバ空間11a内の圧力を検出する圧力センサ7とを有し、圧力センサ7の受圧部としての圧力導入管7a(以後、受圧部7aと呼ぶことがある)をチャンバ部材1に設けられた取り付け穴11h(図2参照)からチャンバ空間11a内に差し込んで取り付け、圧力センサ7の検出結果に基づいて車両バンパへの衝突を検知する。そして、本実施形態は、図2に示すように、少なくともチャンバ部材1の取り付け穴11hと圧力センサ7の受圧部7aとの間に隙間Sを設けたことを特徴としている。
As shown in FIGS. 1 and 2, the vehicle collision detection apparatus according to the embodiment of the present invention includes a
以下、まず、車両バンパ全体の概略、次に、圧力センサ7のチャンバ部材1への取り付け構造について説明する。
Hereinafter, first, an outline of the entire vehicle bumper, and then a structure for attaching the
図1に示すように、車両バンパ内(バンパカバー4の車両後方側)にはバンパレインフォースメント2とチャンバ部材1とアブソーバ3とを備える。チャンバ部材1とアブソーバ3とはバンパレインフォースメント2の車両前方側に配設されており、チャンバ部材1の下方に隣接してアブソーバ3が配設されている。バンパレインフォースメント2の車両後方側には車両のフロントサイドメンバ5が隣接する。
As shown in FIG. 1, a
チャンバ部材1は、車両バンパ内でバンパレインフォースメント2の車両前方側に配設され、バンパレインフォースメント2に略沿った形状の本体部11の内部にはチャンバ空間11aが形成されている。チャンバ部材1は、全体が樹脂材料(例えば、低密度ポリエチレン)を用いたブロー成型によって一体的に形成されている。
The
バンパレインフォースメント2は、バンパカバー4と対向する面を有する略帯状の金属製フレームであり、車両の幅方向に沿った状態で車両のフロントサイドメンバ5に固定される。バンパレインフォースメント2は、図1に示すように、内部に梁が設けられた目の字状の断面構造を有している。
The
アブソーバ3は、バンパレインフォースメント2の下方側に固定され、バンパカバー4の内壁面に対向する表面は、バンパカバー4の内周面に沿って湾曲した湾曲形状に形成されている(図中では断面長方形に略している)。アブソーバ3は、衝突による衝撃を自身の変形で吸収させるため、発泡樹脂で形成されるのが一般的である。
The
圧力センサ7は、例えば、気体の圧力変化を検出可能な公知のセンサであり、センサ素子へ圧力を導入する受圧部としての圧力導入管7aを有している。圧力センサ7は、センサ素子を有する本体がバンパレインフォースメント2内に固定され、圧力導入管(受圧部)7aの先端側は、チャンバ部材1のチャンバ空間11a内に差し込まれている。
The
バンパレインフォースメント2の車両前方側に配置される、チャンバ部材1は、衝突の衝撃による自身の変形を内部に設けられたチャンバ空間11aの歪に伴う圧力変動として圧力センサ7に伝達する。圧力センサ7は、チャンバ空間11a内に差し込まれた受圧部7aを介してチャンバ空間11aより導入した空気の圧力変動を検知し、例えば、図示しない判定回路を備えた制御回路に伝達する。そして、制御回路は、圧力センサ7から入力される圧力検出信号に基づいて、車両バンパへの歩行者等の衝突の有無を検出する。
The
上述したように、チャンバ部材1は本体11の内部にチャンバ空間11aが形成されており、このチャンバ空間11aには、気体(空気)が封入されている。このチャンバ空間11a内の気体は、デフォルト状態では、大気圧と等圧に維持されているのが理想であり、そのためにはチャンバ空間11aは外部と連通されているのが望ましい。
As described above, the
ここで、上述したように、圧力センサ7の受圧部7aはチャンバ部材1の取り付け穴11hからチャンバ空間11a内に差し込まれているので、本実施形態の車両用衝突検知装置では、図2に示すように、この差し込まれた受圧部7aと取り付け穴11hとの間に隙間Sを設けるようにした。これにより、大気圧とチャンバ空間11a内の圧力を等圧にしておくことができる。また、圧力センサ7のチャンバ部材1への組み付けが容易になるという構造上の効果も得られる。
Here, as described above, since the
本発明者は、圧力センサ7の受圧部7aとチャンバ部材1の取り付け穴11hとの間に隙間Sを設けることで以上のような効果が得られる反面、隙間Sの面積が大きすぎると、衝突速度の変化(高低)によりチャンバ空間11a内の圧力変化に違い(バラツキ)が出すぎて圧力センサ7のセンサ精度が低下することを見出した。
The present inventor can obtain the above effect by providing the gap S between the
図3は、隙間面積の大小と圧力変化量の速度バラツキとの関係を示す図であり、(a)は、その隙間面積が小さい場合、(b)は、その隙間面積が大きい場合をそれぞれ示す。図3(a)に示すように、隙間無しの場合に比べて隙間面積が小さい場合には、衝突速度の高低によるチャンバ空間内の圧力変化量のバラツキは小さいが、同図(b)に示すように、隙間無しの場合に比べて隙間面積が大きくなる場合には、衝突速度の高低によるチャンバ空間内の圧力変化量のバラツキが大きくなる。これは、隙間面積が大きいと、隙間からの漏れにより生じる圧力変動も大きくなるからと考えられる。 3A and 3B are diagrams showing the relationship between the size of the gap area and the speed variation of the pressure change amount. FIG. 3A shows a case where the gap area is small, and FIG. 3B shows a case where the gap area is large. . As shown in FIG. 3 (a), when the gap area is smaller than when there is no gap, the variation in the pressure change amount in the chamber space due to the collision speed is small, but shown in FIG. 3 (b). Thus, when the gap area is larger than when there is no gap, the variation in the amount of pressure change in the chamber space due to the level of the collision speed increases. This is considered to be because when the gap area is large, the pressure fluctuation caused by leakage from the gap also increases.
従って、衝突速度が異なるときの圧力値の違いが隙間面積により異なり、隙間面積が小さい程、衝突速度の違いによる変動を抑えることができる。 Therefore, the difference in pressure value when the collision speed is different differs depending on the gap area, and the smaller the gap area, the more the fluctuation due to the difference in the collision speed can be suppressed.
このように、圧力センサ7のチャンバ部材1への取り付け部、即ち、圧力センサ7の受圧部7aとチャンバ部材1の取り付け穴11hとの間に隙間Sを設けることで、圧力センサ7のチャンバ部材1への組み付けが容易になる。また、このとき隙間Sの面積を小さくすることにより隙間Sからの漏れにより生じる圧力変動を抑えて圧力センサ7のセンサ精度の低下を防止することが可能である。
Thus, the chamber member of the
そこで、本発明者は、隙間Sの面積をどの程度の大きさに留めれば、衝突速度による圧力変化量の違い(速度バラツキ)を抑えて圧力センサ7の目標とするセンサ精度を確保できるのか、を実験により確認し、チャンバ部材1に形成される隙間Sの面積の最適化を企図した。
In view of this, the present inventor is able to secure the target sensor accuracy of the
図4は、上記の実験により得られたチャンバ体積の違いと圧力及び隙間Sの面積の関係をグラフに表したものであり、同図(a)は、チャンバ体積が比較的小さい場合の圧力及び隙間面積の関係、同図(b)は、チャンバ体積が比較的大きい場合の圧力及び隙間面積の関係、をそれぞれ示している。 FIG. 4 is a graph showing the relationship between the difference in chamber volume and the pressure and the area of the gap S obtained by the above-described experiment. FIG. The relationship between the gap areas, FIG. 5B, shows the relationship between the pressure and the gap area when the chamber volume is relatively large.
図4(a)、(b)に示すように、本実験では、チャンバ体積411[cm3]と1961[cm3]の2つのチャンバ部材を用い、どちら同じ衝突エネルギ120[J]を衝突速度をそれぞれ25km/h、55km/hと変えて印加した。 As shown in FIGS. 4A and 4B, in this experiment, two chamber members having a chamber volume of 411 [cm 3 ] and 1961 [cm 3 ] are used, and the same collision energy of 120 [J] is applied to the collision velocity. Were applied at 25 km / h and 55 km / h, respectively.
図4(a)(b)に示すように、チャンバ体積411[cm3]と1961[cm3]のいずれのチャンバ部材においても、隙間面積が大きくなればなるほど検出する圧力が低下していくだけでなく、衝突速度25km/hの場合と55km/hの場合との間で、グラフの縦軸における圧力変化量の差(速度バラツキ)も大きくなることを確認することができた。即ち、図4(a)(b)においては、隙間面積が約44[mm2]のときの衝突速度25km/hの場合(下側のプロット)と55km/hの場合(上側のプロット)間の圧力変化量の差(速度バラツキ)を矢印を用いて示したが、この矢印で示す間隔は隙間面積が小さいほど狭く大きいほど広くなることがグラフから容易に看て取れる。 As shown in FIGS. 4 (a) and 4 (b), in both chamber members of chamber volumes 411 [cm 3 ] and 1961 [cm 3 ], the detected pressure only decreases as the gap area increases. In addition, it was confirmed that the difference (speed variation) in the pressure change amount on the vertical axis of the graph also increased between the collision speed of 25 km / h and 55 km / h. That is, in FIGS. 4 (a) and 4 (b), when the clearance area is about 44 [mm 2 ], the collision speed is 25 km / h (lower plot) and between 55 km / h (upper plot). The difference in the pressure change amount (speed variation) is shown by using an arrow, but it can be easily seen from the graph that the interval indicated by this arrow becomes narrower and larger as the gap area becomes smaller.
従って、チャンバ体積による違いはあるものの、隙間面積を小さくすることにより速度バラツキによるセンサ精度の低下を減少させることが可能なことが分かった。 Therefore, although there is a difference depending on the chamber volume, it has been found that a decrease in sensor accuracy due to speed variation can be reduced by reducing the gap area.
次に、本発明者は、図4(a)(b)に示した実験結果を基にチャンバ体積毎の速度バラツキと隙間面積の関係を算出した。続いて、算出した速度バラツキと隙間面積の関係から目標とする速度バラツキに対するチャンバ体積と隙間面積の関係を求めた。 Next, the present inventor calculated the relationship between the speed variation for each chamber volume and the gap area based on the experimental results shown in FIGS. Subsequently, the relationship between the chamber volume and the gap area with respect to the target speed variation was obtained from the relationship between the calculated speed variation and the gap area.
図5(a)は、チャンバ体積毎の速度バラツキと隙間面積の関係を示すグラフ、同図(b)は、目標とする速度バラツキに対するチャンバ体積と隙間面積の関係を示すグラフである。 FIG. 5A is a graph showing the relationship between the speed variation and the gap area for each chamber volume, and FIG. 5B is a graph showing the relationship between the chamber volume and the gap area with respect to the target speed variation.
図5(a)に示すように、チャンバ体積411[cm3]と1961[cm3]のいずれの場合でも、隙間面積が大きくなると速度バラツキも線形に増加していくが、チャンバ体積が小さい場合(411[cm3]の場合)の方が速度バラツキの増加も急峻となる。同図に表した1次関数のグラフから、速度バラツキをy、隙間面積[mm2]をxとしたとき、チャンバ体積411[cm3]の場合は、y=0.0019x+0.0103という関係式(1次式)、チャンバ体積1961[cm3]の場合は、y=0.0008x+0.006という関係式(1次式)が、それぞれ得られた。 As shown in FIG. 5A, in both cases of the chamber volume 411 [cm 3 ] and 1961 [cm 3 ], the speed variation increases linearly as the gap area increases, but the chamber volume is small. In the case of 411 [cm 3 ], the increase in speed variation becomes steeper. From the graph of the linear function shown in the same figure, when the velocity variation is y and the gap area [mm 2 ] is x, the relational expression y = 0.0001x + 0.0103 in the case of the chamber volume 411 [cm 3 ]. In the case of (primary expression) and chamber volume 1961 [cm 3 ], the relational expression (primary expression) y = 0.0008x + 0.006 was obtained.
次に、図5(a)(b)に示すように、まず、速度バラツキが0.06(±6%)の時のチャンバ体積411[cm3]に対する隙間面積約25[mm2]を図5(b)にプロットし、次に、速度バラツキが0.06(±6%)の時のチャンバ体積1961[cm3]に対する隙間面積約68[mm2]を同図にプロットし、両方のプロット点を直線でつなぐという方法により、速度バラツキが0.06(±6%)の時のチャンバ体積と隙間面積の関係が求められた。同様に、速度バラツキが0.1(±10%)の時のチャンバ体積411[cm3]に対する隙間面積約47[mm2]を図5(b)にプロットし、次に、速度バラツキが0.1(±10%)の時のチャンバ体積1961[cm3]に対する隙間面積約118[mm2]を同図にプロットし、両方のプロット点を直線でつなぐという方法により、速度バラツキが0.1(±10%)の時のチャンバ体積と隙間面積の関係が求められた。更に、同様の方法により、速度バラツキが0.02(±2%)、0.04(±4%)、0.08(±8%)の時のチャンバ体積と隙間面積の関係も求め、これらもそれぞれ同図に示した。 Next, as shown in FIGS. 5A and 5B, first, a clearance area of about 25 [mm 2 ] with respect to the chamber volume 411 [cm 3 ] when the speed variation is 0.06 (± 6%) is shown. 5 (b), and then plot the gap area of about 68 [mm 2 ] against the chamber volume 1961 [cm 3 ] when the speed variation is 0.06 (± 6%). The relationship between the chamber volume and the gap area when the speed variation was 0.06 (± 6%) was obtained by connecting the plotted points with straight lines. Similarly, the gap area of about 47 [mm 2 ] against the chamber volume 411 [cm 3 ] when the speed variation is 0.1 (± 10%) is plotted in FIG. 5B, and then the speed variation is 0. By plotting a gap area of about 118 [mm 2 ] against a chamber volume of 1961 [cm 3 ] at 1 (± 10%) in the same figure and connecting both plot points with a straight line, the speed variation is 0. The relationship between the chamber volume and the gap area at 1 (± 10%) was determined. Furthermore, by the same method, the relationship between the chamber volume and the clearance area when the speed variation is 0.02 (± 2%), 0.04 (± 4%), 0.08 (± 8%) is also obtained. Are also shown in the figure.
図5(b)に示すように、0.02(±2%)から0.1(±10%)までのいずれの速度バラツキの場合でも、チャンバ体積が小さい程、隙間面積も小さくしなければならないが、より速度バラツキを許容できるのであれば各チャンバ体積に対する隙間面積もその分大きくとれることが分かった。同図に表した1次関数のグラフから、隙間面積[mm2]をy、チャンバ体積[cm3]をxとしたとき、速度バラツキが0.1(±10%)の場合は、y=0.0454x+28.57という関係式(1次式)、速度バラツキが0.08(±8%)の場合は、y=0.036x+21.882という関係式(1次式)、速度バラツキが0.06(±6%)の場合は、y=0.0267x+15.194という関係式(1次式)、速度バラツキが0.04(±4%)の場合は、y=0.0173x+8.506という関係式(1次式)、速度バラツキが0.02(±2%)の場合は、y=0.008x+1.8182という関係式(1次式)、がそれぞれ得られた。 As shown in FIG. 5 (b), in any speed variation from 0.02 (± 2%) to 0.1 (± 10%), the smaller the chamber volume, the smaller the gap area must be. However, it has been found that if the speed variation can be tolerated, the gap area for each chamber volume can be increased accordingly. From the graph of the linear function shown in the figure, when the gap area [mm 2 ] is y and the chamber volume [cm 3 ] is x, when the speed variation is 0.1 (± 10%), y = When the relational expression (primary expression) is 0.0454x + 28.57 and the speed variation is 0.08 (± 8%), the relational expression (primary expression) y = 0.036x + 21.882 and the speed variation is 0.8. In the case of 06 (± 6%), the relational expression (primary expression) y = 0.0267x + 15.194, and in the case where the speed variation is 0.04 (± 4%), the relation y = 0.0173x + 8.506 When the equation (primary equation) and the speed variation were 0.02 (± 2%), the relational equation (primary equation) y = 0.008x + 1.8182 was obtained.
図5(b)に示した結果から、例えば、目標とするセンサ精度として、速度バラツキを0.1(±10%)以内に抑えたい場合には、各チャンバ体積[cm3]に対し、各隙間面積[mm2]をy=0.0454x+28.57という関係式(1次式)で得られる閾値(面積値)以内に設定すれば良い。例えば、許容する速度バラツキが±10%ならチャンバ体積2000cm3 の時に隙間面積は120mm2近くまで大きくできる。 From the result shown in FIG. 5 (b), for example, when it is desired to keep the speed variation within 0.1 (± 10%) as the target sensor accuracy, for each chamber volume [cm 3 ], What is necessary is just to set clearance gap area [mm < 2 >] within the threshold value (area value) obtained by the relational expression (primary expression) of y = 0.0454x + 28.57. For example, if the allowable speed variation is ± 10%, the gap area can be increased to nearly 120 mm 2 when the chamber volume is 2000 cm 3 .
一方、例えば、目標とするセンサ精度として、速度バラツキを0.02(±2%)以内に抑えたい場合には、各チャンバ体積[cm3]に対し、各隙間面積[mm2]をy=0.008x+1.8182という関係式(1次式)で得られる閾値(面積値)以内に設定すれば良い。例えば、許容する速度バラツキが±2%ならチャンバ体積2000cm3 の時に隙間面積は20mm2より小さくしなければならない。 On the other hand, for example, when it is desired to suppress the speed variation within 0.02 (± 2%) as the target sensor accuracy, each gap area [mm 2 ] is set to y = y for each chamber volume [cm 3 ]. What is necessary is just to set within the threshold value (area value) obtained by the relational expression (primary expression) of 0.008x + 1.8182. For example, if the allowable speed variation is ± 2%, the gap area must be smaller than 20 mm 2 when the chamber volume is 2000 cm 3 .
目標とするセンサ精度としての速度バラツキを0.04(±4%)、0.06(±6%)、0.08(±8%)以内に抑えたい場合も、同様に上記それぞれの関係式(1次式)で得られる閾値(面積値)以内に設定すれば良い。 Similarly, if you want to keep the speed variation as the target sensor accuracy within 0.04 (± 4%), 0.06 (± 6%), and 0.08 (± 8%) What is necessary is just to set within the threshold value (area value) obtained by (primary formula).
尚、実際には、速度によるバラツキは、車種ごとに搭載される圧力センサによっても違うが、例えば、±10%以下に抑えるのが望ましい。一方、通常チャンバ体積は6000cm3前後 になるので、隙間Sの面積を、例えば、300mm2以内に抑えるのが好適である。一方、本実施形態では、少なくとも取り付け穴11hと受圧部7aとの間に隙間Sを設けるので、隙間Sの面積は0[ゼロ]であってはならないが、実際には、例えば、0.1mm2あれば、圧力センサ7のチャンバ部材1への組み付けが容易になるという作業上の効果が得られる上に、速度バラツキを極力小さくすることも可能である。隙間Sを考える場合、下限は、本実施形態における最低限の隙間である0.1mm2以上とする他に、機械工学上要求される公差を基準に設定することも勿論可能である。
Actually, the variation due to the speed varies depending on the pressure sensor mounted for each vehicle type, but it is desirable to suppress it to ± 10% or less, for example. On the other hand, the normal chamber volume is around 6000 cm 3 Therefore, it is preferable to keep the area of the gap S within, for example, 300 mm 2 . On the other hand, in this embodiment, since the clearance S is provided at least between the
ところで、チャンバ部材1には、上述した取り付け穴11h以外にチャンバ空間11aと外部とを連通させる他の穴として、水抜き穴等が設けられることがある。そこで、本実施形態では、当該他の穴の面積と上述した隙間面積とを合わせた合計面積が、チャンバ体積に対し、上述した閾値内に設定されるようにした。
By the way, the
図6は、圧力センサ7の受圧部7aと取り付け穴11hとの隙間Sに加え、更にチャンバ部材1に水抜き穴Whを設けた構造の概略を示す断面図である。
FIG. 6 is a cross-sectional view schematically showing a structure in which a water drain hole Wh is provided in the
図6に示すように、本実施形態では、チャンバ部材1には、上述した取り付け穴11hの他に、チャンバ部材1の底部に水抜き穴Whが形成されている。この水抜き穴Whは、チャンバ部材1内に水が貯留してチャンバ空間11a内の空気の圧力変動に影響を及ぼすのを防止するため等により設けられている。
As shown in FIG. 6, in the present embodiment, the
この水抜き穴Whからの漏れにより生じる圧力変動によっても衝突速度の高低によるチャンバ空間11a内の圧力変化量のバラツキを生じることが明らかである。そこで、本実施形態では、この水抜き穴Whの面積と図2に示した隙間Sの面積とを合わせた合計面積が、チャンバ空間11aの体積に対し、各チャンバ体積に対し、上述した所定の関係式で画される閾値内に設定されるようにした。
It is clear that the variation in the pressure change in the
これにより、このような水抜き穴Wh等他の穴が設けられる場合にも、当該他の穴を考慮してチャンバ部材1の取り付け穴11hと圧力センサ7の受圧部7aとの間の隙間Sの面積を設定することができる。また、水抜き穴Wh等当該他の穴の面積もセンサ精度を低下させることなく設定することが可能となる。更に、本実施形態では、チャンバ部材1に取り付け穴11hの他に水抜き穴Whを1個だけ形成しているが、目標とするセンサ精度を得るために、上述した取り付け穴11hと受圧部7aとの間の隙間S以外にどの程度の面積の水抜き穴をいくつまで形成できるのか、という検討を行うことも可能である。
尚、上述したように、実際には、速度バラツキを±10%以下に抑えるのが望ましく、一方、通常チャンバ体積は6000cm3前後 になるので、水抜き穴Whの面積と隙間Sの面積とを合わせた合計面積の上限を、例えば、300mm2以内に抑えるのが好適である。一方、これら合計面積の下限は、前述した理由により、0.1mm2としても良い。
Thereby, even when other holes such as the drain hole Wh are provided, the clearance S between the mounting
As described above, in practice, it is desirable to keep the speed variation within ± 10%, while the normal chamber volume is around 6000 cm 3. Therefore, it is preferable to keep the upper limit of the total area, which is the sum of the area of the drain hole Wh and the area of the gap S, within 300 mm 2 , for example. On the other hand, the lower limit of the total area may be 0.1 mm 2 for the reason described above.
以上のように、本実施形態によれば、チャンバ部材1の取り付け穴11hと圧力センサ7の受圧部7aとの間に隙間Sを設けたので、圧力センサ7のチャンバ部材1への取り付けが容易な上に、当該隙間Sを介してチャンバ空間11a内が外部と等圧に維持され易くなることから、圧力センサ7に必要とするセンサ精度を確保することが可能である。
As described above, according to the present embodiment, since the gap S is provided between the mounting
また、隙間Sの面積が、各チャンバ空間11aの体積に対し、圧力センサ7の目標とするセンサ精度との関係で規定される上述した所定の関係式で画される閾値内に設定されるので、圧力センサ7の目標とするセンサ精度を確保するのが容易になる。
In addition, the area of the gap S is set within the threshold value defined by the above-described predetermined relational expression defined in relation to the target sensor accuracy of the
そして、本実施形態では、上述した所定の関係式は、チャンバ空間11aの体積に対する速度バラツキと隙間Sの面積との関係から導かれるので、圧力センサ7のセンサ精度の速度によるバラツキを防止でき、隙間Sの面積の最適化により良好なセンサ精度を得ることができる。
In the present embodiment, since the above-described predetermined relational expression is derived from the relationship between the speed variation with respect to the volume of the
更に、チャンバ部材1には、取り付け穴11h以外にチャンバ空間11aと外部とを連通させる他の穴として、水抜き穴Whが設けられ、当該水抜き穴Whの面積と隙間Sの面積とを合わせた合計面積が、各チャンバ空間11aの体積に対し、上述した閾値内に設定されるので、他の穴としての水抜き穴Whを含むチャンバ空間11aと外部とを連通させる穴(隙間)全体の面積の最適化により良好なセンサ精度を得ることができる。
Further, the
このように、上述した実験により得られた所定の関係式で画される閾値は、圧力センサ7のチャンバ部材1への取り付け口の隙間だけではなく、他の穴を合わせて適用される。例えば、圧力センサ7のチャンバ部材1への取り付け口の隙間は小さくしておいて、他の穴を合わせて当該閾値内に設定することができる。即ち、圧力センサ7のチャンバ部材1への取り付け口の隙間を当該閾値以内に設定しても良いし、他の穴もあるなら、圧力センサ7の取り付け口の隙間は小さくしておいて、他の穴を合わせて当該閾値以内に設定すれば、目標とする速度バラツキ、例えば、±10%以下を得ることが可能になる。
Thus, the threshold value defined by the predetermined relational expression obtained by the above-described experiment is applied not only to the clearance of the attachment port of the
即ち、本実施形態によれば、上記隙間Sの面積又は上記合計面積を0.1mm2以上300mm2以下に設定することから、圧力センサ7のチャンバ部材1への取り付けが容易な上に、速度バラツキを±10%以下に抑えた良好なセンサ精度を圧力センサ7に得ることができる。
That is, according to the present embodiment, since the area of the gap S or the total area is set to 0.1 mm 2 or more and 300 mm 2 or less, the
以上のように、本実施形態によれば、車両バンパ内に配設されたチャンバ部材1内の圧力変化を検出する車両用衝突検知装置において、圧力センサ7のチャンバ部材1への取り付けが容易な上に、圧力センサ7に必要とするセンサ精度を確実に確保することが可能となる。
As described above, according to this embodiment, in the vehicle collision detection device that detects a pressure change in the
尚、本発明は上述した実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲で種々の変更を施すことが可能である。例えば、隙間Sと水抜き穴Whが形成される例を示したが、これら以外の穴をチャンバ部材に設けても良いのは勿論であり、その場合、当該穴の面積を合わせた合計面積が、上述した所定の関係式で画される閾値内に設定されるようにすれば良い。 In addition, this invention is not limited to embodiment mentioned above, A various change is possible in the range which does not deviate from the main point of this invention. For example, an example in which the gap S and the drain hole Wh are formed has been shown. Of course, holes other than these may be provided in the chamber member, and in that case, the total area including the areas of the holes is The threshold value is set within the threshold defined by the above-described predetermined relational expression.
1:チャンバ部材
11:本体部
11a:チャンバ空間
2:バンパレインフォースメント
3:アブソーバ
4:バンパカバー
5:フロントサイドメンバ
7:圧力センサ
7a:圧力導入管(受圧部)
11h:取り付け穴
S:隙間
Wh:水抜き穴
1: Chamber member 11:
11h: mounting hole S: gap Wh: drain hole
Claims (6)
少なくとも前記取り付け穴と前記受圧部との間に隙間を設けたことを特徴とする車両用衝突検知装置。 A chamber member disposed in the vehicle bumper and having a chamber space formed therein; and a pressure sensor configured to detect a pressure in the chamber space, and a pressure receiving portion of the pressure sensor is provided in the chamber member. In the vehicle collision detection device configured to be inserted by being inserted into the chamber space from an attachment hole and configured to detect a collision with the vehicle bumper based on a detection result of the pressure sensor,
A vehicle collision detection device, wherein a gap is provided at least between the attachment hole and the pressure receiving portion.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008074454A JP2009227089A (en) | 2008-03-21 | 2008-03-21 | Vehicle collision detecting device |
DE200910012591 DE102009012591A1 (en) | 2008-03-21 | 2009-03-11 | Vehicle collision detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008074454A JP2009227089A (en) | 2008-03-21 | 2008-03-21 | Vehicle collision detecting device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009227089A true JP2009227089A (en) | 2009-10-08 |
Family
ID=40984218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008074454A Pending JP2009227089A (en) | 2008-03-21 | 2008-03-21 | Vehicle collision detecting device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2009227089A (en) |
DE (1) | DE102009012591A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010064546A1 (en) * | 2008-12-02 | 2010-06-10 | トヨタ自動車株式会社 | Collision detecting device and collision detecting method |
JP2012096758A (en) * | 2010-11-05 | 2012-05-24 | Denso Corp | Collision detection apparatus for vehicle |
JP2014073753A (en) * | 2012-10-04 | 2014-04-24 | Denso Corp | Collision detection device for vehicle |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004003938A (en) * | 2002-04-03 | 2004-01-08 | Takata Corp | Collision-detecting device and safety system |
JP2006512245A (en) * | 2002-12-31 | 2006-04-13 | オートリブ ディヴェロプメント アクチボラゲット | Collision detection device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007290689A (en) | 2006-03-29 | 2007-11-08 | Denso Corp | Collision detecting means |
JP5011934B2 (en) | 2006-03-29 | 2012-08-29 | 株式会社デンソー | Collision detection means |
-
2008
- 2008-03-21 JP JP2008074454A patent/JP2009227089A/en active Pending
-
2009
- 2009-03-11 DE DE200910012591 patent/DE102009012591A1/en not_active Ceased
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004003938A (en) * | 2002-04-03 | 2004-01-08 | Takata Corp | Collision-detecting device and safety system |
JP2006512245A (en) * | 2002-12-31 | 2006-04-13 | オートリブ ディヴェロプメント アクチボラゲット | Collision detection device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010064546A1 (en) * | 2008-12-02 | 2010-06-10 | トヨタ自動車株式会社 | Collision detecting device and collision detecting method |
US8978486B2 (en) | 2008-12-02 | 2015-03-17 | Toyota Jidosha Kabushiki Kaisha | Collision detecting device and collision detecting method |
JP2012096758A (en) * | 2010-11-05 | 2012-05-24 | Denso Corp | Collision detection apparatus for vehicle |
JP2014073753A (en) * | 2012-10-04 | 2014-04-24 | Denso Corp | Collision detection device for vehicle |
Also Published As
Publication number | Publication date |
---|---|
DE102009012591A1 (en) | 2009-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4539281B2 (en) | Obstacle discrimination device for vehicle | |
US7768381B2 (en) | Vehicular collision detection apparatus | |
JP6098897B2 (en) | Vehicle collision detection device | |
JP4688849B2 (en) | Collision detection device | |
US9802563B2 (en) | Vehicle front portion structure provided with a pedestrian collision detection sensor | |
JP4492823B2 (en) | Vehicle collision detection device | |
JP4807594B2 (en) | Vehicle collision detection device | |
US20120310484A1 (en) | Collision detecting device for vehicle and occupant protection system having the same | |
JP2010064605A (en) | Collision detection device for vehicle | |
JP2010036660A (en) | Collision protection system for vehicle | |
JP4941773B2 (en) | Vehicle collision detection device | |
JP2009190569A (en) | Collision sensing device for vehicle | |
JP2009227089A (en) | Vehicle collision detecting device | |
US10493933B2 (en) | Collision detection device for vehicle | |
JP6036636B2 (en) | Vehicle collision detection device | |
JP2006272988A (en) | Pedestrian protecting device of vehicle | |
JP5170551B2 (en) | Vehicle collision detection device | |
WO2016075926A1 (en) | Vehicular collision sensing device | |
JP4877295B2 (en) | Vehicle collision detection device | |
JP5056495B2 (en) | Vehicle collision detection device | |
JP2015081070A (en) | Collision detector for vehicle | |
JP4816661B2 (en) | Vehicle collision detection device | |
JP5003636B2 (en) | Vehicle collision detection device | |
JP2011073570A (en) | Collision detection device for vehicle | |
JP2016120867A (en) | Collision detection device for vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090709 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110421 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110426 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110614 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110802 |