JP2005175633A - Temperature compensated saw oscillator - Google Patents

Temperature compensated saw oscillator Download PDF

Info

Publication number
JP2005175633A
JP2005175633A JP2003409532A JP2003409532A JP2005175633A JP 2005175633 A JP2005175633 A JP 2005175633A JP 2003409532 A JP2003409532 A JP 2003409532A JP 2003409532 A JP2003409532 A JP 2003409532A JP 2005175633 A JP2005175633 A JP 2005175633A
Authority
JP
Japan
Prior art keywords
temperature
circuit
voltage
output
current mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003409532A
Other languages
Japanese (ja)
Other versions
JP4314988B2 (en
Inventor
Yoshiaki Matsumoto
好明 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2003409532A priority Critical patent/JP4314988B2/en
Publication of JP2005175633A publication Critical patent/JP2005175633A/en
Application granted granted Critical
Publication of JP4314988B2 publication Critical patent/JP4314988B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a means for enhancing the frequency stability of a piezoelectric oscillator being employed in a remote key entry system, or the like. <P>SOLUTION: The temperature compensated piezoelectric oscillator comprises a piezoelectric oscillator, an amplifier circuit and a temperature compensating circuit. The temperature compensating circuit comprises a first differential amplifier having an input connected with a temperature detection diode and a first power supply for setting a predetermined temperature, a first current mirror circuit operating when the temperature is lower than a predetermined level, a second current mirror circuit, a second differential amplifier generating a current being supplied to the second current mirror circuit, and a second power supply for determining the minimum level of a voltage being generated from the second differential amplifier. The temperature compensated piezoelectric oscillator is arranged such that the output voltage from the temperature compensating circuit has V-shaped temperature characteristics. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は温度補償型SAW発振器に関し、特にSAW振動子の二次の周波数温度特性を補償するための回路を設けたSAW発振器に関する。   The present invention relates to a temperature-compensated SAW oscillator, and more particularly to a SAW oscillator provided with a circuit for compensating a secondary frequency temperature characteristic of a SAW vibrator.

近年、圧電発振器は周波数安定度、小型軽量、低価格等により通信機器や電子機器の多くの分野で用いられおり、中でも圧電振動子の周波数温度特性を補償した所謂温度補償型圧電発振器は、周波数の安定度を必要とする携帯電話等には不可欠のものである。また、最近、普及がめざましいリモートキーレス・エントリーシステムは、車や住居の鍵の開閉を容易にすると共に、送信信号を暗号化することでセキュリティ性も合わせ持つため、広く用いられるようになった。このリモートキーレス・エントリーシステムにも送信信号の精度を向上させるため、温度補償された圧電発振器が用いられているものがある。 In recent years, piezoelectric oscillators have been used in many fields of communication equipment and electronic equipment due to their frequency stability, small size, light weight, low price, etc. Among them, so-called temperature compensated piezoelectric oscillators that compensate the frequency temperature characteristics of piezoelectric vibrators It is indispensable for mobile phones and the like that require high stability. Recently, the remote keyless entry system, which has been remarkably popular, has been widely used because it makes it easy to open and close a car or a house key, and also has security by encrypting a transmission signal. Some remote keyless entry systems use a temperature-compensated piezoelectric oscillator in order to improve the accuracy of a transmission signal.

図5は特開2003−198250号公報に開示された温度補償型圧電発振器の回路構成を示す図であって、SAW振動子Y1と、コイルLと容量CとサーミスタThとからなるタンク回路TUと、増幅回路AMP1と、位相回路θと、増幅回路AMP2とから構成されている。SAW振動子Y1、タンク回路TU、増幅回路AMP1、位相回路θにより正帰還ループが形成されて発振が開始し、その発振周波数が増幅器AMP2介して出力される。増幅器AMP2は発振ループと出力との間の影響を低減するために設けたバッファ回路である。   FIG. 5 is a diagram showing a circuit configuration of the temperature compensated piezoelectric oscillator disclosed in Japanese Patent Application Laid-Open No. 2003-198250, and includes a tank circuit TU composed of a SAW vibrator Y1, a coil L, a capacitor C, and a thermistor Th. , An amplifier circuit AMP1, a phase circuit θ, and an amplifier circuit AMP2. A positive feedback loop is formed by the SAW vibrator Y1, the tank circuit TU, the amplifier circuit AMP1, and the phase circuit θ to start oscillation, and the oscillation frequency is output through the amplifier AMP2. The amplifier AMP2 is a buffer circuit provided to reduce the influence between the oscillation loop and the output.

図5に示した温度補償型圧電発振器の特徴はタンク回路TUの動作にある。サーミスタThの抵抗値は、周知のように、温度の上昇に応じて小さくなる特性を有するので、タンク回路TUは、温度が低い場合は温度変化による伝達位相量の変化量が小さいのに対し、温度が高い場合は温度の変化による伝達位相量の変化が大きくなる。つまり、タンク回路TUを発振ループ内に設けることにより、広い温度範囲で発振周波数の温度変化を低減するが、特に高温域での温度変化を大幅に低減することが可能であると記述されている。   The feature of the temperature compensated piezoelectric oscillator shown in FIG. 5 is the operation of the tank circuit TU. As is well known, the resistance value of the thermistor Th has a characteristic of decreasing as the temperature rises. Therefore, when the temperature is low, the tank circuit TU has a small change amount of the transmission phase amount due to the temperature change. When the temperature is high, the change in the transmission phase amount due to the change in temperature becomes large. That is, it is described that by providing the tank circuit TU in the oscillation loop, the temperature change of the oscillation frequency can be reduced over a wide temperature range, but the temperature change particularly in a high temperature range can be significantly reduced. .

図6は特開2003−204260号公報に開示された温度補償型圧電発振器の回路構成を示す図であって、温度補償型圧電発振回路(TCXO)、位相比較回路、低域フィルタ、電圧制御型SAW発振回路(VCSO)及び分周回路を備えている。TCXOからはクロック信号S1出力され、位相比較回路に供給される。一方、分周回路はVCSOから出力されるクロック信号S4を分周して分周信号S5を出力する。分周回路の分周比1/Nは基準温度において分周信号S5の周波数がTCXOから出力されるクロック信号S1の周波数に等しくなる分周比に設定される。位相比較回路はクロック信号S1とクロック信号S5とを比較して得られた位相差信号S2を出力する。低域フィルタは位相差信号S2を平滑したものを制御信号S3としてVCSOに供給する。図6の回路構成により所謂PLL回路が構成され、数百MHzから数GHzの高周波数帯で高い周波数安定度を満たす温度補償型圧電発振器が構成できる。
特開2003−198250号公報 特開2003−204260号公報
FIG. 6 is a diagram showing a circuit configuration of a temperature-compensated piezoelectric oscillator disclosed in Japanese Patent Application Laid-Open No. 2003-204260. A temperature-compensated piezoelectric oscillator circuit (TCXO), a phase comparison circuit, a low-pass filter, and a voltage control type A SAW oscillation circuit (VCSO) and a frequency dividing circuit are provided. The clock signal S1 is output from the TCXO and supplied to the phase comparison circuit. On the other hand, the frequency divider circuit divides the clock signal S4 output from the VCSO and outputs a frequency-divided signal S5. The frequency dividing ratio 1 / N of the frequency dividing circuit is set to a frequency dividing ratio at which the frequency of the frequency division signal S5 becomes equal to the frequency of the clock signal S1 output from the TCXO at the reference temperature. The phase comparison circuit outputs a phase difference signal S2 obtained by comparing the clock signal S1 and the clock signal S5. The low-pass filter supplies the smoothed phase difference signal S2 to the VCSO as the control signal S3. A so-called PLL circuit is configured by the circuit configuration of FIG. 6, and a temperature compensated piezoelectric oscillator satisfying high frequency stability in a high frequency band of several hundred MHz to several GHz can be configured.
JP 2003-198250 A JP 2003-204260 A

解決しようとする問題点は、図5に示す回路を用いて構成した温度補償型SAW発振器では、高精度のリモートキーレス・エントリーシステムに使用するには周波数安定度が十分ではなく、図6に示す回路を用いて構成した温度補償型SAW発振器では、周波数安定度は十分であるものの上記システムに用いるには高価になり過ぎ、使用できない点である。 The problem to be solved is that the temperature compensated SAW oscillator configured using the circuit shown in FIG. 5 has insufficient frequency stability for use in a high-precision remote keyless entry system. A temperature-compensated SAW oscillator configured using a circuit has sufficient frequency stability, but is too expensive to be used in the above system and cannot be used.

本発明は、電圧制御型圧電発振器と、該電圧制御型圧電発振器に温度補償用の電圧を供給する温度補償電圧生成回路とを備えた温度補償型圧電発振器であって、前記温度補償電圧生成回路は、温度によって電圧出力が変動する温度検出回路と、第1及び第2の演算増幅器と、第1及び第2のカレントミラー回路と、第1及び第2の定電圧源とを少なくとも備えており、第1の演算増幅器の正側入力には温度検出回路が接続され、第1の演算増幅器の負側入力には抵抗を介して第1の定電圧源が接続され、第1の演算増幅器の出力が第1及び第2のカレントミラー回路の入力側回路に接続されており、第1のカレントミラー回路の出力側回路が第2のカレントミラー回路の入力側回路に接続されており、第2のカレントミラー回路の出力側回路が第2の演算回路の負側入力に接続されており、第2の演算回路の正側入力には第2の定電圧源が接続され、第2の演算増幅器の出力が抵抗を介して第2の演算増幅器の負側入力に接続され、第2の演算増幅器の出力が温度補正電圧生成回路の出力となるよう構成した温度補償型圧電発振器である。   The present invention is a temperature-compensated piezoelectric oscillator comprising a voltage-controlled piezoelectric oscillator and a temperature-compensated voltage generating circuit that supplies a voltage for temperature compensation to the voltage-controlled piezoelectric oscillator, the temperature-compensated voltage generating circuit Includes at least a temperature detection circuit whose voltage output fluctuates depending on temperature, first and second operational amplifiers, first and second current mirror circuits, and first and second constant voltage sources. The temperature detection circuit is connected to the positive input of the first operational amplifier, and the first constant voltage source is connected to the negative input of the first operational amplifier via a resistor. The output is connected to the input side circuit of the first and second current mirror circuits, the output side circuit of the first current mirror circuit is connected to the input side circuit of the second current mirror circuit, and the second Output side circuit of current mirror circuit The second constant voltage source is connected to the negative input of the second arithmetic circuit, the second constant voltage source is connected to the positive input of the second arithmetic circuit, and the output of the second operational amplifier is connected to the second through the resistor. This is a temperature compensated piezoelectric oscillator that is connected to the negative input of the operational amplifier, and that the output of the second operational amplifier is the output of the temperature correction voltage generation circuit.

本発明の温度補償型圧電発振器は、V字型特性する温度補償電圧生成回路を備えているため、周波数の温度補償もV字型特性とすることができるので、二次の周波数温度特性を有するSAW振動子と共に用いれば、高い周波数安定度の発振器を構成できるという利点と、温度補償電圧生成回路は容易にIC化が可能であり、温度補償型圧電発振器のコストを大幅に低減できるという利点がある。   Since the temperature-compensated piezoelectric oscillator of the present invention includes a temperature-compensated voltage generation circuit having a V-shaped characteristic, the frequency temperature compensation can also be a V-shaped characteristic, and thus has a secondary frequency temperature characteristic. When used with a SAW resonator, an oscillator with high frequency stability can be configured, and the temperature compensated voltage generation circuit can be easily integrated into an IC, and the cost of the temperature compensated piezoelectric oscillator can be greatly reduced. is there.

図1は本発明に係る温度補償型SAW発振器の実施の形態を示す回路図であって、温度変化を電圧変化に変換する温度補償回路αと、生成電圧を容量に変換する電圧−容量変換回路βと、SAW振動子と増幅器とからなるコルピッツ型発振回路γと、該発振回路γを制御(ON/OFF)する回路とから構成される。図1に示すコルピッツ型発振回路γは、トランジスタTrのコレクタ−ベース間の誘導性素子として、ベース−接地間にSAW振動子Y1、容量C3及びバラクタダイオードDvの直列接続素子を用いる。さらに、ベース−接地間に容量C1とC2との直列接続素子を接続すると共に、エミッタ−アース間に抵抗R2を挿入し、容量C1、C2の中点とエミッタとを接続して構成する。
また、電圧容量変換回路βは図1に示すように、抵抗R4の両端子にバラクタダイオードDvと容量C4との一端をそれぞれ接続し、他の端子を接地したπ型回路で、該回路と前記コルピッツ型発振回路γとにより電圧制御型発振回路が構成される。
FIG. 1 is a circuit diagram showing an embodiment of a temperature compensated SAW oscillator according to the present invention, in which a temperature compensation circuit α for converting a temperature change into a voltage change, and a voltage-capacitance conversion circuit for converting a generated voltage into a capacitor. β, a Colpitts oscillation circuit γ composed of a SAW vibrator and an amplifier, and a circuit for controlling (ON / OFF) the oscillation circuit γ. The Colpitts oscillation circuit γ shown in FIG. 1 uses a series connection element of a SAW vibrator Y1, a capacitor C3, and a varactor diode Dv between the base and the ground as an inductive element between the collector and the base of the transistor Tr. Further, a series connection element of capacitors C1 and C2 is connected between the base and the ground, and a resistor R2 is inserted between the emitter and the ground, and the midpoint of the capacitors C1 and C2 and the emitter are connected.
As shown in FIG. 1, the voltage-capacitance conversion circuit β is a π-type circuit in which one end of each of the varactor diode Dv and the capacitor C4 is connected to both terminals of the resistor R4 and the other terminal is grounded. The Colpitts oscillation circuit γ constitutes a voltage controlled oscillation circuit.

図2は、図1にブロック図で示した温度補償回路α(温度補償電圧生成回路)の構成を詳細に示す図であって、温度補償電圧生成回路αは、温度によって電圧出力が変動する温度検出回路と、第1及び第2の演算増幅器U1、U2と、第1及び第2のカレントミラー回路M1、M2と、第1及び第2の定電圧源V1、V2とを備えている。
第1の差動増幅器U1の+入力には、図2に示すように一方の端子を電源Vccに接続した抵抗R2の他方の端子を接続すると共に、ダイオードD1、D2を直列接続した複合ダイオードDの一方の端子を接続し、Dの他方の端子は接地した温度検出回路を接続する。第1の差動増幅器U1の−入力端子には抵抗R1を介して第1の定電源V1の+側と接続し、電源V1の−側を接地する。そして、第1の差動増幅器U1の出力とトランジスタQ1のベースを接続し、トランジスタQ1のエミッタとU1の−入力端子とを接続する。第1のカレントミラー回路M1のトランジスタQ3のコレクタと前記トランジスタQ1と接続すると共に、トランジスタQ3のコレクタとベースを導通する。トランジスタQ1のベースとトランジスタQ5のベースを接続すると共に、エミッタと第1の差動増幅器U1の−入力端子とを接続する。
FIG. 2 is a diagram showing in detail the configuration of the temperature compensation circuit α (temperature compensation voltage generation circuit) shown in the block diagram of FIG. 1. The temperature compensation voltage generation circuit α is a temperature at which the voltage output varies depending on the temperature. The detection circuit includes first and second operational amplifiers U1 and U2, first and second current mirror circuits M1 and M2, and first and second constant voltage sources V1 and V2.
The positive input of the first differential amplifier U1 is connected to the other terminal of the resistor R2 having one terminal connected to the power supply Vcc, as shown in FIG. 2, and a composite diode D in which diodes D1 and D2 are connected in series. The other terminal of D is connected to a grounded temperature detection circuit. The negative input terminal of the first differential amplifier U1 is connected to the positive side of the first constant power source V1 via the resistor R1, and the negative side of the power source V1 is grounded. Then, the output of the first differential amplifier U1 and the base of the transistor Q1 are connected, and the emitter of the transistor Q1 and the negative input terminal of U1 are connected. The collector of the transistor Q3 of the first current mirror circuit M1 is connected to the transistor Q1, and the collector and base of the transistor Q3 are made conductive. The base of the transistor Q1 and the base of the transistor Q5 are connected, and the emitter and the negative input terminal of the first differential amplifier U1 are connected.

さらに、トランジスタQ5のコレクタと、第1のカレントミラー回路M1のトランジスタQ4のコレクタと、第2のカレントミラー回路M2のトランジスタQ6のコレクタとを接続すると共に、トランジスタQ6のコレクタとベースとを導通する。第2のカレントミラー回路M2のトランジスタQ7のコレクタと第2の差動増幅器U2の−入力とを接続し、第2の定電源V2の+側を第2の差動増幅器U2の+入力に接続し、電源V2の−側を接地する。第2の差動増幅器U2の出力と−入力とを抵抗R3介して接続する。   Further, the collector of the transistor Q5, the collector of the transistor Q4 of the first current mirror circuit M1, and the collector of the transistor Q6 of the second current mirror circuit M2 are connected, and the collector and base of the transistor Q6 are made conductive. . The collector of the transistor Q7 of the second current mirror circuit M2 is connected to the negative input of the second differential amplifier U2, and the positive side of the second constant power supply V2 is connected to the positive input of the second differential amplifier U2. Then, the negative side of the power supply V2 is grounded. The output and second input of the second differential amplifier U2 are connected via a resistor R3.

図2に示す温度補償回路αの動作を図3、図4を用いて詳細に説明する。周知のように、圧電結晶を用いて構成したSAW共振子の温度−周波数特性(周波数温度特性とも言う)は一般に上に凸の逆U字型の曲線を呈する。例えば、図3の曲線A(一点鎖線)は補償回路の無いSAW共振子を用いた発振回路の温度−周波数特性例であり、頂点温度Tpを中心として低温になるに従って、あるいは高温になるに従って周波数が曲線的に低下する逆U字型曲線となる。そこで、本発明においては、図3の破線Bに示すように発振回路の周波数をV字型に制御することにより、曲線Aの周波数変動を相殺して、図3の実線Cに示すような温度変化に対して周波数変動を少なくした特性を得ている。図4(a)は図2に示したダイオードD1、D2を直列接続した複合ダイオードDの温度特性で、横軸は温度、縦軸は複合ダイオードDの両端の呈する電圧Vdである。この図より温度の上昇に伴い複合ダイオードDの両端の呈する電圧Vdは直線的に低下する。ここで、Tpは図1に示すSAW振動子Y1が呈する周波数温度特性の頂点温度Tpである。温度Tpで複合ダイオードDの両端の呈する電圧Vdの値をVdpとする。ここで、第1の定電源V1の電圧を電圧Vdpと等しく設定する。
いま、温度補償型SAW発振器の周囲温度Tが温度Tpより低い場合を想定すると、電圧VdすなわちV+はVdpより高い値となる。すると、差動増幅器の特性(差動増幅器の増幅度を無限大∞とすると、+入力の電圧V+と−入力の電圧V−が等しくなるように動作する)より、第1の差動増幅器U1の2つの入力端子はV+=V−となり、抵抗R1とトランジスタQ1のエミッタと第1の演算増幅器の−入力との接続点ではV−>Vdpとなるので、カレントミラー回路M1からトランジスタQ1を通して電流Iが供給されることになる。カレントミラー回路の特性より同じ電流Iがカレントミラー回路M1のトランジスタQ4を介して、トランジスタQ6に供給される。これに応じ、カレントミラー回路M2のトランジスタQ7にも電流Iが流れることになる。トランジスタQ7に流れる電流Iは第2の差動増幅器U2の抵抗R3を介してトランジスタQ7に供給されることになるから、第2の差動増幅器U2の出力電圧Vcontは電流Iに応じて変化することになる。
The operation of the temperature compensation circuit α shown in FIG. 2 will be described in detail with reference to FIGS. As is well known, the temperature-frequency characteristic (also referred to as frequency temperature characteristic) of a SAW resonator formed using a piezoelectric crystal generally exhibits an upwardly inverted U-shaped curve. For example, a curve A (dashed line) in FIG. 3 is an example of a temperature-frequency characteristic of an oscillation circuit using a SAW resonator without a compensation circuit, and the frequency becomes lower as the apex temperature Tp becomes lower or as the temperature becomes higher. Becomes an inverted U-shaped curve with a curvilinear drop. Therefore, in the present invention, by controlling the frequency of the oscillation circuit to be V-shaped as shown by the broken line B in FIG. 3, the frequency variation of the curve A is canceled out, and the temperature as shown by the solid line C in FIG. The characteristic that the frequency fluctuation is reduced with respect to the change is obtained. 4A shows the temperature characteristics of the composite diode D in which the diodes D1 and D2 shown in FIG. 2 are connected in series. The horizontal axis indicates the temperature, and the vertical axis indicates the voltage Vd exhibited across the composite diode D. FIG. From this figure, as the temperature rises, the voltage Vd exhibited across the composite diode D decreases linearly. Here, Tp is the apex temperature Tp of the frequency temperature characteristic exhibited by the SAW vibrator Y1 shown in FIG. The value of the voltage Vd presented across the composite diode D at the temperature Tp is Vdp. Here, the voltage of the first constant power supply V1 is set equal to the voltage Vdp.
Assuming that the ambient temperature T of the temperature compensated SAW oscillator is lower than the temperature Tp, the voltage Vd, that is, V + is higher than Vdp. Then, according to the characteristics of the differential amplifier (when the amplification factor of the differential amplifier is infinite ∞, the positive input voltage V + and the negative input voltage V− operate to be equal), the first differential amplifier U1. V + = V− and V−> Vdp at the connection point between the resistor R1, the emitter of the transistor Q1 and the first input of the first operational amplifier, so that the current from the current mirror circuit M1 through the transistor Q1. IL will be supplied. The same current I L from the characteristic of the current mirror circuit through the transistor Q4 of the current mirror circuit M1, is supplied to the transistor Q6. Accordingly, so that also the current I L flows through the transistor Q7 of the current mirror circuit M2. Since current I L flowing through the transistor Q7 is supplied to the transistor Q7 through the resistor R3 of the second differential amplifier U2, the output voltage Vcont of the second differential amplifier U2 in response to the current I L Will change.

次に温度補償型SAW発振器の周囲温度Tが温度Tpより高い場合を想定すると、複合ダイオードDの両端の電圧VdはVdpより下降し、V+=Vd<V1となる。抵抗R1とトランジスタQ1のエミッタの接続点の電圧V−はV−=V+<V1となるので、電源V1からトランジスタQ5を介して電流Iを供給する。該電流IがトランジスタQ6に流れると、カレントミラー回路M2のトランジスタQ7を介して電流Iが流れることになる。トランジスタQ7に流れる電流Iは第2の差動増幅器U2の抵抗R3を介してトランジスタQ7に供給される。この電流を供給すべく第2の差動増幅器U2の出力電圧Vcontが上昇することになる。ここで、温度TがTpと等しい場合にはカレントミラー回路M1、M2とも電流が流れないので、第2の差動増幅器U2の出力電圧Vcontは第2の定電源V2の電圧値がそのまま出力されることになる。つまり、図2に示す温度補償回路αの出力電圧Vcontの温度特性は、図4(b)に示したように温度Tpで最小電圧V2を呈するV字型の電圧特性となる Next, assuming that the ambient temperature T of the temperature compensated SAW oscillator is higher than the temperature Tp, the voltage Vd across the composite diode D falls below Vdp, and V + = Vd <V1. Since the voltage V− at the connection point between the resistor R1 and the emitter of the transistor Q1 is V− = V + <V1, the current IH is supplied from the power supply V1 through the transistor Q5. When said current I H flows through the transistor Q6, so that the current flows I H through the transistor Q7 of the current mirror circuit M2. Current I H flowing through the transistor Q7 is supplied to the transistor Q7 through the resistor R3 of the second differential amplifier U2. In order to supply this current, the output voltage Vcont of the second differential amplifier U2 increases. Here, when the temperature T is equal to Tp, no current flows through the current mirror circuits M1 and M2, so that the output voltage Vcont of the second differential amplifier U2 is output as it is as the voltage value of the second constant power supply V2. Will be. That is, the temperature characteristic of the output voltage Vcont of the temperature compensation circuit α shown in FIG. 2 is a V-shaped voltage characteristic that exhibits the minimum voltage V2 at the temperature Tp as shown in FIG. 4B.

図1に示すバラクタダイオードDvの印加電圧(Vcont)−容量特性は、図3(c)に示すように電圧Vcontが増大するに応じて容量Cは減少する。いま、コルピッツ発振回路γの温度を一定にしておき、複合ダイオードDの周囲温度Tのみを変化さるとすると、コルピッツ発振回路γの周波数温度特性は図3(d)に示すように温度Tpを最小値とするV字型周波数特性となる。
図4はSAW振動子のみの周波数温度特性Aに、温度補償回路αによる周波数温度特性Bを加えることにより、温度補償後の本発明の温度補償型SAW発振器の周波数温度特性Cが得られる。
また、上述した回路はIC化が容易であり、温度補償型SAW発振器のコストを大幅に低減できる利点がある。
The applied voltage (Vcont) -capacitance characteristic of the varactor diode Dv shown in FIG. 1 decreases as the voltage Vcont increases as shown in FIG. 3 (c). Now, assuming that the temperature of the Colpitts oscillation circuit γ is kept constant and only the ambient temperature T of the composite diode D is changed, the frequency temperature characteristic of the Colpitts oscillation circuit γ has a minimum temperature Tp as shown in FIG. It becomes V-shaped frequency characteristic as a value.
In FIG. 4, the frequency temperature characteristic C of the temperature compensated SAW oscillator of the present invention after temperature compensation is obtained by adding the frequency temperature characteristic B by the temperature compensation circuit α to the frequency temperature characteristic A of only the SAW vibrator.
Further, the circuit described above can be easily integrated, and has the advantage that the cost of the temperature compensated SAW oscillator can be significantly reduced.

本発明に係る温度補償型圧電発振器の回路構成を示した図である。It is the figure which showed the circuit structure of the temperature compensation type | mold piezoelectric oscillator which concerns on this invention. 温度補償回路(温度補償電圧生成回路)の詳細を示す回路図である。It is a circuit diagram which shows the detail of a temperature compensation circuit (temperature compensation voltage generation circuit). SAW振動子のみの周波数温度特性と、温度補償型圧電発振器の周波数温度特性とを示す図である。It is a figure which shows the frequency temperature characteristic of only a SAW vibrator, and the frequency temperature characteristic of a temperature compensation type piezoelectric oscillator. (a)はダイオードの電圧−温度特性、(b)は温度補償回路(温度補償電圧生成回路)の出力電圧−温度特性、(c)はバラクターダイオードの容量−電圧特性、(d)は補償回路のみの周波数温度特性である。(A) is a diode voltage-temperature characteristic, (b) is an output voltage-temperature characteristic of a temperature compensation circuit (temperature compensation voltage generation circuit), (c) is a capacity-voltage characteristic of a varactor diode, and (d) is compensation. It is the frequency temperature characteristic of the circuit only. 従来の温度補償型圧電発振器の回路ブロック図である。It is a circuit block diagram of a conventional temperature compensated piezoelectric oscillator. 従来の周波数安定度の高い温度補償型圧電発振器の回路ブロック図である。It is a circuit block diagram of a conventional temperature compensated piezoelectric oscillator with high frequency stability.

符号の説明Explanation of symbols

Tr、Q1、Q3、Q4、Q5、Q6、Q7 トランジスタ
Y1 圧電振動子
Dv バラクタ・ダイオード
R1、R2、R3、R4 抵抗
C1、C2、C3、C4、C5 容量
V1、V2 電源
D1、D2 ダイオード
U1、U2 差動増幅器
Vcont 差動増幅器の出力電圧
Vcc 電源



Tr, Q1, Q3, Q4, Q5, Q6, Q7 Transistor
Y1 Piezoelectric vibrator
Dv Varactor diodes R1, R2, R3, R4 Resistors C1, C2, C3, C4, C5 Capacitance V1, V2 Power supply D1, D2 Diode U1, U2 Differential amplifier Vcont Output voltage Vcc of differential amplifier



Claims (2)

電圧制御型圧電発振器と、該電圧制御型圧電発振器に温度補償用の電圧を供給する温度補償電圧生成回路とを備えた温度補償型圧電発振器であって、
前記温度補償電圧生成回路は、温度によって電圧出力が変動する温度検出回路と、第1及び第2の演算増幅器と、第1及び第2のカレントミラー回路と、第1及び第2の定電圧源とを少なくとも備えており、
第1の演算増幅器の正側入力には温度検出回路が接続され、第1の演算増幅器の負側入力には抵抗を介して第1の定電圧源が接続され、第1の演算増幅器の出力が第1及び第2のカレントミラー回路の入力側回路に接続されており、
第1のカレントミラー回路の出力側回路が第2のカレントミラー回路の入力側回路に接続されており、
第2のカレントミラー回路の出力側回路が第2の演算回路の負側入力に接続されており、第2の演算回路の正側入力には第2の定電圧源が接続され、第2の演算増幅器の出力が抵抗を介して第2の演算増幅器の負側入力に接続され、第2の演算増幅器の出力が温度補正電圧生成回路の出力となるよう構成したことを特徴とする温度補償型圧電発振器。
A temperature-compensated piezoelectric oscillator comprising a voltage-controlled piezoelectric oscillator and a temperature-compensated voltage generation circuit that supplies a temperature-compensated voltage to the voltage-controlled piezoelectric oscillator,
The temperature compensation voltage generation circuit includes a temperature detection circuit whose voltage output fluctuates according to temperature, first and second operational amplifiers, first and second current mirror circuits, and first and second constant voltage sources. And at least
A temperature detection circuit is connected to the positive input of the first operational amplifier, a first constant voltage source is connected to the negative input of the first operational amplifier via a resistor, and the output of the first operational amplifier Are connected to the input side circuits of the first and second current mirror circuits,
The output side circuit of the first current mirror circuit is connected to the input side circuit of the second current mirror circuit,
The output circuit of the second current mirror circuit is connected to the negative input of the second arithmetic circuit, the second constant voltage source is connected to the positive input of the second arithmetic circuit, A temperature compensation type characterized in that the output of the operational amplifier is connected to the negative input of the second operational amplifier through a resistor, and the output of the second operational amplifier becomes the output of the temperature correction voltage generation circuit Piezoelectric oscillator.
前記圧電振動子に周波数温度特性が二次曲線を呈するSAW振動子を用いることを特徴とする請求項1に記載の温度補償圧電発振器。







The temperature compensated piezoelectric oscillator according to claim 1, wherein a SAW vibrator having a quadratic frequency frequency characteristic is used for the piezoelectric vibrator.







JP2003409532A 2003-12-08 2003-12-08 Temperature compensated piezoelectric oscillator Expired - Fee Related JP4314988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003409532A JP4314988B2 (en) 2003-12-08 2003-12-08 Temperature compensated piezoelectric oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003409532A JP4314988B2 (en) 2003-12-08 2003-12-08 Temperature compensated piezoelectric oscillator

Publications (2)

Publication Number Publication Date
JP2005175633A true JP2005175633A (en) 2005-06-30
JP4314988B2 JP4314988B2 (en) 2009-08-19

Family

ID=34730883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003409532A Expired - Fee Related JP4314988B2 (en) 2003-12-08 2003-12-08 Temperature compensated piezoelectric oscillator

Country Status (1)

Country Link
JP (1) JP4314988B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224865A (en) * 2008-03-13 2009-10-01 Seiko Npc Corp Voltage controlled surface acoustic wave oscillator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224865A (en) * 2008-03-13 2009-10-01 Seiko Npc Corp Voltage controlled surface acoustic wave oscillator

Also Published As

Publication number Publication date
JP4314988B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
US6191660B1 (en) Programmable oscillator scheme
US7456699B2 (en) Frequency controller for a monolithic clock generator and timing/frequency reference
US7504899B2 (en) Inductor and capacitor-based clock generator and timing/frequency reference
US7292117B2 (en) Temperature-compensated piezoelectric oscillator
JPH104318A (en) Temperature compensation type crystal oscillator
US7911285B2 (en) Reference frequency control circuit
US6753739B1 (en) Programmable oscillator scheme
US8884718B2 (en) Method and apparatus to control the LC tank temperature null characteristic in a highly stable LC oscillator
US20040108910A1 (en) Voltage-controlled oscillator circuit
JP5034772B2 (en) Temperature compensated piezoelectric oscillator
JP4314988B2 (en) Temperature compensated piezoelectric oscillator
JP5311545B2 (en) Oscillator
JP2002135051A (en) Piezoelectric oscillator
JP2005217773A (en) Voltage-controlled piezoelectric oscillator
JP2006114974A (en) Voltage-controlled piezoelectric oscillator capable of linear frequency control
JP2004266820A (en) Piezoelectric oscillation circuit
JP2005277776A (en) Frequency-compensated voltage controlled oscillator
US20230208356A1 (en) Oscillator
KR100970916B1 (en) Tuning a loop-filter of a PLL
JP2008227893A (en) Temperature compensated piezoelectric oscillator
JP2750886B2 (en) Temperature sensitive voltage generating circuit and temperature compensating element using the same
JP4314982B2 (en) Temperature compensated piezoelectric oscillator
JP2024062598A (en) Frequency Synchronization Circuit and Oscillator Circuit
JP2006186860A (en) Piezoelectric oscillator
JPH10270942A (en) Temperature compensation crystal oscillator and its adjusting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061205

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees