JP4259174B2 - Temperature compensated piezoelectric oscillator - Google Patents

Temperature compensated piezoelectric oscillator Download PDF

Info

Publication number
JP4259174B2
JP4259174B2 JP2003129393A JP2003129393A JP4259174B2 JP 4259174 B2 JP4259174 B2 JP 4259174B2 JP 2003129393 A JP2003129393 A JP 2003129393A JP 2003129393 A JP2003129393 A JP 2003129393A JP 4259174 B2 JP4259174 B2 JP 4259174B2
Authority
JP
Japan
Prior art keywords
temperature
frequency
signal
piezoelectric oscillator
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003129393A
Other languages
Japanese (ja)
Other versions
JP2004336374A (en
Inventor
富雄 佐藤
幸治 珎道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2003129393A priority Critical patent/JP4259174B2/en
Publication of JP2004336374A publication Critical patent/JP2004336374A/en
Application granted granted Critical
Publication of JP4259174B2 publication Critical patent/JP4259174B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、圧電発振器に関し、さらに詳しくは、周囲温度の変化に対して非直線的に変動する発振周波数特性を補償する温度補償型圧電発振器に関するものである。
【0002】
【従来の技術】
従来から水晶発振器は、コンデンサやインダクタを用いたLC発振器や、他の圧電材料を用いた発振器に比べて発振周波数の安定度が非常に高い。しかし、特に近年の無線通信技術の向上に伴って、発振器に対して、更に高い周波数安定度が要求されている。水晶発振器の発振周波数を変動させる大きな要因として、周囲温度による影響が非常に大きなウエイトを占めている。そのため、この周囲温度による影響を受けないように、或いは周囲温度の影響をキャンセルするような対策を講じる必要がある。
また、周囲温度により発振周波数が変化する要因として、水晶振動子に起因するものと、振動子を除く発振回路を構成する電子部品の電気的特性の温度特性に起因するものとに分けることができ、これに対して高安定水晶発振器では、周囲温度の影響を受けなくするための一つの方策として、振動子を含む発振回路を恒温槽内に入れることが行われている。しかしながら、近年、高安定発振器は小型化が進んでおり、発振器全体を恒温槽内に収納するのでは水晶発振器の大型化が避けられなくなる。そこで、振動子部分のみを主として恒温槽に入れる方法がある。しかし、発振回路基板は中央に振動子、辺縁部に振動子以外の発振回路部品が搭載されるケースが多く、発振回路基板上において恒温槽用ヒータに近くない、基板周辺縁部分などは、発振器外気温度の変化に伴って大きく温度が変化してしまう。そして、振動子以外の発振回路部品としてトランジスタ及び受動部品の電気的特性の温度変化が大きい場合には周波数温度特性は温度に対して直線的に変化するため、この特性の劣化は直線的に補償する必要がある。例えば、図7はこの様子を模式的に表した図である。周波数変化の特性が100のように周囲温度が高くなると周波数が低下する特性の場合、周波数制御電圧110をそれとは逆の特性を持つように設定すれば、補償後の周波数120は温度により変化しない特性となる。
そこで、温度センサ、電圧増幅器及びバラクタダイオードの組合わせにより直線的に温度補償する従来技術として、特開2002−135051公報には、歩留まりに優れ周波数安定度が高い小型の恒温槽型水晶発振器について開示されている。それによると、圧電振動子と増幅回路及び可変容量ダイオードを有する発振回路と、前記圧電振動子を一定温度に保つ為の恒温槽と、温度変化に伴う前記増幅回路の電気的特性の変化により前記圧電発振器の発振周波数が変動するのを抑圧するよう前記可変容量ダイオードの容量値を制御する為の制御電圧を出力する電圧発生回路とを備え、該電圧発生回路が正特性または負特性のサーミスタを感温素子として制御電圧を制御することにより温度変化によって生じる増幅回路の電気的特性の変動に伴う周波数変化を回路的に補償することができるので、周波数温度特性に優れる小型の恒温槽型水晶発振器を容易に実現することが可能としている。
【0003】
また同一出願人より、発振周波数の影響を温度に対して直線的に変化する温度特性に関わる影響を補償するため、温度検出手段により略温度に対して直線の電圧変化を得て、これを可変リアクタンス素子に印加することで、略直線的に補償する技術について提案されている。
また図8は、同一出願人より特願2002−348072として出願済みの温度補償回路の回路図であり、この電圧発生手段は、感温素子であるサーミスタR23と、そのサーミスタR23の電圧を分圧する分圧抵抗R24と、オペアンプ40のマイナス側の入力端子の電圧を設定する分圧抵抗R25、R26、オペアンプ40の出力電圧VOをマイナス側の入力端子に帰還する帰還抵抗R27と、電源電圧を分圧する分圧抵抗R21、R22と、交流カット用抵抗R28及び可変容量コンデンサD10から構成されている。これにより、出力電圧の飽和領域の終点(温度により直線的に変化する温度点)の設定が容易になるとしている。
【特許文献1】
特開2002−135051公報
【特許文献2】
特願2002−348072
【0004】
【発明が解決しようとする課題】
しかしながら、特許文献1は、電圧発生回路が正特性または負特性のサーミスタを感温素子として制御電圧を制御することにより、温度変化によって生じる増幅回路の電気的特性の変動に伴う周波数の一次関数的変化を補償するものである。一般に振動子以外の発振回路部品の周波数温度特性は温度に対して直線的に変化するものであるが、使用する部品や発振回路基板材料などによっては、基板を含む発振回路(振動子を除く)の電気的特性は直線的な温度特性とならない場合があり、これにより例えば発振周波数が二次関数的な変動が見られる場合では、特許文献1に記載の発明では、補償を行うことが困難である。
また、特許文献2の方法は、高温下での周波数低下に対してのみ周波数補償を行うため、低温側での周波数補正を行うことができないといった問題がある。
本発明は、かかる課題に鑑み、基板を含む発振回路(振動子を除く)の温度特性が高温側から低温側に亘って変化しても、高温側、低温側ともに発振周波数対温度特性を直線近似をもって補償することが可能な圧電発振器を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明はかかる課題を解決するために、請求項1は、温度の変化による発振周波数の変動を補償する周波数温度補償回路を備えた温度補償型圧電発振器であって、前記周波数温度補償回路は、前記温度の変化を電圧変化として検出する温度検出手段と、該温度検出手段の出力電圧値を増幅する信号増幅手段と、両端子の電位差に基づいてリアクタンスが変化する可変リアクタンス素子と、を備え、前記信号増幅手段は、所定の温度範囲において該信号増幅手段の出力電圧が飽和しない動作領域を備え、且つ前記所定の温度範囲外において前記信号増幅手段の出力電圧が一定である動作領域を備え、前記信号増幅手段の出力電圧を前記圧電発振器の発振帰還系に挿入した前記可変リアクタンス素子の一方の端子に印加し、前記温度検出手段の出力電圧値を前記信号増幅手段を経由しないで前記可変リアクタンス素子の他方の端子に印加することを特徴とする。
周波数温度補償回路は、少なくとも周囲温度変化を検出する手段と、その周囲温度に応じた出力値を増幅する信号増幅手段と、それにより発生した電圧に基づいて例えば、容量を変化させることにより周波数を変化させて温度補償する手段とを必要とする。本発明の特徴は、可変リアクタンス素子の一方の端子に信号増幅回路の出力信号を印加し、他方の端子に温度検出回路から直接出力値を印加する点である。そして信号増幅回路は大きな利得を得る目的ではなく、ある温度範囲で温度検出回路からの出力値により、任意の温度範囲において直線的な電圧を得ることができる。
かかる発明によれば、可変リアクタンス素子の一方の端子に増幅回路の出力信号を、他方の端子に温度検出回路の出力値を印加するので、発振回路に用いる主として振動子以外の部品に起因する温度特性を補償することができる。
請求項2は、前記温度検出手段の出力値を増幅する前記信号増幅手段の動作を非反転増幅動作若しくは反転増幅動作の何れかとすることを特徴とする。
一般に信号増幅手段にはオペアンプが使用される。入力信号の位相と出力信号の位相が同相となるのが非反転増幅動作であり、逆に位相が逆相になるのが反転増幅動作である。そしてどちらの動作にするかは任意に選択可能であり、それにより温度検出回路のサーミスタの位置や可変リアクタンス素子の極性を変えることにより可能である。
かかる発明によれば、信号増幅手段の動作を非反転増幅動作若しくは反転増幅動作の何れでも構成できるので、回路構成のバリエーションを広くすることができる。
【0006】
請求項3は、前記温度検出手段の出力値を前記信号増幅手段を経由しないで前記可変リアクタンス素子の端子に印加する信号線は、利得調整回路を介して前記可変リアクタンス素子に接続されることを特徴とする。
温度検出手段の出力値は温度に比例して変化する値である。そして低温側の補償特性を調整するために、温度検出手段の出力値を安定化電位によりプルアップした抵抗とプルダウンした抵抗により分圧比を変えて調整する。これにより低温側の温度補償量を特定的に調整することができる。
かかる発明によれば、温度検出手段の出力値を抵抗を介して他の安定化電位に接続して分圧比を調整するので、低温側の温度補償量を特定的に調整することができる。
請求項4は、前記圧電発振器に使用される振動子以外の素子の温度特性に起因する発振周波数温度特性を補償することを特徴とする。
高安定水晶発振器の周波数補償すべき発振周波数対温度特性は、発振回路に使用するプリント基板や半導体素子の複合的特性により、直線的或いはある温度範囲以上でだけ発振周波数が低下するとは限らず、発振器を使用する中心の温度に対して、低温側でも高温側でも共に周波数が低下する傾向が見られる。そこで本発明では、低温側及び高温側共に、発振周波数対温度特性を直線近似により補償するものである。
かかる発明によれば、振動子以外の素子の温度特性に起因する発振周波数温度特性を総合的に補償するので、低温側及び高温側の広い範囲に亘って温度補償することができる。
【0007】
請求項5は、前記信号増幅手段の出力電圧が一定である動作領域が飽和する領域であることを特徴とする。
水晶振動子のATカットの特性は3次関数的な特性を持っている。この特性を補償するには、可変容量リアクタンス素子の両端の電圧を3次関数的に変化させる必要がある。そこで本発明では、低温側と高温側を除く所定の範囲においてのみ信号増幅手段がリニアに増幅する特性を持たせ、低温側と高温側ではそれぞれ飽和する特性を持たせることにより実現している。
かかる発明によれば、可変容量リアクタンス素子の両端に3次関数の電圧を与えるために、低温側と高温側を除く所定の範囲においてのみ信号増幅手段がリニアに増幅する特性を持たせ、低温側と高温側ではそれぞれ飽和する特性を持たせることにより実現するので、ATカットの水晶振動子の温度補償を行なうことができる。
【0008】
【発明の実施の形態】
以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載される構成要素、種類、組み合わせ、形状、その相対配置などは特定的な記載がない限り、この発明の範囲をそれのみに限定する主旨ではなく単なる説明例に過ぎない。
図1は本発明の周波数温度補償回路を説明する基本構成図である。この周波数温度補償回路200は、周囲の温度変化を検出して電圧変化として出力する温度検出回路1と、この温度検出回路1の出力値を増幅する信号増幅回路2と、両端の電位差により容量値が変化する可変リアクタンス素子3とを備えて構成される。そして本発明の周波数温度補償回路200の特徴は、温度検出回路1の出力信号(電圧)Bを可変リアクタンス素子3の端子3aに印加し、信号増幅回路2の信号Aを可変リアクタンス素子3の端子3bに印加している点である。そして信号増幅回路2は、大きな利得を得るためのものではなく、ある温度範囲で温度検出回路1から出力される信号Bを入力した場合、任意の温度範囲において飽和動作によってほぼ一定の電圧を得るためのものである。
【0009】
図2を参照して周波数温度補償回路200の動作について説明する。図2は図1の周波数温度補償回路200の各部の温度変化に対する信号レベルの関係を表す図である。縦軸は信号レベルを表し、横軸は温度を表す。温度検出回路1の信号Bは温度変化に比例して直線的(一次関数的)に変化する。また、信号増幅回路2の出力信号Aが同図に示すAの如く温度P以下において一定の低レベルを保ち、温度Q以上において一定の高レベルを保つような特性である場合、可変リアクタンス素子3の端子間電位は端子3b側の電位を基準として図2[A・B]のような特性となる。図2の温度Y−Q間のV字型の信号レベル([A・B]特性)では、一般的な可変容量ダイオードの特性(可変容量ダイオードは電位差が高いと容量値が小さくなる特性を持つ)に基づき、その端子間容量(端子3aがアノード端)は温度Pを中間として低温方向及び高音方向に推移するに従って容量値が小さくなり、水晶発振回路の発振周波数を高めることができるので、これを温度Y−Q間に於いて、温度Pを境に周波数が低下する特性を有する水晶発振器に適用すれば周波数特性の補償が行えることになる。
また、温度Y−Q間に於いて温度Pを境に周波数が高くなる特性を有する水晶発振器の温度特性を補償する場合は、信号Aを可変リアクタンス素子の端子3aに印加し、信号Bを端子3bに印加すれば上述した機能と同様のものを得ることができる。更に、Y−P−Q−Rの全区間の特性を用いることでATカットの水晶振動子の3次関数の周波数温度特性を補償することができる(詳細は後述する)。
【0010】
図3は、本発明の一実施形態に係る温度補償回路の具体的な回路構成を示す図である。この温度補償回路は、温度の上昇に伴って抵抗値が減少するサーミスタTH1と、定電圧V1をサーミスタTH1と分圧するための抵抗R1と、サーミスタTH1とオペアンプU1とをアイソレートしてノイズ除去の働きを行う抵抗R2とコンデンサC1と、オペアンプU1のマイナス側入力端子の電位を決定する抵抗R3、R4と、サーミスタTH1と抵抗R1の分圧電位を増幅するオペアンプU1と、帰還抵抗R5と、サーミスタTH1と抵抗R1の分圧電位利得調整用の抵抗R8、R9、R10と、可変容量ダイオードD1とのアイソレート抵抗R11と、オペアンプU1の利得調整と雑音除去の働きをする抵抗R6、R7、コンデンサC2と、アイソレート抵抗R12と、可変容量ダイオードD1を備えて構成される。
【0011】
次に本実施形態の温度補償回路の動作について説明する。サーミスタTH1は、温度上昇に伴って抵抗値が減少するように動作するので、サーミスタTH1と抵抗R1との接続点であるポイントbの電位は図2の信号Bのように温度上昇に伴って直線的に上昇する。この信号Bは抵抗R2、C1から成るローパスフィルタを介してオペアンプU1のプラス側入力端子に入力され、オペアンプU1の出力端子aに現れる信号は抵抗R6、R7、C2、R12を介して可変容量ダイオードD1のカソード端子a1に信号として印加される。ここでR12は可変容量ダイオードD1を含む発振回路の帰還系とのアイソレートのために高抵抗を用いる。また、ポイントbに発生した温度検出回路の出力信号は、R8、R11を介して可変容量ダイオードD1のアノード端子b1に信号として印加される。可変容量ダイオードD1は何れの温度範囲でもアノードに対してカソードを高電位となるように用いる。ここでR11は、可変容量ダイオードD1を含む発振回路の帰還系とのアイソレートのために高抵抗とする。
【0012】
ここでオペアンプU1の出力端子aにおける信号は、入力した信号Bがマイナス側入力端子の電圧より低い電圧範囲つまり低い温度範囲(図2のY−P間)では殆ど変化しない。そのため可変容量ダイオードD1のカソード側端子a1における電位はこの温度範囲(図2のY−P間)では変化しない。しかし、この温度範囲でもアノード側端子b1における電位がポイントbの電位に伴い、温度の低下に伴って電圧が低下するように変化するため、温度の低下に伴って可変容量ダイオードD1の端子間(a1−b1間)の電位差は大きくなり、その結果発振周波数を高めることができる。
またオペアンプU1の出力端子aのレベルは、温度範囲が図2のP−Q間オペアンプU1が非飽和動作するよう差動増幅回路を設定することにより、温度上昇の変化に対して高くなる。そのため可変容量ダイオードD1のカソード側端子a1における電位はこの温度範囲(図2のP−Q間)では温度の上昇に伴って高くなる。一方、このときもアノード側端子b1における電位はポイントbの電位であるので、温度の上昇に伴って電圧が上昇するように変化するが、アノード側端子b1におけるの電位の上昇率はオペアンプU1を通り増幅された信号が印加されるカソード側端子a1における電位の変化率よりも小さいため、可変容量ダイオードD1の両端(a1−b1間)の電位差は温度上昇に対して大きくなるように変化し、これに伴い、可変容量ダイオードD1の容量が減少するので発振周波数を高めるように働く。これにより、図2のY−P−Q間の〔A・B〕特性が得られる。
【0013】
またオペアンプU1の出力aは、高い温度範囲(図2のQ−R間)ではオペアンプU1が飽和動作するよう差動増幅回路を設定することにより温度の変化に対して電位は殆ど変化しない。そのため可変容量ダイオードD1のカソード側端子a1における電位はこの温度範囲(図2のQ−R間)では変化しない。しかし、この温度範囲でもアノード側端子b1における電位はサーミスタTH1と抵抗R1の分圧点bにつながっているので、温度の上昇に伴って電圧が更に上昇するように変化するため、可変容量ダイオードD1の両端(a1−b1間)の電位差は低下して、上昇した発振周波数を補償して低めるように働く。このように、Y−P−Q−Rの全区間の特性を用いることでATカットの水晶振動子の3次関数の周波数温度特性を補償することができる(詳細は後述する)。
【0014】
図4は、本発明に基づく温度補償回路を用いた水晶発振器の周波数温度特性の補償メカニズムを説明する図である。図4(a)は水晶発振器に於いて水晶振動子以外の電子部品の電気的特性に起因した周波数温度特性を表す図であり、縦軸に発振周波数を表し、横軸に温度を表す。この図では低温側と高温側で発振周波数が低下する二次関数的変化を呈する特性をもつ発振器の場合である。図4(b)は可変リアクタンス素子の両端の電位差と温度の関係を表す図である。この図では図4(a)の周波数温度特性を補償するためにV字型の特性を持たせている。この特性は本発明の実施形態で説明した回路(図3)により実現可能である。尚、可変リアクタンス素子は容量性素子であり、例えばその端子間の電圧差が大きくなるに伴い容量値が減少するものである。図4(c)は図4(a)に示す発振器の周波数温度特性を図4(b)に示す制御電圧にて可変リアクタンス素子を制御するような温度補償回路により補償した結果を表す図である。縦軸(左)に発振周波数を表し、縦軸(右)に温度補償電圧を表し、横軸に温度を表す。この図から発振器の周波数温度特性11が、温度補償回路による周波数制御によって、特性12のように略フラットに周波数温度特性を補償することができることが解る。
【0015】
ここで、図3のR6、R7、R8、R9、R10、C1、C2は必要に応じて付与する素子であり、必ずしも必要なものではない。また、本実施形態ではオペアンプU1のマイナス側入力端子にポイントbの電圧を入力しているが、飽和を利用する素子はプラス側入力端子を使用しても可能であり、この場合はサーミスタTH1と分圧抵抗R1逆にするか、或いは可変容量ダイオードD1の極性を逆にしても良い。或いはオペアンプU1の高電位側の飽和、つまり図2のS部の特性(負電源側の飽和ではなく正電源側の飽和)を用いることによって本発明と同様の特性を得ることができる。
また、補償特性の調整は、低温側の補償特性を調整するために、抵抗R8、R9、R10の値を調整することにより分圧量を調整することで可能である。また高温側の補償特性を調整するためにオペアンプU1の利得、例えば抵抗R5の値を調整することにより可能である。更に中央の温度、つまり補償電圧の谷となる温度を設定するためにオペアンプU1の入力の基準電位、例えば抵抗R1の値を調整することにより可能である。以上、振動子以外の電子部品の電気的特性に起因した周波数変化を補償する場合について説明したが、振動子の周波数温度特性をも含めた周波数変化を補償する場合にも本発明に基づく温度補償回路を適用することができる。
【0016】
即ち、図5は、本発明によりATカットで切断した水晶振動子を用いた発振器の周波数温度特性の補償メカニズムを説明する図である。図5(a)は発振周波数と温度の関係を表す図であり、縦軸に発振周波数を表し、横軸に温度を表す。この図では3次関数的特性をもつ発振器の場合である。図5(b)は可変リアクタンス素子の両端の電位差と温度の関係を表す図である。縦軸に可変リアクタンス素子の両端の電位差を表し、横軸に温度を表す。この図では図5(a)の周波数温度特性を補償するために3次関数の特性を持たせている。この特性は本発明の実施形態で説明した回路(図3)により実現可能である。図5(c)は図5(a)の周波数温度特性をもつ発振器の特性を図5(b)の特性をもつ本発明の実施形態の温度補償回路により補償した結果を表す図である。縦軸(左)に発振周波数を表し、縦軸(右)に温度補償電圧を表し、横軸に温度を表す。この図から図5(a)の周波数温度特性が3次関数的に変化する特性21を補償し、特性22のように略フラットに周波数温度特性を得るために、特性20の如く周波数制御するよう図bに示す制御電圧を用いて可変リアクタンス素子の容量値を可変する。
【0017】
図6は、本発明の図3の回路構成の温度補償回路の実測結果を示す図である。縦軸(左)に温度補償電圧Vcompen(V)を表し、縦軸(右)に出力周波数df/f(ppb)を表し、横軸に温度(degree)を表す。この図で特性30は補償電圧(可変リアクタンス素子の両極間電圧)の特性であり、V字型の特性を示している。例えば−20℃では2.822Vを示し、25℃で2.795Vを示し、80℃では2.827Vを示している。特性31は被測定発振器の周波数温度特性であり、低温側と高温側で発振周波数が低下する特性を有し、常温25℃で出力周波数が0ppbになるように正規化すると、例えば−20℃で約−15ppbを示し、80℃で約−80ppbを示している。特性32は特性31の補償前の特性を補償電圧30により補償した後の特性を表している。これによると、例えば−20℃で補償前は約−15ppbを示していたのが20ppbとなり、25℃で0ppb、80℃で補償前は約−80ppbを示していたのが−10ppbとなり、全体として20ppbから−10ppbの範囲に収まっているのが解る。このように本発明の温度補償回路により、低温側と高温側で発振周波数が低下する発振器の周波数温度特性を略フラットに補償することができる。
【0018】
【発明の効果】
以上記載のごとく請求項1の発明によれば、可変リアクタンス素子の一方の端子に増幅回路の出力信号を、他方の端子に温度検出回路の出力値を印加するので、発振回路に用いる主として振動子以外の部品に起因する温度特性を補償することができる。
また請求項2では、信号増幅手段の動作を非反転増幅動作若しくは反転増幅動作の何れでも構成できるので、回路構成のバリエーションを広くすることができる。
また請求項3では、温度検出手段の出力値を抵抗を介して他の安定化電位に接続して分圧比を調整するので、低温側の温度補償量を特定的に調整することができる。
また請求項4では、振動子以外の素子の温度特性に起因する発振周波数温度特性を総合的に補償するので、低温側及び高温側の広い範囲に亘って温度補償することができる。
また請求項5では、可変容量リアクタンス素子の両端に3次関数の電圧を与えるために、低温側と高温側を除く所定の範囲においてのみ信号増幅手段がリニアに増幅する特性を持たせ、低温側と高温側ではそれぞれ飽和する特性を持たせることにより実現するので、ATカットの水晶振動子の温度補償を行なうことができる。
【図面の簡単な説明】
【図1】本発明の周波数温度補償回路を説明する基本構成図である。
【図2】本発明の図1の周波数温度補償回路100の各部の温度変化に対する信号レベルの関係を表す図である。
【図3】本発明の一実施形態に係る温度補償回路の具体的な回路構成を示す図である。
【図4】本発明の周波数温度特性を補償する様子を説明する図である。
【図5】本発明によりATカットで切断した水晶振動子を用いた発振器の周波数温度特性を補償する様子を説明する図である。
【図6】本発明の図3の回路構成の温度補償回路の実測結果を表す図である。
【図7】従来の温度補償を説明するための図である。
【図8】従来の補償電圧発生手段の具体的な回路図である。
【符号の説明】
1 温度検出回路、2 信号増幅回路、3 可変リアクタンス素子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a piezoelectric oscillator, and more particularly to a temperature-compensated piezoelectric oscillator that compensates for an oscillation frequency characteristic that varies nonlinearly with changes in ambient temperature.
[0002]
[Prior art]
Conventionally, crystal oscillators have a very high oscillation frequency stability compared to LC oscillators using capacitors and inductors and oscillators using other piezoelectric materials. However, especially with recent improvements in wireless communication technology, higher frequency stability is required for oscillators. As a major factor that fluctuates the oscillation frequency of the crystal oscillator, the influence of the ambient temperature occupies a very large weight. Therefore, it is necessary to take measures to avoid the influence of the ambient temperature or to cancel the influence of the ambient temperature.
In addition, the factors that cause the oscillation frequency to change depending on the ambient temperature can be divided into those caused by the crystal oscillator and those caused by the temperature characteristics of the electrical characteristics of the electronic components that make up the oscillation circuit excluding the oscillator. On the other hand, in a highly stable crystal oscillator, as one measure for eliminating the influence of ambient temperature, an oscillation circuit including a vibrator is placed in a thermostatic chamber. However, in recent years, highly stable oscillators have been reduced in size, and it is unavoidable to increase the size of a crystal oscillator if the entire oscillator is housed in a thermostat. Therefore, there is a method in which only the vibrator portion is mainly placed in a thermostatic bath. However, there are many cases where the oscillation circuit board is mounted with a vibrator in the center and an oscillation circuit component other than the vibrator is mounted on the edge, and on the oscillation circuit board, it is not close to the constant temperature bath heater. The temperature changes greatly with the change of the outside temperature of the oscillator. When the temperature change of the electrical characteristics of transistors and passive components as oscillation circuit components other than vibrators is large, the frequency temperature characteristic changes linearly with respect to temperature. There is a need to. For example, FIG. 7 is a diagram schematically showing this state. If the frequency change characteristic is such that the frequency decreases as the ambient temperature increases, such as 100, if the frequency control voltage 110 is set to have the opposite characteristic, the compensated frequency 120 does not change with temperature. It becomes a characteristic.
Therefore, as a conventional technique for linearly compensating for temperature by a combination of a temperature sensor, a voltage amplifier, and a varactor diode, Japanese Patent Application Laid-Open No. 2002-135051 discloses a small temperature chamber type crystal oscillator having excellent yield and high frequency stability. Has been. According to this, an oscillation circuit having a piezoelectric vibrator, an amplifier circuit and a variable capacitance diode, a thermostat for keeping the piezoelectric vibrator at a constant temperature, and a change in electrical characteristics of the amplifier circuit due to a temperature change, A voltage generation circuit that outputs a control voltage for controlling the capacitance value of the variable capacitance diode so as to suppress fluctuations in the oscillation frequency of the piezoelectric oscillator, and the voltage generation circuit includes a thermistor having a positive characteristic or a negative characteristic. By controlling the control voltage as a temperature sensing element, it is possible to compensate for the frequency change accompanying the fluctuation of the electrical characteristics of the amplifier circuit caused by the temperature change, so a small temperature chamber crystal oscillator with excellent frequency temperature characteristics Can be easily realized.
[0003]
Also, from the same applicant, in order to compensate for the influence on the temperature characteristics that change the influence of the oscillation frequency linearly with respect to the temperature, a linear voltage change with respect to the temperature is obtained by the temperature detection means, and this is variable There has been proposed a technique that compensates approximately linearly by applying to a reactance element.
FIG. 8 is a circuit diagram of a temperature compensation circuit filed as Japanese Patent Application No. 2002-348072 by the same applicant, and this voltage generating means divides the thermistor R23, which is a temperature sensitive element, and the voltage of the thermistor R23. The voltage dividing resistor R24, the voltage dividing resistors R25 and R26 that set the voltage of the negative input terminal of the operational amplifier 40, the feedback resistor R27 that feeds back the output voltage VO of the operational amplifier 40 to the negative input terminal, and the power supply voltage are divided. The voltage dividing resistors R21 and R22 to be pressed, an AC cutting resistor R28, and a variable capacitor D10 are included. This facilitates the setting of the end point of the output voltage saturation region (temperature point that varies linearly with temperature).
[Patent Document 1]
JP 2002-135051 A [Patent Document 2]
Japanese Patent Application No. 2002-348072
[0004]
[Problems to be solved by the invention]
However, in Patent Document 1, the voltage generation circuit controls a control voltage using a thermistor having a positive characteristic or a negative characteristic as a temperature sensing element, and thus is a linear function of a frequency accompanying a change in electrical characteristics of an amplifier circuit caused by a temperature change. It compensates for changes. In general, the frequency temperature characteristics of oscillator circuit components other than vibrators vary linearly with temperature. However, depending on the components used and the oscillator circuit board material, etc., an oscillator circuit that includes a substrate (excluding the vibrator) In some cases, for example, when the oscillation frequency varies in a quadratic function, it is difficult to perform compensation in the invention described in Patent Document 1. is there.
In addition, the method of Patent Document 2 has a problem that frequency correction cannot be performed on the low temperature side because frequency compensation is performed only for frequency reduction at high temperatures.
In view of such a problem, the present invention provides a straight line of oscillation frequency vs. temperature characteristics on both the high temperature side and the low temperature side even if the temperature characteristics of the oscillation circuit including the substrate (excluding the vibrator) change from the high temperature side to the low temperature side. An object of the present invention is to provide a piezoelectric oscillator capable of compensating with approximation.
[0005]
[Means for Solving the Problems]
In order to solve such a problem, the present invention provides a temperature-compensated piezoelectric oscillator including a frequency temperature compensation circuit that compensates for a variation in oscillation frequency due to a change in temperature, and the frequency temperature compensation circuit includes: A temperature detecting means for detecting a change in temperature as a voltage change; a signal amplifying means for amplifying an output voltage value of the temperature detecting means; and a variable reactance element whose reactance changes based on a potential difference between both terminals, The signal amplifying means includes an operating region where the output voltage of the signal amplifying device does not saturate within a predetermined temperature range, and an operating region where the output voltage of the signal amplifying device is constant outside the predetermined temperature range, The output voltage of the signal amplifying means is applied to one terminal of the variable reactance element inserted in the oscillation feedback system of the piezoelectric oscillator, and the output of the temperature detecting means is output. And applying to the other terminal of the variable reactance element without a voltage value through the signal amplifying means.
The frequency temperature compensation circuit includes at least a means for detecting a change in ambient temperature, a signal amplifying means for amplifying an output value corresponding to the ambient temperature, and, for example, a frequency by changing a capacitance based on the generated voltage. And means for compensating the temperature by changing. A feature of the present invention is that the output signal of the signal amplifier circuit is applied to one terminal of the variable reactance element, and the output value is directly applied to the other terminal from the temperature detection circuit. The signal amplification circuit may be large gain rather than a give the object, more the output value from the temperature detection circuit at a certain temperature range to obtain a linear voltage at any temperature range.
According to this invention, since the output signal of the amplifier circuit is applied to one terminal of the variable reactance element and the output value of the temperature detection circuit is applied to the other terminal, the temperature mainly caused by components other than the vibrator used in the oscillation circuit The characteristics can be compensated.
Claim 2 is characterized in that either operation of a non-inverting amplifying operation or inverting amplifying operation of the signal amplifying means for amplifying the output value of said temperature detecting means.
In general, an operational amplifier is used as the signal amplification means. The phase of the input signal and the phase of the output signal are in phase with each other in the non-inverting amplification operation, and conversely the phase is in reverse phase with the inverting amplification operation. Which operation is to be performed can be arbitrarily selected, and thereby, the position of the thermistor of the temperature detection circuit and the polarity of the variable reactance element can be changed.
According to this invention, the operation of the signal amplifying means can be configured by either a non-inverting amplification operation or an inverting amplification operation, so that variations in circuit configuration can be widened.
[0006]
According to a third aspect of the present invention, a signal line that applies the output value of the temperature detection means to the terminal of the variable reactance element without passing through the signal amplification means is connected to the variable reactance element via a gain adjustment circuit. Features.
The output value of the temperature detecting means is a value that changes in proportion to the temperature. In order to adjust the compensation characteristic on the low temperature side, the output value of the temperature detecting means is adjusted by changing the voltage dividing ratio between the resistance pulled up by the stabilization potential and the resistance pulled down. Thereby, the temperature compensation amount on the low temperature side can be specifically adjusted.
According to this invention, since the voltage division ratio is adjusted by connecting the output value of the temperature detection means to another stabilization potential via a resistor, the temperature compensation amount on the low temperature side can be specifically adjusted.
According to a fourth aspect of the present invention, an oscillation frequency temperature characteristic caused by a temperature characteristic of an element other than the vibrator used in the piezoelectric oscillator is compensated.
Oscillation frequency vs. temperature characteristics of highly stable crystal oscillators should be compensated for by the combined characteristics of the printed circuit board and semiconductor elements used in the oscillation circuit. There is a tendency that the frequency decreases at both the low temperature side and the high temperature side with respect to the temperature at the center where the oscillator is used. Therefore, in the present invention, the oscillation frequency vs. temperature characteristic is compensated by linear approximation on both the low temperature side and the high temperature side.
According to this invention, since the oscillation frequency temperature characteristics due to the temperature characteristics of the elements other than the vibrator are comprehensively compensated, it is possible to perform temperature compensation over a wide range on the low temperature side and the high temperature side.
[0007]
According to a fifth aspect of the present invention, the operating region where the output voltage of the signal amplification means is constant is a saturated region .
The AT-cut characteristic of the crystal resonator has a cubic function characteristic. In order to compensate for this characteristic, it is necessary to change the voltage across the variable capacitance reactance element in a cubic function. Therefore, in the present invention, the signal amplifying means is linearly amplified only in a predetermined range excluding the low temperature side and the high temperature side, and is realized by giving saturation characteristics on the low temperature side and the high temperature side.
According to this invention, in order to give a voltage of a cubic function to both ends of the variable capacitance reactance element, the signal amplifying means has a characteristic of linearly amplifying only in a predetermined range excluding the low temperature side and the high temperature side. Therefore, the temperature can be compensated for the AT-cut crystal resonator.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the components, types, combinations, shapes, relative arrangements, and the like described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention only unless otherwise specified. .
FIG. 1 is a basic configuration diagram illustrating a frequency temperature compensation circuit according to the present invention. The frequency temperature compensation circuit 200 includes a temperature detection circuit 1 that detects a change in ambient temperature and outputs a voltage change, a signal amplification circuit 2 that amplifies the output value of the temperature detection circuit 1, and a capacitance value based on a potential difference between both ends. And a variable reactance element 3 that changes. The frequency temperature compensation circuit 200 of the present invention is characterized in that the output signal (voltage) B of the temperature detection circuit 1 is applied to the terminal 3a of the variable reactance element 3, and the signal A of the signal amplification circuit 2 is applied to the terminal of the variable reactance element 3. This is a point applied to 3b. The signal amplifier circuit 2 is not for obtaining a large gain. When the signal B output from the temperature detection circuit 1 is input in a certain temperature range, the signal amplifier circuit 2 obtains a substantially constant voltage by a saturation operation in an arbitrary temperature range. Is for.
[0009]
The operation of the frequency temperature compensation circuit 200 will be described with reference to FIG. FIG. 2 is a diagram showing the relationship of the signal level with respect to the temperature change of each part of the frequency temperature compensation circuit 200 of FIG. The vertical axis represents the signal level, and the horizontal axis represents the temperature. The signal B of the temperature detection circuit 1 changes linearly (linear function) in proportion to the temperature change. When the output signal A of the signal amplifying circuit 2 has such a characteristic that a constant low level is maintained below the temperature P and a constant high level is maintained above the temperature Q as indicated by A in FIG. The inter-terminal potential has characteristics as shown in FIG. 2 [A · B] with reference to the potential on the terminal 3b side. In the V-shaped signal level ([A · B] characteristic) between the temperatures Y and Q in FIG. 2, the characteristic of a general variable capacitance diode (the variable capacitance diode has a characteristic that the capacitance value decreases as the potential difference is high. ), The capacitance between the terminals (the terminal 3a is the anode end) decreases as the temperature P changes to the low temperature direction and the high frequency direction, and the oscillation frequency of the crystal oscillation circuit can be increased. Is applied to a crystal oscillator having a characteristic that the frequency decreases between the temperatures Y and Q at the temperature P, the frequency characteristics can be compensated.
Further, when compensating the temperature characteristic of the crystal oscillator having the characteristic that the frequency increases between the temperatures Y and Q at the temperature P, the signal A is applied to the terminal 3a of the variable reactance element, and the signal B is applied to the terminal. If it is applied to 3b, the same function as described above can be obtained. Furthermore, the frequency temperature characteristic of the cubic function of the AT-cut crystal resonator can be compensated by using the characteristics of the entire section of YPQR (details will be described later).
[0010]
FIG. 3 is a diagram showing a specific circuit configuration of the temperature compensation circuit according to the embodiment of the present invention. This temperature compensation circuit isolates the thermistor TH1 whose resistance value decreases as the temperature rises, the resistor R1 for dividing the constant voltage V1 from the thermistor TH1, and the thermistor TH1 and the operational amplifier U1 to eliminate noise. The resistor R2 and the capacitor C1 that perform the function, the resistors R3 and R4 that determine the potential of the negative input terminal of the operational amplifier U1, the operational amplifier U1 that amplifies the divided potential of the thermistor TH1 and the resistor R1, the feedback resistor R5, and the thermistor Resistors R8, R9, R10 for adjusting the divided potential gain of TH1 and resistor R1, and an isolated resistor R11 of variable capacitance diode D1, resistors R6, R7 and capacitors for adjusting the gain and removing noise of operational amplifier U1 C2, an isolation resistor R12, and a variable capacitance diode D1 are provided.
[0011]
Next, the operation of the temperature compensation circuit of this embodiment will be described. Since the thermistor TH1 operates so that the resistance value decreases as the temperature rises, the potential at the point b, which is the connection point between the thermistor TH1 and the resistor R1, is a straight line as the temperature rises as shown by the signal B in FIG. Rises. This signal B is input to the positive input terminal of the operational amplifier U1 through a low-pass filter composed of resistors R2 and C1, and the signal appearing at the output terminal a of the operational amplifier U1 is a variable capacitance diode through resistors R6, R7, C2, and R12. A signal is applied to the cathode terminal a1 of D1. Here, R12 uses a high resistance for isolation from the feedback system of the oscillation circuit including the variable capacitance diode D1. Further, the output signal of the temperature detection circuit generated at the point b is applied as a signal to the anode terminal b1 of the variable capacitance diode D1 via R8 and R11. The variable capacitance diode D1 is used so that the cathode is at a high potential with respect to the anode in any temperature range. Here, R11 is set to a high resistance for isolation from the feedback system of the oscillation circuit including the variable capacitance diode D1.
[0012]
Here, the signal at the output terminal a of the operational amplifier U1 hardly changes in the voltage range where the input signal B is lower than the voltage at the minus side input terminal, that is, in the low temperature range (between Y and P in FIG. 2). Therefore, the potential at the cathode-side terminal a1 of the variable capacitance diode D1 does not change in this temperature range (between Y and P in FIG. 2). However, even in this temperature range, the potential at the anode-side terminal b1 changes with the potential at the point b so that the voltage decreases as the temperature decreases. Therefore, between the terminals of the variable capacitance diode D1 ( The potential difference between a1 and b1) becomes large, and as a result, the oscillation frequency can be increased.
Further, the level of the output terminal a of the operational amplifier U1 becomes higher with respect to a change in temperature by setting the differential amplifier circuit so that the temperature range of the operational amplifier U1 between P and Q shown in FIG. Therefore, the potential at the cathode-side terminal a1 of the variable capacitance diode D1 becomes higher as the temperature rises in this temperature range (between P and Q in FIG. 2). On the other hand, since the potential at the anode side terminal b1 is also the potential at the point b at this time, the voltage changes as the temperature rises. However, the rate of increase in the potential at the anode side terminal b1 depends on the operational amplifier U1. Therefore, the potential difference between both ends (between a1 and b1) of the variable capacitance diode D1 changes so as to increase as the temperature rises, since the rate of change in potential at the cathode side terminal a1 to which the amplified signal is applied is smaller. Along with this, the capacitance of the variable capacitance diode D1 decreases, so that the oscillation frequency is increased. Thereby, the [AB] characteristic between YPQ of FIG. 2 is obtained.
[0013]
Further, the output a of the operational amplifier U1 hardly changes in response to the temperature change by setting the differential amplifier circuit so that the operational amplifier U1 is saturated in the high temperature range (between Q and R in FIG. 2). Therefore, the potential at the cathode-side terminal a1 of the variable capacitance diode D1 does not change in this temperature range (between QR in FIG. 2). However, even in this temperature range, since the potential at the anode side terminal b1 is connected to the voltage dividing point b of the thermistor TH1 and the resistor R1, the voltage changes as the temperature rises, so that the variable capacitance diode D1 The potential difference between the two ends (between a1 and b1) is lowered, and works to compensate and lower the increased oscillation frequency. As described above, the frequency temperature characteristic of the cubic function of the AT-cut crystal resonator can be compensated by using the characteristics of the entire section of YPQR (details will be described later).
[0014]
FIG. 4 is a diagram for explaining a compensation mechanism for frequency temperature characteristics of a crystal oscillator using a temperature compensation circuit according to the present invention. FIG. 4A is a diagram showing frequency temperature characteristics resulting from the electrical characteristics of electronic components other than the crystal resonator in the crystal oscillator, where the vertical axis represents the oscillation frequency and the horizontal axis represents the temperature. This figure shows the case of an oscillator having a characteristic exhibiting a quadratic function in which the oscillation frequency decreases between the low temperature side and the high temperature side. FIG. 4B is a diagram illustrating the relationship between the potential difference between both ends of the variable reactance element and the temperature. In this figure, a V-shaped characteristic is provided in order to compensate the frequency temperature characteristic of FIG. This characteristic can be realized by the circuit (FIG. 3) described in the embodiment of the present invention. The variable reactance element is a capacitive element. For example, the capacitance value decreases as the voltage difference between the terminals increases. FIG. 4C is a diagram showing a result of compensating the frequency temperature characteristic of the oscillator shown in FIG. 4A by a temperature compensation circuit that controls the variable reactance element with the control voltage shown in FIG. 4B. . The vertical axis (left) represents the oscillation frequency, the vertical axis (right) represents the temperature compensation voltage, and the horizontal axis represents the temperature. From this figure, it can be seen that the frequency temperature characteristic 11 of the oscillator can be compensated substantially flat like the characteristic 12 by frequency control by the temperature compensation circuit.
[0015]
Here, R6, R7, R8, R9, R10, C1, and C2 in FIG. 3 are elements provided as necessary, and are not necessarily required. In this embodiment, the voltage at the point b is input to the negative input terminal of the operational amplifier U1. However, the element using saturation can be used by using the positive input terminal. In this case, the thermistor TH1 The voltage dividing resistor R1 may be reversed, or the polarity of the variable capacitance diode D1 may be reversed. Alternatively, by using the high-potential side saturation of the operational amplifier U1, that is, the characteristic of the S portion in FIG. 2 (saturation on the positive power supply side, not on the negative power supply side), the same characteristics as in the present invention can be obtained.
Further, the compensation characteristic can be adjusted by adjusting the voltage dividing amount by adjusting the values of the resistors R8, R9, and R10 in order to adjust the compensation characteristic on the low temperature side. Further, it is possible to adjust the gain of the operational amplifier U1, for example, the value of the resistor R5, in order to adjust the compensation characteristic on the high temperature side. Further, it is possible to adjust the reference potential of the input of the operational amplifier U1, for example, the value of the resistor R1, in order to set the temperature at the center, that is, the temperature that becomes the valley of the compensation voltage. The case where the frequency change due to the electrical characteristics of the electronic components other than the vibrator is compensated has been described above, but the temperature compensation based on the present invention is also applicable when the frequency change including the frequency temperature characteristic of the vibrator is compensated. A circuit can be applied.
[0016]
That is, FIG. 5 is a diagram for explaining a compensation mechanism for frequency temperature characteristics of an oscillator using a crystal resonator cut by AT cut according to the present invention. FIG. 5A is a diagram showing the relationship between the oscillation frequency and the temperature, where the vertical axis represents the oscillation frequency and the horizontal axis represents the temperature. In this figure, the oscillator has a cubic function characteristic. FIG. 5B is a diagram illustrating the relationship between the potential difference between both ends of the variable reactance element and the temperature. The vertical axis represents the potential difference between both ends of the variable reactance element, and the horizontal axis represents the temperature. In this figure, a characteristic of a cubic function is provided in order to compensate the frequency temperature characteristic of FIG. This characteristic can be realized by the circuit (FIG. 3) described in the embodiment of the present invention. FIG. 5C is a diagram showing a result of compensating the characteristics of the oscillator having the frequency temperature characteristics of FIG. 5A by the temperature compensation circuit of the embodiment of the present invention having the characteristics of FIG. 5B. The vertical axis (left) represents the oscillation frequency, the vertical axis (right) represents the temperature compensation voltage, and the horizontal axis represents the temperature. In order to compensate the characteristic 21 in which the frequency temperature characteristic of FIG. 5A changes in a cubic function and obtain the frequency temperature characteristic substantially flat like the characteristic 22 from FIG. The capacitance value of the variable reactance element is varied using the control voltage shown in FIG.
[0017]
FIG. 6 is a diagram showing an actual measurement result of the temperature compensation circuit having the circuit configuration of FIG. 3 according to the present invention. The vertical axis (left) represents the temperature compensation voltage Vcompen (V), the vertical axis (right) represents the output frequency df / f (ppb), and the horizontal axis represents temperature (degree). In this figure, a characteristic 30 is a characteristic of the compensation voltage (voltage between both electrodes of the variable reactance element), and shows a V-shaped characteristic. For example, it shows 2.822V at -20 ° C, 2.795V at 25 ° C, and 2.827V at 80 ° C. A characteristic 31 is a frequency temperature characteristic of the measured oscillator, which has a characteristic that the oscillation frequency decreases on the low temperature side and the high temperature side, and is normalized so that the output frequency becomes 0 ppb at a room temperature of 25 ° C., for example, at −20 ° C. It shows about -15 ppb and shows about -80 ppb at 80 ° C. A characteristic 32 represents a characteristic after the characteristic 31 before compensation of the characteristic 31 is compensated by the compensation voltage 30. According to this, for example, about −15 ppb before compensation at −20 ° C. is 20 ppb, 0 ppb at 25 ° C., about −80 ppb before compensation at 80 ° C. becomes −10 ppb, and as a whole It can be seen that it is within the range of 20 ppb to −10 ppb. As described above, the temperature compensation circuit according to the present invention can compensate for the frequency temperature characteristic of the oscillator in which the oscillation frequency decreases on the low temperature side and the high temperature side substantially flat.
[0018]
【The invention's effect】
As described above, according to the first aspect of the present invention, the output signal of the amplifier circuit is applied to one terminal of the variable reactance element, and the output value of the temperature detection circuit is applied to the other terminal. It is possible to compensate for temperature characteristics caused by components other than the above.
According to the second aspect of the present invention, the operation of the signal amplifying means can be configured by either a non-inverting amplification operation or an inverting amplification operation, so that variations in circuit configuration can be widened.
According to the third aspect of the present invention, since the voltage dividing ratio is adjusted by connecting the output value of the temperature detecting means to another stabilizing potential via a resistor, the temperature compensation amount on the low temperature side can be specifically adjusted.
According to the fourth aspect of the present invention, since the oscillation frequency temperature characteristic due to the temperature characteristics of the elements other than the vibrator is comprehensively compensated, the temperature compensation can be performed over a wide range of the low temperature side and the high temperature side.
According to a fifth aspect of the present invention, in order to give a voltage of a cubic function to both ends of the variable capacitance reactance element, the signal amplifying means has a characteristic of linearly amplifying only in a predetermined range excluding the low temperature side and the high temperature side. Therefore, the temperature can be compensated for the AT-cut crystal resonator.
[Brief description of the drawings]
FIG. 1 is a basic configuration diagram illustrating a frequency temperature compensation circuit of the present invention.
FIG. 2 is a diagram showing a relationship of signal levels with respect to temperature changes in various parts of the frequency temperature compensation circuit 100 of FIG.
FIG. 3 is a diagram showing a specific circuit configuration of a temperature compensation circuit according to an embodiment of the present invention.
FIG. 4 is a diagram for explaining how the frequency temperature characteristic of the present invention is compensated.
FIG. 5 is a diagram for explaining how to compensate the frequency temperature characteristics of an oscillator using a crystal resonator cut by an AT cut according to the present invention.
6 is a diagram showing an actual measurement result of the temperature compensation circuit having the circuit configuration of FIG. 3 according to the present invention.
FIG. 7 is a diagram for explaining conventional temperature compensation;
FIG. 8 is a specific circuit diagram of conventional compensation voltage generating means.
[Explanation of symbols]
1 temperature detection circuit, 2 signal amplification circuit, 3 variable reactance element

Claims (5)

温度の変化による発振周波数の変動を補償する周波数温度補償回路を備えた温度補償型圧電発振器であって、
前記周波数温度補償回路は、前記温度の変化を電圧変化として検出する温度検出手段と、該温度検出手段の出力電圧値を増幅する信号増幅手段と、両端子の電位差に基づいてリアクタンスが変化する可変リアクタンス素子と、を備え、
前記信号増幅手段は、所定の温度範囲において該信号増幅手段の出力電圧が飽和しない動作領域を備え、且つ前記所定の温度範囲外において前記信号増幅手段の出力電圧が一定である動作領域を備え、
前記信号増幅手段の出力電圧を前記圧電発振器の発振帰還系に挿入した前記可変リアクタンス素子の一方の端子に印加し、前記温度検出手段の出力電圧値を前記信号増幅手段を経由しないで前記可変リアクタンス素子の他方の端子に印加することを特徴とする温度補償型圧電発振器。
A temperature compensated piezoelectric oscillator including a frequency temperature compensation circuit that compensates for fluctuations in oscillation frequency due to temperature changes,
The frequency temperature compensation circuit includes a temperature detection unit that detects a change in temperature as a voltage change, a signal amplification unit that amplifies the output voltage value of the temperature detection unit, and a variable whose reactance changes based on a potential difference between both terminals. A reactance element,
The signal amplifying means includes an operating region where the output voltage of the signal amplifying device does not saturate within a predetermined temperature range, and an operating region where the output voltage of the signal amplifying device is constant outside the predetermined temperature range,
The output voltage of the signal amplifying means is applied to one terminal of the variable reactance element inserted in the oscillation feedback system of the piezoelectric oscillator, and the output voltage value of the temperature detecting means is not passed through the signal amplifying means. A temperature-compensated piezoelectric oscillator, characterized by being applied to the other terminal of the element.
前記温度検出手段の出力値を増幅する前記信号増幅手段の動作を非反転増幅動作若しくは反転増幅動作の何れかとすることを特徴とする請求項1に記載の温度補償型圧電発振器。2. The temperature-compensated piezoelectric oscillator according to claim 1, wherein the operation of the signal amplification means for amplifying the output value of the temperature detection means is either a non-inversion amplification operation or an inversion amplification operation. 前記温度検出手段の出力値を前記信号増幅手段を経由しないで前記可変リアクタンス素子の端子に印加する信号線は、利得調整回路を介して前記可変リアクタンス素子に接続されることを特徴とする請求項1又は2に記載の温度補償型圧電発振器。  The signal line for applying the output value of the temperature detection means to the terminal of the variable reactance element without passing through the signal amplification means is connected to the variable reactance element via a gain adjustment circuit. 3. The temperature compensated piezoelectric oscillator according to 1 or 2. 前記圧電発振器に使用される振動子以外の素子の温度特性に起因する発振周波数温度特性を補償することを特徴とする請求項1乃至3の何れか一項に記載の温度補償型圧電発振器。  4. The temperature compensated piezoelectric oscillator according to claim 1, wherein an oscillation frequency temperature characteristic caused by a temperature characteristic of an element other than the vibrator used in the piezoelectric oscillator is compensated. 5. 前記信号増幅手段の出力電圧が一定である動作領域が飽和する領域であることを特徴とする請求項1、2、3、又は4に記載の温度補償型圧電発振器。 5. The temperature-compensated piezoelectric oscillator according to claim 1, wherein an operation region where the output voltage of the signal amplifying unit is constant is a saturated region .
JP2003129393A 2003-05-07 2003-05-07 Temperature compensated piezoelectric oscillator Expired - Fee Related JP4259174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003129393A JP4259174B2 (en) 2003-05-07 2003-05-07 Temperature compensated piezoelectric oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003129393A JP4259174B2 (en) 2003-05-07 2003-05-07 Temperature compensated piezoelectric oscillator

Publications (2)

Publication Number Publication Date
JP2004336374A JP2004336374A (en) 2004-11-25
JP4259174B2 true JP4259174B2 (en) 2009-04-30

Family

ID=33505244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003129393A Expired - Fee Related JP4259174B2 (en) 2003-05-07 2003-05-07 Temperature compensated piezoelectric oscillator

Country Status (1)

Country Link
JP (1) JP4259174B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5381162B2 (en) * 2009-03-03 2014-01-08 セイコーエプソン株式会社 Temperature compensated oscillator
JP2016187152A (en) 2015-03-27 2016-10-27 セイコーエプソン株式会社 Method of manufacturing oscillator, oscillator, electronic apparatus, and mobile body
JP2016187154A (en) 2015-03-27 2016-10-27 セイコーエプソン株式会社 Oscillator, electronic apparatus, and mobile body
US11609128B2 (en) * 2019-12-10 2023-03-21 Wiliot, LTD. Single layer LC oscillator
CN114325047A (en) * 2021-12-24 2022-04-12 北京东方计量测试研究所 Current detection compensation circuit and device for resistor shunt

Also Published As

Publication number Publication date
JP2004336374A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
US8058941B2 (en) Voltage control type temperature compensation piezoelectric oscillator
US5883550A (en) Crystal oscillator with a temperature-compensating analog circuit
US8026460B2 (en) Control circuit for thermostatic oven in oven controlled crystal oscillator
TWI474621B (en) Temerature compensation circuit and synthesizer
JP4259174B2 (en) Temperature compensated piezoelectric oscillator
JP5034772B2 (en) Temperature compensated piezoelectric oscillator
JP2005117093A (en) Temperature control circuit and high stability crystal oscillator employing the same
JPH0846427A (en) Voltage controlled crystal oscillator
JP2002135051A (en) Piezoelectric oscillator
JP2011091691A (en) Constant-temperature voltage-controlled crystal oscillator
JP2013150032A (en) Temperature compensation type crystal oscillator
JP2010161437A (en) Temperature compensated piezoelectric oscillator
JP3239776B2 (en) Temperature compensated piezoelectric oscillator
JP2010161532A (en) Piezoelectric oscillator
JP4424001B2 (en) Temperature compensated piezoelectric oscillator
JP3825304B2 (en) Oscillator circuit
JP5556928B2 (en) Temperature compensated voltage generation circuit, temperature compensated oscillation circuit
JP4314982B2 (en) Temperature compensated piezoelectric oscillator
JP3399563B2 (en) Temperature compensated crystal oscillator
JP2015056728A (en) Oscillator
JP2004186754A (en) Temperature compensating piezoelectric oscillator
JP3368580B2 (en) Temperature compensated crystal oscillator
JP2002198735A (en) Voltage controlled oscillator
JP2004104609A (en) Temperature compensation type piezoelectric oscillator
JP5918546B2 (en) Temperature compensated crystal oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4259174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees