JP2009224865A - Voltage controlled surface acoustic wave oscillator - Google Patents

Voltage controlled surface acoustic wave oscillator Download PDF

Info

Publication number
JP2009224865A
JP2009224865A JP2008064395A JP2008064395A JP2009224865A JP 2009224865 A JP2009224865 A JP 2009224865A JP 2008064395 A JP2008064395 A JP 2008064395A JP 2008064395 A JP2008064395 A JP 2008064395A JP 2009224865 A JP2009224865 A JP 2009224865A
Authority
JP
Japan
Prior art keywords
temperature
voltage
amplifier circuit
inverting amplifier
acoustic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008064395A
Other languages
Japanese (ja)
Other versions
JP5103230B2 (en
Inventor
Junya Yano
絢也 矢野
Kaoru Kanehachi
薫 兼八
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko NPC Corp
Original Assignee
Seiko NPC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko NPC Corp filed Critical Seiko NPC Corp
Priority to JP2008064395A priority Critical patent/JP5103230B2/en
Publication of JP2009224865A publication Critical patent/JP2009224865A/en
Application granted granted Critical
Publication of JP5103230B2 publication Critical patent/JP5103230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a voltage controlled SAW oscillator which can perform stabilized operation. <P>SOLUTION: A voltage controlled SAW oscillator comprises an oscillation circuit having an SAW oscillator, and a temperature compensation voltage generator for supplying a control voltage to the oscillation circuit, wherein the temperature compensation voltage generator comprises a temperature detection unit 201 for detecting the ambient temperature of the SAW oscillator, an inverting amplifier circuit 202 and a noninverting amplifier circuit 203 producing an output current according to the output voltage from the temperature detection unit 201, a pair of function generating circuits 204 and 205 for producing currents which vary with square-law characteristics from the output currents of the amplifier circuits 202 and 203, a section 208 for adding the currents produced from the function generating circuits 204 and 205, a current to voltage conversion circuit 209 for converting the added current varying with square-law characteristics into a voltage convex upward, and an inverting amplifier circuit 210 producing a control voltage which is axially symmetrical with respect to a quadratic function showing the frequency temperature characteristics of an elastic surface acoustic wave oscillator and varying with square-law characteristics convex downward from the converted voltage. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、弾性表面波(Surface Acoustic Wave : 以下SAWと称する。)発振子の周囲温度の変化に伴う周波数変動を補償する電圧制御型弾性表面波発振器に関する。   The present invention relates to a voltage-controlled surface acoustic wave oscillator that compensates for frequency fluctuations associated with changes in ambient temperature of a surface acoustic wave (SAW) oscillator.

SAW発振子は、周囲温度が変化すると発振周波数が変化する周波数温度特性を有し、発振周波数が温度変化に対して上に凸の曲線に沿って変化することが知られており、前記曲線は、二次曲線で近似して表すことができる。SAW発振子の発振周波数は、ある温度において極大値を有し、この極大値を示す温度(頂点温度)より低くなるほど、また高くなるほど、低下する特性を有している。そして、このSAW発振子の周波数温度特性は、電子機器の一般的な使用温度範囲である−40℃〜85℃における許容変動幅を超えており、具体的には100ppmを超えており、そのまま使用すると、電子機器が誤作動するなど正常な動作を期待できない。   The SAW oscillator has a frequency-temperature characteristic in which the oscillation frequency changes when the ambient temperature changes, and the oscillation frequency is known to change along a convex curve with respect to the temperature change. , Can be approximated by a quadratic curve. The oscillation frequency of the SAW resonator has a maximum value at a certain temperature, and has a characteristic of decreasing as the temperature becomes lower or higher than the temperature (peak temperature) indicating the maximum value. The frequency temperature characteristics of this SAW oscillator exceed the allowable fluctuation range in the general operating temperature range of electronic equipment, −40 ° C. to 85 ° C., specifically exceeds 100 ppm, and are used as they are. Then, normal operation such as malfunction of electronic equipment cannot be expected.

このため、従来においては、電圧に比例して発振周波数が変化するSAW発振回路を形成するとともに、差動回路でSAW発振子の周囲温度に対して、周波数温度特性を示す二次関数と線対称な下に凸の二次関数で表される制御電圧を発生させて、温度変化による発振周波数の変化を相殺している。   For this reason, in the prior art, a SAW oscillation circuit in which the oscillation frequency changes in proportion to the voltage is formed, and the differential function is line-symmetric with a quadratic function indicating frequency temperature characteristics with respect to the ambient temperature of the SAW oscillator. In addition, a control voltage represented by a convex quadratic function is generated to cancel the change in the oscillation frequency due to the temperature change.

また、SAW発振器の発振周波数を検出し、検出した発振周波数を温度表示電圧に換算し、この温度表示電圧に基づいて発生させた制御電圧をSAW発振器に付与して、発振周波数の温度変動を抑制することが提案されている(特許文献1)。   In addition, the oscillation frequency of the SAW oscillator is detected, the detected oscillation frequency is converted into a temperature display voltage, and a control voltage generated based on the temperature display voltage is applied to the SAW oscillator to suppress temperature fluctuation of the oscillation frequency. It has been proposed (Patent Document 1).

特開平5−283934号公報JP-A-5-283934

ところが、従来の差動回路を用いて発振周波数の温度変化を相殺する構成によると、動作条件において発生するノイズ量がばらつくので、ノイズの影響で安定した動作を期待できないという欠点がある。また、特許文献1に記載の構成によると、高精度の補償が困難で、発振周波数の変動幅がppmレベルの制御電圧を得ることができないという欠点がある。本発明は、このような欠点を解消した電圧制御型SAW発振器を提供することを目的とする。   However, according to the configuration that cancels the temperature change of the oscillation frequency using a conventional differential circuit, the amount of noise generated under the operating conditions varies, and thus there is a drawback that stable operation cannot be expected due to the influence of noise. Further, according to the configuration described in Patent Document 1, it is difficult to perform high-precision compensation, and there is a drawback that a control voltage having a fluctuation range of the oscillation frequency of the ppm level cannot be obtained. It is an object of the present invention to provide a voltage controlled SAW oscillator that eliminates such drawbacks.

本発明に係る電圧制御型SAW発振器は、周波数温度特性が二次関数で近似される弾性表面波発振子を有し、制御電圧によって出力周波数が制御される発振回路と、この発振回路に前記制御電圧を供給する温度補償電圧発生部とを備えてなる電圧制御型弾性表面波発振器であって、前記温度補償電圧発生部は、弾性表面波発振子の周囲温度を検出し、検出温度の上昇に対応して一定の変化率で減少する出力電圧を生成する温度検出部と、この温度検出部の出力電圧が、あらかじめ設定された基準温度に達しない温度に対応する範囲では、温度上昇に対応して一定の変化率で減少する出力電流を生成し、前記出力電圧が、前記基準温度以上の温度対応する範囲では、零である出力電流を生成する非反転増幅回路と、前記温度検出部の出力電圧が、前記基準温度に達しない温度対応する範囲では、零である出力電流を生成し、前記基準温度以上の温度対応する範囲では温度上昇に対応して一定の変化率で増加する出力電流を生成する反転増幅回路と、これら非反転増幅回路及び反転増幅回路の各出力電流から二乗特性で変化する電流を生成する一対の関数発生回路と、これら各関数発生回路で生成された二乗特性で変化する電流を加算する加算部と、この加算された二乗特性で変化する電流を上に凸の二乗特性で変化する電圧に変換する電流―電圧変換回路と、この変換された電圧から、弾性表面波発振子の周波数温度特性を示す二次関数と線対称な、下に凸の二乗特性で変化する制御電圧を生成する反転増幅回路とからなるものである。   A voltage-controlled SAW oscillator according to the present invention includes a surface acoustic wave oscillator whose frequency temperature characteristic is approximated by a quadratic function, an oscillation circuit whose output frequency is controlled by a control voltage, and the oscillation circuit including the control circuit A voltage-controlled surface acoustic wave oscillator comprising a temperature-compensated voltage generator for supplying a voltage, wherein the temperature-compensated voltage generator detects the ambient temperature of the surface acoustic wave oscillator and increases the detected temperature. Correspondingly, a temperature detector that generates an output voltage that decreases at a constant rate of change, and a range in which the output voltage of this temperature detector corresponds to a temperature that does not reach a preset reference temperature, corresponds to a temperature rise. A non-inverting amplifier circuit that generates an output current that is zero in a range corresponding to a temperature equal to or higher than the reference temperature, and an output of the temperature detector Voltage Inversion that generates an output current that is zero in a range corresponding to a temperature that does not reach the reference temperature, and that generates an output current that increases at a constant rate in response to a temperature increase in a range corresponding to a temperature that is higher than the reference temperature. An amplifier circuit, a pair of function generator circuits that generate a current that changes in a square characteristic from each output current of the non-inverting amplifier circuit and the inverting amplifier circuit, and a current that changes in a square characteristic generated by each of these function generator circuits. An adding unit for adding, a current-voltage conversion circuit for converting a current changing with the added square characteristic into a voltage changing with an upward convex square characteristic, and from the converted voltage, the surface acoustic wave oscillator It comprises an inverting amplifier circuit that generates a control voltage that is line-symmetric with a quadratic function indicating frequency temperature characteristics and that changes in a square characteristic that is convex downward.

上述の構成において、基準温度に対する温度検出部の出力電圧値は1対1の対応関係にあるので、反転増幅回路及び非反転増幅回路の参照電圧を、前記基準温度に対応する前記出力電圧値と同一として、前記参照電圧によって発振周波数が極大を示す基準温度(頂点温度)を設定すると好適である。また、上述の構成において、反転増幅回路及び非反転増幅回路の利得を調整して、SAW発振子の温度に依存した発振周波数の変化率に合うように前記各増幅回路の出力電流の変化率を設定すると好適である。さらに、上述の構成において、制御電圧を生成する反転増幅回路の参照電圧が、入力電圧を反転する電圧レベルとなるので、この参照電圧によってSAW発振子の周波数温度特性の頂点温度に対応する最低制御電圧を設定すると好適である。さらにまた、上述の構成において、一対の関数発生回路のそれぞれの後段に、発振回路の制御電圧変化に対する発振周波数変化の直線性を改善するための電流補正回路を設けると好適である。   In the above-described configuration, since the output voltage value of the temperature detection unit with respect to the reference temperature has a one-to-one correspondence, the reference voltage of the inverting amplifier circuit and the non-inverting amplifier circuit is set to the output voltage value corresponding to the reference temperature. It is preferable that a reference temperature (apex temperature) at which the oscillation frequency is maximum is set by the reference voltage. In the above-described configuration, the gain of the inverting amplifier circuit and the non-inverting amplifier circuit is adjusted, and the change rate of the output current of each amplifier circuit is adjusted so as to match the change rate of the oscillation frequency depending on the temperature of the SAW oscillator. It is preferable to set. Further, in the above-described configuration, the reference voltage of the inverting amplifier circuit that generates the control voltage has a voltage level that inverts the input voltage. Therefore, the minimum voltage corresponding to the apex temperature of the frequency temperature characteristic of the SAW oscillator is determined by this reference voltage. It is preferable to set the voltage. Furthermore, in the above-described configuration, it is preferable that a current correction circuit for improving the linearity of the change in the oscillation frequency with respect to the change in the control voltage of the oscillation circuit is provided in the subsequent stage of the pair of function generation circuits.

本発明によれば、反転増幅回路及び非反転増幅回路を低ノイズに設計することが可能なので、電圧制御型SAW発振器における低ノイズで安定した動作を得ることができるとともに、SAW発振子の周波数温度特性を示す二次関数と線対称な、下に凸の二乗特性で変化する制御電圧を得ることができるという効果を奏する。   According to the present invention, since the inverting amplifier circuit and the non-inverting amplifier circuit can be designed with low noise, it is possible to obtain a stable operation with low noise in the voltage controlled SAW oscillator, and the frequency temperature of the SAW oscillator. There is an effect that it is possible to obtain a control voltage that is line-symmetric with the quadratic function indicating the characteristic and changes with a square characteristic that is convex downward.

以下、本発明に係る電圧制御型SAW発振器の好適な実施形態の回路構成を添付図面の図1及び図2に基づいて説明する。図1は本発明に係る電圧制御型SAW発振器を示す回路図で、電圧制御型SAW発振器は、SAW発振回路1と、温度補償電圧発生部2と、メモリ3とからなる。   Hereinafter, a circuit configuration of a preferred embodiment of a voltage controlled SAW oscillator according to the present invention will be described with reference to FIGS. 1 and 2 of the accompanying drawings. FIG. 1 is a circuit diagram showing a voltage controlled SAW oscillator according to the present invention. The voltage controlled SAW oscillator includes a SAW oscillation circuit 1, a temperature compensation voltage generator 2, and a memory 3.

図1に示すように、SAW発振回路1のSAW発振子101は、オペアンプからなる反転増幅回路102の帰還抵抗103と並列に入力端及び出力端に接続されている。前記反転増幅回路102の入力端はコンデンサ104と可変容量ダイオード105とを介して接地され、出力端はコンデンサ106と可変容量ダイオード107とを介して接地されている。コンデンサ104と可変容量ダイオード105との中間点に抵抗108が接続され、コンデンサ106と可変容量ダイオード107との中間点に抵抗109が接続され、これら抵抗108,109にはそれぞれ発振周波数制御端子110が接続されている。また、前記反転増幅回路102の出力端には出力端子111が接続され、出力端とSAW発振子101との間には、コイル112と抵抗113が並列接続されている。   As shown in FIG. 1, the SAW oscillator 101 of the SAW oscillation circuit 1 is connected to the input end and the output end in parallel with the feedback resistor 103 of the inverting amplification circuit 102 made of an operational amplifier. The input terminal of the inverting amplifier circuit 102 is grounded via a capacitor 104 and a variable capacitance diode 105, and the output end is grounded via a capacitor 106 and a variable capacitance diode 107. A resistor 108 is connected to an intermediate point between the capacitor 104 and the variable capacitance diode 105, a resistor 109 is connected to an intermediate point between the capacitor 106 and the variable capacitance diode 107, and an oscillation frequency control terminal 110 is connected to each of the resistors 108 and 109. It is connected. An output terminal 111 is connected to the output terminal of the inverting amplifier circuit 102, and a coil 112 and a resistor 113 are connected in parallel between the output terminal and the SAW oscillator 101.

可変容量ダイオード105,107には、それぞれ抵抗108,109を介して発振周波数制御信号である制御電圧VCが温度補償電圧発生部2から入力され、制御電圧の電圧値が上昇すると前記各可変容量ダイオード105,107の容量値は減少し、発振周波数は高くなる。なお、コイル112は発振周波数の変動量を大きくするためのもので、抵抗113は不要な周波数の発振を抑制するためのものである。   When the control voltage VC, which is an oscillation frequency control signal, is input from the temperature compensation voltage generator 2 to the variable capacitance diodes 105 and 107 via the resistors 108 and 109, respectively, and the voltage value of the control voltage increases, the variable capacitance diodes The capacitance values 105 and 107 decrease and the oscillation frequency increases. The coil 112 is for increasing the fluctuation amount of the oscillation frequency, and the resistor 113 is for suppressing oscillation at an unnecessary frequency.

続いて、温度補償電圧発生部2の回路構成を図2に基づいて説明する。図2に示すように、温度補償電圧発生部2は、温度検出部201と、温度検出部201の出力電圧がそれぞれ入力されるオペアンプからなる電圧−電流変換用の反転増幅回路202及び非反転増幅回路203と、これら増幅回路202,203の出力電流が各別に入力される一対の関数発生回路204,205と、各関数発生回路204,205の出力電流を発振回路1の制御電圧変化に対する発振周波数変化の直線性を改善するために補正する電流補正回路206,207と、補正した電流を加算する加算部208と、加算部208の出力電流を電圧に変換する電流―電圧変換回路209と、変換した補正済の電圧から制御電圧VCを生成する反転増幅回路210とからなる。   Next, the circuit configuration of the temperature compensation voltage generator 2 will be described with reference to FIG. As shown in FIG. 2, the temperature compensation voltage generator 2 includes a temperature detector 201, an inverting amplifier circuit 202 for voltage-current conversion, and a non-inverted amplifier, each of which includes an operational amplifier to which the output voltage of the temperature detector 201 is input. A circuit 203, a pair of function generation circuits 204 and 205 to which output currents of the amplification circuits 202 and 203 are separately input, and output currents of the function generation circuits 204 and 205 are oscillated with respect to a control voltage change of the oscillation circuit 1. Current correction circuits 206 and 207 for correcting to improve the linearity of change, an addition unit 208 for adding the corrected current, a current-voltage conversion circuit 209 for converting the output current of the addition unit 208 into a voltage, and a conversion And an inverting amplifier circuit 210 for generating a control voltage VC from the corrected voltage.

温度検出部201は、SAW発振子101の周囲温度を検出するもので、図3に示すように、温度上昇につれて所定の傾きで直線的に減少する出力電圧を生成する。したがって、基準温度を決定すれば、これに対する出力電圧は特定されるので、SAW発振子101の発振周波数が極大値を示す頂点温度を基準温度として、あらかじめ頂点温度、例えば15℃における出力電圧を測定し、この電圧値をメモリ3に書き込んでおく。温度検出部201は、例えば、ダイオード接続した一対のトランジスタを直列に接続して形成することができる。   The temperature detector 201 detects the ambient temperature of the SAW oscillator 101, and generates an output voltage that linearly decreases with a predetermined slope as the temperature rises, as shown in FIG. Therefore, if the reference temperature is determined, the output voltage corresponding to the reference temperature is specified. Therefore, the output voltage at the vertex temperature, for example, 15 ° C., is measured in advance with the vertex temperature at which the oscillation frequency of the SAW oscillator 101 has a maximum value as the reference temperature. Then, this voltage value is written in the memory 3. The temperature detection unit 201 can be formed, for example, by connecting a pair of diode-connected transistors in series.

反転増幅回路202は、参照電圧vref_Toとして、あらかじめメモリ3に書き込まれた温度検出部201の頂点温度に対応する出力電圧が与えられる。この反転増幅回路202は、図5に示すように、温度検出部201の出力電圧が、前記基準温度である頂点温度(図示例では15℃)に達しない温度に対応する範囲、換言すると参照電圧vref_Toよりも低い範囲では、零である出力電流を生成し、前記基準温度以上の温度に対応する範囲、換言すると参照電圧vref_To以上の範囲では、温度上昇につれて所定の傾きで直線的に増加する出力電流を生成する。   The inverting amplifier circuit 202 is supplied with an output voltage corresponding to the vertex temperature of the temperature detection unit 201 previously written in the memory 3 as the reference voltage vref_To. As shown in FIG. 5, the inverting amplifier circuit 202 has a range corresponding to a temperature at which the output voltage of the temperature detection unit 201 does not reach the peak temperature (15 ° C. in the illustrated example) that is the reference temperature, in other words, a reference voltage. In a range lower than vref_To, an output current that is zero is generated, and in a range corresponding to a temperature equal to or higher than the reference temperature, in other words, in a range equal to or higher than the reference voltage vref_To, an output that linearly increases with a predetermined slope as the temperature increases. Generate current.

非反転増幅回路203は、参照電圧vref_Toとして、反転増幅回路202と同様に、あらかじめメモリ3に書き込まれた温度検出部201の頂点温度に対応する出力電圧が与えられる。この非反転増幅回路203は、図4に示すように、温度検出部201の出力電圧が、基準温度である頂点温度(図示例では15℃)に達しない温度に対応する範囲、換言すると参照電圧vref_Toよりも低い範囲では、温度上昇につれて所定の傾きで直線的に減少する出力電流を生成し、前記基準温度以上の温度に対応する範囲、換言すると参照電圧vref_To以上の範囲では、零になる出力電流を生成する。   Similarly to the inverting amplifier circuit 202, the non-inverting amplifier circuit 203 is supplied with an output voltage corresponding to the vertex temperature of the temperature detection unit 201 previously written in the memory 3 as the reference voltage vref_To. As shown in FIG. 4, the non-inverting amplifier circuit 203 has a range corresponding to a temperature at which the output voltage of the temperature detecting unit 201 does not reach the peak temperature (15 ° C. in the illustrated example) that is the reference temperature, in other words, the reference voltage. In a range lower than vref_To, an output current that linearly decreases with a predetermined slope as the temperature rises is generated, and in a range corresponding to a temperature equal to or higher than the reference temperature, in other words, an output that becomes zero in a range equal to or higher than the reference voltage vref_To. Generate current.

反転増幅回路202及び非反転増幅回路203は、例えば特開2005−150982に開示されている、負帰還回路の抵抗値を変えて利得を調整するオペアンプを用いた増幅回路を使用することができる。反転増幅回路202及び非反転増幅回路203は、参照電圧vref_Toを変更することにより、図4と図5を合成した図6に示すように、基準温度である頂点温度を変更することができる。すなわち、図6において、点線で示すのが頂点温度が15℃の場合、実線で示すのが頂点温度が30℃の場合である。また、反転増幅回路202及び非反転増幅回路203は、例えばその負帰還回路の抵抗値を変えて、利得を調整することにより、温度変化に対する出力電流の変化率を変えて、図7に示すように、図4、図5に示す直線の傾きを変えることができる。この利得調整を行うためのデータ、例えば、前記負帰還回路の抵抗値もあらかじめメモリ3に書き込まれる。   As the inverting amplifier circuit 202 and the non-inverting amplifier circuit 203, for example, an amplifier circuit using an operational amplifier that adjusts the gain by changing the resistance value of the negative feedback circuit, which is disclosed in JP-A-2005-150982, can be used. The inverting amplifier circuit 202 and the non-inverting amplifier circuit 203 can change the vertex temperature, which is the reference temperature, by changing the reference voltage vref_To, as shown in FIG. 6, which is a combination of FIGS. That is, in FIG. 6, the dotted line indicates that the vertex temperature is 15 ° C., and the solid line indicates that the vertex temperature is 30 ° C. Further, the inverting amplifier circuit 202 and the non-inverting amplifier circuit 203 change the rate of change of the output current with respect to the temperature change by changing the resistance value of the negative feedback circuit and adjusting the gain, for example, as shown in FIG. In addition, the slope of the straight line shown in FIGS. 4 and 5 can be changed. Data for performing this gain adjustment, for example, the resistance value of the negative feedback circuit is also written in the memory 3 in advance.

反転増幅回路202及び非反転増幅回路203の各出力電流は、変化率が一定で直線的に変化するが、これら各出力電流がそれぞれ関数発生回路204,205に入力されると、各関数発生回路204,205は直線的変化の入力電流を二乗特性で変化する電流として出力する。前記各関数発生回路204,205は、公知のトランスリニア回路を用いて構成することができる。これら各関数発生回路204,205で生成された二乗特性で変化する電流は、例えばトランスリニア回路からなる各電流補正回路206,207にそれぞれ入力し、発振回路1の制御電圧変化に対する発振周波数変化の直線性を改善されて、加算部208で加算され、図8に示す二乗特性で変化する電流となる。   The output currents of the inverting amplifier circuit 202 and the non-inverting amplifier circuit 203 change linearly with a constant change rate. When these output currents are input to the function generation circuits 204 and 205, respectively, the function generation circuits Reference numerals 204 and 205 output linearly changing input currents as currents that change with square characteristics. Each of the function generating circuits 204 and 205 can be configured using a known translinear circuit. The currents generated by the function generation circuits 204 and 205 that change with the square characteristics are input to the current correction circuits 206 and 207, which are composed of, for example, translinear circuits. The linearity is improved and added by the adder 208, resulting in a current that changes with the square characteristic shown in FIG.

この加算部208で加算された補正済の電流は、電流―電圧変換回路209に入力し、この電流―電圧変換回路209で上に凸の二乗特性で変化する電圧に変換され(図9参照)、反転増幅回路210に入力する。この反転増幅回路210は、電流―電圧変換回路209から入力した上に凸の二乗特性で変化する電圧VCinを、図9に示すように、下に凸の二乗特性で変化する制御電圧VCに反転増幅して出力する。   The corrected current added by the adder 208 is input to the current-voltage conversion circuit 209, where it is converted to a voltage that changes with a square characteristic that is convex upward (see FIG. 9). , Input to the inverting amplifier circuit 210. The inverting amplification circuit 210 inverts the voltage VCin, which is input from the current-voltage conversion circuit 209, and changes with an upward convex square characteristic into a control voltage VC that changes with a downward convex square characteristic, as shown in FIG. Amplify and output.

反転増幅回路210の参照電圧vref_foを変えることによって、図10に示すように、上下反転する電圧レベルを変えてSAW発振子101の周波数温度特性の頂点温度に対応する最低制御電圧値を設定することができる。すなわち、前記参照電圧vref_foが反転増幅回路210における上下反転の電圧レベルを示すものであり、この参照電圧vref_foの値もあらかじめメモリ3に書き込まれる。このように最低制御電圧値を適宜設定することによって、弾性表面波発振子101の周波数温度特性を示す二次関数と線対称な、下に凸の二乗特性で変化する制御電圧をより確実に生成することができる。   By changing the reference voltage vref_fo of the inverting amplifier circuit 210, the lowest control voltage value corresponding to the apex temperature of the frequency temperature characteristic of the SAW oscillator 101 is set by changing the voltage level that is inverted up and down as shown in FIG. Can do. That is, the reference voltage vref_fo indicates the upside down voltage level in the inverting amplifier circuit 210, and the value of the reference voltage vref_fo is also written in the memory 3 in advance. By appropriately setting the minimum control voltage value in this way, a control voltage that changes in a downward convex square characteristic that is axisymmetric to a quadratic function indicating the frequency temperature characteristic of the surface acoustic wave oscillator 101 can be generated more reliably. can do.

以上のように、本実施形態によれば、SAW発振子101の周波数温度特性をあらかじめ測定して、頂点温度に対応する温度検出部2の出力電圧と、周波数温度特性が近似する二次関数の変化率に対応する出力電流の変化を得るための各増幅回路202,203の負帰還回路の抵抗値と、頂点温度に対応する最低制御電圧値を得るための反転基準となる電圧値とを、メモリ3に書き込んで、前記出力電圧値を各増幅回路202,203の参照電圧vref_Toの値として設定し、前記抵抗値で各増幅回路202,203の利得を設定し、前記電圧値を反転増幅回路210の参照電圧vref_foの値として設定することにより、SAW発振子101の周波数温度特性が近似する上に凸の二次関数と線対称な下に凸の二乗特性で変化する制御電圧を生成することができる。   As described above, according to the present embodiment, the frequency temperature characteristic of the SAW oscillator 101 is measured in advance, and the output voltage of the temperature detection unit 2 corresponding to the vertex temperature and the quadratic function that approximates the frequency temperature characteristic are obtained. A resistance value of the negative feedback circuit of each of the amplifier circuits 202 and 203 for obtaining a change in output current corresponding to the rate of change, and a voltage value serving as an inversion reference for obtaining the lowest control voltage value corresponding to the vertex temperature, Writing to the memory 3, the output voltage value is set as the value of the reference voltage vref_To of each amplifier circuit 202, 203, the gain of each amplifier circuit 202, 203 is set by the resistance value, and the voltage value is inverted by an inverting amplifier circuit By setting it as the value of the reference voltage vref_fo of 210, the frequency temperature characteristic of the SAW oscillator 101 is changed by an approximate convex quadratic function and a convex convex square characteristic that is axisymmetrical downward. It is possible to generate a voltage.

なお、本発明は、上述した実施形態に限定されるものではなく、例えば、一対の関数発生回路204,205の後段にそれぞれ設けた電流補正回路206,207は必ずしも設ける必要はなく、また、温度検出部201の出力をオペアンプからなるインピーダンス変換回路を介して各増幅回路202,203に入力するようよう構成してもよい。   The present invention is not limited to the above-described embodiment. For example, the current correction circuits 206 and 207 provided in the subsequent stage of the pair of function generation circuits 204 and 205 are not necessarily provided, and the temperature You may comprise so that the output of the detection part 201 may be input into each amplification circuit 202,203 via the impedance conversion circuit which consists of operational amplifiers.

本発明にかかる電圧制御型SAW発振器の一実施形態を示す回路図。1 is a circuit diagram showing an embodiment of a voltage controlled SAW oscillator according to the present invention. 同じく温度補償電圧発生部の回路図。The circuit diagram of a temperature compensation voltage generation part similarly. 同じく温度検出部の出力状態を示すグラフ。The graph which similarly shows the output state of a temperature detection part. 同じく非反転増幅回路の出力状態を示すグラフ。The graph which similarly shows the output state of a non-inverting amplifier circuit. 同じく反転増幅回路の出力状態を示すグラフ。The graph which similarly shows the output state of an inverting amplifier circuit. 同じく頂点温度の変化による反転増幅回路と非反転増幅回路の出力状態を示すグラフ。The graph which similarly shows the output state of the inverting amplifier circuit by the change of vertex temperature, and a non-inverting amplifier circuit. 同じく利得の変化による反転増幅回路と非反転増幅回路の出力状態を示すグラフ。The graph which similarly shows the output state of the inverting amplifier circuit by a change of a gain, and a non-inverting amplifier circuit. 同じく加算部の出力状態を示すグラフ。The graph which similarly shows the output state of an addition part. 同じく電流−電圧変換回路の出力とこれを反転増幅した反転増幅回路の出力である制御電圧を示すグラフ。The graph which similarly shows the control voltage which is the output of the current-voltage conversion circuit, and the output of the inverting amplifier circuit which carried out the inverting amplification of this. 同じく参照電圧による反転レベルの変化による最低制御電圧の変化を示すグラフ。The graph which similarly shows the change of the minimum control voltage by the change of the inversion level by a reference voltage.

符号の説明Explanation of symbols

1 SAW発振器
2 温度補償電圧発振部
3 メモリ
101 SAW発振子
102 反転増幅回路
105,107 可変容量ダイオード
110 発振周波数制御端子
201 温度検出部
202 反転増幅回路
203 非反転増幅回路
204,205 関数発生回路
206,207 電流補正回路
208 加算部
209 電流−電圧変換回路
210 反転増幅回路
DESCRIPTION OF SYMBOLS 1 SAW oscillator 2 Temperature compensation voltage oscillation part 3 Memory 101 SAW oscillator 102 Inversion amplification circuit 105,107 Variable capacity diode 110 Oscillation frequency control terminal 201 Temperature detection part 202 Inversion amplification circuit 203 Non-inversion amplification circuit 204,205 Function generation circuit 206 207 Current correction circuit 208 Adder 209 Current-voltage conversion circuit 210 Inverting amplifier circuit

Claims (5)

周波数温度特性が二次関数で近似される弾性表面波発振子を有し、制御電圧によって出力周波数が制御される発振回路と、この発振回路に前記制御電圧を供給する温度補償電圧発生部とを備えてなる電圧制御型弾性表面波発振器であって、
前記温度補償電圧発生部は、
弾性表面波発振子の周囲温度を検出し、検出温度の上昇に対応して一定の変化率で減少する出力電圧を生成する温度検出部と、
この温度検出部の出力電圧が、あらかじめ設定された基準温度に達しない温度に対応する範囲では、温度上昇に対応して一定の変化率で減少する出力電流を生成し、前記出力電圧が、前記基準温度以上の温度に対応する範囲では、零である出力電流を生成する非反転増幅回路と、
前記温度検出部の出力電圧が、前記基準温度に達しない温度に対応する範囲では、零である出力電流を生成し、前記基準温度以上の温度に対応する範囲では温度上昇に対応して一定の変化率で増加する出力電流を生成する反転増幅回路と、
これら非反転増幅回路及び反転増幅回路の各出力電流から二乗特性で変化する電流を生成する一対の関数発生回路と、
これら各関数発生回路で生成された二乗特性で変化する電流を加算する加算部と、
この加算された二乗特性で変化する電流を上に凸の二乗特性で変化する電圧に変換する電流―電圧変換回路と、
この変換された電圧から、弾性表面波発振子の周波数温度特性を示す二次関数と線対称な、下に凸の二乗特性で変化する制御電圧を生成する反転増幅回路と
からなることを特徴とする電圧制御型弾性表面波発振器。
An oscillation circuit having a surface acoustic wave oscillator whose frequency temperature characteristic is approximated by a quadratic function, the output frequency of which is controlled by a control voltage, and a temperature compensation voltage generator for supplying the control voltage to the oscillation circuit A voltage-controlled surface acoustic wave oscillator comprising:
The temperature compensation voltage generator is
A temperature detector that detects the ambient temperature of the surface acoustic wave oscillator and generates an output voltage that decreases at a constant rate of change in response to an increase in the detected temperature;
In a range corresponding to a temperature at which the output voltage of the temperature detection unit does not reach a preset reference temperature, an output current that decreases at a constant change rate corresponding to a temperature rise is generated, and the output voltage is In a range corresponding to a temperature equal to or higher than the reference temperature, a non-inverting amplifier circuit that generates zero output current;
The output voltage of the temperature detection unit generates an output current that is zero in a range corresponding to a temperature that does not reach the reference temperature, and is constant in response to a temperature increase in a range corresponding to a temperature that is equal to or higher than the reference temperature. An inverting amplifier circuit that generates an output current that increases with the rate of change;
A pair of function generators for generating a current that changes in a square characteristic from each output current of the non-inverting amplifier circuit and the inverting amplifier circuit;
An adder that adds currents that change with the square characteristics generated by each of these function generators;
A current-voltage conversion circuit that converts the current that changes with the added square characteristic into a voltage that changes with an upward convex square characteristic; and
It is characterized by comprising an inverting amplifier circuit that generates a control voltage that is symmetrical with a quadratic function indicating the frequency-temperature characteristic of a surface acoustic wave oscillator and that changes in a downward convex square characteristic from the converted voltage. A voltage-controlled surface acoustic wave oscillator.
基準温度の設定は、非反転増幅回路及び反転増幅回路の各参照電圧を、発振周波数が極大を示す頂点温度に対応する温度検出部の出力電圧に設定して行うことを特徴とする請求項1記載の電圧制御型弾性表面波発振器。   2. The reference temperature is set by setting each reference voltage of the non-inverting amplifier circuit and the inverting amplifier circuit to an output voltage of a temperature detection unit corresponding to a vertex temperature at which the oscillation frequency has a maximum. The voltage-controlled surface acoustic wave oscillator described. 非反転増幅回路及び反転増幅回路の各出力電流の変化率は、弾性表面波発振子の温度に依存した発振周波数の変化率に合うように前記各増幅回路の利得を調整して設定することを特徴とする請求項1記載の電圧制御型弾性表面波発振器。   The rate of change of each output current of the non-inverting amplifier circuit and the inverting amplifier circuit is set by adjusting the gain of each amplifier circuit so as to match the rate of change of the oscillation frequency depending on the temperature of the surface acoustic wave oscillator. 2. The voltage-controlled surface acoustic wave oscillator according to claim 1, wherein 制御電圧を生成する反転増幅回路の参照電圧によって、周波数温度特性の頂点温度に対応する最低制御電圧値を設定することを特徴とする請求項1記載の電圧制御型弾性表面波発振器。   2. The voltage controlled surface acoustic wave oscillator according to claim 1, wherein the minimum control voltage value corresponding to the apex temperature of the frequency temperature characteristic is set by the reference voltage of the inverting amplifier circuit that generates the control voltage. 一対の関数発生回路のそれぞれの後段に、発振回路の制御電圧変化に対する発振周波数変化の直線性を改善するための電流補正回路を設けることを特徴とする請求項1記載の電圧制御型弾性表面波発振器。
2. A voltage-controlled surface acoustic wave according to claim 1, wherein a current correction circuit for improving linearity of the oscillation frequency change with respect to the control voltage change of the oscillation circuit is provided at the subsequent stage of the pair of function generation circuits. Oscillator.
JP2008064395A 2008-03-13 2008-03-13 Voltage-controlled surface acoustic wave oscillator Active JP5103230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008064395A JP5103230B2 (en) 2008-03-13 2008-03-13 Voltage-controlled surface acoustic wave oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008064395A JP5103230B2 (en) 2008-03-13 2008-03-13 Voltage-controlled surface acoustic wave oscillator

Publications (2)

Publication Number Publication Date
JP2009224865A true JP2009224865A (en) 2009-10-01
JP5103230B2 JP5103230B2 (en) 2012-12-19

Family

ID=41241248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008064395A Active JP5103230B2 (en) 2008-03-13 2008-03-13 Voltage-controlled surface acoustic wave oscillator

Country Status (1)

Country Link
JP (1) JP5103230B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011062032A1 (en) * 2009-11-19 2011-05-26 株式会社村田製作所 Oscillator circuit and sensor
JP2017129503A (en) * 2016-01-21 2017-07-27 日本電信電話株式会社 Conduction disturbing wave measurement device
CN111487437A (en) * 2020-04-20 2020-08-04 东南大学 Device and method for measuring flue gas flow velocity in flue by using acoustic method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63152204A (en) * 1986-12-17 1988-06-24 Nec Corp Temperature compensation type piezoelectric oscillator
JPH07212158A (en) * 1994-01-20 1995-08-11 Fujitsu Ltd Function generation circuit
JPH07231221A (en) * 1994-02-21 1995-08-29 Mitsubishi Materials Corp Temperature compensation oscillator
JPH11186846A (en) * 1997-12-22 1999-07-09 Nippon Dempa Kogyo Co Ltd Compensation voltage generator and temperature compensated piezoelectric oscillator using the same
JP2001274625A (en) * 2000-03-24 2001-10-05 Seiko Epson Corp Oscillation circuit
JP2005175633A (en) * 2003-12-08 2005-06-30 Toyo Commun Equip Co Ltd Temperature compensated saw oscillator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63152204A (en) * 1986-12-17 1988-06-24 Nec Corp Temperature compensation type piezoelectric oscillator
JPH07212158A (en) * 1994-01-20 1995-08-11 Fujitsu Ltd Function generation circuit
JPH07231221A (en) * 1994-02-21 1995-08-29 Mitsubishi Materials Corp Temperature compensation oscillator
JPH11186846A (en) * 1997-12-22 1999-07-09 Nippon Dempa Kogyo Co Ltd Compensation voltage generator and temperature compensated piezoelectric oscillator using the same
JP2001274625A (en) * 2000-03-24 2001-10-05 Seiko Epson Corp Oscillation circuit
JP2005175633A (en) * 2003-12-08 2005-06-30 Toyo Commun Equip Co Ltd Temperature compensated saw oscillator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011062032A1 (en) * 2009-11-19 2011-05-26 株式会社村田製作所 Oscillator circuit and sensor
JP2017129503A (en) * 2016-01-21 2017-07-27 日本電信電話株式会社 Conduction disturbing wave measurement device
CN111487437A (en) * 2020-04-20 2020-08-04 东南大学 Device and method for measuring flue gas flow velocity in flue by using acoustic method

Also Published As

Publication number Publication date
JP5103230B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
US8058941B2 (en) Voltage control type temperature compensation piezoelectric oscillator
JP4670406B2 (en) Temperature compensated piezoelectric oscillator
US8653420B2 (en) Temperature control circuit of oven controlled crystal oscillator
US7098753B1 (en) Oscillator with variable reference
US7675351B2 (en) Frequency output circuit
JP2010267068A (en) Power supply circuit
JP2018137755A (en) Temperature compensated crystal oscillator
CN106664060B (en) Oscillating device
JP5103230B2 (en) Voltage-controlled surface acoustic wave oscillator
JPWO2005020427A1 (en) Temperature compensated piezoelectric oscillator and electronic device provided with the same
JP4768426B2 (en) Automatic filter adjustment device
US10193557B2 (en) Oscillation control apparatus and oscillation apparatus
JP5253318B2 (en) Oscillator
JP6339252B2 (en) Oscillation control device and oscillation device
JP2002026658A (en) Quartz oscillator circuit
TW201421897A (en) Oscillator compensation circuits
JP2016082472A (en) Oscillator and calibration method thereof
TWI488426B (en) Clock generator with temperature and process compensation and compensation member thereof
JP2010161437A (en) Temperature compensated piezoelectric oscillator
JP2010161532A (en) Piezoelectric oscillator
JP2008193665A (en) Frequency modulation circuit
JP2009077342A (en) Compensation voltage circuit and temperature compensated piezoelectric oscillator
JP2007067787A (en) Method for compensating temperature of surface acoustic wave resonator and temperature-compensation type surface acoustic wave oscillator
JP2005072866A (en) Temperature compensated variable attenuator and high frequency amplifier using the same
JP2021122094A (en) Constant temperature bath type crystal oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120912

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5103230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250