JP2009222462A - Flaw inspection device and flaw inspection method - Google Patents

Flaw inspection device and flaw inspection method Download PDF

Info

Publication number
JP2009222462A
JP2009222462A JP2008065233A JP2008065233A JP2009222462A JP 2009222462 A JP2009222462 A JP 2009222462A JP 2008065233 A JP2008065233 A JP 2008065233A JP 2008065233 A JP2008065233 A JP 2008065233A JP 2009222462 A JP2009222462 A JP 2009222462A
Authority
JP
Japan
Prior art keywords
sample
observation image
image
defective
semiconductor chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008065233A
Other languages
Japanese (ja)
Other versions
JP5458345B2 (en
Inventor
Koji Kaneko
幸治 金古
Norio Suzuki
典雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko NPC Corp
Original Assignee
Seiko NPC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko NPC Corp filed Critical Seiko NPC Corp
Priority to JP2008065233A priority Critical patent/JP5458345B2/en
Publication of JP2009222462A publication Critical patent/JP2009222462A/en
Application granted granted Critical
Publication of JP5458345B2 publication Critical patent/JP5458345B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flaw inspection device capable of rapidly and accurately inspecting what process of a plurality of sample manufacturing processes a flaw or stain is caused in without relying on the discretion of a worker, and a flaw inspection method. <P>SOLUTION: The flaw inspection device has a step for observing a sample using a multiwavelength microscopic apparatus 1 to display its observation image on an observation image display device 3, a step for collating the observation image displayed on the observation image display device 3 with the image based on the sample data of a memory device 4 by an image recognizing device 5, a step for detecting the flaw or the like of the sample by collating the observation image with the image based on the sample data and a step for judging what process of a plurality of the sample manufacturing processes a flaw or the like is caused in. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、シリコンなどの半導体基板における多層構造の深層方向におけるキズや汚れの有無を検査し、キズや汚れがどの工程で起きたものであるかを知ることが出来る欠陥検査装置及びこの検査装置を用いた欠陥検査方法に関するものである。   The present invention relates to a defect inspection apparatus capable of inspecting the presence or absence of scratches or dirt in the depth direction of a multilayer structure in a semiconductor substrate such as silicon and knowing in which process the scratch or dirt has occurred, and the inspection apparatus The present invention relates to a defect inspection method using.

従来、半導体ウエハあるいはチップなどの試料の欠陥を検査する欠陥検査装置には、例えば、コンフォーカル(共焦点)顕微鏡を用いる(特許文献1参照)。コンフォーカル顕微鏡は、高低差のある試料をどの部分でも完全に焦点が合った状態で画像(全焦点画像)にすることが出来る。
コンフォーカル光学系では焦点が完全にあった場合のみ光検出器に反射光が入って来る。つまり、焦点が合っている部分の反射光のみがピンホールを通過して光検出器に入ってくる。そのため、焦点が合っている時に画像の明るさが最大になり、焦点がずれると明るさは低下する。コンフォーカル顕微鏡は、このコンフォーカル光学系を利用したものであり、凹凸のある試料であっても画面全体に焦点が合った全焦点画像を得ることが出来る。通常の光学顕微鏡は、焦点深度が有限であるので画像全体で焦点を合わせることが難しいが、全焦点画像は、全体に焦点が合っている。
Conventionally, for example, a confocal microscope is used as a defect inspection apparatus for inspecting defects of a sample such as a semiconductor wafer or a chip (see Patent Document 1). The confocal microscope can form an image (all-in-focus image) in a state where a sample having a difference in elevation is completely focused on any part.
In the confocal optical system, the reflected light enters the photodetector only when the focal point is perfectly located. In other words, only the reflected light of the in-focus portion passes through the pinhole and enters the photodetector. For this reason, the brightness of the image is maximized when the image is in focus, and the brightness decreases when the image is out of focus. The confocal microscope uses this confocal optical system, and an omnifocal image in which the entire screen is in focus can be obtained even with an uneven sample. A normal optical microscope has a finite depth of focus, so it is difficult to focus on the entire image. However, an omnifocal image is focused on the entire image.

半導体ウエハあるいはチップなどの欠陥検査装置は、コンフォーカル顕微鏡に代表されるように、赤色、緑色及び青色の各スペクトルの性質を利用しているが、その利用は、ただ欠陥不良を観測して作業者の判断によりキズあるいは汚れなどを判定している。従来は、赤色・緑色・青色スペクトル個別の反射像を作り、この反射像を利用して深さ方向に焦点を合わせた合成像を作ってカラー映像をより鮮明にしていた。
特許文献1には、表層以外の層の3次元形状を測定することができる3次元形状測定装置及び測定方法が開示されている。この3次元形状測定装置は、光源からの照明光の波長を切り替える波長切替機構と、試料に対する焦点位置を光軸に沿って走査するステージ駆動機構と、前記試料で反射された反射光をコンフォーカル光学系を介して検出するCCDカメラと、焦点位置を走査したときのCCDカメラとCCDカメラで検出した検出光に基づいて処理を行なう処理装置とを備えている。処理装置は、CCDカメラで検出した検出光に基づいて合焦点位置を算出して3次元形状を構築する。波長切替機構によって異なる波長に切り替えて、第1層の上面と第2層の上面との3次元形状を構築する。
特開2006−350078号公報
Defect inspection equipment for semiconductor wafers and chips, as represented by confocal microscopes, uses the properties of each spectrum of red, green, and blue, but its use is just observing defect defects. Scratches or dirt are determined based on the judgment of the person. Conventionally, red, green, and blue spectra are individually reflected, and a composite image that is focused in the depth direction is created using the reflected image to make the color image clearer.
Patent Document 1 discloses a three-dimensional shape measuring apparatus and a measuring method capable of measuring the three-dimensional shape of layers other than the surface layer. This three-dimensional shape measuring apparatus includes a wavelength switching mechanism that switches the wavelength of illumination light from a light source, a stage drive mechanism that scans the focal position with respect to the sample along the optical axis, and confocal reflected light reflected by the sample. A CCD camera that is detected via an optical system, a CCD camera that scans the focal position, and a processing device that performs processing based on detection light detected by the CCD camera are provided. The processing device calculates a focal point position based on the detection light detected by the CCD camera and constructs a three-dimensional shape. By switching to a different wavelength by the wavelength switching mechanism, a three-dimensional shape of the upper surface of the first layer and the upper surface of the second layer is constructed.
JP 2006-350078 A

前述のような従来の欠陥検査装置を用いた場合、キズや汚れなどの検出判断及びキズや汚れなどがどの工程で発生したかの特定は、専ら作業者の裁量に任されていた。このような手段では判断や特定には時間がかかり、判断ミスも少なくなかった。また、そのキズや汚れの種類や発生工程の集計も作業者が行っており、時間と手間は甚大であった。
本発明は、以上のような問題を解決するためになされ、基板を製造する複数の工程の内どの工程に起因するキズあるいは汚れであるか、作業者の裁量に任せずに、迅速かつ正確な検査が可能な欠陥検査装置及び欠陥検査方法を提供する。
When the conventional defect inspection apparatus as described above is used, it is left to the discretion of the operator to determine the detection of scratches and dirt and in which process the scratches and dirt are generated. With such means, it takes time to make judgments and identifications, and there are many judgment errors. In addition, the operator also collected the types of scratches and dirt and the generation process, and the time and labor were tremendous.
The present invention has been made to solve the above-described problems, and it is quick and accurate without leaving to the discretion of an operator which one of a plurality of processes for manufacturing a substrate is caused by scratches or dirt. Provided are a defect inspection apparatus and a defect inspection method capable of inspection.

本発明の欠陥検査装置の一態様は、試料を観察する赤色、緑色、青色スペクトルを有する光源を用いる多波長顕微鏡装置と、前記試料の観察像を映し出す観察像表示装置と、予め試料情報を記憶しており、且つ前記試料の良品及び不良品を記憶する記憶装置と、前記観察像表示装置に表示された前記観察像を前記記憶装置の前記試料情報に基づく画像と照合する画像認識装置と、前記照合結果から前記各スペクトル成分の光のうちどのスペクトル成分の光による観察像に欠陥があるかを検出して前記記憶装置に不良品もしくは良品として記録するとともに前記欠陥が前記試料の製造工程のどの工程で形成されたものであるかを判定する演算処理装置とを具備したことを特徴としている。   One aspect of the defect inspection apparatus of the present invention includes a multi-wavelength microscope apparatus using a light source having red, green, and blue spectra for observing a sample, an observation image display apparatus that displays an observation image of the sample, and sample information stored in advance. And a storage device that stores good and defective samples, and an image recognition device that collates the observation image displayed on the observation image display device with an image based on the sample information of the storage device; From the comparison result, it is detected which spectral component of the light of each spectral component has a defect in the observed image and recorded as a defective or non-defective product in the storage device. It is characterized by comprising an arithmetic processing unit for determining in which process it is formed.

また、本発明の欠陥検査方法の一態様は、赤色、緑色、青色スペクトルを有する光を試料に照射し、前記各スペクトル成分の光による観察像を表示するステップと、前記観察像を予め良品及び不良品として記憶された試料情報に基づく画像と照合するステップと、前記観察像を前記試料情報に基づく画像に照合することにより前記各スペクトル成分のうちどのスペクトル成分の光による観察像に欠陥があるかを検出して不良品もしくは良品として記録するステップと、前記欠陥が前記試料の製造工程のどの工程で形成されたものであるか判定するステップとを具備することを特徴としている。   Further, according to one aspect of the defect inspection method of the present invention, a step of irradiating a sample with light having red, green, and blue spectra and displaying an observation image by the light of each spectrum component; The step of collating with the image based on the sample information stored as a defective product, and the observation image by light of which spectral component among the spectral components is defective by collating the observation image with the image based on the sample information And detecting as a defective product or a non-defective product, and determining in which step of the sample manufacturing process the defect is formed.

本発明は、以上の構成により、基板を製造する複数の工程の内のどの工程に起因するキズあるいは汚れであるか、作業者の裁量に任せず、迅速かつ正確な検査が可能になる。   With the above configuration, the present invention enables a quick and accurate inspection without leaving the operator's discretion as to which of the plurality of processes for manufacturing a substrate is a scratch or a stain.

本発明は、欠陥検査に、赤色、緑色、青色スペクトルを有する光源を用いる多波長顕微鏡装置を利用することを特徴としており、試料の観察像を鮮明に観測することが出来る。例えば、半導体ウエハもしくはチップを製造する複数の工程の内どの工程に起因するキズあるいは汚れであるかを作業者の裁量に任せずに行う、迅速且つ正確な検査が可能な欠陥検査装置及び方法を提供するものである。
以下、実施例を参照して発明の実施の形態を説明する。
The present invention is characterized in that a multi-wavelength microscope apparatus using a light source having red, green, and blue spectra is used for defect inspection, and an observation image of a sample can be clearly observed. For example, there is provided a defect inspection apparatus and method capable of quick and accurate inspection, which is performed without leaving to the discretion of an operator which one of a plurality of processes for manufacturing a semiconductor wafer or chip is caused by scratches or dirt. It is to provide.
Hereinafter, embodiments of the invention will be described with reference to examples.

まず、図1乃至図9を参照して実施例を説明する。
図1は、実施例で説明する欠陥検査装置のブロック図、図2は、図1に示す欠陥検査装置を用いた欠陥検査方法を説明するフローチャート図、図3は、図1に示す欠陥検査装置の多波長顕微鏡装置における多波長使い分けを説明する図であり、キズあるいは汚れ(以後、キズ等という)が半導体基板表面にかかり、全波長で観測される試料(ここでは、半導体チップを用いる)の断面図、図4は、図1に示す欠陥検査装置の多波長顕微鏡装置での観測において、キズ等が半導体基板表面にかかり、R波長スペクトル成分のみで観測された半導体チップ断面図、図5は、図1に示す欠陥検査装置の多波長顕微鏡装置での観測において、キズ等が半導体基板表面にかかり、B波長スペクトル成分のみで観測された半導体チップの断面図、図6は、図1に示す欠陥検査装置の多波長顕微鏡装置における多波長使い分けを説明する図であり、キズ等がパッシベーション膜にかかり、全波長で観測される半導体チップの断面図、図7は、図1に示す欠陥検査装置の多波長顕微鏡装置での観測において、キズ等がパッシベーション膜にかかり、赤色スペクトル成分(以下、R波長スペクトル成分)のみで観測された半導体チップの断面図、図8は、図1に示す欠陥検査装置の多波長顕微鏡装置での観測において、キズ等がパッシベーション膜にかかり、青色スペクトル成分(以下、B波長スペクトル成分)のみで観測される半導体チップ断面図、図9は、図1に示す欠陥検査装置の多波長顕微鏡装置における多波長使い分けを説明する図であり、最上層(パッシべーション膜)及び最上層以外(層間絶縁膜)にあるキズ等を観測した半導体チップの断面図である。
First, an embodiment will be described with reference to FIGS.
1 is a block diagram of a defect inspection apparatus described in the embodiment, FIG. 2 is a flowchart illustrating a defect inspection method using the defect inspection apparatus shown in FIG. 1, and FIG. 3 is a defect inspection apparatus shown in FIG. FIG. 2 is a diagram for explaining the proper use of multiple wavelengths in a multi-wavelength microscope apparatus of a sample (here, a semiconductor chip is used) where scratches or dirt (hereinafter referred to as scratches) are applied to the surface of a semiconductor substrate and are observed at all wavelengths. 4 is a cross-sectional view of a semiconductor chip in which a scratch or the like is applied to the surface of a semiconductor substrate and observed only with an R wavelength spectrum component in the observation with the multi-wavelength microscope apparatus of the defect inspection apparatus shown in FIG. FIG. 6 is a cross-sectional view of a semiconductor chip in which scratches and the like are applied to the surface of a semiconductor substrate and observed only with a B wavelength spectrum component in the observation with the multi-wavelength microscope apparatus of the defect inspection apparatus shown in FIG. FIG. 7 is a diagram for explaining how to use multiple wavelengths in the multi-wavelength microscope apparatus of the defect inspection apparatus shown in FIG. 1, where a scratch or the like is applied to the passivation film, and a cross-sectional view of a semiconductor chip observed at all wavelengths, FIG. FIG. 8 is a cross-sectional view of a semiconductor chip observed with only a red spectral component (hereinafter referred to as an R wavelength spectral component) in the observation with a multi-wavelength microscope apparatus of a defect inspection apparatus, with scratches or the like being applied to the passivation film. FIG. 9 is a cross-sectional view of a semiconductor chip in which scratches and the like are applied to the passivation film and observed only with a blue spectrum component (hereinafter referred to as a B wavelength spectrum component). It is a figure explaining the multi-wavelength selective use in the multi-wavelength microscope apparatus of the defect inspection apparatus to show, except the uppermost layer (passivation film) and the uppermost layer ( During a cross-sectional view of the semiconductor chip was observed scratches on the insulating film).

図1に示すように、この実施例の欠陥検査装置は、ウエハもしくはチップトレー自動搬送装置2により搬送されてきた半導体チップを観察する赤色、緑色、青色スペクトルを有する光源を用いる多波長顕微鏡装置1と、前記半導体チップの観察像を映し出す観察像表示装置3と、予め試料情報を記憶しており、且つ前記試料の良品及び不良品を記憶する記憶装置4と、観察像表示装置3に表示された前記観察像を記憶装置4の前記試料情報に基づく画像と照合する画像認識装置5と、前記照合結果に基づいて、各スペクトル成分の光のうちどのスペクトル成分の光による観察像にキズおよび汚れがあるかを検出し、記憶装置4に不良品もしくは良品として記録するとともに、キズおよび汚れが前記試料の製造工程のどの工程で形成されたものであるかを判定する演算処理装置6とから構成されている。
この欠陥検査装置において、赤色、緑色、青色スペクトルを有する光を半導体チップに照射して、各スペクトル成分の光による観察像をそれぞれ予め記憶装置に記憶された試料情報に基づく画像と照合し、どのスペクトル成分の光による観察像にキズ等があるかを検出し、さらに、このキズ等が試料を製造するための複数の工程の内のどの工程で形成されたものであるかを判定することができる。
As shown in FIG. 1, the defect inspection apparatus of this embodiment is a multi-wavelength microscope apparatus 1 using a light source having red, green, and blue spectra for observing a semiconductor chip transferred by a wafer or chip tray automatic transfer apparatus 2. An observation image display device 3 that displays an observation image of the semiconductor chip, a storage device 4 that stores sample information in advance and stores non-defective and defective samples, and an observation image display device 3. In addition, the image recognition device 5 that collates the observation image with the image based on the sample information in the storage device 4, and based on the collation result, the observation image by the light of which spectral component among the light of each spectral component is scratched and stained. In the process of manufacturing the sample, scratches and dirt are recorded as defective or non-defective products are recorded in the storage device 4 And a or the determining processing unit 6 which is.
In this defect inspection apparatus, the semiconductor chip is irradiated with light having red, green, and blue spectrums, and the observation images of the light of each spectral component are collated with images based on sample information stored in the storage device in advance. Detecting whether there is a scratch or the like in the observation image of the spectral component light, and further determining in which step of the plurality of steps for manufacturing the sample the scratch or the like it can.

多波長顕微鏡装置1を用いて、試料である半導体チップを構成する半導体基板の表面を欠陥検査する場合、赤色スペクトル成分による観察像が有効である。赤色スペクトル成分は、シリコンなどの基板表面の最上層の膜を透過し、基板面で反射する。即ち、基板面の凹凸を画像で表示できる。最上層の膜は、ポリイミドなどの透明なパッシベーション膜15である。また、青色スペクトル成分は、最上層の透明膜表面で反射する。即ち、パッシベーション膜15表面の凹凸を画像表示出来る。したがって、シリコン基板にキズがあり、その直上のパッシベーション膜にキズがなかったらウェハ処理工程の最終プロセス(後工程)より前の工程(前工程)に起因するものと判断することが出来る(図9(a)参照)。本発明は、各スペクトル成分の特性を利用して欠陥検査を正確に実施することが可能である。
既に述べた様に、赤色スペクトル(R)成分は、シリコンなどの基板表面の最上層の膜を透過し、基板面で反射する(図9(b)参照)。青色スペクトル(B)成分は、最上層の透明膜表面で反射する(図9(a)参照)。緑色スペクトル(G)成分は、赤色スペクトル(R)成分と青色スペクトル(B)成分の双方の性質を持っており、最上層の透明膜を透過し、当該透明膜と基板表面間に形成された複数の層間絶縁膜のいずれかで反射する(図9参照)。
When using the multiwavelength microscope apparatus 1 to inspect the surface of a semiconductor substrate constituting a semiconductor chip as a sample, an observation image using a red spectral component is effective. The red spectral component is transmitted through the uppermost layer of the substrate surface such as silicon and reflected by the substrate surface. That is, the unevenness of the substrate surface can be displayed as an image. The uppermost film is a transparent passivation film 15 such as polyimide. Further, the blue spectral component is reflected by the surface of the uppermost transparent film. That is, the unevenness on the surface of the passivation film 15 can be displayed as an image. Therefore, if the silicon substrate is flawed and the passivation film immediately above it is not flawed, it can be determined that it is caused by a process (previous process) prior to the final process (post process) of the wafer processing process (FIG. 9). (See (a)). According to the present invention, it is possible to accurately perform defect inspection using the characteristics of each spectral component.
As already described, the red spectrum (R) component is transmitted through the uppermost layer of the substrate surface such as silicon and reflected by the substrate surface (see FIG. 9B). The blue spectrum (B) component is reflected on the surface of the uppermost transparent film (see FIG. 9A). The green spectrum (G) component has the properties of both a red spectrum (R) component and a blue spectrum (B) component, is transmitted through the uppermost transparent film, and is formed between the transparent film and the substrate surface. Reflected by any of the plurality of interlayer insulating films (see FIG. 9).

次に、図2乃至図8を参照して、図1に示す欠陥検査装置を用いて試料(半導体チップ)の欠陥を検査する方法を説明する。
図2に示す欠陥検査方法は、ステップ(1)〜(14)で構成されている。ウエハもしくはチップトレー自動搬送装置から試料として半導体チップを多波長顕微鏡装置1へ搬送する(ステップ(1))。次に、予め記憶しているインデックス順に半導体チップを観察する(ステップ(2))。その後、全波長成分(R、B、G)を同時に照射する。全波長成分を同時に半導体チップに照射する状態は図3及び図6に示す通りである。この多波長顕微鏡装置1によれば、金属顕微鏡以上の鮮明画像を深さ方向に関わらずCCDでとらえて映し出すことが出来る。
Next, a method of inspecting a sample (semiconductor chip) for defects using the defect inspection apparatus shown in FIG. 1 will be described with reference to FIGS.
The defect inspection method shown in FIG. 2 includes steps (1) to (14). A semiconductor chip as a sample is transferred from the wafer or chip tray automatic transfer apparatus to the multi-wavelength microscope apparatus 1 (step (1)). Next, the semiconductor chips are observed in the order of indexes stored in advance (step (2)). Thereafter, all wavelength components (R, B, G) are irradiated simultaneously. The state in which the semiconductor chip is irradiated with all wavelength components simultaneously is as shown in FIGS. According to the multiwavelength microscope apparatus 1, a clear image higher than that of a metal microscope can be captured and displayed by the CCD regardless of the depth direction.

図3乃至図8には、半導体チップの断面図が記載されている。これらの図は半導体素子等についての記載を省略し、基板表面上の多層配線部分について記載する。
図において、半導体基板10表面にはシリコン酸化物などのフィールド酸化膜11が形成され、そのフィールド酸化膜11上に金属配線などの第1層配線パターン16が形成されている。第1層配線パターン16は、シリコン酸化物などの層間絶縁膜12に被覆されている。また、層間絶縁膜12表面上には金属配線などの第2層配線パターン17が形成されている。第2層配線パターン17は、シリコン酸化物などの層間絶縁膜13に被覆される。層間絶縁膜13表面上には金属配線などの第3層配線パターン18が形成される。第3層配線パターン18は、シリコン酸化物などの層間絶縁膜14に被覆されている。第1層配線パターン16と第2層配線パターン17は、接続配線19により接続され、第2層配線パターン17と第3層配線パターン18は、接続配線22により接続されている。更に、層間絶縁膜14は、最上層のポリイミドなどからなる透明なパッシベーション膜15により被覆される。
3 to 8 show sectional views of the semiconductor chip. In these drawings, the description of the semiconductor element and the like is omitted, and the multilayer wiring portion on the substrate surface is described.
In the figure, a field oxide film 11 such as silicon oxide is formed on the surface of a semiconductor substrate 10, and a first layer wiring pattern 16 such as a metal wiring is formed on the field oxide film 11. The first layer wiring pattern 16 is covered with an interlayer insulating film 12 such as silicon oxide. A second layer wiring pattern 17 such as a metal wiring is formed on the surface of the interlayer insulating film 12. The second layer wiring pattern 17 is covered with an interlayer insulating film 13 such as silicon oxide. A third layer wiring pattern 18 such as a metal wiring is formed on the surface of the interlayer insulating film 13. The third layer wiring pattern 18 is covered with an interlayer insulating film 14 such as silicon oxide. The first layer wiring pattern 16 and the second layer wiring pattern 17 are connected by a connection wiring 19, and the second layer wiring pattern 17 and the third layer wiring pattern 18 are connected by a connection wiring 22. Further, the interlayer insulating film 14 is covered with a transparent passivation film 15 made of polyimide or the like as the uppermost layer.

全波長成分を同時に半導体チップに照射すると、例えば、赤色スペクトル成分(R波長スペクトル成分)は、透明なパッシベーション膜15及び層間絶縁膜12〜14を透過し、半導体基板10表面で反射する。青色スペクトル成分(B波長スペクトル成分)は、透明なパッシベーション膜15表面で反射する。緑色スペクトル成分(G波長スペクトル成分)は、透明なパッシベーション膜15を透過し、層間絶縁膜12〜14のいずれかで反射する。
図3、図4及び図5の半導体チップには半導体基板10表面にかかるキズ等20が有り、図6、図7及び図8の半導体チップにはパッシベーション膜15にかかるキズ等21がある。
その観察像を観察像表示装置3に表示し、画像認識装置5により記憶装置4の画像と照合する。半導体チップの観察像を画像認識装置5により記憶装置4の画像と照合した結果、試料は、キズ等無し(OK)の半導体チップとキズ等有り(NG)の半導体チップとに仕分けられる(ステップ(3))。
When the semiconductor chip is irradiated with all the wavelength components at the same time, for example, the red spectral component (R wavelength spectral component) is transmitted through the transparent passivation film 15 and the interlayer insulating films 12 to 14 and reflected on the surface of the semiconductor substrate 10. The blue spectral component (B wavelength spectral component) is reflected by the surface of the transparent passivation film 15. The green spectral component (G wavelength spectral component) is transmitted through the transparent passivation film 15 and reflected by any one of the interlayer insulating films 12 to 14.
3, 4, and 5 have scratches 20 on the surface of the semiconductor substrate 10, and the semiconductor chips in FIGS. 6, 7, and 8 have scratches 21 on the passivation film 15.
The observation image is displayed on the observation image display device 3 and collated with the image in the storage device 4 by the image recognition device 5. As a result of collating the observation image of the semiconductor chip with the image of the storage device 4 by the image recognition device 5, the sample is classified into a semiconductor chip without scratches (OK) and a semiconductor chip with scratches (NG) (Step ( 3)).

半導体チップがキズ等無し(OK)の場合は、演算処理装置6により記憶装置4に「良品」として記録する(ステップ(4))。更に、演算処理装置6により「良品」として記憶装置4に記録された半導体チップは、良品の一つとして観察像と共に観察像表示装置3に表示される(ステップ(5))。
演算処理装置6は、例えば、ウエハやチップトレーの座標情報や試料のキズ有無の統計処理情報(例えば、NGチップ/ウエハロット母数)、キズ等が試料の製造工程のどの工程に起因するかを特定する情報を有し、観察像表示装置3にキズ等がどの工程に起因するかを判断して表示させる。
If the semiconductor chip is not damaged (OK), it is recorded as “good” in the storage device 4 by the arithmetic processing device 6 (step (4)). Furthermore, the semiconductor chip recorded in the storage device 4 as “good” by the arithmetic processing device 6 is displayed on the observation image display device 3 together with the observation image as one of good products (step (5)).
The arithmetic processing unit 6 determines, for example, which process in the sample manufacturing process the coordinate information of the wafer or chip tray, statistical processing information on the presence / absence of a sample scratch (for example, NG chip / wafer lot parameter), scratches, etc. It has information to be identified, and the observation image display device 3 determines and displays which process causes scratches and the like.

一方、半導体チップがキズ等有り(NG)の場合は、ステップ(6)以下の工程により、キズ等が半導体チップのどの工程で生じていたのかを判定する。まず、B波長スペクトル成分のみ半導体チップに照射して観察を開始する(図5、図8参照)。B波長スペクトル成分のみで観察すると、パッシべーション膜15の凹凸だけを映し出すので、半導体基板10にかかるキズ等20を確認することが出来ない。キズ等無し(OK)の場合、今度はR波長スペクトル成分のみを当該半導体チップに照射して観察を開始する(ステップ(7))。   On the other hand, if the semiconductor chip has scratches or the like (NG), it is determined in which step of the semiconductor chip the scratches or the like have occurred by the processes after step (6). First, observation is started by irradiating the semiconductor chip with only the B wavelength spectrum component (see FIGS. 5 and 8). When only the B wavelength spectrum component is observed, only the irregularities of the passivation film 15 are projected, so that the scratches 20 on the semiconductor substrate 10 cannot be confirmed. If there is no scratch or the like (OK), the observation is started by irradiating only the R wavelength spectrum component to the semiconductor chip (step (7)).

キズ等を確認した場合、演算処理装置6は、この半導体チップを記憶装置4に「不良品」として記録する(ステップ(8))。そして、演算処理装置6でこの半導体チップを「不良品」の一つとして集計し、観察像と共に観察像表示装置3に表示する。同時に、演算処理装置6が半導体基板表面にかかるキズ等と判断して(図4参照)このキズ等が半導体チップ製造工程の「前工程」に起因することを観察像表示装置3に表示させる(ステップ(9))。図4に示すように、R波長スペクトル成分のみを半導体チップに照射して観察すると、半導体基板10表面の凹凸だけを映し出す。したがって、ここにキズ等がある場合は、半導体チップ製造工程の「前工程」に起因すると判断出来る。
ステップ(6)において、キズ等有り(NG)の場合、まず、演算処理装置6は、記憶装置4に「不良品」として記録する(ステップ(10))。次に、演算処理装置6でこの半導体チップを「不良品」の一つとして集計し、観察像と共に観察像表示装置3に表示する。同時に、演算処理装置6が最上層のパッシベーション膜15にかかるキズ等と判断して(図8参照)このキズ等が半導体チップ製造工程の「後工程」に起因することを観察像表示装置3に表示させる(ステップ(11))。
When the scratch or the like is confirmed, the arithmetic processing unit 6 records this semiconductor chip in the storage device 4 as “defective product” (step (8)). Then, the semiconductor processing device 6 counts the semiconductor chips as one of “defective products” and displays it on the observation image display device 3 together with the observation image. At the same time, the arithmetic processing unit 6 determines that the surface of the semiconductor substrate is scratched (see FIG. 4) and displays on the observation image display device 3 that this scratch or the like is caused by the “pre-process” in the semiconductor chip manufacturing process ( Step (9)). As shown in FIG. 4, when the semiconductor chip is irradiated with only the R wavelength spectrum component and observed, only the irregularities on the surface of the semiconductor substrate 10 are projected. Therefore, if there is a scratch or the like here, it can be determined that it is caused by a “pre-process” in the semiconductor chip manufacturing process.
In step (6), if there is a scratch or the like (NG), first, the arithmetic processing unit 6 records “defective product” in the storage device 4 (step (10)). Next, the arithmetic processing unit 6 counts the semiconductor chips as one of “defective products”, and displays it on the observation image display device 3 together with the observation image. At the same time, the arithmetic processing unit 6 determines that the scratches or the like are applied to the uppermost passivation film 15 (see FIG. 8). The observation image display device 3 indicates that the scratches are caused by the “post process” in the semiconductor chip manufacturing process. It is displayed (step (11)).

このように、全波長成分で半導体チップを観察してキズ等を認識し、更に、B波長スペクトル成分のみ当該半導体チップに照射して観察することにより、そのキズ等がパッシベーション膜にかかるものと判断され、半導体チップ製造工程の「後工程」に起因するものと判断される。しかし、このような観察では、例えば、パッシベーション膜および半導体基板表面の双方にキズ等が重なってある場合には、半導体基板表面のキズ等は特定出来ない。その場合はステップ(12)〜(14)により特定することが出来る。
以下、ステップ(12)〜(14)を説明する。
ステップ(11)の後、R波長スペクトル成分のみを当該半導体チップに照射して観察を開始する(ステップ(12))。この観察により、半導体チップにキズ等なしと判断された場合、この半導体チップは、パッシベーション膜にかかるキズ等のみ存在することになるこのとき、演算処理装置6は、半導体チップに存在するキズ等は「後工程」に起因するものであることを観察像表示装置3に表示させたままにする(ステップ(13))。
As described above, the semiconductor chip is observed with all the wavelength components to recognize the scratches, and further, only the B wavelength spectrum component is irradiated on the semiconductor chip and observed to determine that the scratches are applied to the passivation film. Therefore, it is determined that it is caused by the “post-process” in the semiconductor chip manufacturing process. However, in such observation, for example, when a scratch or the like overlaps both the passivation film and the semiconductor substrate surface, the scratch or the like on the semiconductor substrate surface cannot be specified. In that case, it can specify by step (12)-(14).
Hereinafter, steps (12) to (14) will be described.
After step (11), only the R wavelength spectrum component is irradiated onto the semiconductor chip to start observation (step (12)). If it is determined from this observation that the semiconductor chip is not damaged, the semiconductor chip is present only in the scratch on the passivation film. At this time, the arithmetic processing unit 6 does not The observation image display device 3 is kept displayed as being caused by the “post-process” (step (13)).

また、この観察により、半導体チップにキズ等が観察された場合、この半導体チップには、もともと、「後工程」に起因するパッシベーション膜にかかるキズ等が認められるが、さらに、そのキズ等の下に「前工程」に起因するキズ等が半導体基板にかかる位置に認められたことになる。したがって、演算処理装置6は、同一場所に「前工程」と「後工程」のキズ汚れがあることを観察像表示装置3に表示させる(ステップ(14))。
以上のステップにより、半導体チップを製造するための複数の工程の内のどの工程に起因するキズ等であるかを、作業者の裁量に任せず、検出ミスの少ない正確な検査が可能になる。この実施例では、多波長顕微鏡装置に用いる光源としてB波長スペクトル成分及びR波長スペクトル成分を用いたが、例えば、緑色スペクトル成分(G波長スペクトル成分)などの他の成分をその特徴を掴んで利用することが出来る。
この実施例の欠陥検査装置には、多波長顕微鏡装置に画像認識装置を加えているので、自動で欠陥検査が可能になり、キズの種類をデータベース化して、これと照合することができる。キズの種類の集計やキズ発生工程の切り分けが容易に集計でき、しかもモニターすることが出来る。
In addition, when scratches or the like are observed in the semiconductor chip by this observation, scratches or the like on the passivation film due to the “post process” are originally recognized on the semiconductor chip. In addition, scratches or the like due to the “pre-process” are recognized at the position on the semiconductor substrate. Therefore, the arithmetic processing unit 6 causes the observation image display unit 3 to display that there are scratches of “pre-process” and “post-process” at the same place (step (14)).
Through the above steps, it is possible to perform an accurate inspection with few detection errors without leaving to the discretion of the operator which one of a plurality of processes for manufacturing a semiconductor chip is caused by a scratch or the like. In this embodiment, the B wavelength spectral component and the R wavelength spectral component are used as the light source used in the multiwavelength microscope apparatus. However, for example, other components such as a green spectral component (G wavelength spectral component) are grasped and used. I can do it.
In the defect inspection apparatus of this embodiment, since an image recognition apparatus is added to the multi-wavelength microscope apparatus, defect inspection can be automatically performed, and the types of scratches can be made into a database and collated therewith. Scratch types and scratch generation processes can be easily counted and monitored.

実施例で説明する欠陥検査装置のブロック図。The block diagram of the defect inspection apparatus demonstrated in an Example. 図1に示す欠陥検査装置を用いた欠陥検査方法を説明するフローチャート図。The flowchart figure explaining the defect inspection method using the defect inspection apparatus shown in FIG. 図1に示す欠陥検査装置の多波長顕微鏡装置における多波長使い分けを説明するキズあるいは汚れが半導体基板表面にかかり、全波長で観測される半導体チップ(試料)断面図。FIG. 2 is a cross-sectional view of a semiconductor chip (sample) that is observed at all wavelengths with scratches or dirt on the surface of a semiconductor substrate for explaining the use of multiple wavelengths in the multi-wavelength microscope apparatus of the defect inspection apparatus shown in FIG. 図1に示す欠陥検査装置において、キズあるいは汚れが半導体基板表面にかかり、赤色スペクトル成分(R波長スペクトル成分)のみで観測される半導体チップ(試料)断面図。In the defect inspection apparatus shown in FIG. 1, a semiconductor chip (sample) sectional view in which scratches or dirt is applied to the surface of a semiconductor substrate and is observed only with a red spectrum component (R wavelength spectrum component). 図1に示す欠陥検査装置において、キズあるいは汚れが半導体基板表面にかかり、青色スペクトル成分(B波長スペクトル成分)のみで観測される半導体チップ(試料)断面図。In the defect inspection apparatus shown in FIG. 1, a semiconductor chip (sample) sectional view in which scratches or dirt is applied to the surface of a semiconductor substrate and is observed only with a blue spectrum component (B wavelength spectrum component). 図1に示す欠陥検査装置の多波長使い分けを説明する図であり、キズあるいは汚れがパッシベーション膜にかかり、全波長で観測される半導体チップ(試料)断面図。FIG. 2 is a diagram for explaining how to use multiple wavelengths of the defect inspection apparatus shown in FIG. 1, and a semiconductor chip (sample) cross-sectional view in which scratches or dirt are applied to the passivation film and observed at all wavelengths. 図1に示す欠陥検査装置において、キズあるいは汚れがパッシベーション膜にかかり、赤色スペクトル成分(R波長スペクトル成分)のみで観測される半導体チップ(試料)断面図。In the defect inspection apparatus shown in FIG. 1, a semiconductor chip (sample) sectional view in which scratches or dirt are applied to the passivation film and observed only with a red spectrum component (R wavelength spectrum component). 図1に示す欠陥検査装置において、キズあるいは汚れがパッシベーション膜にかかり、青色スペクトル成分(B波長スペクトル成分)のみで観測される半導体チップ(試料)断面図。In the defect inspection apparatus shown in FIG. 1, a semiconductor chip (sample) sectional view in which scratches or dirt are applied to the passivation film and observed only with a blue spectrum component (B wavelength spectrum component). 図1に示す欠陥検査装置の多波長使い分けを説明する図であり、最上層及び最上層以外にあるキズあるいは汚れを観測する半導体チップ(試料)断面図。FIG. 2 is a diagram for explaining how to use multiple wavelengths of the defect inspection apparatus shown in FIG. 1, and is a cross-sectional view of a semiconductor chip (sample) for observing scratches or dirt on the uppermost layer and other than the uppermost layer.

符号の説明Explanation of symbols

1・・・多波長顕微鏡装置
2・・・ウエハおよびチップトレー自動搬送装置
3・・・観察像表示装置
4・・・記憶装置
5・・・画像認識装置
6・・・演算処理装置
10・・・半導体基板
11・・・フィールド酸化膜
12、13、14・・・層間絶縁膜
15・・・パッシベーション膜
16、17、18・・・配線パターン
19、22・・・接続配線
20、21・・・キズあるいは汚れ
DESCRIPTION OF SYMBOLS 1 ... Multi-wavelength microscope apparatus 2 ... Wafer and chip tray automatic conveyance apparatus 3 ... Observation image display apparatus 4 ... Memory | storage device 5 ... Image recognition apparatus 6 ... Arithmetic processing apparatus 10 ... Semiconductor substrate 11 Field oxide film 12, 13, 14 Interlayer insulating film 15 Passivation film 16, 17, 18 ... Wiring pattern 19, 22 ... Connection wiring 20, 21, ...・ Scratches or dirt

Claims (2)

試料を観察する赤色、緑色、青色スペクトルを有する光源を用いる多波長顕微鏡装置と、前記試料の観察像を映し出す観察像表示装置と、予め試料情報を記憶しており、且つ前記試料の良品及び不良品を記憶する記憶装置と、前記観察像表示装置に表示された前記観察像を前記記憶装置の前記試料情報に基づく画像と照合する画像認識装置と、前記照合結果から前記各スペクトル成分の光のうちどのスペクトル成分の光による観察像に欠陥があるかを検出して前記記憶装置に不良品もしくは良品として記録するとともに前記欠陥が前記試料の製造工程のどの工程で形成されたものであるかを判定する演算処理装置とを具備したことを特徴とする欠陥検査装置。 A multi-wavelength microscope apparatus using a light source having red, green, and blue spectrum for observing a sample, an observation image display apparatus that displays an observation image of the sample, sample information is stored in advance, and non-defective and defective samples are stored. A storage device that stores non-defective products, an image recognition device that collates the observation image displayed on the observation image display device with an image based on the sample information of the storage device, and the light of each spectral component from the collation result Which spectral component of the observation image by light is detected as a defect and recorded as a defective or non-defective product in the storage device, and at which step of the sample manufacturing process the defect is formed. A defect inspection apparatus comprising an arithmetic processing unit for determining. 赤色、緑色、青色スペクトルを有する光を試料に照射し、前記各スペクトル成分の光による観察像を表示するステップと、前記観察像を予め良品及び不良品として記憶された試料情報に基づく画像と照合するステップと、前記観察像を前記試料情報に基づく画像に照合することにより前記各スペクトル成分のうちどのスペクトル成分の光による観察像に欠陥があるかを検出して不良品もしくは良品として記録するするステップと、前記欠陥が前記試料の製造工程のどの工程で形成されたものであるか判定するステップとを具備することを特徴とする欠陥検査方法。 Irradiating a sample with light having red, green, and blue spectrum, displaying an observation image by the light of each spectrum component, and comparing the observation image with an image based on sample information stored in advance as good and defective products And comparing the observed image with an image based on the sample information to detect which spectral component of the spectral component is defective in the observed image and record it as a defective or non-defective product And a step of determining in which step of the sample manufacturing process the defect is formed.
JP2008065233A 2008-03-14 2008-03-14 Defect inspection method Expired - Fee Related JP5458345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008065233A JP5458345B2 (en) 2008-03-14 2008-03-14 Defect inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008065233A JP5458345B2 (en) 2008-03-14 2008-03-14 Defect inspection method

Publications (2)

Publication Number Publication Date
JP2009222462A true JP2009222462A (en) 2009-10-01
JP5458345B2 JP5458345B2 (en) 2014-04-02

Family

ID=41239418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008065233A Expired - Fee Related JP5458345B2 (en) 2008-03-14 2008-03-14 Defect inspection method

Country Status (1)

Country Link
JP (1) JP5458345B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019518963A (en) * 2016-06-27 2019-07-04 サン−ゴバン グラス フランス Method and apparatus for locating the source of defects affecting the stack of thin layers deposited on a substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147977A (en) * 2004-11-24 2006-06-08 Seiko Epson Corp Defect reviewing system, defect reviewing method, defect analyzing method and method of manufacturing semiconductor device
JP2006350078A (en) * 2005-06-17 2006-12-28 Lasertec Corp Three-dimensional shape measuring device and three-dimensional shape measuring method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147977A (en) * 2004-11-24 2006-06-08 Seiko Epson Corp Defect reviewing system, defect reviewing method, defect analyzing method and method of manufacturing semiconductor device
JP2006350078A (en) * 2005-06-17 2006-12-28 Lasertec Corp Three-dimensional shape measuring device and three-dimensional shape measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019518963A (en) * 2016-06-27 2019-07-04 サン−ゴバン グラス フランス Method and apparatus for locating the source of defects affecting the stack of thin layers deposited on a substrate
JP7110121B2 (en) 2016-06-27 2022-08-01 サン-ゴバン グラス フランス Method and Apparatus for Locating Defect Sources Affecting a Stack of Thin Layers Deposited on a Substrate

Also Published As

Publication number Publication date
JP5458345B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
TW522447B (en) Method and apparatus for embedded substrate and system status monitoring
KR102235580B1 (en) Defect marking for semiconductor wafer inspection
US7728969B2 (en) Methods and systems for identifying defect types on a wafer
TW511213B (en) Method and apparatus for enhanced embedded substrate inspection through process data collection and substrate imaging techniques
TW511214B (en) Method and apparatus to provide embedded substrate process monitoring through consolidation of multiple process inspection techniques
JP5243699B2 (en) System and method for specimen edge inspection
TW512227B (en) Method and apparatus for substrate surface inspection using spectral profiling techniques
US20090196489A1 (en) High resolution edge inspection
JP5243335B2 (en) Defect inspection method, defect inspection apparatus, defect inspection program, and recording medium recording the program
TWI564556B (en) Scratch detection method and apparatus
US8497985B2 (en) Inspection method based on captured image and inspection device
US6864971B2 (en) System and method for performing optical inspection utilizing diffracted light
JP4466560B2 (en) Wiring pattern inspection apparatus, inspection method, detection apparatus, and detection method
TW533526B (en) Method and apparatus to provide for automated process verification and hierarchical substrate examination
WO2007144971A1 (en) Semiconductor defect analysis device, defect analysis method, and defect analysis program
JP5458345B2 (en) Defect inspection method
JP4810377B2 (en) Optical inspection device
JP2019049520A (en) Multi-mode system and method
KR102094800B1 (en) Contaminatn measurement substrate, appratus and method for manufacturing substrate using the same
JP5868203B2 (en) Inspection device
JP2007187630A (en) Method and apparatus for detecting flaw of pattern
JP4408902B2 (en) Foreign object inspection method and apparatus
JP2010014439A (en) Flaw inspection device and flaw inspection method
JPH06308040A (en) Foreign matter inspection device
WO2023181918A1 (en) Defect inspection device and defect inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130504

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131224

R150 Certificate of patent or registration of utility model

Ref document number: 5458345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees