JP2009226269A - Filter treatment apparatus - Google Patents

Filter treatment apparatus Download PDF

Info

Publication number
JP2009226269A
JP2009226269A JP2008072475A JP2008072475A JP2009226269A JP 2009226269 A JP2009226269 A JP 2009226269A JP 2008072475 A JP2008072475 A JP 2008072475A JP 2008072475 A JP2008072475 A JP 2008072475A JP 2009226269 A JP2009226269 A JP 2009226269A
Authority
JP
Japan
Prior art keywords
filter
plasma
processing apparatus
filter processing
sterilization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008072475A
Other languages
Japanese (ja)
Other versions
JP5327422B2 (en
Inventor
Shinya Hayashi
信哉 林
Yoshihito Yagyu
義人 柳生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saga University NUC
Institute of National Colleges of Technologies Japan
Original Assignee
Saga University NUC
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saga University NUC, Institute of National Colleges of Technologies Japan filed Critical Saga University NUC
Priority to JP2008072475A priority Critical patent/JP5327422B2/en
Publication of JP2009226269A publication Critical patent/JP2009226269A/en
Application granted granted Critical
Publication of JP5327422B2 publication Critical patent/JP5327422B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a filter treatment apparatus for cleaning or sterilizing a filter filtering flowing fluid with plasma. <P>SOLUTION: The filter treatment apparatus 1 is disposed adjacent to the filter filtering the flowing fluid, and the filter is cleaned and/or sterilized with plasma generated in the filter treatment apparatus 1. This configuration allows sure cleaning and/or sterilization of the filter itself with the filter set in the apparatus, without removing the filter from a body apparatus like an air conditioner or sterilizing apparatus. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は通流する流体を濾過するフィルタを洗浄又は滅菌するフィルタ処理装置に関し、特にフィルタをプラズマにより洗浄又は滅菌するフィルタ処理装置に関するものである。   The present invention relates to a filter processing apparatus for cleaning or sterilizing a filter for filtering a flowing fluid, and more particularly to a filter processing apparatus for cleaning or sterilizing a filter with plasma.

現在、空気調和機、プラズマ滅菌装置には、空気を濾過するフィルタ、また各種液体を供給する装置にはフィルタが設けられ、このフィルタについて洗浄、滅菌等の処理を実行するフィルタ処理装置がある。   Currently, air conditioners and plasma sterilization apparatuses are provided with filters for filtering air, and apparatuses for supplying various liquids are provided with filters, and there are filter processing apparatuses for performing processing such as cleaning and sterilization on the filters.

背景技術として特許文献1に記載のフィルタ処理装置は、空気調和機内に装着される中高性能フィルタを分離させ、この中高性能フィルタに高圧スプレーで薬液を吹付けて洗浄を行う。   As a background art, the filter processing apparatus described in Patent Document 1 separates a medium to high performance filter mounted in an air conditioner, and cleans the medium and high performance filter by spraying a chemical solution with a high pressure spray.

また、他の背景技術として特許文献2に記載のフィルタ処理装置は、空気調和機の室内機に配設されるフィルタを帯状に形成し、この帯状の一端に芯を設けてこの芯にフィルタの汚れた面を巻付け、他端を別のフィルタ芯に巻取り可能に接続する構成である。
特開2006−303040号公報 特開2004−138319号公報
In addition, as another background art, the filter processing apparatus described in Patent Document 2 forms a filter disposed in an indoor unit of an air conditioner in a strip shape, and a core is provided at one end of the strip shape, and the filter is attached to the core. The dirty surface is wound and the other end is connected to another filter core so as to be wound.
JP 2006-303040 A JP 2004-138319 A

前記各背景技術に係るフィルタ処理装置は、いずれも空気調和機に装着されたフィルタを取り外し、又は移動させてフィルタの清浄処理を実行していることから、取り外し等の手間がかかり衛生上好ましくなく、特に病院等の滅菌装置に配設されるフィルタにおいては病原菌等の飛散により極めて危険になるという課題を有する。   Since the filter processing apparatus according to each of the above background arts removes or moves the filter attached to the air conditioner and executes the filter cleaning process, it is troublesome to remove and is not preferable in terms of hygiene. Particularly, a filter disposed in a sterilization apparatus such as a hospital has a problem that it becomes extremely dangerous due to scattering of pathogenic bacteria.

このように、前記空気調和機、滅菌装置の他にプラズマ滅菌装置もしくは空気清浄機に装着されるフィルタはダストやウィルス等を吸着した結果、吸入効率が低下するため、定期的なフィルタの清掃又は交換が必要である。しかしながら、頻繁なフィルタ交換が困難な場合、例えば(1)大量のダストやウィルスを吸引する場合、(2)僻地で使用する場合、(3)危険性の高いウィルスや菌を吸入する場合においては、滅菌器もしくは空気清浄器の内部でフィルタを洗浄・滅菌することが必要となるという課題を有する。   As described above, since the filter attached to the plasma sterilizer or the air purifier in addition to the air conditioner and the sterilizer adsorbs dust, viruses, etc., the suction efficiency is lowered. Replacement is necessary. However, when frequent filter replacement is difficult, for example (1) when a large amount of dust or virus is aspirated, (2) when used in remote areas, (3) when inhaling highly dangerous viruses or bacteria There is a problem that it is necessary to clean and sterilize the filter inside the sterilizer or the air purifier.

現在、フィルタを滅菌する方法としては、高圧蒸気滅菌法とエチレンオキサイドガス滅菌法がある。前者は高圧、高温、高湿度環境下での処理のため、耐熱性、耐漏性のない器具に使用できず、金属であっても素材表面を摩耗するおそれがある。後者はガスの強い毒性と発ガン性が懸念されてほとんど使用されていないという課題を有する。   Currently, there are a high-pressure steam sterilization method and an ethylene oxide gas sterilization method as methods for sterilizing a filter. Since the former is a treatment under a high pressure, high temperature, and high humidity environment, it cannot be used for an instrument having no heat resistance and leakage resistance, and even the metal may be worn on the surface of the material. The latter has a problem that it is hardly used because of concern about strong toxicity and carcinogenicity of gas.

本発明に係るフィルタ処理装置は、通流する流体を濾過するフィルタに対して洗浄及び/又は滅菌するフィルタ処理装置において、前記フィルタに隣接して配設され、プラズマを発生するプラズマ発生処理手段を備え、前記プラズマによりフィルタを洗浄及び/又は滅菌するものである。   The filter processing apparatus according to the present invention is a filter processing apparatus that cleans and / or sterilizes a filter that filters a flowing fluid, and includes a plasma generation processing unit that is disposed adjacent to the filter and generates plasma. And the filter is cleaned and / or sterilized by the plasma.

このように本発明においては、通流する流体を濾過するフィルタに隣接してプラズマ発生手段を配設し、このプラズマ発生手段で発生したプラズマでフィルタを洗浄及び/又は滅菌するようにしているので、空気調和機、滅菌装置等の本体装置からフィルタを取外すことなく機器内部設置した状態でフィルタ自体を確実に洗浄及び/又は滅菌できる。   As described above, in the present invention, the plasma generating means is disposed adjacent to the filter for filtering the flowing fluid, and the filter is cleaned and / or sterilized by the plasma generated by the plasma generating means. In addition, the filter itself can be reliably washed and / or sterilized in a state where it is installed inside the apparatus without removing the filter from the main unit such as an air conditioner or a sterilizer.

本発明に係るフィルタ処理装置は必要に応じて、プラズマ発生手段が、フィルタに対して通流する流体の上流側に配設されるものである。
このように本発明においては、フィルタに対して通流する流体の上流側にプラズマ発生手段を配設するようにしたので、汚染された流体又は汚濁した流体による再汚染及び再汚濁を未然に防止できることとなり、フィルタの上流側から下流側まで全体を洗浄及び滅菌できる。
In the filter processing apparatus according to the present invention, the plasma generating means is disposed on the upstream side of the fluid flowing through the filter as necessary.
As described above, in the present invention, since the plasma generating means is arranged on the upstream side of the fluid flowing through the filter, recontamination and recontamination due to the contaminated fluid or the contaminated fluid are prevented in advance. As a result, the entire filter can be cleaned and sterilized from the upstream side to the downstream side.

本発明に係るフィルタ処理装置は必要に応じて、プラズマ発生手段が、誘導結合プラズマを発生させるものである。   In the filter processing apparatus according to the present invention, the plasma generating means generates inductively coupled plasma as necessary.

このように本発明においては、誘導結合プラズマをプラズマ発生手段により発せさせてフィルタ洗浄及び滅菌を行うことから、簡易な装置構成でプラズマを発生させることができ、このプラズマでフィルタを洗浄及び滅菌できると共に、プラズマにより発生したOH+ラジカル又はO*ラジカルによりフィルタ内部を洗浄及び滅菌できることとなる。 As described above, in the present invention, the inductively coupled plasma is generated by the plasma generating means to perform the filter cleaning and sterilization. Therefore, the plasma can be generated with a simple apparatus configuration, and the filter can be cleaned and sterilized with this plasma. At the same time, the inside of the filter can be cleaned and sterilized by OH + radicals or O * radicals generated by the plasma.

本発明に係るフィルタ処理装置は必要に応じて、プラズマ発生手段が、フィルタに対して通流する流体の上流側に一の電極を配設すると共に、下流側に他の電極を配設して形成され、当該各電極間で容量結合プラズマを発生させるものである。   In the filter processing apparatus according to the present invention, if necessary, the plasma generating means has one electrode arranged upstream of the fluid flowing through the filter and another electrode arranged downstream. It is formed, and capacitively coupled plasma is generated between the electrodes.

このように本発明においては、フィルタに対して通流する流体の上流側に一の電極を配設すると共に、下流側に他の電極を配設してプラズマ発生手段が形成され、この各電極間で容量結合プラズマを発生させることから、上流側に配設された一の電極で発生したプラズマを下流側に配設された他の電極に誘引してフィルタ内を貫通させることできることとなり、プラズマの強力なエッチング作用及び物性変質作用によりフィルタの内部まで確実に洗浄及び滅菌できることとなる。   As described above, in the present invention, one electrode is disposed on the upstream side of the fluid flowing to the filter, and another electrode is disposed on the downstream side to form a plasma generating means. Since the capacitively coupled plasma is generated between the two, the plasma generated by one electrode disposed on the upstream side can be attracted to the other electrode disposed on the downstream side to penetrate the filter. By virtue of the strong etching action and physical property alteration action, the inside of the filter can be reliably cleaned and sterilized.

本発明に係るフィルタ処理装置は必要に応じて、フィルタに対して通流する流体の下流側を上流側よりも低気圧状態とするものである。
このように本発明においては、フィルタに対して通流する流体の下流側を上流側よりも低気圧状態とすることにより、プラズマ及びラジカルをフィルタ内に誘引できることとなり、より一層確実にフィルタの洗浄及び滅菌が可能となる。
The filter processing apparatus which concerns on this invention makes the downstream of the fluid which flows with respect to a filter into a low-pressure state rather than an upstream as needed.
Thus, in the present invention, by setting the downstream side of the fluid flowing through the filter to a lower atmospheric pressure state than the upstream side, plasma and radicals can be attracted into the filter, and the filter can be more reliably cleaned. And sterilization becomes possible.

本発明に係るフィルタ処理装置は必要に応じて、フィルタ及びプラズマ発生手段を収納容器に収納し、当該収納容器内を負圧状態とするものである。
このように本発明においては、前記フィルタ及びプラズマ発生手段を収納容器に収納し、当該収納容器内を負圧状態とすることによりプラズマ発生手段が生成したプラズマを負圧環境下で長時間維持してフィルタ内に誘引できることから、さらに強力にフィルタを洗浄及び滅菌できることとなる。
The filter processing apparatus according to the present invention stores the filter and the plasma generating means in a storage container as necessary, and places the inside of the storage container in a negative pressure state.
Thus, in the present invention, the filter and the plasma generation means are stored in a storage container, and the plasma generated by the plasma generation means is maintained for a long time in a negative pressure environment by placing the inside of the storage container in a negative pressure state. Therefore, the filter can be more strongly cleaned and sterilized.

(本発明の第1の実施形態)
以下、本発明に係る第1の実施形態に係るプラズマ滅菌装置に装着されたフィルタ処理装置を図1に基づいて説明する。この図1は、本実施形態に係るフィルタ処理装置の全体構成図を示す。
(First embodiment of the present invention)
Hereinafter, a filter processing apparatus mounted on a plasma sterilization apparatus according to a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is an overall configuration diagram of a filter processing apparatus according to the present embodiment.

同図において本実施形態に係るフィルタ処理装置1は、プラズマ滅菌装置100の排気管105に接続される密閉容器で形成されるチャンバー10と、このチャンバー10内に収納され、前記プラズマ滅菌装置100から排出される排気を濾過して浄化する菌補集用フィルタ14と、この菌補集用フィルタ14のプラズマ滅菌装置100側上面に対向配設される電極12と、この電極12に高周波電圧を印加する高周波電源13と、前記チャンバー10の排気管16に接続され、チャンバー10内の気体を吸引するロータリーポンプ18とを備える構成である。   In the figure, the filter processing apparatus 1 according to the present embodiment includes a chamber 10 formed of a sealed container connected to an exhaust pipe 105 of the plasma sterilization apparatus 100, and is housed in the chamber 10. A filter 14 for collecting bacteria that purifies the exhausted exhaust by filtering, an electrode 12 that is opposed to the upper surface of the filter 14 for sterilizing the plasma sterilizer 100, and a high-frequency voltage is applied to the electrode 12 The high-frequency power source 13 is connected to the exhaust pipe 16 of the chamber 10, and a rotary pump 18 that sucks the gas in the chamber 10 is provided.

前記チャンバー10は、ガラス等の絶縁材で形成され、前記プラズマ滅菌装置100から供給される酸素O2の流入側(上流側)に配設される絶縁収納部10aと、この絶縁収納部10aと密閉状態に一体に導電材で形成されて、この導電材を接地して構成され、前記供給される酸素O2の流出側(下流側)に配設される導電収納部10bとで構成される。この導電収納部10bは、前記電極12の対向電極として作用し、電極12との間で誘導結合(ICP;Inductively Coupled Plasma)プラズマを発生させて、この誘導結合プラズマ及びこのプラズマより発生するO+ラジカルを菌補集用フィルタ14内に貫通通流させる構成である。 The chamber 10 is formed of an insulating material such as glass, and is provided with an insulating housing portion 10a disposed on the inflow side (upstream side) of oxygen O 2 supplied from the plasma sterilization apparatus 100, and the insulating housing portion 10a. It is formed of a conductive material integrally in a sealed state, and is configured by grounding this conductive material, and includes a conductive storage portion 10b disposed on the outflow side (downstream side) of the supplied oxygen O 2. . The conductive storage portion 10b acts as a counter electrode of the electrode 12, generates inductively coupled plasma (ICP) plasma with the electrode 12, and generates inductively coupled plasma and O + generated from the plasma. In this configuration, the radicals are passed through the filter 14 for collecting bacteria.

前記高周波電源13は、例えば13.56MHzの高周波電流を電極12に供給する。この電極12は、前記菌補集用フィルタ14が絶縁材で形成されている場合に、この菌補集用フィルタ14の上面に密着させた状態で配設され、前記菌補集用フィルタ14で濾過する気体の通流を妨げないようにメッシュ状、渦巻状等の形状とすることが望ましい。このように電極12を菌補集用フィルタ14に密着配設することにより、電極12で発生したプラズマを菌補集用フィルタ14内に極力直接に注入できることとなる。   The high frequency power supply 13 supplies a high frequency current of 13.56 MHz, for example, to the electrode 12. When the filter 14 for collecting bacteria is made of an insulating material, the electrode 12 is disposed in close contact with the upper surface of the filter 14 for collecting bacteria. It is desirable to have a mesh shape, a spiral shape or the like so as not to disturb the flow of the gas to be filtered. In this manner, by arranging the electrode 12 in close contact with the bacteria collecting filter 14, the plasma generated by the electrode 12 can be directly injected into the bacteria collecting filter 14 as much as possible.

前記ロータリーポンプ18は、排気管105に設けられる注入調整バルブ15と、排気管16に設けられる排出調整バルブ17との閉塞状態を制御し、前記ロータリーポンプ18の排気量により負圧状態が調整される。前記注入調整バルブ15及び排出調整バルブ17を全閉にしてロータリーポンプ18により排気するとロータリーポンプ18内は極めて高い真空状態に近く制御できることができる。また、排出調整バルブ17を全閉にし、注入調整バルブ15の開度を、排気バルブ19aの開度より小さくしてロータリーポンプ18を駆動させるとロータリーポンプ18内は弱い低圧状態に制御できることとなる。このようにロータリーポンプ18内の気圧を調整することにより高周波電源13から印加される高周波電圧により電極12で発生するプラズマの存続時間を制御できることとなる。   The rotary pump 18 controls the closed state of the injection adjustment valve 15 provided in the exhaust pipe 105 and the discharge adjustment valve 17 provided in the exhaust pipe 16, and the negative pressure state is adjusted by the exhaust amount of the rotary pump 18. The When the injection adjustment valve 15 and the discharge adjustment valve 17 are fully closed and evacuated by the rotary pump 18, the inside of the rotary pump 18 can be controlled close to a very high vacuum state. Further, when the discharge adjustment valve 17 is fully closed and the opening of the injection adjustment valve 15 is made smaller than the opening of the exhaust valve 19a to drive the rotary pump 18, the inside of the rotary pump 18 can be controlled to a weak low pressure state. . In this way, by adjusting the atmospheric pressure in the rotary pump 18, the lifetime of the plasma generated at the electrode 12 by the high frequency voltage applied from the high frequency power supply 13 can be controlled.

また、前記プラズマ滅菌装置100は、滅菌対象物200を収納し、密閉容器で形成される滅菌チャンバー101と、この滅菌チャンバー101内に配設される電極102と、この電極102に高周波電圧を印加する高周波電源103と、前記滅菌チャンバー101内に酸素O2を供給する酸素ボンベ104とを備える構成である。この滅菌チャンバー101内の気圧は、前記排気管105、チャンバー10、排気管16及び排気管19を介してロータリーポンプ18の排出により調整される。 The plasma sterilization apparatus 100 houses a sterilization target 200, a sterilization chamber 101 formed of a sealed container, an electrode 102 disposed in the sterilization chamber 101, and a high-frequency voltage applied to the electrode 102. The high-frequency power source 103 for performing the above operation and the oxygen cylinder 104 for supplying oxygen O 2 into the sterilization chamber 101 are provided. The atmospheric pressure in the sterilization chamber 101 is adjusted by discharging the rotary pump 18 through the exhaust pipe 105, the chamber 10, the exhaust pipe 16 and the exhaust pipe 19.

次に、前記構成に基づく本実施形態に係るフィルタ処理装置の動作について説明する。まず、プラズマ滅菌装置100により滅菌対象物200の滅菌処理を実行する際に、この処理当初に酸素ボンベ104から酸素O2が供給され、滅菌対象物200に付着等した細菌等がこの酸素O2の流入と共に排気管105を介して排出され、この排出された細菌等が菌補集用フィルタ14に濾過されて捕捉される。 Next, the operation of the filter processing apparatus according to this embodiment based on the above configuration will be described. First, when the sterilization process of the sterilization target 200 is performed by the plasma sterilization apparatus 100, oxygen O 2 is supplied from the oxygen cylinder 104 at the beginning of the process, and bacteria or the like adhering to the sterilization target 200 become oxygen O 2. Is discharged through the exhaust pipe 105, and the discharged bacteria and the like are filtered and captured by the filter 14 for collecting bacteria.

この菌補集用フィルタ14に細菌等が捕捉された状態で、高周波電源13から供給される高周波電流により電極12で誘導結合プラズマが発生し、この誘導結合プラズマにより前記細菌等を滅菌し、菌補集用フィルタ14を洗浄できる。   In a state where bacteria and the like are captured by the filter 14 for collecting bacteria, inductively coupled plasma is generated at the electrode 12 by a high frequency current supplied from the high frequency power source 13, and the bacteria are sterilized by the inductively coupled plasma. The collection filter 14 can be cleaned.

前記滅菌対象物200及び菌補集用フィルタ14を滅菌、洗浄する際に、プラズマ滅菌装置100の滅菌チャンバー101及びフィルタ処理装置1のチャンバー10は、共にロータリーポンプ18により負圧状態に維持されるように注入調整バルブ15、排出調整バルブ17及び排気バルブ19aの開度が調整される。   When sterilizing and cleaning the sterilization target 200 and the bacteria collection filter 14, the sterilization chamber 101 of the plasma sterilization apparatus 100 and the chamber 10 of the filter processing apparatus 1 are both maintained in a negative pressure state by the rotary pump 18. Thus, the opening degree of the injection adjusting valve 15, the discharge adjusting valve 17 and the exhaust valve 19a is adjusted.

(本発明の第2の実施形態)
以下、本発明に係る第2の実施形態に係るフィルタ処理装置を図2に基づいて説明する。この図2は、本実施形態に係るフィルタ処理装置の要部概略構成図を示す。
同図において本実施形態に係るフィルタ処理装置1は、前記第1の実施形態と同様にチャンバー11(図1の10に相当)、電極12a、12b(図1の12に相当)、交流高電圧電源13a(図1の13に相当)、菌補集用フィルタ14及びロータリーポンプ18を共通して備え、この電極12a、12bとチャンバー11との構成を異にする。
(Second embodiment of the present invention)
Hereinafter, a filter processing apparatus according to a second embodiment of the present invention will be described with reference to FIG. FIG. 2 is a schematic configuration diagram of a main part of the filter processing apparatus according to the present embodiment.
In the figure, the filter processing apparatus 1 according to the present embodiment is similar to the first embodiment in that a chamber 11 (corresponding to 10 in FIG. 1), electrodes 12a and 12b (corresponding to 12 in FIG. 1), AC high voltage The power supply 13a (corresponding to 13 in FIG. 1), the bacteria collection filter 14 and the rotary pump 18 are provided in common, and the configurations of the electrodes 12a and 12b and the chamber 11 are different.

この電極12a、12bは、菌補集用フィルタ14の上・下面に各々所定間隔だけ離隔して対向配設され、高周波電源13から高周波電圧が印加されると容量供給プラズマ(CCP; capacitively coupled plasma)を発生させる構成である。   The electrodes 12a and 12b are arranged opposite to each other on the upper and lower surfaces of the bacteria collecting filter 14 at a predetermined interval, and when a high frequency voltage is applied from the high frequency power source 13, a capacitively supplied plasma (CCP). ).

前記交流高電圧電源13aは、電極12a、12bとの間に、例えば10kHzの交流高電圧を印加していることから、チャンバー11内に大気圧を維持した状態で容量結合プラズマを発生させることができる。この容量結合プラズマは、電極12a、12b間で発生させることができるため、菌補集用フィルタ14内部で生成されることとなり、菌補集用フィルタ14内部全領域全て滅菌を行うこととなる。   Since the AC high voltage power supply 13a applies an AC high voltage of, for example, 10 kHz between the electrodes 12a and 12b, it is possible to generate capacitively coupled plasma while maintaining atmospheric pressure in the chamber 11. it can. Since this capacitively coupled plasma can be generated between the electrodes 12a and 12b, the capacitively coupled plasma is generated inside the bacteria collection filter 14, and the entire region inside the bacteria collection filter 14 is sterilized.

このように本実施形態の場合には、大気圧で電極12a、12b間でプラズマを発生できることから、ロータリーポンプ18はチャンバー11内を低気圧に吸引する必要がなくなり、単に酸素O2を電極12a、12b間に供給するのに必要な気流の流れを形成する程度のポンプ駆動で足りることとなる。
また、チャンバー11は、全て絶縁材で形成できると共に、電極12a、12bとの絶縁状態が保持されている限り金属との導体で形成することができる。
As described above, in the present embodiment, since the plasma can be generated between the electrodes 12a and 12b at atmospheric pressure, the rotary pump 18 does not need to suck the inside of the chamber 11 to low pressure, and oxygen O 2 is simply supplied to the electrode 12a. , 12b, it is sufficient to drive the pump so as to form a flow of airflow necessary for supplying between the two.
The chamber 11 can be formed entirely of an insulating material, and can be formed of a conductor with metal as long as the insulating state with the electrodes 12a and 12b is maintained.

なお、本実施形態においては、電極12a、12bと菌補集用フィルタ14との間を所定間隔だけ離隔して構成したが、菌補集用フィルタ14を紙、ガラス繊維、セラミック等の絶縁材で形成した場合には、菌補集用フィルタ14の外側面に電極12a、12bを接触させた状態で配設することもできる。この接触配設される電極12a、12bは、メッシュ状、渦巻状等の通気性を有する形状とし、菌補集用フィルタ14への気流の送通を阻害しないように構成されることが望ましい。   In this embodiment, the electrodes 12a and 12b and the bacteria collection filter 14 are separated from each other by a predetermined distance. However, the bacteria collection filter 14 is made of an insulating material such as paper, glass fiber, or ceramic. In the case where the electrodes 12a and 12b are in contact with the outer surface of the filter 14 for collecting bacteria, it is also possible to arrange them. It is desirable that the electrodes 12a and 12b arranged in contact with each other have a gas-permeable shape such as a mesh shape or a spiral shape so as not to hinder the flow of airflow to the bacteria collecting filter 14.

(本発明の第3の実施形態)
以下、本発明の第3の実施形態に係るフィルタ処理装置を図3に基づいて説明する。この図3は、本実施形態に係るフィルタ処理装置の要部概略構成図を示す。
同図において本実施形態に係るフィルタ処理装置1は、絶縁材からなる排気管11a(図1の16に相当)の内部に菌補集用フィルタ14を収納し、この排気管11aの外周にアンテナを形成する電極12cを巻回して配設し、この巻回した電極12cの端部に高周波電源13を接続すると共に、電極12cの他端部を接地する構成である。
(Third embodiment of the present invention)
Hereinafter, a filter processing apparatus according to a third embodiment of the present invention will be described with reference to FIG. This FIG. 3 shows the principal part schematic block diagram of the filter processing apparatus which concerns on this embodiment.
In the drawing, the filter processing apparatus 1 according to the present embodiment houses a filter 14 for collecting bacteria inside an exhaust pipe 11a (corresponding to 16 in FIG. 1) made of an insulating material, and an antenna on the outer periphery of the exhaust pipe 11a. The electrode 12c is formed by winding, and the high frequency power supply 13 is connected to the end of the wound electrode 12c, and the other end of the electrode 12c is grounded.

このように電極12cを酸素O2等の濾過流体が通流し、菌補集用フィルタ14が収納される排気管11aの外部に配設できることから、濾過流体に電極12cを接触させることなく、プラズマを発生させて、排気管11a内の菌補集用フィルタ14を滅菌及び洗浄できることとなる。
(本発明の他の実施形態)
以下、本発明の他の実施形態に係るフィルタ処理装置を図4(A)(B)に基づいて説明する。この図4(A)(B)は、本実施形態に係るフィルタ処理装置の要部概略構成図である。
Thus, the filtered fluid such as oxygen O 2 flows through the electrode 12c and can be disposed outside the exhaust pipe 11a in which the filter 14 for collecting bacteria is accommodated. Therefore, the plasma can be obtained without bringing the electrode 12c into contact with the filtered fluid. Thus, the bacteria collection filter 14 in the exhaust pipe 11a can be sterilized and washed.
(Other embodiments of the present invention)
Hereinafter, a filter processing apparatus according to another embodiment of the present invention will be described with reference to FIGS. FIGS. 4A and 4B are schematic configuration diagrams of the main part of the filter processing apparatus according to the present embodiment.

同図(A)において本実施形態に係るフィルタ処理装置1は、絶縁材からなる排気管11aの内部に菌補集用フィルタ14を収納すると共に、この菌補集用フィルタ14は酸素O2供給の上流側に螺旋状に巻回された導電性線状体からなる内部アンテナ12dを収納し、排気管11aの外部に設けられたマイクロ波発振器13aからアンテナ12dに向かってマイクロ波を照射する構成である。 In FIG. 1A, the filter processing apparatus 1 according to the present embodiment houses a fungus collecting filter 14 in an exhaust pipe 11a made of an insulating material, and the fungus collecting filter 14 supplies oxygen O 2. The internal antenna 12d made of a conductive wire wound spirally is housed on the upstream side of the antenna, and a microwave is irradiated from the microwave oscillator 13a provided outside the exhaust pipe 11a toward the antenna 12d. It is.

このマイクロ波発振器13aは、例えば、周波数2.45GHzのマイクロ波を発信し、アンテナ12dからマイクロ波プラズマを発生させる。このマイクロ波プラズマ発生には、排気管11a内を低気圧状態にし、この低気圧状態でアンテナ12dにマイクロ波を照射して菌補集用フィルタ14の滅菌又は洗浄を実行する。   For example, the microwave oscillator 13a transmits a microwave having a frequency of 2.45 GHz and generates microwave plasma from the antenna 12d. In order to generate the microwave plasma, the inside of the exhaust pipe 11a is put into a low pressure state, and the antenna 12d is irradiated with microwaves in this low pressure state to sterilize or clean the bacteria collection filter 14.

同図(B)において、他の実施形態に係るフィルタ処理装置は、絶縁材からなる排気管11aの内部に菌補集用フィルタ14を収納すると共に、この菌補集用フィルタ14酸素O2供給の上流側に螺旋状の導電性線状体からなる内部アンテナ12eを排気管11aの外部に巻回し、排気管11aの外部に設けられたマイクロ波発振器13aからアンテナ12dに向けてマイクロ波を照射する構成である。 In FIG. 5B, a filter processing apparatus according to another embodiment houses a bacteria collection filter 14 in an exhaust pipe 11a made of an insulating material, and supplies the bacteria collection filter 14 with oxygen O 2. An internal antenna 12e made of a spiral conductive wire is wound on the upstream side of the exhaust pipe 11a, and microwaves are irradiated from the microwave oscillator 13a provided outside the exhaust pipe 11a toward the antenna 12d. It is the structure to do.

このように本実施形態に係るフィルタ処理装置は、前記第3の実施形態と同様に排気管11a内を通流する濾過流体に内部アンテナ12eを接触させることなく排気管11a内の菌補集用フィルタ14を滅菌及び洗浄できる。   Thus, the filter processing apparatus according to the present embodiment is for collecting bacteria in the exhaust pipe 11a without bringing the internal antenna 12e into contact with the filtered fluid flowing through the exhaust pipe 11a as in the third embodiment. Filter 14 can be sterilized and cleaned.

図1に記載の実施形態に係るプラズマ滅菌処理装置を用いて菌補集用フィルタ14として用いられる多孔質素材の滅菌について実験を行い以下に説明する。   Experiments on sterilization of a porous material used as the filter 14 for collecting bacteria using the plasma sterilization apparatus according to the embodiment shown in FIG. 1 will be described below.

(実験方法)
本実施例の実験方法は、菌補集用フィルタ14として多孔質素材を使用した滅菌実験を行うため、真空ポンプのロータリーポンプ18で低圧に保持したチャンバー10(4インチ×600mm)に高周波電源13から高周波電力(13.56MHz)を投入し、プラズマを発生させる。投入電力は、30〜50W、チャンバー10内の圧力20Paに設定し、プラズマ発生後、1時間単位で滅菌処理を行った。酸素ラジカルの生成は、分光分析やケミカルインジケータを使用して確認した。
(experimental method)
In the experiment method of this example, in order to conduct a sterilization experiment using a porous material as the filter 14 for collecting bacteria, the high-frequency power source 13 is placed in the chamber 10 (4 inches × 600 mm) held at a low pressure by the rotary pump 18 of the vacuum pump. The high frequency power (13.56MHz) is input from and the plasma is generated. The input power was set to 30 to 50 W and the pressure in the chamber 10 was 20 Pa, and sterilization was performed in units of 1 hour after plasma generation. The generation of oxygen radicals was confirmed using spectroscopic analysis and chemical indicators.

滅菌対象には大腸菌(E.coli)を使用した。大腸菌を拡散させた純水に多孔質素材を投入し、深部まで菌を浸透させるため超音波処理を施した。菌を付着させた多孔質素材は十分に乾燥させた後、滅菌パウチに入れプラズマを照射した。実験後は、純水に多孔質素材を入れ、深部の菌を取出すため再び超音波処理をおこなった。   E. coli was used as the sterilization target. A porous material was put into pure water in which Escherichia coli was diffused, and sonication was performed to infiltrate the bacteria to the deep part. The porous material to which the bacteria were attached was sufficiently dried and then placed in a sterilized pouch and irradiated with plasma. After the experiment, a porous material was put into pure water, and sonication was performed again to take out the bacteria in the deep part.

本実施例の滅菌評価方法は、滅菌評価として菌培地シートを使用した。上記操作後の液体を1.0mlシートに滴下し35℃で24〜48時間にわたり培養した。滅菌の可否は、培地シート表面に現れるコロニーの数を比較し評価した。   In the sterilization evaluation method of this example, a microbial medium sheet was used for sterilization evaluation. The liquid after the above operation was dropped on a 1.0 ml sheet and cultured at 35 ° C. for 24 to 48 hours. Whether or not sterilization was possible was evaluated by comparing the number of colonies appearing on the surface of the medium sheet.

本実施例の実験及び考察として、大腸菌を浸透させた多孔質素材の滅菌試験の結果を図5に示す。この図5は多孔質素材上におけるコロニー数の処理時間に対する推移特性図を示す。同図において、滅菌時間を長くすることで多孔質素材に付着した菌数の減少を確認した。   As an experiment and discussion of this example, the results of a sterilization test of a porous material infiltrated with Escherichia coli are shown in FIG. FIG. 5 shows a transition characteristic diagram of the number of colonies on the porous material with respect to the processing time. In the figure, a decrease in the number of bacteria attached to the porous material was confirmed by increasing the sterilization time.

しかし、3〜5時間滅菌を行っても培地シート上の菌が消滅することはなかった。1〜5時間の滅菌操作では多孔質体の比較的表面の細菌は処理できたが、深部まで滅菌されていなかったことが原因として考えられる。   However, even if sterilization was performed for 3 to 5 hours, the bacteria on the medium sheet did not disappear. The sterilization operation for 1 to 5 hours was able to treat bacteria on the relatively surface of the porous body, but it is considered that it was not sterilized to the deep part.

以上のことから、本実施例では、酸素プラズマによる低温滅菌を行い、酸素ガスを低圧化で放電することにより、高い酸化力を持つ酸素ラジカルを生成し、これを利用して滅菌を行った。処理中の温度は、最高で60℃以下であるため、耐熱性のない器具にも使用できる。また、酸素ラジカルは常圧下での寿命が約100ms程度であり、それを低圧状態で滅菌処理に利用するため、残留性がなく使用者・環境に無負荷である。
従って、低圧酸素プラズマを用いた滅菌実験において、多孔質素材に付着させた大腸菌の減少を確認した。
From the above, in this example, low temperature sterilization by oxygen plasma was performed, and oxygen gas was discharged at a low pressure to generate oxygen radicals having high oxidizing power, and sterilization was performed using this. Since the temperature during the treatment is 60 ° C. or less at the maximum, it can be used for an instrument having no heat resistance. In addition, oxygen radicals have a lifetime of about 100 ms under normal pressure, and are used for sterilization under low pressure, so there is no persistence and no load on the user / environment.
Therefore, in a sterilization experiment using low-pressure oxygen plasma, a decrease in E. coli adhering to the porous material was confirmed.

なお、前記各実施形態において用いた放電式以外にバリア放電プラズマ(大気圧)とすることもできる。また、原料ガスとして酸素O2以外に空気、水蒸気等を用いることができる。 In addition to the discharge type used in each of the above embodiments, barrier discharge plasma (atmospheric pressure) may be used. In addition to oxygen O 2 , air, water vapor, or the like can be used as the source gas.

本発明の第1の実施形に係るフィルタ処理装置の全体構成図である。1 is an overall configuration diagram of a filter processing apparatus according to a first embodiment of the present invention. 本発明の第2の実施形に係るフィルタ処理装置の要部概略構成図である。It is a principal part schematic block diagram of the filter processing apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形に係るフィルタ処理装置の要部概略構成図である。It is a principal part schematic block diagram of the filter processing apparatus which concerns on the 3rd Embodiment of this invention. 本発明の他の実施形に係るフィルタ処理装置の要部概略構成図である。It is a principal part schematic block diagram of the filter processing apparatus which concerns on other embodiment of this invention. 本実施例の滅菌試験に係る多孔質素材上におけるコロニー数の処理時間に対する推移特性図である。It is a transition characteristic figure with respect to processing time of the number of colonies on the porous material which concerns on the sterilization test of a present Example.

符号の説明Explanation of symbols

1 フィルタ処理装置
10 チャンバー
10a 絶縁収納部
10b 導電収納部
11 チャンバー
11a 排気管
12、12a、12c 電極
12d、12e アンテナ
13 高周波電源
13a 交流高電圧電源
13a マイクロ波発振器
14 菌補集用フィルタ
15 注入調整バルブ
16、19 排気管
17 排出調整バルブ
18 ロータリーポンプ
19a 排気バルブ
100 プラズマ滅菌装置
101 滅菌チャンバー
102 電極
103 高周波電源
104 酸素ボンベ
105 排気管
200 滅菌対象物
DESCRIPTION OF SYMBOLS 1 Filter processing apparatus 10 Chamber 10a Insulation storage part 10b Conductive storage part 11 Chamber 11a Exhaust pipe 12, 12a, 12c Electrode 12d, 12e Antenna 13 High frequency power supply 13a AC high voltage power supply 13a Microwave oscillator 14 Bacteria collection filter 15 Injection adjustment Valves 16 and 19 Exhaust pipe 17 Discharge adjustment valve 18 Rotary pump 19a Exhaust valve 100 Plasma sterilization apparatus 101 Sterilization chamber 102 Electrode 103 High frequency power supply 104 Oxygen cylinder 105 Exhaust pipe 200 Sterilization object

Claims (6)

通流する流体を濾過するフィルタに対して洗浄及び/又は滅菌するフィルタ処理装置において、
前記フィルタに隣接して配設され、プラズマを発生するプラズマ発生処理手段を備え、
前記プラズマによりフィルタを洗浄及び/又は滅菌することを
特徴とするフィルタ処理装置。
In a filter processing apparatus for cleaning and / or sterilizing a filter for filtering a flowing fluid,
Provided with a plasma generation processing means disposed adjacent to the filter and generating plasma;
A filter processing apparatus, wherein the filter is cleaned and / or sterilized by the plasma.
前記請求項1に記載のフィルタ処理装置において、
前記プラズマ発生手段が、フィルタに対して通流する流体の上流側に配設されることを
特徴とするフィルタ処理装置。
The filter processing apparatus according to claim 1,
The said plasma generation means is arrange | positioned in the upstream of the fluid which flows with respect to a filter, The filter processing apparatus characterized by the above-mentioned.
前記請求項1又は2に記載のフィルタ処理装置において、
前記プラズマ発生手段が、誘導結合プラズマを発生させることを
特徴とするフィルタ処理装置。
In the filter processing apparatus according to claim 1 or 2,
The plasma processing means generates inductively coupled plasma, The filter processing apparatus characterized by the above-mentioned.
前記請求項1ないし3のいずれかに記載のフィルタ処理装置において、
前記プラズマ発生手段が、フィルタに対して通流する流体の上流側に一の電極を配設すると共に、下流側に他の電極を配設して形成され、当該各電極間で容量結合プラズマを発生させることを
特徴とするフィルタ処理装置。
In the filter processing apparatus according to any one of claims 1 to 3,
The plasma generating means is formed by disposing one electrode on the upstream side of the fluid flowing through the filter and disposing another electrode on the downstream side, and generating capacitively coupled plasma between the electrodes. A filter processing device characterized by being generated.
前記請求項1ないし4のいずれかに記載のフィルタ処理装置において、
前記フィルタに対して通流する流体の下流側を上流側よりも低気圧状態とすることを
特徴とするフィルタ処理装置。
In the filter processing apparatus according to any one of claims 1 to 4,
A filter processing apparatus, wherein a downstream side of a fluid flowing to the filter is in a lower pressure state than an upstream side.
前記請求項1ないし4のいずれかに記載のフィルタ処理装置において、
前記フィルタ及びプラズマ発生手段を収納容器に収納し、当該収納容器内を負圧状態とすることを
特徴とするフィルタ処理装置。
In the filter processing apparatus according to any one of claims 1 to 4,
A filter processing apparatus, wherein the filter and the plasma generating means are stored in a storage container, and the storage container is in a negative pressure state.
JP2008072475A 2008-03-19 2008-03-19 Filter processing device Expired - Fee Related JP5327422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008072475A JP5327422B2 (en) 2008-03-19 2008-03-19 Filter processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008072475A JP5327422B2 (en) 2008-03-19 2008-03-19 Filter processing device

Publications (2)

Publication Number Publication Date
JP2009226269A true JP2009226269A (en) 2009-10-08
JP5327422B2 JP5327422B2 (en) 2013-10-30

Family

ID=41242330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008072475A Expired - Fee Related JP5327422B2 (en) 2008-03-19 2008-03-19 Filter processing device

Country Status (1)

Country Link
JP (1) JP5327422B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052880A3 (en) * 2009-10-28 2011-07-14 전북대학교산학협력단 Water treatment apparatus for reducing biofouling
KR20200095846A (en) * 2019-02-01 2020-08-11 성균관대학교산학협력단 Backwashing device for water treatment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0380910A (en) * 1989-08-24 1991-04-05 Hitachi Plant Eng & Constr Co Ltd Filter device
JPH11501530A (en) * 1994-12-29 1999-02-09 グレーヴズ,クリントン・ジイ Apparatus and method for plasma sterilization
JPH11128657A (en) * 1997-08-25 1999-05-18 Oriental Kiden Kk Purifying device
JP2001280121A (en) * 2000-03-31 2001-10-10 Isuzu Motors Ltd Continuous regeneration-type particulate filter device
JP2001349595A (en) * 2000-06-07 2001-12-21 Matsushita Electric Works Ltd Air cleaning apparatus
JP2001349213A (en) * 2000-06-07 2001-12-21 Hideo Kawamura Dpf device for reacting and extinguishing particulate substance by using plasma
JP2002339731A (en) * 2001-05-18 2002-11-27 Mitsubishi Heavy Ind Ltd Method and device for treatment of engine exhaust emission
JP2005090831A (en) * 2003-09-16 2005-04-07 Fujitsu General Ltd Air cleaner
JP2006014848A (en) * 2004-06-30 2006-01-19 Daikin Ind Ltd Air purifying system, filter unit, and method for replacing filter

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0380910A (en) * 1989-08-24 1991-04-05 Hitachi Plant Eng & Constr Co Ltd Filter device
JPH11501530A (en) * 1994-12-29 1999-02-09 グレーヴズ,クリントン・ジイ Apparatus and method for plasma sterilization
JPH11128657A (en) * 1997-08-25 1999-05-18 Oriental Kiden Kk Purifying device
JP2001280121A (en) * 2000-03-31 2001-10-10 Isuzu Motors Ltd Continuous regeneration-type particulate filter device
JP2001349595A (en) * 2000-06-07 2001-12-21 Matsushita Electric Works Ltd Air cleaning apparatus
JP2001349213A (en) * 2000-06-07 2001-12-21 Hideo Kawamura Dpf device for reacting and extinguishing particulate substance by using plasma
JP2002339731A (en) * 2001-05-18 2002-11-27 Mitsubishi Heavy Ind Ltd Method and device for treatment of engine exhaust emission
JP2005090831A (en) * 2003-09-16 2005-04-07 Fujitsu General Ltd Air cleaner
JP2006014848A (en) * 2004-06-30 2006-01-19 Daikin Ind Ltd Air purifying system, filter unit, and method for replacing filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052880A3 (en) * 2009-10-28 2011-07-14 전북대학교산학협력단 Water treatment apparatus for reducing biofouling
KR101105666B1 (en) * 2009-10-28 2012-01-18 전북대학교산학협력단 Water treatment apparatus for mitigation of biofouling
KR20200095846A (en) * 2019-02-01 2020-08-11 성균관대학교산학협력단 Backwashing device for water treatment
KR102144037B1 (en) * 2019-02-01 2020-08-12 성균관대학교산학협력단 Backwashing device for water treatment

Also Published As

Publication number Publication date
JP5327422B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
US8404182B2 (en) Sterilizing method, sterilizing apparatus, and air cleaning method and apparatus using the same
KR102005618B1 (en) Air purifier using air running plasma source
JP5546630B2 (en) Microbe / virus capture / inactivation equipment
US20120100524A1 (en) Tubular floating electrode dielectric barrier discharge for applications in sterilization and tissue bonding
Feng et al. The interaction of a direct-current cold atmospheric-pressure air plasma with bacteria
JP2004508143A (en) Plasma sterilization system
JP5403753B2 (en) Plasma sterilization method
JP2008289801A (en) Gas purification device
KR20160129084A (en) Air disinfection and pollution removal method and apparatus
WO2015132367A1 (en) Air treatment apparatus
WO2011123512A1 (en) Plasma system for air sterilization
JP5327422B2 (en) Filter processing device
JP4070546B2 (en) ION GENERATOR AND ION GENERATOR HAVING THE SAME
KR20210111749A (en) Method and system for generating non-thermal plasma
KR20220099702A (en) Air cleaning device using atmospheric-pressure plasma
JP2007029896A (en) Plasma reactor and gas treatment apparatus
JP3680120B2 (en) Ion generator, air purifier and air conditioner equipped with the same
KR20200063867A (en) Ozone removing apparatus
KR20200082771A (en) Plasma sterilizer with ozone abatement function
JP2011242091A (en) Hot air supply device
CN110510706B (en) Medical wastewater treatment method
KR20230149066A (en) Air purifier with plasma electrostatic precipitator
CN213099629U (en) High-efficient peculiar smell, sterilization, virus killing plasma equipment that removes
CN114704882A (en) Degerming control method of air conditioner
CN212039429U (en) Plasma sterilization and disinfection device for gas circuit pipeline

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130709

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees