JPH07231221A - Temperature compensation oscillator - Google Patents

Temperature compensation oscillator

Info

Publication number
JPH07231221A
JPH07231221A JP2235694A JP2235694A JPH07231221A JP H07231221 A JPH07231221 A JP H07231221A JP 2235694 A JP2235694 A JP 2235694A JP 2235694 A JP2235694 A JP 2235694A JP H07231221 A JPH07231221 A JP H07231221A
Authority
JP
Japan
Prior art keywords
circuit
temperature
voltage
thermistor
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2235694A
Other languages
Japanese (ja)
Inventor
Kenzo Nakamura
賢蔵 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2235694A priority Critical patent/JPH07231221A/en
Publication of JPH07231221A publication Critical patent/JPH07231221A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

PURPOSE:To reduce fluctuation in the oscillating frequency due to a temperature change by properly compensating a quadratic temperature characteristic having a peak around a room temperature being a characteristic of a surface acoustic wave resonator. CONSTITUTION:A surface acoustic wave resonator 13 and a varactor diode 15 are connected in series with a base electrode 12a of a transistor(TR) 12 of a transistor Coplitz oscillation circuit 11 in the temperature compensation oscillator 10 and a voltage is impressed to the diode 15 via temperature compensation circuit 20. A piezoelectric medium of the surface acoustic wave resonator is made of a lithium tetraboride single crystal. The circuit 20 is provided with circuits 21, 22 and a differential amplifier 23. The circuit 21 is formed by connecting a resistor 21b in parallel with an NTC thermister 21a and the circuit 22 is connected in series with the circuit 21 and formed by connecting a thermister 22a in series with a resistor 22b. The differential amplifier amplifies a DC voltage V1 being a voltage divided by the circuits 21, 22 and impresses the amplified voltage V0 to a varactor diode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は通信機器等に適する温度
補償形発振器に関する。更に詳しくは圧電媒質が四ほう
酸リチウム単結晶により構成される弾性表面波共振子を
用いた温度補償形発振器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature-compensated oscillator suitable for communication equipment. More specifically, the present invention relates to a temperature-compensated oscillator using a surface acoustic wave resonator whose piezoelectric medium is composed of lithium tetraborate single crystal.

【0002】[0002]

【従来の技術】この種の温度補償形発振器は、図5に示
すようにトランジスタ方式のコルピッツ発振回路1のト
ランジスタ2のベース電極2aに弾性表面波共振子3と
可変容量ダイオード4が直列に接続され、可変容量ダイ
オード4に温度補償回路5を介して電圧を印加するよう
に構成される。従来、この温度補償回路5では単一のN
TCサーミスタ6と抵抗7とが直列に接続され、その接
続点Aと可変容量ダイオード4との間に抵抗8が接続さ
れる。この温度補償回路5のサーミスタ6により可変容
量ダイオード4に印加する電圧が温度とともに変化す
る。単一のサーミスタ6は図6に示すように温度に対し
て指数関数で抵抗値が変化する。このため図5に示す温
度補償回路5では、図7に示すように発振器の発振周波
数について一次の温度特性を補償するに過ぎない。
2. Description of the Related Art In this type of temperature-compensated oscillator, as shown in FIG. 5, a surface acoustic wave resonator 3 and a variable capacitance diode 4 are connected in series to a base electrode 2a of a transistor 2 of a transistor type Colpitts oscillator circuit 1. Then, a voltage is applied to the variable capacitance diode 4 via the temperature compensation circuit 5. Conventionally, in this temperature compensation circuit 5, a single N
The TC thermistor 6 and the resistor 7 are connected in series, and the resistor 8 is connected between the connection point A and the variable capacitance diode 4. The thermistor 6 of the temperature compensation circuit 5 changes the voltage applied to the variable capacitance diode 4 with temperature. As shown in FIG. 6, the resistance value of the single thermistor 6 changes exponentially with temperature. Therefore, the temperature compensating circuit 5 shown in FIG. 5 merely compensates the first-order temperature characteristic of the oscillation frequency of the oscillator as shown in FIG.

【0003】[0003]

【発明が解決しようとする課題】しかし、圧電媒質が四
ほう酸リチウム単結晶により構成される弾性表面波共振
子を使用した発振器は、その発振周波数の変化率(△f
/f)が図2の破線に示すように常温付近にピークを持
つ二次の温度特性を有する。このため、上記温度補償回
路5で発振器の温度補償を行う場合には、単一のNTC
サーミスタが図6に示すように温度に対して指数関数で
抵抗値が変化するため、適切な補償ができない問題点が
あった。本発明の目的は、圧電媒質が四ほう酸リチウム
単結晶により構成される弾性表面波共振子を使用したと
きに、この弾性表面波共振子の特性である常温付近にピ
ークを持つ二次の温度特性を適切に補償し、温度変化に
よる発振周波数の変動を少なくする温度補償形発振器を
提供することにある。
However, an oscillator using a surface acoustic wave resonator in which the piezoelectric medium is made of lithium tetraborate single crystal has a rate of change in oscillation frequency (Δf).
/ F) has a secondary temperature characteristic having a peak near room temperature as shown by the broken line in FIG. Therefore, when the temperature compensation circuit 5 compensates the temperature of the oscillator, a single NTC is used.
Since the resistance value of the thermistor changes exponentially with respect to temperature as shown in FIG. 6, there is a problem that proper compensation cannot be performed. An object of the present invention is, when a surface acoustic wave resonator whose piezoelectric medium is composed of lithium tetraborate single crystal is used, a secondary temperature characteristic having a peak near room temperature which is a characteristic of this surface acoustic wave resonator. To provide a temperature-compensated oscillator that appropriately compensates for the above and reduces fluctuations in the oscillation frequency due to temperature changes.

【0004】[0004]

【課題を解決するための手段】図1に示すように、本発
明は、トランジスタ方式のコルピッツ発振回路11のト
ランジスタ12のベース電極12aに弾性表面波共振子
13と可変容量ダイオード15が直列に接続され、この
可変容量ダイオード15に温度補償回路20を介して電
圧を印加するように構成された温度補償形発振器10の
改良である。その特徴ある構成は、弾性表面波共振子1
3の圧電媒質が四ほう酸リチウム単結晶により構成さ
れ、温度補償回路20が第1NTCサーミスタ21aに
並列に第1抵抗21bを接続した第1サーミスタ回路2
1と、この第1サーミスタ回路21に直列に接続され第
2抵抗22bに直列に第2NTCサーミスタ22aを接
続した第2サーミスタ回路22と、第1サーミスタ回路
21と第2サーミスタ回路22により分圧された直流電
圧V1を増幅して可変容量ダイオード15に印加する差
動増幅器23とを備えたことにある。
As shown in FIG. 1, according to the present invention, a surface acoustic wave resonator 13 and a variable capacitance diode 15 are connected in series to a base electrode 12a of a transistor 12 of a transistor type Colpitts oscillator circuit 11. This is an improvement of the temperature compensation oscillator 10 configured to apply a voltage to the variable capacitance diode 15 via the temperature compensation circuit 20. The characteristic structure is that the surface acoustic wave resonator 1
A first thermistor circuit 2 in which the piezoelectric medium 3 is composed of a lithium tetraborate single crystal, and the temperature compensation circuit 20 has a first resistor 21b connected in parallel to the first NTC thermistor 21a.
1, the second thermistor circuit 22 connected in series to the first thermistor circuit 21 and the second NTC thermistor 22a connected in series to the second resistor 22b, and divided by the first thermistor circuit 21 and the second thermistor circuit 22. And a differential amplifier 23 for amplifying the DC voltage V 1 and applying it to the variable capacitance diode 15.

【0005】[0005]

【作用】圧電媒質が四ほう酸リチウム単結晶により構成
された弾性表面波共振子13を用いた発振器10では、
発振周波数を変えるために大きなリアクタンスの変化が
必要となる。このとき発振器10の温度補償に必要な電
圧の変化は、図3に示すように大きいことが要求され
る。本発明の温度補償回路20では、NTCサーミスタ
21a,22aをそれぞれ含む回路21及び回路22に
より、これらの回路21a,22aで分圧された直流電
圧V1をある温度で最小となる二次の温度特性を具備さ
せるようにし、更にこの直流電圧V1を差動増幅器23
により図3に示す電圧V0に実質的になるように増幅し
て可変容量ダイオード15に印加する。これにより発振
器10が図2の実線に示すように広い温度範囲にわたっ
て適切に温度補償する。
In the oscillator 10 using the surface acoustic wave resonator 13 in which the piezoelectric medium is made of lithium tetraborate single crystal,
A large change in reactance is required to change the oscillation frequency. At this time, the voltage change required for temperature compensation of the oscillator 10 is required to be large as shown in FIG. In the temperature compensating circuit 20 of the present invention, the DC voltage V 1 divided by these circuits 21a and 22a is minimized by the circuit 21 and the circuit 22 including the NTC thermistors 21a and 22a, respectively. The DC voltage V 1 is provided to the differential amplifier 23.
Thus, the voltage is amplified to substantially the voltage V 0 shown in FIG. 3 and applied to the variable capacitance diode 15. As a result, the oscillator 10 appropriately performs temperature compensation over a wide temperature range as shown by the solid line in FIG.

【0006】[0006]

【実施例】次に、本発明の実施例を図面に基づいて詳し
く説明する。図1に示すように、発振器10はトランジ
スタ方式のコルピッツ発振回路11により構成される。
この発振回路11のトランジスタ12のベース電極12
aには弾性表面波共振子(以下、単にSAWRという)
13とコンデンサ14と可変容量ダイオード15とが直
列に接続される。SAWR13の圧電媒質は四ほう酸リ
チウム(LBO)単結晶により構成される。16は発振
器10の出力端子である。コンデンサ14と可変容量ダ
イオード15との接続点Bには、温度補償回路20の出
力が接続される。
Embodiments of the present invention will now be described in detail with reference to the drawings. As shown in FIG. 1, the oscillator 10 is composed of a transistor-type Colpitts oscillator circuit 11.
The base electrode 12 of the transistor 12 of the oscillator circuit 11
a is a surface acoustic wave resonator (hereinafter simply referred to as SAWR).
13, the capacitor 14, and the variable capacitance diode 15 are connected in series. The piezoelectric medium of the SAWR 13 is made of lithium tetraborate (LBO) single crystal. Reference numeral 16 is an output terminal of the oscillator 10. The output of the temperature compensation circuit 20 is connected to a connection point B between the capacitor 14 and the variable capacitance diode 15.

【0007】この温度補償回路20は第1サーミスタ回
路21と、この回路21に直列に接続された第2サーミ
スタ回路22と、回路21と回路22により分圧された
直流電圧V1を増幅する差動増幅器23とを備える。第
1サーミスタ回路21は第1NTCサーミスタ21aに
並列に第1抵抗21bを接続して構成され、第2サーミ
スタ回路22は第2抵抗22bに直列に第2NTCサー
ミスタ22aを接続して構成される。これらのNTCサ
ーミスタ21a及び22aの抵抗変化率、即ちB定数は
それぞれ約5000である。回路21と回路22の接続
点Cは抵抗24を介して差動増幅器23の非反転入力に
接続される。この非反転入力には更に抵抗25が接続さ
れる。また差動増幅器17の反転入力には抵抗26、抵
抗27及び基準電圧28からなる帰還回路が接続され
る。差動増幅器23の出力、即ち温度補償回路20の出
力は抵抗29を介して前記接続点Bに接続される。
The temperature compensating circuit 20 includes a first thermistor circuit 21, a second thermistor circuit 22 connected in series to the circuit 21, and a difference for amplifying the DC voltage V 1 divided by the circuit 21 and the circuit 22. And a dynamic amplifier 23. The first thermistor circuit 21 is configured by connecting a first resistor 21b in parallel with the first NTC thermistor 21a, and the second thermistor circuit 22 is configured by connecting a second NTC thermistor 22a in series with the second resistor 22b. The rate of change in resistance of each of the NTC thermistors 21a and 22a, that is, the B constant is about 5000. The connection point C between the circuit 21 and the circuit 22 is connected to the non-inverting input of the differential amplifier 23 via the resistor 24. A resistor 25 is further connected to this non-inverting input. A feedback circuit including a resistor 26, a resistor 27, and a reference voltage 28 is connected to the inverting input of the differential amplifier 17. The output of the differential amplifier 23, that is, the output of the temperature compensation circuit 20 is connected to the connection point B via the resistor 29.

【0008】このような構成の発振器10では、NTC
サーミスタ21a,22aを含む回路21と回路22と
により分圧された直流電圧V1は、2つのNTCサーミ
スタ21a,22aを組み合わせることによりある温度
で最小となる二次の温度特性を有するようになる。しか
しNTCサーミスタ21a,22aのB定数はそれぞれ
5000程度で抵抗変化率が高くないため、直流電圧V
1は温度に対して図4に示すように30〜40℃付近で
極めて僅かに小さくなる程度で、変化が小さい。
In the oscillator 10 having such a configuration, the NTC
The DC voltage V 1 divided by the circuit 21 and the circuit 22 including the thermistors 21a and 22a has a secondary temperature characteristic which becomes minimum at a certain temperature by combining the two NTC thermistors 21a and 22a. . However, since the B constants of the NTC thermistors 21a and 22a are each about 5000 and the rate of resistance change is not high, the DC voltage V
As shown in FIG. 4, 1 is extremely small in the vicinity of 30 to 40 ° C. with respect to the temperature, and the change is small.

【0009】差動増幅器23はこの温度による電圧変化
の小さい直流電圧V1を、図3に示すような顕著な二次
の温度特性を有する電圧V0に増幅する。即ち、差動増
幅器23の基準電圧をVfとし、抵抗26の抵抗値をR
26とし、抵抗27の抵抗値をR27とすると、この差動増
幅器23で負帰還をかけると、次式(1)に示すよう
に、 V0 =(R26/R27)×(V1−Vf) ……(1) になり、電圧V0は増幅される。この例ではVfは3ボル
トである。この増幅された電圧V0は可変容量ダイオー
ド15に印加される。これにより発振器10は図2の実
線に示すように広い温度範囲にわたって適切に温度補償
される。
The differential amplifier 23 amplifies the DC voltage V 1 having a small voltage change due to temperature to a voltage V 0 having a remarkable secondary temperature characteristic as shown in FIG. That is, the reference voltage of the differential amplifier 23 is V f, and the resistance value of the resistor 26 is R
26 and the resistance value of the resistor 27 is R 27 , when negative feedback is applied by the differential amplifier 23, as shown in the following equation (1), V 0 = (R 26 / R 27 ) × (V 1 -V f ) ... (1) and the voltage V 0 is amplified. In this example V f is 3 volts. The amplified voltage V 0 is applied to the variable capacitance diode 15. Thereby, the oscillator 10 is appropriately temperature-compensated over a wide temperature range as shown by the solid line in FIG.

【0010】[0010]

【発明の効果】以上述べたように、本発明によれば、圧
電媒質が四ほう酸リチウム単結晶により構成される弾性
表面波共振子であるときに、2つのNTCサーミスタを
組み合わせることにより、その出力電圧にある温度で最
小となる二次の温度特性を具備させ、差動増幅器でその
出力電圧を増幅するように構成したので、弾性表面波共
振子の特性である常温付近にピークを持つ二次の温度特
性を適切に補償し、温度変化による発振周波数の変動が
少ない優れた発振器が得られる。特に本発明の温度補償
形発振器は、安価なNTCサーミスタを使用した比較的
簡単な温度補償回路を付加するだけで実現できるので、
小型で低コスト化をはかることができる。
As described above, according to the present invention, when the piezoelectric medium is a surface acoustic wave resonator composed of lithium tetraborate single crystal, by combining two NTC thermistors, its output Since the output voltage is amplified by a differential amplifier by providing a secondary temperature characteristic that minimizes the voltage at a certain temperature, the secondary characteristic having a peak near room temperature, which is the characteristic of a surface acoustic wave resonator, is used. It is possible to obtain an excellent oscillator that appropriately compensates the temperature characteristic of and has little fluctuation of the oscillation frequency due to the temperature change. In particular, the temperature-compensated oscillator of the present invention can be realized by simply adding a relatively simple temperature-compensation circuit using an inexpensive NTC thermistor.
It is small and can be made at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の温度補償形発振器の回路構成図。FIG. 1 is a circuit configuration diagram of a temperature compensation oscillator of the present invention.

【図2】その発振器の温度補償前後の特性図。FIG. 2 is a characteristic diagram of the oscillator before and after temperature compensation.

【図3】その可変容量ダイオードに印加される温度補償
回路の出力電圧の温度特性図。
FIG. 3 is a temperature characteristic diagram of an output voltage of a temperature compensation circuit applied to the variable capacitance diode.

【図4】2つのサーミスタ回路により分圧された直流電
圧V1の温度特性図。
FIG. 4 is a temperature characteristic diagram of a DC voltage V 1 divided by two thermistor circuits.

【図5】従来例の温度補償形発振器の回路構成図。FIG. 5 is a circuit configuration diagram of a conventional temperature-compensated oscillator.

【図6】単一のサーミスタの温度特性図。FIG. 6 is a temperature characteristic diagram of a single thermistor.

【図7】図5に示す温度補償回路により温度補償された
発振器の特性。
7 is a characteristic of the oscillator temperature-compensated by the temperature compensation circuit shown in FIG.

【符号の説明】[Explanation of symbols]

10 温度補償形発振器 11 コルピッツ発振回路 12 トランジスタ 12a ベース電極 13 弾性表面波共振子 15 可変容量ダイオード 20 温度補償回路 21 第1サーミスタ回路 21a 第1NTCサーミスタ 21b 第1抵抗 22 第2サーミスタ回路 22a 第2NTCサーミスタ 22b 第2抵抗 23 差動増幅器 10 Temperature Compensated Oscillator 11 Colpitts Oscillation Circuit 12 Transistor 12a Base Electrode 13 Surface Acoustic Wave Resonator 15 Variable Capacitance Diode 20 Temperature Compensation Circuit 21 First Thermistor Circuit 21a First NTC Thermistor 21b First Resistor 22 Second Thermistor Circuit 22a Second NTC Thermistor 22b second resistor 23 differential amplifier

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 トランジスタ方式のコルピッツ発振回路
(11)のトランジスタ(12)のベース電極(12a)に弾性表面
波共振子(13)と可変容量ダイオード(15)が直列に接続さ
れ、前記可変容量ダイオード(15)に温度補償回路(20)を
介して電圧を印加するように構成された温度補償形発振
器(10)において、 前記弾性表面波共振子(13)はその圧電媒質が四ほう酸リ
チウム単結晶により構成され、 前記温度補償回路(20)は第1NTCサーミスタ(21a)に
並列に第1抵抗(21b)を接続した第1サーミスタ回路(2
1)と、前記第1サーミスタ回路(21)に直列に接続され第
2抵抗(22b)に直列に第2NTCサーミスタ(22a)を接続
した第2サーミスタ回路(22)と、前記第1サーミスタ回
路(21)と前記第2サーミスタ回路(22)により分圧された
直流電圧(V1)を増幅して前記可変容量ダイオード(15)に
印加する差動増幅器(23)とを備えたことを特徴とする温
度補償形発振器。
1. A transistor type Colpitts oscillator circuit.
A surface acoustic wave resonator (13) and a variable capacitance diode (15) are connected in series to the base electrode (12a) of the transistor (12) of (11), and the temperature compensation circuit (20) is connected to the variable capacitance diode (15). In the temperature-compensated oscillator (10) configured to apply a voltage via, the surface acoustic wave resonator (13) has a piezoelectric medium composed of lithium tetraborate single crystal, and the temperature compensation circuit (20 ) Is the first thermistor circuit (2) in which the first resistor (21b) is connected in parallel to the first NTC thermistor (21a).
1), a second thermistor circuit (22) in which the second NTC thermistor (22a) is connected in series to the first thermistor circuit (21) and in series to the second resistor (22b), and the first thermistor circuit ( 21) and a differential amplifier (23) for amplifying the DC voltage (V 1 ) divided by the second thermistor circuit (22) and applying it to the variable capacitance diode (15). Temperature compensated oscillator.
JP2235694A 1994-02-21 1994-02-21 Temperature compensation oscillator Withdrawn JPH07231221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2235694A JPH07231221A (en) 1994-02-21 1994-02-21 Temperature compensation oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2235694A JPH07231221A (en) 1994-02-21 1994-02-21 Temperature compensation oscillator

Publications (1)

Publication Number Publication Date
JPH07231221A true JPH07231221A (en) 1995-08-29

Family

ID=12080370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2235694A Withdrawn JPH07231221A (en) 1994-02-21 1994-02-21 Temperature compensation oscillator

Country Status (1)

Country Link
JP (1) JPH07231221A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224865A (en) * 2008-03-13 2009-10-01 Seiko Npc Corp Voltage controlled surface acoustic wave oscillator
CN113134155A (en) * 2021-04-06 2021-07-20 武汉光燚激光科技有限公司 Skin therapeutic instrument by transdermal diffusion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224865A (en) * 2008-03-13 2009-10-01 Seiko Npc Corp Voltage controlled surface acoustic wave oscillator
CN113134155A (en) * 2021-04-06 2021-07-20 武汉光燚激光科技有限公司 Skin therapeutic instrument by transdermal diffusion

Similar Documents

Publication Publication Date Title
US5883550A (en) Crystal oscillator with a temperature-compensating analog circuit
US5030926A (en) Voltage controlled balanced crystal oscillator circuit
GB2029661A (en) Quartz crystal oscillator
JPS6126726B2 (en)
JP3921362B2 (en) Temperature compensated crystal oscillator
US4550293A (en) Narrow deviation voltage controlled crystal oscillator
US7248127B2 (en) Crystal oscillator
JPH0329505A (en) Temperature control crystal oscillation circuit
US4051446A (en) Temperature compensating circuit for use with a crystal oscillator
CN110460307B (en) Temperature self-adaptive FBAR oscillation circuit
JPH07231221A (en) Temperature compensation oscillator
CA1057828A (en) Temperature compensated surface acoustic wave oscillator
US2478330A (en) Oscillator
JP2002135051A (en) Piezoelectric oscillator
JP4259174B2 (en) Temperature compensated piezoelectric oscillator
JPS58222602A (en) Voltage controlled oscillator
JP2607931B2 (en) Crystal oscillator
JP2545568B2 (en) Piezoelectric oscillator
JPH10215120A (en) Quartz oscillation circuit
JPH10270941A (en) Temperature compensated piezoelectric oscillator
JP3387278B2 (en) Temperature compensated piezoelectric oscillator
JPH03283904A (en) Piezoelectric oscillator
JPS5934166Y2 (en) crystal oscillation circuit
JPH08213837A (en) Voltage control oscillator and voltage control oscillation method
JPS63245103A (en) Temperature compensation circuit for oscillation circuit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010508