JP2009221974A - Hollow valve - Google Patents

Hollow valve Download PDF

Info

Publication number
JP2009221974A
JP2009221974A JP2008067823A JP2008067823A JP2009221974A JP 2009221974 A JP2009221974 A JP 2009221974A JP 2008067823 A JP2008067823 A JP 2008067823A JP 2008067823 A JP2008067823 A JP 2008067823A JP 2009221974 A JP2009221974 A JP 2009221974A
Authority
JP
Japan
Prior art keywords
temperature
valve
hollow hole
hollow
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008067823A
Other languages
Japanese (ja)
Other versions
JP4844847B2 (en
Inventor
Yoshihiko Ito
与志彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008067823A priority Critical patent/JP4844847B2/en
Publication of JP2009221974A publication Critical patent/JP2009221974A/en
Application granted granted Critical
Publication of JP4844847B2 publication Critical patent/JP4844847B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Temperature-Responsive Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To quickly raise the temperature inside a combustion chamber when starting an internal combustion engine or in low-load operation thereof, and to prevent a valve from an excessively high temperature in high-load operation of the internal combustion engine. <P>SOLUTION: A refrigerant 50 formed from a low-melting point material is sealed in a hollow hole 3. In the hollow hole 3, a temperature sensitive opening/closing valve device 40 for opening/closing a communication opening communicated with an upper chamber 3a and a lower chamber 3b by opening/closing in response to the temperature inside the hollow hole 3 is provided. The temperature sensitive opening/closing valve device 40 opens in a process, in which the temperature inside the hollow hole 3 rises, and closes in a process, in which the temperature inside the hollow hole 3 lowers. A valve opening set temperature and a valve closing set temperature of the temperature sensitive opening/closing valve device 40 are respectively set at a temperature higher than a melting point of the low-melting point material within a range of a temperature change inside the hollow hole 3. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は中空バルブに関し、詳しくは内燃機関の排気バルブに適用して好適な中空バルブに関する。   The present invention relates to a hollow valve, and more particularly to a hollow valve suitable for application to an exhaust valve of an internal combustion engine.

近年、ガソリンエンジン等の内燃機関においては、高出力化や低燃費化が強く要求されてきている。しかし、高出力化や低燃費化の要求に応えるべくエンジン性能の改善を行うと、燃焼室の温度が高くなる。このため、特に排気バルブへの熱負荷が増大する。   In recent years, there has been a strong demand for high output and low fuel consumption in internal combustion engines such as gasoline engines. However, if the engine performance is improved to meet the demand for higher output and lower fuel consumption, the temperature of the combustion chamber increases. For this reason, in particular, the heat load on the exhaust valve increases.

従来、傘部から軸部(ステム部)にかけて中空孔を形成し、この中空孔内にNa、Sn−Bi合金やSn−Bi−Zn合金等の低融点金属よりなる冷媒を封入した中空バルブが知られている(例えば、特許文献1参照)。   Conventionally, there is a hollow valve in which a hollow hole is formed from an umbrella part to a shaft part (stem part), and a refrigerant made of a low melting point metal such as Na, Sn—Bi alloy or Sn—Bi—Zn alloy is enclosed in the hollow hole. It is known (see, for example, Patent Document 1).

この中空バルブでは、Na等の低融点金属が融点以上の高温時に融解する。このため、中空孔内の温度が低融点金属の融点以上となるバルブの高温作動時に、液状金属が中空孔内で撹拌されるので、大きな熱交換作用によりバブルを冷却することができる。
特開平9−184404号公報
In this hollow bulb, a low melting point metal such as Na melts at a high temperature above the melting point. For this reason, since the liquid metal is stirred in the hollow hole during the high temperature operation of the valve in which the temperature in the hollow hole is equal to or higher than the melting point of the low melting point metal, the bubbles can be cooled by a large heat exchange action.
JP-A-9-184404

ところで、エンジン始動時や低負荷運転時においては、特に直噴式エンジンの場合、燃料の気化促進のために燃焼室を速やかに昇温させたい。燃焼室の温度が低すぎると、燃料が燃焼せずに未燃焼ガスになる場合があり、HCエミッションや燃費の悪化を招くことがある。   By the way, at the time of engine start and low load operation, particularly in the case of a direct injection engine, it is desired to quickly raise the temperature of the combustion chamber in order to promote fuel vaporization. If the temperature of the combustion chamber is too low, the fuel may not burn but become unburned gas, which may lead to deterioration of HC emission and fuel consumption.

ところが、上記した従来の中空バルブでは、以下に説明するように、エンジン始動時などに、燃焼室を速やかに昇温させることが困難である。   However, with the conventional hollow valve described above, it is difficult to quickly raise the temperature of the combustion chamber when starting the engine, as described below.

一般に、金属は液相のときの熱伝導率よりも固相のときの熱伝導率の方が高くなる。そして、冷媒として主に用いられるNaの融点は純粋なNaで約98℃である。このため、エンジン始動時には、冷媒としてのNaは固相として傘部から軸部にかけての中空孔内に存在している。固相のNaの熱伝導率は132〜137W/m・K程度であり、バルブに用いられる耐熱鋼の熱伝導率よりも高い。そうすると、エンジン始動後から数十秒間は燃焼室内の温度がNaの融点よりも低いため、熱伝導率の高い固相Naを介する高熱伝導作用によりバルブからの放熱が大きくなる。したがって、燃焼室を速やかに昇温させることが困難である。   In general, a metal has a higher thermal conductivity in the solid phase than in the liquid phase. And the melting | fusing point of Na mainly used as a refrigerant | coolant is about 98 degreeC with pure Na. For this reason, when the engine is started, Na as a refrigerant exists in the hollow hole from the umbrella portion to the shaft portion as a solid phase. The thermal conductivity of Na in the solid phase is about 132 to 137 W / m · K, which is higher than the thermal conductivity of heat-resistant steel used for valves. Then, since the temperature in the combustion chamber is lower than the melting point of Na for several tens of seconds after the engine is started, the heat release from the valve is increased due to the high thermal conductivity through the solid phase Na having a high thermal conductivity. Therefore, it is difficult to quickly raise the temperature of the combustion chamber.

仮に、もっと融点が低く、かつ固相で熱伝導率の低い低融点合金を冷媒として用いた場合、エンジン始動直後において固相冷媒を介する高熱伝導作用を小さくすることができる。しかし、固相で熱伝導率の低い低融点合金を冷媒として用いると、一般に液相でさらに熱伝導率が低くなるため、燃焼室の温度が高温になる高負荷時にバルブを冷却するという冷媒本来の機能を損なうおそれがある。また、この場合であっても、融点以上に加熱されて液化した冷媒が中空孔内で撹拌されることにより、燃焼室、バブルの傘部、液相冷媒、バルブの軸部、軸部の上端側が接触するバルブガイド及びヘッド冷却水へと順に続く大きな熱流が発生する。このため、やはりエンジン始動後に燃焼室内を速やかに昇温させることが困難である。   If a low-melting-point alloy having a lower melting point and lower thermal conductivity in the solid phase is used as the refrigerant, the high heat conduction effect via the solid-phase refrigerant can be reduced immediately after the engine is started. However, if a low-melting-point alloy with low thermal conductivity in the solid phase is used as the refrigerant, the thermal conductivity is generally lower in the liquid phase, so that the refrigerant inherently cools the valve at high load when the temperature of the combustion chamber is high. May impair the function of. Even in this case, the refrigerant that has been heated to the melting point or higher and liquefied is stirred in the hollow hole, so that the combustion chamber, the bubble umbrella, the liquid phase refrigerant, the valve shaft, and the upper end of the shaft A large heat flow is generated in sequence to the valve guide and head cooling water in contact with each other. For this reason, it is still difficult to quickly raise the temperature in the combustion chamber after the engine is started.

したがって、上記従来の中空バルブでは、エンジン始動時などで未燃焼ガスが増大してHCエミッションや燃費の悪化を招くおそれがある。   Therefore, in the conventional hollow valve described above, unburned gas may increase at the time of engine start or the like, which may cause HC emission and fuel consumption deterioration.

本発明は上記実情に鑑みてなされたものであり、内燃機関の始動時や低負荷運転時には燃焼室を速やかに昇温させることができ、かつ内燃機関の高負荷運転時にはバルブが過度に高温になることを防ぐことのできる中空バルブを提供することを目的とする。   The present invention has been made in view of the above circumstances, and can quickly raise the temperature of the combustion chamber at the start of the internal combustion engine or during low-load operation, and the valve becomes excessively hot during high-load operation of the internal combustion engine. It aims at providing the hollow valve which can prevent becoming.

(1)上記課題を解決する本発明の中空バルブは、軸部と軸部の下端に設けられた傘部とからなり、該傘部から該軸部にかけて中空孔を有する中空バルブであって、前記中空孔内に封入され、低融点物質よりなる冷媒と、前記中空孔内に配設され、該中空孔内を上室と下室とに区画するとともに、該中空孔内の温度に応じて開動作及び閉動作することにより該上室と該下室との連通口を開放及び閉鎖する温度感応開閉弁装置と、を備え、前記温度感応開閉弁装置は、前記中空孔内が昇温する過程で開動作を行い、かつ該中空孔内が降温する過程で閉動作を行い、前記温度感応開閉弁装置が開動作を行う開動作設定温度及び該温度感応開閉弁装置が閉動作を行う閉動作設定温度が、前記中空孔内の温度変化範囲内の温度で、かつ前記低融点物質の融点よりも高い温度に設定されていることを特徴とする。   (1) A hollow valve of the present invention that solves the above problems is a hollow valve that includes a shaft portion and an umbrella portion provided at a lower end of the shaft portion, and has a hollow hole from the umbrella portion to the shaft portion, A refrigerant made of a low-melting-point substance enclosed in the hollow hole, and disposed in the hollow hole, divides the hollow hole into an upper chamber and a lower chamber, and depends on the temperature in the hollow hole. A temperature-sensitive on-off valve device that opens and closes the communication port between the upper chamber and the lower chamber by opening and closing operations, and the temperature-sensitive on-off valve device raises the temperature in the hollow hole. The opening operation is performed in the process, the closing operation is performed in the process of lowering the temperature in the hollow hole, the opening operation set temperature at which the temperature-sensitive on-off valve device opens, and the temperature-sensitive on-off valve device is closed. The operation set temperature is a temperature within a temperature change range in the hollow hole, and the low melting point substance Characterized in that it is set to a temperature higher than the melting point.

ここに、中空孔内の温度変化範囲とは、中空バルブの作動中における中空孔内の温度変化範囲のことである。   Here, the temperature change range in the hollow hole is a temperature change range in the hollow hole during the operation of the hollow valve.

この中空バルブでは、中空孔内の温度が温度感応開閉弁装置の開動作設定温度よりも低く、かつ冷媒を構成する低融点物質の融点よりも低いときは、温度感応開閉弁装置が中空孔内の上室と下室との連通口を閉鎖しており、また、中空孔内に封入された冷媒は固相として中空孔内の下室に存在する。そして、中空孔内の温度が冷媒を構成する低融点物質の融点よりも高くなると、冷媒が液化する。このとき、中空孔内の温度が開動作設定温度に達していなければ、温度感応開閉弁装置は中空孔内の上室と下室との連通口を未だ閉鎖している。このため、中空孔内の下室に存在する液相の冷媒が連通口を介して中空孔内の上室に移動することはなく、液相の冷媒が中空孔内全体で撹拌されることはない。したがって、液相冷媒の撹拌を介する熱流はバルブの軸部の上端側へ続くことがなく途中で遮断される。その結果、液相冷媒を介して、バルブの軸部の上端側が接触するバルブガイドからヘッド冷却水へ放熱されることを防ぐことができる。   In this hollow valve, when the temperature in the hollow hole is lower than the opening operation set temperature of the temperature-sensitive on-off valve device and lower than the melting point of the low-melting substance constituting the refrigerant, the temperature-sensitive on-off valve device is in the hollow hole. The communication port between the upper chamber and the lower chamber is closed, and the refrigerant sealed in the hollow hole exists as a solid phase in the lower chamber in the hollow hole. And if the temperature in a hollow hole becomes higher than melting | fusing point of the low melting-point substance which comprises a refrigerant | coolant, a refrigerant | coolant will liquefy. At this time, if the temperature in the hollow hole does not reach the opening operation set temperature, the temperature-sensitive on-off valve device still closes the communication port between the upper chamber and the lower chamber in the hollow hole. Therefore, the liquid-phase refrigerant existing in the lower chamber in the hollow hole does not move to the upper chamber in the hollow hole via the communication port, and the liquid-phase refrigerant is stirred in the entire hollow hole. Absent. Therefore, the heat flow through the stirring of the liquid phase refrigerant is interrupted in the middle without continuing to the upper end side of the valve shaft. As a result, heat can be prevented from being radiated from the valve guide, which is in contact with the upper end side of the valve shaft, to the head cooling water via the liquid phase refrigerant.

よって、内燃機関の始動時などで燃焼室の温度が低く、そのため中空孔内の温度が温度感応開閉弁装置の開動作設定温度よりも低いときは、液相冷媒を介してバルブの軸部の上端側からバルブガイド及びヘッド冷却水へ放熱されることがない。その結果、内燃機関の始動時や低負荷運転時には燃焼室を速やかに昇温させることができる。   Therefore, when the temperature of the combustion chamber is low, such as when the internal combustion engine is started, and the temperature in the hollow hole is lower than the set temperature for opening the temperature-sensitive on-off valve device, the shaft portion of the valve is interposed via the liquid-phase refrigerant. No heat is radiated from the upper end side to the valve guide and the head cooling water. As a result, the temperature of the combustion chamber can be quickly raised when the internal combustion engine is started or during low load operation.

一方、中空孔内の温度が上昇して温度感応開閉弁装置の開動作設定温度に到達すると、温度感応開閉弁装置は中空孔内の上室と下室との連通口を開放する。そうすると、既に液化しており中空孔内の下室に在った液相冷媒が連通口の開放と同時に連通口を介して中空孔内の上室に移動し、液相の冷媒が中空孔内全体で撹拌される。したがって、燃焼室、バブルの傘部、液相冷媒、バルブの軸部、軸部の上端側が接触するバルブガイド及びヘッド冷却水へと順に続く大きな熱流が速やかに発生する。   On the other hand, when the temperature in the hollow hole rises and reaches the opening operation set temperature of the temperature sensitive on / off valve device, the temperature sensitive on / off valve device opens the communication port between the upper chamber and the lower chamber in the hollow hole. Then, the liquid phase refrigerant that has already been liquefied and exists in the lower chamber in the hollow hole moves to the upper chamber in the hollow hole through the communication port simultaneously with the opening of the communication port, and the liquid phase refrigerant moves in the hollow hole. The whole is stirred. Therefore, a large heat flow is generated rapidly in order from the combustion chamber, the bubble umbrella, the liquid refrigerant, the valve shaft, the valve guide in contact with the upper end of the shaft, and the head cooling water.

よって、内燃機関の高負荷運転時などで燃焼室の温度が高く、そのため中空孔内の温度が温度感応開閉弁装置の開動作設定温度よりも高いときは、中空孔の全体で撹拌される液相冷媒を介してバルブの軸部の上端側からバルブガイド及びヘッド冷却水へ放熱される。また、中空孔内の温度が温度感応開閉弁装置の開動作設定温度よりも高くなれば、速やかに上記放熱が起こる。その結果、内燃機関の高負荷運転時にはバルブが過度に高温になることを確実に防ぐことができる。   Therefore, when the temperature of the combustion chamber is high during high load operation of the internal combustion engine and the temperature in the hollow hole is higher than the set temperature for opening the temperature-sensitive on-off valve device, the liquid stirred in the entire hollow hole Heat is radiated from the upper end side of the valve shaft to the valve guide and the head cooling water via the phase refrigerant. Moreover, if the temperature in the hollow hole becomes higher than the opening operation set temperature of the temperature-sensitive on-off valve device, the heat dissipation occurs promptly. As a result, it is possible to reliably prevent the valve from becoming excessively hot during high load operation of the internal combustion engine.

(2)本発明の中空バルブは、上記(1)項に記載の中空バルブにおいて、前記温度感応開閉弁装置が、少なくとも一部が形状記憶合金よりなり前記連通口を開閉する弁体と、該弁体を閉方向に付勢するバイアスばねと、を備え、前記弁体が、前記バイアスばねの付勢力に抗する前記形状記憶合金の形状回復により開動作を行い、かつ、少なくとも一部の結晶構造がマルテンサイト相に相変態している該形状記憶合金が該バイアスばねの付勢力によって変形することにより閉動作を行うことに特徴がある。   (2) The hollow valve of the present invention is the hollow valve according to the above (1), wherein the temperature-sensitive on-off valve device is formed of a shape memory alloy and opens and closes the communication port. A bias spring that biases the valve body in the closing direction, and the valve body opens by the shape recovery of the shape memory alloy that resists the biasing force of the bias spring, and at least a portion of the crystal The shape memory alloy whose structure is transformed into the martensite phase is characterized by performing a closing operation by being deformed by the biasing force of the bias spring.

この構成によると、弁体の少なくとも一部を構成する形状記憶合金が、マルテンサイト変態開始温度(Ms点:オーステナイト相からマルテンサイト相への変態が開始する温度)よりも低くなるまで冷却されると、オーステナイト相からマルテンサイト相への相変態によって、柔らかくなって変形し易くなる。このため、中空孔内の温度がマルテンサイト変態開始温度よりも低くなる降温過程で、少なくとも一部の結晶構造がマルテンサイト相に相変態した形状記憶合金がバイアスばねの付勢力によって変形することにより、弁体が閉動作を行う。   According to this configuration, the shape memory alloy constituting at least a part of the valve body is cooled until it becomes lower than the martensite transformation start temperature (Ms point: temperature at which transformation from the austenite phase to the martensite phase starts). Then, it becomes soft and easily deformed by the phase transformation from the austenite phase to the martensite phase. For this reason, the shape memory alloy in which at least a part of the crystal structure is transformed into the martensite phase is deformed by the biasing force of the bias spring in the temperature lowering process in which the temperature in the hollow hole is lower than the martensite transformation start temperature. The valve body closes.

一方、形状記憶合金は、マルテンサイト相からオーステナイト相への逆変態によって、変形前の形状に戻り硬くなる。このため、中空孔内の温度が逆変態開始温度(As点:マルテンサイト相からオーステナイト相への逆変態が開始する温度)よりも高くなる昇温過程で、バイアスばねの付勢力に抗して、弁体の少なくとも一部を構成する形状記憶合金が形状回復することにより、弁体が開動作を行う。   On the other hand, the shape memory alloy returns to the shape before deformation and becomes hard due to the reverse transformation from the martensite phase to the austenite phase. For this reason, the temperature in the hollow hole is higher than the reverse transformation start temperature (As point: the temperature at which reverse transformation from the martensite phase to the austenite phase starts) against the bias spring biasing force. When the shape memory alloy constituting at least a part of the valve body recovers its shape, the valve body opens.

(3)本発明の中空バルブは、上記(1)〜(2)項のいずれか一つに記載の中空バルブにおいて、前記低融点物質の融点が65℃未満であることに特徴がある。   (3) The hollow bulb according to the present invention is characterized in that, in the hollow bulb according to any one of the above items (1) to (2), the melting point of the low melting point substance is less than 65 ° C.

この構成によると、中空孔内の温度が65℃以上になれば、冷媒が液体状態となる。このため、中空孔内の温度が65℃以上になっても尚、熱伝導率の高い固相冷媒を介する高熱伝導作用によりバルブからの放熱が大きくなるようなことはない。   According to this structure, if the temperature in a hollow hole will be 65 degreeC or more, a refrigerant | coolant will be in a liquid state. For this reason, even if the temperature in the hollow hole becomes 65 ° C. or higher, the heat radiation from the valve does not increase due to the high heat conduction action through the solid refrigerant having high thermal conductivity.

(4)本発明の中空バルブは、上記(1)〜(3)項のいずれか一つに記載の中空バルブにおいて、前記低融点物質がNa−K合金よりなることに特徴がある。   (4) The hollow bulb according to the present invention is characterized in that, in the hollow bulb according to any one of the above items (1) to (3), the low-melting-point substance is made of an Na—K alloy.

この構成によると、Na−K合金中のK含有量を多くすれば、低融点物質の融点を下げることができる。したがって、Na−K合金中のK含有量の変更により、低融点物質の融点を容易に調整することができる。   According to this structure, if the K content in the Na—K alloy is increased, the melting point of the low melting point substance can be lowered. Therefore, the melting point of the low melting point substance can be easily adjusted by changing the K content in the Na-K alloy.

(5)本発明の中空バルブは、上記(4)項に記載の中空バルブにおいて、前記低融点物質の融点が40℃以上であることに特徴がある。   (5) The hollow bulb of the present invention is characterized in that, in the hollow bulb described in the above item (4), the low melting point substance has a melting point of 40 ° C. or higher.

上述のとおり、Na−K合金中のK含有量が多くなれば、低融点物質の融点が下がる。一方、Na−K合金中のK含有量が多くなれば、Na−K合金が液体状態となったときの熱伝導率が下がる。そうすると、Na−K合金よりなる低融点物質を冷媒として採用した場合、低融点物質の融点を下げるべく、Na−K合金中のK含有量を多くすれば、液相冷媒の撹拌による熱交換作用が小さくなる。その点、Na−K合金よりなる低融点物質の融点が40℃以上であれば、液相冷媒の撹拌による十分な熱交換作用が発揮される。   As described above, as the K content in the Na—K alloy increases, the melting point of the low melting point material decreases. On the other hand, if the K content in the Na—K alloy is increased, the thermal conductivity when the Na—K alloy is in a liquid state is lowered. Then, when a low melting point material made of Na—K alloy is adopted as the refrigerant, if the K content in the Na—K alloy is increased in order to lower the melting point of the low melting point material, the heat exchange action by stirring of the liquid phase refrigerant Becomes smaller. In that respect, if the melting point of the low melting point material made of the Na—K alloy is 40 ° C. or more, a sufficient heat exchange effect by agitation of the liquid phase refrigerant is exhibited.

(6)本発明の中空バルブは、上記(1)〜(5)項のいずれか一つに記載の中空バルブにおいて、前記開動作設定温度及び前記閉動作設定温度が70℃±5℃であることに特徴がある。   (6) The hollow valve of the present invention is the hollow valve according to any one of (1) to (5) above, wherein the open operation set temperature and the close operation set temperature are 70 ° C. ± 5 ° C. There is a special feature.

この構成によると、中空孔内の温度が70℃±5℃の範囲にあるときに、温度感応開閉弁装置が開動作及び閉動作を行う。このため、中空孔内の温度が少なくとも65℃以上になれば、温度感応開閉弁装置が開動作を行い、液相冷媒の撹拌による熱交換作用が発揮される。   According to this configuration, when the temperature in the hollow hole is in the range of 70 ° C. ± 5 ° C., the temperature-sensitive on-off valve device performs an opening operation and a closing operation. For this reason, if the temperature in the hollow hole is at least 65 ° C. or more, the temperature-sensitive on-off valve device opens, and the heat exchange action by stirring of the liquid-phase refrigerant is exhibited.

したがって、本発明の中空バルブによると、内燃機関の始動時や低負荷運転時には燃焼室を速やかに昇温させることができ、かつ内燃機関の高負荷運転時にはバルブが過度に高温になることを防ぐことができる。   Therefore, according to the hollow valve of the present invention, the temperature of the combustion chamber can be quickly raised when the internal combustion engine is started or during low load operation, and the valve is prevented from becoming excessively hot during high load operation of the internal combustion engine. be able to.

よって、エンジン始動時などで未燃焼ガスが増大することによるHCエミッションや燃費の悪化を抑えることが可能になる。また、バルブの熱損傷を抑えることが可能になる。   Therefore, it becomes possible to suppress deterioration of HC emission and fuel consumption due to an increase in unburned gas at the time of starting the engine. Further, it becomes possible to suppress the thermal damage of the valve.

以下、本発明の中空バルブの実施形態について詳しく説明する。なお、説明する実施形態は一実施形態にすぎず、本発明の中空バルブは、下記実施形態に限定されるものではない。本発明の中空バルブは、本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   Hereinafter, embodiments of the hollow valve of the present invention will be described in detail. The embodiment to be described is merely one embodiment, and the hollow valve of the present invention is not limited to the following embodiment. The hollow valve of the present invention can be implemented in various forms with modifications and improvements that can be made by those skilled in the art without departing from the scope of the present invention.

(実施形態1)
図1〜図3に示される本実施形態の中空バルブは、軸部1と軸部1の下端に連設された傘部2とからなり、傘部2から軸部1にかけて形成された中空孔3を有している。
(Embodiment 1)
The hollow valve of the present embodiment shown in FIGS. 1 to 3 includes a shaft portion 1 and an umbrella portion 2 connected to the lower end of the shaft portion 1, and a hollow hole formed from the umbrella portion 2 to the shaft portion 1. 3.

この中空バルブは、軸部1の上端部及び中間部を構成するステム体10と、軸部1の下端部及び傘部2を構成する傘体20と、傘体20の下端面を構成する蓋体30と、中空孔3内に収容された温度感応開閉弁装置40と、中空孔3内に封入された冷媒50とを構成要素とする。   The hollow valve includes a stem body 10 that forms an upper end portion and an intermediate portion of the shaft portion 1, an umbrella body 20 that forms a lower end portion of the shaft portion 1 and an umbrella portion 2, and a lid that forms the lower end surface of the umbrella body 20. The body 30, the temperature-sensitive on-off valve device 40 accommodated in the hollow hole 3, and the refrigerant 50 sealed in the hollow hole 3 are used as constituent elements.

ステム体10、傘体20及び蓋体30は、いずれも耐熱鋼よりなる。ステム体10は、ステム体10の下端面からステム体10の上端部付近まで延びる孔10aが形成されている。また、ステム体の下端部の内周面には孔10aの内径よりも大きな内径を有する凹段部10bが形成されている。傘体20には、下端面から上端面まで貫通する貫通孔20aが形成されている。   The stem body 10, the umbrella body 20, and the lid body 30 are all made of heat resistant steel. The stem body 10 is formed with a hole 10 a extending from the lower end surface of the stem body 10 to the vicinity of the upper end portion of the stem body 10. A concave step 10b having an inner diameter larger than the inner diameter of the hole 10a is formed on the inner peripheral surface of the lower end portion of the stem body. The umbrella body 20 is formed with a through hole 20a penetrating from the lower end surface to the upper end surface.

ステム体10と傘体20とは、ステム体10の凹段部10bに温度感応開閉弁装置40を保持させてから、溶接により接合される。傘体20と蓋体30とは、ステム体10と傘体20とを接合し、かつ中空孔3内に冷媒50を投入してから、溶接により接合される。   The stem body 10 and the umbrella body 20 are joined by welding after holding the temperature-sensitive on-off valve device 40 in the recessed step portion 10b of the stem body 10. The umbrella body 20 and the lid body 30 are joined by welding after joining the stem body 10 and the umbrella body 20 and putting the coolant 50 into the hollow hole 3.

冷媒50は、低融点物質よりなる。低融点物質としては、低融点合金又は低融点化合物を用いることができる。   The refrigerant 50 is made of a low melting point material. As the low melting point substance, a low melting point alloy or a low melting point compound can be used.

冷媒50に用いる低融点物質としては、融点が65℃未満のものを用いることが好ましい。融点が65℃以上の低融点物質を冷媒50に用いると、中空孔3内の温度が65℃以上になっても尚、冷媒50が液相よりも高熱伝導となる固相であるため、熱伝導率の高い固相の冷媒50を介する高熱伝導作用によりバルブからの放熱が大きくなる。   As the low melting point material used for the refrigerant 50, it is preferable to use a material having a melting point of less than 65 ° C. When a low-melting-point substance having a melting point of 65 ° C. or higher is used for the refrigerant 50, the refrigerant 50 is a solid phase that has higher thermal conductivity than the liquid phase even when the temperature in the hollow hole 3 becomes 65 ° C. or higher. Due to the high thermal conductivity through the solid-state refrigerant 50 with high conductivity, heat radiation from the valve is increased.

融点が65℃未満の低融点合金として、例えば、Na−K合金、Bi−Pb系合金やBi−Sn系合金を挙げることができる。Bi−Pb系合金としては、Bi−Pb−Sn−Cd−In合金(例えば、融点が19℃のBi−23%Pb−8%Sn−5%Cd−19%In合金)やBi−Pb−Sn−Cd合金(例えば、融点が61℃のBi−25%Pb−13%Sn−13%Cd合金)を挙げることができ、Bi−Sn系合金としては、Bi−Sn−Pb−In合金(例えば、融点が60℃のBi−19%Sn−17%Pb−11%In合金)を挙げることができる。これらの合金の中では、K含有量の変更により融点を容易に調整することができるNa−K合金を用いることが好ましい。   Examples of the low melting point alloy having a melting point of less than 65 ° C. include a Na—K alloy, a Bi—Pb alloy, and a Bi—Sn alloy. Bi-Pb-based alloys include Bi-Pb-Sn-Cd-In alloys (for example, Bi-23% Pb-8% Sn-5% Cd-19% In alloys having a melting point of 19 ° C.) and Bi-Pb- An Sn—Cd alloy (for example, a Bi-25% Pb-13% Sn-13% Cd alloy having a melting point of 61 ° C.) can be given. As a Bi—Sn alloy, a Bi—Sn—Pb—In alloy ( For example, a Bi-19% Sn-17% Pb-11% In alloy having a melting point of 60 ° C. can be used. Among these alloys, it is preferable to use a Na-K alloy whose melting point can be easily adjusted by changing the K content.

Na−K合金におけるK含有量を、例えば17質量%としたとき融点が65℃となり、25質量%としたとき融点が50℃となり、32質量%としたとき融点が40℃となり、また44質量%としたとき融点が19℃となる。   When the K content in the Na-K alloy is, for example, 17% by mass, the melting point is 65 ° C., when it is 25% by mass, the melting point is 50 ° C., and when it is 32% by mass, the melting point is 40 ° C., and 44% by mass. %, The melting point is 19 ° C.

このため、Na−K合金におけるK含有量は、融点を65℃未満にするべく17質量%よりも多くすることが好ましい。   For this reason, it is preferable that the K content in the Na—K alloy is more than 17% by mass in order to make the melting point less than 65 ° C.

一方、冷媒50に用いる低融点物質としては、融点が20℃(室温)以上のものを用いることが好ましい。内燃機関の始動前は冷媒50を構成する低融点物質が固相であり、かつ内燃機関が始動してから低融点物質が融解するようにするためである。   On the other hand, as the low melting point material used for the refrigerant 50, it is preferable to use a material having a melting point of 20 ° C. (room temperature) or more. This is because the low melting point material constituting the refrigerant 50 is in a solid phase before the internal combustion engine is started and the low melting point material is melted after the internal combustion engine is started.

このため、Na−K合金におけるK含有量は、融点を20℃以上にするべく43質量%以下とすることが好ましい。   For this reason, it is preferable that K content in Na-K alloy shall be 43 mass% or less so that melting | fusing point may be 20 degreeC or more.

また、Na−K合金におけるK含有量が多すぎると、液相になったときに熱伝導率が低くなりすぎる。このため、液相になったときに熱伝導率を高く維持する観点より、Na−K合金におけるK含有量は、25質量%以下にすることがより好ましい。   Moreover, when there is too much K content in a Na-K alloy, when it will be in a liquid phase, thermal conductivity will become low too much. For this reason, it is more preferable that the K content in the Na-K alloy is 25% by mass or less from the viewpoint of maintaining high thermal conductivity when the liquid phase is reached.

中空孔3は、軸部1の下方域における中空孔3内に収容された温度感応開閉弁装置40により上室3aと下室3bとに区画されている。温度感応開閉弁装置40は、中空孔3内の温度に応じて開動作及び閉動作することにより、上室3aと下室3bとの連通口41aを開放及び閉鎖する。   The hollow hole 3 is divided into an upper chamber 3a and a lower chamber 3b by a temperature sensitive opening / closing valve device 40 accommodated in the hollow hole 3 in the lower region of the shaft portion 1. The temperature-sensitive on-off valve device 40 opens and closes the communication port 41a between the upper chamber 3a and the lower chamber 3b by performing an opening operation and a closing operation according to the temperature in the hollow hole 3.

温度感応開閉弁装置40は、有底筒状の筺体41と、弁本体42と、Ni−Tiばね43と、バイアスばね44と、座金45とを構成要素とする。なお、弁本体42とNi−Tiばね43とにより本発明における弁体が構成される。   The temperature-sensitive on-off valve device 40 includes a bottomed cylindrical casing 41, a valve body 42, a Ni-Ti spring 43, a bias spring 44, and a washer 45 as constituent elements. The valve body 42 and the Ni-Ti spring 43 constitute a valve body in the present invention.

筺体41及び弁本体42は、いずれも耐熱鋼よりなる。座金45はステンレス鋼(SUS304等)よりなる。バイアスばね44はステンレス鋼(SUS304等)やばね鋼(SWP−B等)よりなる。Ni−Tiばね43の一端は座金45に固定され、Ni−Tiばね43の他端は弁本体42に固定されている。バイアスばね44の一端は座金45に固定され、バイアスばね44の他端は弁本体42に固定されている。筺体41と座金44とは接着剤等により接合されている。   Both the housing 41 and the valve body 42 are made of heat resistant steel. The washer 45 is made of stainless steel (SUS304 or the like). The bias spring 44 is made of stainless steel (SUS304 or the like) or spring steel (SWP-B or the like). One end of the Ni—Ti spring 43 is fixed to the washer 45, and the other end of the Ni—Ti spring 43 is fixed to the valve body 42. One end of the bias spring 44 is fixed to the washer 45, and the other end of the bias spring 44 is fixed to the valve body 42. The housing 41 and the washer 44 are joined by an adhesive or the like.

筺体41の上壁には、中空孔3の上室3aと下室3bとを連通する連通口41aが貫設されている。この連通口41aは、弁本体42により開閉される。弁本体42はバイアスばね44により常に閉方向(連通口41aを閉鎖する方向)に付勢されている。座金45には通孔45aが貫設されている。このため、連通口41aが開放されているときは、連通口41a及び座金45の通孔45aを介して、中空孔3内の上室3aと下室3bとが連通される。   The upper wall of the housing 41 is provided with a communication port 41a that allows the upper chamber 3a and the lower chamber 3b of the hollow hole 3 to communicate with each other. The communication port 41a is opened and closed by the valve body 42. The valve main body 42 is always urged by a bias spring 44 in the closing direction (direction in which the communication port 41a is closed). The washer 45 has a through hole 45a. For this reason, when the communication port 41a is opened, the upper chamber 3a and the lower chamber 3b in the hollow hole 3 communicate with each other through the communication port 41a and the through hole 45a of the washer 45.

Ni−Tiばね43は、形状記憶合金としてのNi−Ti合金よりなる。Ni−Ti合金は、Ni含有量を変更することにより相変態温度を調整することができる。   The Ni—Ti spring 43 is made of a Ni—Ti alloy as a shape memory alloy. The Ni-Ti alloy can adjust the phase transformation temperature by changing the Ni content.

例えば、Ni−Ti合金におけるNi含有量を54.8〜55.1質量%とすることで、形状回復温度(Af点:マルテンサイト相からオーステナイト相への逆変態終了温度)を70℃とすることができる。また、Ni−Ti合金におけるNi含有量を54.9〜55.2質量%とすることで、形状回復温度を65℃とすることができ、Ni−Ti合金におけるNi含有量を54.7〜55.0質量%とすることで、形状回復温度(Af点)を75℃とすることができる。   For example, by setting the Ni content in the Ni—Ti alloy to 54.8 to 55.1 mass%, the shape recovery temperature (Af point: reverse transformation end temperature from martensite phase to austenite phase) is set to 70 ° C. be able to. Moreover, shape recovery temperature can be 65 degreeC because Ni content in a Ni-Ti alloy shall be 54.9-55.2 mass%, and Ni content in a Ni-Ti alloy can be 54.7- By setting it as 55.0 mass%, shape recovery temperature (Af point) can be 75 degreeC.

ここに、温度感応開閉弁装置40が開動作を行う開動作設定温度及び温度感応開閉弁装置40が閉動作を行う閉動作設定温度は、この中空バルブの作動中における中空孔3内の温度変化範囲(室温(20℃)〜700℃程度の範囲)内の温度で、かつ冷媒50の低融点物質の融点よりも高い温度に設定されている。   Here, the opening operation set temperature at which the temperature sensitive on / off valve device 40 performs the opening operation and the closing operation set temperature at which the temperature sensitive on / off valve device 40 performs the closing operation are the temperature changes in the hollow hole 3 during the operation of the hollow valve. The temperature is within a range (range from room temperature (20 ° C.) to 700 ° C.) and higher than the melting point of the low melting point substance of the refrigerant 50.

また、形状記憶合金としてのNi−Ti合金よりなるNi−Tiばね43が、Ni−Tiばね43が縮んで弁本体42が連通口41aを開放している状態を示す図3に示される形状で形状記憶されている。また、バイアスばね44は、外力が付与されていない自然状態で、バイアスばね44が伸びて弁本体42が連通口41aを閉鎖している状態を示す図2に示される形状よりも長いばね長を有する(図2に示される状態にあるバイアスばね44は所定量圧縮されている)。さらに、バイアスばね44のばね力は、Ni−Ti合金がマルテンサイト変態しているときのNi−Tiばね43のばね力よりも大きい。   Further, the Ni-Ti spring 43 made of a Ni-Ti alloy as a shape memory alloy has a shape shown in FIG. 3 showing a state in which the Ni-Ti spring 43 is contracted and the valve body 42 opens the communication port 41a. The shape is memorized. Further, the bias spring 44 has a longer spring length than the shape shown in FIG. 2 which shows a state in which the bias spring 44 extends and the valve body 42 closes the communication port 41a in a natural state where no external force is applied. (The bias spring 44 in the state shown in FIG. 2 is compressed by a predetermined amount). Furthermore, the spring force of the bias spring 44 is larger than the spring force of the Ni—Ti spring 43 when the Ni—Ti alloy is martensitic transformed.

このため、中空孔3内がNi−Ti合金の形状回復温度(Af点:例えば70℃)以上の温度になって、Ni−Ti合金がオーステナイト相に逆変態してNi−Tiばね43が形状記憶された形状に形状回復しているとき、このNi−Tiばね43は、バイアスばね44のばね力に抗して該バイアスばね44を圧縮し、弁本体42を開状態(連通口41aを開放している状態)に維持する(図3参照)。すなわち、中空孔3内の温度が昇温する過程でNi−Ti合金の形状回復温度(Af点:例えば70℃)以上の温度になると、Ni−Ti合金の逆変態によりNi−Tiばね43が形状回復し、これにより弁本体42が開動作して連通口41aを開放する。   For this reason, the inside of the hollow hole 3 becomes a temperature higher than the shape recovery temperature of the Ni—Ti alloy (Af point: 70 ° C., for example), the Ni—Ti alloy reversely transforms into the austenite phase, and the Ni—Ti spring 43 is shaped. When the shape is restored to the memorized shape, the Ni-Ti spring 43 compresses the bias spring 44 against the spring force of the bias spring 44 and opens the valve body 42 (opens the communication port 41a). (See FIG. 3). That is, when the temperature in the hollow hole 3 rises to a temperature higher than the shape recovery temperature of the Ni—Ti alloy (Af point: 70 ° C., for example), the Ni—Ti spring 43 is caused by reverse transformation of the Ni—Ti alloy. The shape recovers, and thereby the valve body 42 opens and opens the communication port 41a.

一方、中空孔3内の温度がNi−Ti合金のマルテンサイト変態開始温度(Ms点:例えば48℃)以下であり、Ni−Ti合金がマルテンサイト変態してNi−Ti合金の少なくとも一部がマルテンサイト相となって柔らかくなっているときは、Ni−Tiばね43のばね力はバイアスばね44のばね力よりも小さく、Ni−Tiばね43はバイアスばね44により伸張される。その結果、弁本体42は、バイアスばね44により付勢されて閉状態(連通口41aを閉鎖している状態)に維持される(図2参照)。すなわち、中空孔3内の温度が降温する過程でNi−Ti合金のマルテンサイト変態開始温度(Ms点:例えば48℃)以下の温度になると、Ni−Ti合金のマルテンサイト変態によりNi−Tiばね43が柔らかくり、その結果バイアスばね44の付勢力により弁本体42が閉動作して連通口41aを閉鎖する。   On the other hand, the temperature in the hollow hole 3 is equal to or lower than the martensitic transformation start temperature (Ms point: for example, 48 ° C.) of the Ni—Ti alloy, and the Ni—Ti alloy undergoes martensitic transformation so that at least a part of the Ni—Ti alloy is formed. When the martensite phase is soft, the Ni-Ti spring 43 has a smaller spring force than the bias spring 44, and the Ni-Ti spring 43 is stretched by the bias spring 44. As a result, the valve main body 42 is biased by the bias spring 44 and maintained in a closed state (a state in which the communication port 41a is closed) (see FIG. 2). That is, when the temperature in the hollow hole 3 falls to a temperature lower than the martensitic transformation start temperature (Ms point: 48 ° C., for example) of the Ni—Ti alloy, the Ni—Ti spring is caused by the martensitic transformation of the Ni—Ti alloy. As a result, the valve body 42 is closed by the biasing force of the bias spring 44 and the communication port 41a is closed.

なお、本実施形態では、Ni−Tiばね43を構成するNi−Ti合金の形状回復温度(Af点:例えば70℃)が温度感応開閉弁装置40の開動作設定温度となる。また、Ni−Tiばね43を構成するNi−Ti合金のマルテンサイト変態開始温度(Ms点:例えば48℃)が温度感応開閉弁装置40の閉動作設定温度となる。   In this embodiment, the shape recovery temperature (Af point: for example, 70 ° C.) of the Ni—Ti alloy constituting the Ni—Ti spring 43 is the opening operation set temperature of the temperature sensitive on-off valve device 40. Further, the martensitic transformation start temperature (Ms point: 48 ° C., for example) of the Ni—Ti alloy constituting the Ni—Ti spring 43 becomes the closing operation set temperature of the temperature sensitive on-off valve device 40.

したがって、本実施形態の中空バルブでは、中空孔3内の温度が温度感応開閉弁装置40の開動作設定温度よりも低く、かつ冷媒50を構成する低融点物質の融点より低いときは、温度感応開閉弁装置40が中空孔3内の上室3aと下室3bとの連通口41aを閉鎖しており、また、中空孔3内に封入された冷媒50は固相として中空孔3内の下室3b内に存在する。そして、中空孔3内の温度が冷媒50を構成する低融点物質の融点よりも高くなると、冷媒50が液化する。このとき、中空孔3内の温度が開動作設定温度に達していなければ、温度感応開閉弁装置40は連通口41aを未だ閉鎖している。このため、中空孔3内の下室3b内に存在する液相の冷媒50が連通口41aを介して中空孔3内の上室3aに移動することはなく、液相の冷媒50が中空孔3内全体で撹拌されることはない。したがって、液相の冷媒50の撹拌を介する熱流はバルブの軸部1の上端側へ続くことがなく途中で遮断される。その結果、液相の冷媒50を介して、バルブの軸部1の上端側が接触するバルブガイド6(図1参照)からヘッド冷却水へ放熱されることを防ぐことができる。   Therefore, in the hollow valve of the present embodiment, when the temperature in the hollow hole 3 is lower than the opening operation set temperature of the temperature sensitive on-off valve device 40 and lower than the melting point of the low melting point material constituting the refrigerant 50, the temperature sensitive. The on-off valve device 40 closes the communication port 41 a between the upper chamber 3 a and the lower chamber 3 b in the hollow hole 3, and the refrigerant 50 sealed in the hollow hole 3 is a solid phase below the hollow hole 3. It exists in the chamber 3b. And if the temperature in the hollow hole 3 becomes higher than the melting point of the low melting point substance constituting the refrigerant 50, the refrigerant 50 is liquefied. At this time, if the temperature in the hollow hole 3 does not reach the opening operation set temperature, the temperature-sensitive on-off valve device 40 still closes the communication port 41a. For this reason, the liquid-phase refrigerant 50 existing in the lower chamber 3b in the hollow hole 3 does not move to the upper chamber 3a in the hollow hole 3 through the communication port 41a, and the liquid-phase refrigerant 50 is 3 is not agitated throughout. Therefore, the heat flow through the stirring of the liquid-phase refrigerant 50 is interrupted halfway without continuing to the upper end side of the valve shaft 1. As a result, heat can be prevented from being radiated to the head cooling water from the valve guide 6 (see FIG. 1) with which the upper end side of the valve shaft 1 contacts via the liquid phase refrigerant 50.

よって、エンジンの始動時などで燃焼室の温度が低く、そのため中空孔3内の温度が温度感応開閉弁装置40の開動作設定温度よりも低いときは、液相の冷媒50を介してバルブの軸部1の上端側からバルブガイド6及びヘッド冷却水へ放熱されることがない。その結果、エンジンの始動時や低負荷運転時には燃焼室を速やかに昇温させることができる。   Therefore, when the temperature of the combustion chamber is low at the time of starting the engine or the like, and therefore the temperature in the hollow hole 3 is lower than the opening operation set temperature of the temperature sensitive on-off valve device 40, the valve is connected via the liquid phase refrigerant 50. No heat is radiated from the upper end side of the shaft portion 1 to the valve guide 6 and the head cooling water. As a result, the temperature of the combustion chamber can be quickly raised when the engine is started or during low load operation.

一方、中空孔3内の温度が上昇して温度感応開閉弁装置40の開動作設定温度に到達すると、温度感応開閉弁装置40は連通口41aを開放する。そうすると、既に液化しており中空孔3内の下室3b内に在った液相の冷媒50が連通口41aの開放と同時に連通口41aを介して中空孔3内の上室3aに移動し、液相の冷媒50が中空孔3内全体で撹拌される。したがって、燃焼室、バブルの傘部2、液相の冷媒50、バルブの軸部1、軸部1の上端側が接触するバルブガイド6及びヘッド冷却水へと順に続く大きな熱流が速やかに発生する。   On the other hand, when the temperature in the hollow hole 3 rises and reaches the opening operation set temperature of the temperature sensitive on / off valve device 40, the temperature sensitive on / off valve device 40 opens the communication port 41a. Then, the liquid-phase refrigerant 50 already liquefied and existing in the lower chamber 3b in the hollow hole 3 moves to the upper chamber 3a in the hollow hole 3 through the communication port 41a simultaneously with the opening of the communication port 41a. The liquid-phase refrigerant 50 is stirred throughout the hollow hole 3. Therefore, a large heat flow is generated rapidly in order from the combustion chamber, the bubble umbrella 2, the liquid phase refrigerant 50, the valve shaft 1, the valve guide 6 in contact with the upper end of the shaft 1, and the head cooling water.

よって、エンジンの高負荷運転時などで燃焼室の温度が高く、そのため中空孔3内の温度が温度感応開閉弁装置40の開動作設定温度よりも高いときは、中空孔3の全体で撹拌される液相の冷媒50を介してバルブの軸部1の上端側からバルブガイド6及びヘッド冷却水へ放熱される。また、中空孔3内の温度が温度感応開閉弁装置40の開動作設定温度よりも高くなれば、速やかに上記放熱が起こる。その結果、エンジンの高負荷運転時にはバルブが過度に高温になることを確実に防ぐことができる。   Therefore, when the temperature of the combustion chamber is high, such as during high-load operation of the engine, and therefore the temperature in the hollow hole 3 is higher than the opening operation set temperature of the temperature sensitive on-off valve device 40, the entire hollow hole 3 is agitated. Heat is radiated from the upper end side of the valve shaft 1 to the valve guide 6 and the head cooling water through the liquid phase refrigerant 50. Moreover, if the temperature in the hollow hole 3 becomes higher than the opening operation set temperature of the temperature-sensitive on-off valve device 40, the heat dissipation occurs promptly. As a result, it is possible to reliably prevent the valve from becoming excessively hot during high engine load operation.

(実施形態2)
図4〜図7に示される本実施形態の中空バルブは、実施形態1の中空バルブにおける温度感応開閉弁装置40の構造を変更したものである。
(Embodiment 2)
The hollow valve of the present embodiment shown in FIGS. 4 to 7 is obtained by changing the structure of the temperature-sensitive on-off valve device 40 in the hollow valve of the first embodiment.

実施形態2における温度感応開閉弁装置40は、有底筒状の筺体41と、Ni−Ti弁体46と、バイアスばね44と、座金45とを構成要素とする。すなわち、実施形態2における温度感応開閉弁装置40では、実施形態1における温度感応開閉弁装置40の弁本体42及びNi−Tiばね43の代わりに、Ni−Ti弁体46を採用している。   The temperature-sensitive on-off valve device 40 according to the second embodiment includes a bottomed tubular casing 41, a Ni-Ti valve body 46, a bias spring 44, and a washer 45 as constituent elements. That is, the temperature-sensitive on-off valve device 40 in the second embodiment employs a Ni-Ti valve body 46 instead of the valve body 42 and the Ni-Ti spring 43 of the temperature-sensitive on-off valve device 40 in the first embodiment.

Ni−Ti弁体46は、段階的に外径が縮小する略円錐台形状を呈している。Ni−Ti弁体46は、連通口41aを開閉する頂壁46aを有している。また、Ni−Ti弁体46は、Ni−Ti弁体46の内外(上下)を連通する複数の通孔46bを側壁に有している。このため、Ni−Ti弁体46の頂壁46aが連通口41aを開放しているときは、Ni−Ti弁体46の複数の通孔46b及び座金45の通孔45a並びに連通口41aを介して、中空孔3内の上室3aと下室3bとが連通する。   The Ni-Ti valve body 46 has a substantially truncated cone shape whose outer diameter is gradually reduced. The Ni-Ti valve body 46 has a top wall 46a that opens and closes the communication port 41a. Moreover, the Ni-Ti valve body 46 has a plurality of through holes 46b on the side wall for communicating the inside and outside (upper and lower) of the Ni-Ti valve body 46. For this reason, when the top wall 46a of the Ni-Ti valve body 46 opens the communication port 41a, the plurality of through holes 46b of the Ni-Ti valve body 46, the through holes 45a of the washer 45, and the communication port 41a are used. Thus, the upper chamber 3a and the lower chamber 3b in the hollow hole 3 communicate with each other.

Ni−Ti弁体46を構成する形状記憶合金としては、実施形態1で説明したものと同様のものを用いることができる。   As the shape memory alloy constituting the Ni—Ti valve body 46, the same one as described in the first embodiment can be used.

また、形状記憶合金としてのNi−Ti合金よりなるNi−Ti弁体46は、Ni−Ti弁体46が縮んで頂壁46aが連通口41aを開放している状態を示す図5に示される形状で形状記憶されている。また、バイアスばね44は、外力が付与されていない自然状態で、Ni−Ti弁体46が伸びて頂壁46aが連通口41aを閉鎖している状態を示す図4に示される形状よりも長いばね長を有する(図4に示される状態にあるバイアスばね44は所定量圧縮されている)。さらに、バイアスばね44のばね力は、Ni−Ti合金がマルテンサイト変態しているときのNi−Ti弁体46の発生力よりも大きい。   Further, the Ni—Ti valve element 46 made of a Ni—Ti alloy as a shape memory alloy is shown in FIG. 5 showing a state in which the Ni—Ti valve element 46 is contracted and the top wall 46a opens the communication port 41a. The shape is memorized. Moreover, the bias spring 44 is longer than the shape shown in FIG. 4 which shows the state which the Ni-Ti valve body 46 is extended and the top wall 46a has closed the communicating port 41a in the natural state to which the external force is not provided. It has a spring length (the bias spring 44 in the state shown in FIG. 4 is compressed by a predetermined amount). Further, the spring force of the bias spring 44 is larger than the generated force of the Ni—Ti valve body 46 when the Ni—Ti alloy is martensitic transformed.

このため、中空孔3内がNi−Ti合金の形状回復温度(Af点:例えば70℃)以上の温度になって、Ni−Ti合金がオーステナイト相に逆変態してNi−Ti弁体46が形状記憶された形状に形状回復しているとき、このNi−Ti弁体46は、バイアスばね44のばね力に抗して、連通口41aを開放する(図5参照)。すなわち、中空孔3内の温度が昇温する過程でNi−Ti合金の形状回復温度(Af点:例えば70℃)以上の温度になると、Ni−Ti合金の逆変態によりNi−Ti弁体46が形状回復し、これによりNi−Ti弁体46が開動作して連通口41aを開放する。   For this reason, the inside of the hollow hole 3 becomes a temperature higher than the shape recovery temperature of the Ni—Ti alloy (Af point: 70 ° C., for example), the Ni—Ti alloy is reversely transformed into the austenite phase, and the Ni—Ti valve body 46 is formed. When the shape is restored to the shape memorized, the Ni-Ti valve body 46 opens the communication port 41a against the spring force of the bias spring 44 (see FIG. 5). That is, when the temperature in the hollow hole 3 rises to a temperature higher than the shape recovery temperature of the Ni—Ti alloy (Af point: 70 ° C., for example), the Ni—Ti valve body 46 is caused by reverse transformation of the Ni—Ti alloy. As a result, the Ni-Ti valve body 46 opens to open the communication port 41a.

一方、中空孔3の温度がNi−Ti合金のマルテンサイト変態開始温度(Ms点:例えば48℃)以下であり、Ni−Ti合金がマルテンサイト変態してNi−Ti合金の少なくとも一部がマルテンサイト相となって柔らかくなっているときは、Ni−Ti弁体46の発生力はバイアスばね44のばね力よりも小さく、Ni−Ti弁体46はバイアスばね44により伸張される。その結果、Ni−Ti弁体46は、バイアスばね44により付勢されて連通口41aを閉鎖する。すなわち、中空孔3内の温度が降温する過程でNi−Ti合金のマルテンサイト変態開始温度(Ms点:例えば48℃)以下の温度になると、Ni−Ti合金のマルテンサイト変態によりNi−Ti弁体46が柔らかくり、その結果バイアスばね44の付勢力によりNi−Ti弁体46が閉動作して連通口41aを閉鎖する。   On the other hand, the temperature of the hollow hole 3 is not higher than the martensitic transformation start temperature (Ms point: 48 ° C., for example) of the Ni—Ti alloy, the Ni—Ti alloy undergoes martensitic transformation, and at least a part of the Ni—Ti alloy is martensitic. When the site phase is soft, the generated force of the Ni—Ti valve body 46 is smaller than the spring force of the bias spring 44, and the Ni—Ti valve body 46 is expanded by the bias spring 44. As a result, the Ni-Ti valve body 46 is biased by the bias spring 44 and closes the communication port 41a. That is, when the temperature in the hollow hole 3 falls to a temperature lower than the martensitic transformation start temperature (Ms point: 48 ° C., for example) of the Ni—Ti alloy, the Ni—Ti valve is caused by the martensitic transformation of the Ni—Ti alloy. The body 46 becomes soft, and as a result, the Ni-Ti valve body 46 is closed by the biasing force of the bias spring 44 to close the communication port 41a.

その他の構成及び作用効果は前記実施形態1と同様であるため、その説明を援用して省略する。   Since other configurations and operational effects are the same as those of the first embodiment, the description thereof is incorporated and omitted.

実施形態1に係る中空弁の全体構成を模式的に示す断面図である。1 is a cross-sectional view schematically showing the overall configuration of a hollow valve according to Embodiment 1. FIG. 実施形態1に係る中空弁における温度感応開閉弁装置の構成を示し、温度感応開閉弁装置が閉状態にあるときの断面図である。It is sectional drawing when the structure of the temperature sensitive on-off valve apparatus in the hollow valve which concerns on Embodiment 1 is shown, and a temperature sensitive on-off valve apparatus is in a closed state. 実施形態1に係る中空弁における温度感応開閉弁装置の構成を示し、温度感応開閉弁装置が開状態にあるときの断面図である。It is sectional drawing when the structure of the temperature sensitive on-off valve apparatus in the hollow valve which concerns on Embodiment 1 is shown, and a temperature sensitive on-off valve apparatus is in an open state. 実施形態2に係る中空弁における温度感応開閉弁装置の構成を示し、温度感応開閉弁装置が閉状態にあるときの断面図である。It is sectional drawing when the structure of the temperature sensitive on-off valve apparatus in the hollow valve which concerns on Embodiment 2 is shown, and a temperature sensitive on-off valve apparatus is in a closed state. 実施形態2に係る中空弁における温度感応開閉弁装置の構成を示し、温度感応開閉弁装置が開状態にあるときの断面図である。It is sectional drawing when the structure of the temperature sensitive on-off valve apparatus in the hollow valve which concerns on Embodiment 2 is shown, and a temperature sensitive on-off valve apparatus is in an open state. 実施形態2に係る中空弁における温度感応開閉弁装置の構成要素である、弁体を示す斜視図である。It is a perspective view which shows the valve body which is a component of the temperature sensitive on-off valve apparatus in the hollow valve which concerns on Embodiment 2. FIG. 実施形態2に係る中空弁における温度感応開閉弁装置の構成要素である、弁体を示す平面図である。It is a top view which shows the valve body which is a component of the temperature sensitive on-off valve apparatus in the hollow valve which concerns on Embodiment 2. FIG.

符号の説明Explanation of symbols

1…軸部 2…傘部
3…中空孔 3a…上室
3b…下室 40…温度感応開閉弁装置
50…冷媒 41a…連通口
42…弁本体(弁体) 43…Ni−Tiばね(弁体)
44…バイアスばね 46…Ni−Ti弁体
DESCRIPTION OF SYMBOLS 1 ... Shaft part 2 ... Umbrella part 3 ... Hollow hole 3a ... Upper chamber 3b ... Lower chamber 40 ... Temperature sensitive opening / closing valve apparatus 50 ... Refrigerant 41a ... Communication port 42 ... Valve body (valve body) 43 ... Ni-Ti spring (valve) body)
44 ... Bias spring 46 ... Ni-Ti valve body

Claims (6)

軸部と軸部の下端に設けられた傘部とからなり、該傘部から該軸部にかけて中空孔を有する中空バルブであって、
前記中空孔内に封入され、低融点物質よりなる冷媒と、
前記中空孔内に配設され、該中空孔内を上室と下室とに区画するとともに、該中空孔内の温度に応じて開動作及び閉動作することにより該上室と該下室との連通口を開放及び閉鎖する温度感応開閉弁装置と、を備え、
前記温度感応開閉弁装置は、前記中空孔内が昇温する過程で開動作を行い、かつ該中空孔内が降温する過程で閉動作を行い、
前記温度感応開閉弁装置が開動作を行う開動作設定温度及び該温度感応開閉弁装置が閉動作を行う閉動作設定温度が、前記中空孔内の温度変化範囲内の温度で、かつ前記低融点物質の融点よりも高い温度に設定されていることを特徴とする中空バルブ。
A hollow valve comprising a shaft portion and an umbrella portion provided at a lower end of the shaft portion, and having a hollow hole from the umbrella portion to the shaft portion,
A refrigerant made of a low-melting-point substance enclosed in the hollow hole;
The upper chamber and the lower chamber are disposed by being disposed in the hollow hole, dividing the hollow hole into an upper chamber and a lower chamber, and performing an opening operation and a closing operation in accordance with the temperature in the hollow hole. A temperature-sensitive on-off valve device for opening and closing the communication port of
The temperature sensitive on-off valve device performs an opening operation in the process of raising the temperature in the hollow hole, and performs a closing operation in the process of lowering the temperature in the hollow hole,
The open operation set temperature at which the temperature sensitive on / off valve device performs an open operation and the close operation set temperature at which the temperature sensitive on / off valve device performs a close operation are a temperature within a temperature change range in the hollow hole and the low melting point A hollow valve characterized by being set at a temperature higher than the melting point of the substance.
前記温度感応開閉弁装置は、少なくとも一部が形状記憶合金よりなり前記連通口を開閉する弁体と、該弁体を閉方向に付勢するバイアスばねと、を備え、
前記弁体は、前記バイアスばねの付勢力に抗する前記形状記憶合金の形状回復により前記開動作を行い、かつ、少なくとも一部の結晶構造がマルテンサイト相に相変態している該形状記憶合金が該バイアスばねの付勢力によって変形することにより前記閉動作を行うことを特徴とする請求項1に記載の中空バルブ。
The temperature-sensitive on-off valve device comprises a valve body that is at least partially made of a shape memory alloy and opens and closes the communication port, and a bias spring that biases the valve body in a closing direction,
The valve body performs the opening operation by shape recovery of the shape memory alloy that resists the biasing force of the bias spring, and the shape memory alloy in which at least a part of the crystal structure is transformed into a martensite phase. The hollow valve according to claim 1, wherein the closing operation is performed by being deformed by a biasing force of the bias spring.
前記低融点物質の融点が65℃未満であることを特徴とする請求項1〜2のいずれか一つに記載の中空バルブ。   The hollow valve according to any one of claims 1 to 2, wherein the low-melting-point substance has a melting point of less than 65 ° C. 前記低融点物質はNa−K合金よりなることを特徴とする請求項1〜3のいずれか一つに記載の中空バルブ。   The hollow valve according to any one of claims 1 to 3, wherein the low melting point material is made of a Na-K alloy. 前記低融点物質の融点が40℃以上であることを特徴とする請求項4に記載の中空バルブ。   The hollow valve according to claim 4, wherein the low-melting-point substance has a melting point of 40 ° C. or higher. 前記開動作設定温度及び前記閉動作設定温度が70℃±5℃であることを特徴とする請求項1〜5のいずれか一つに記載の中空バルブ。   The hollow valve according to any one of claims 1 to 5, wherein the opening operation setting temperature and the closing operation setting temperature are 70 ° C ± 5 ° C.
JP2008067823A 2008-03-17 2008-03-17 Hollow valve Expired - Fee Related JP4844847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008067823A JP4844847B2 (en) 2008-03-17 2008-03-17 Hollow valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008067823A JP4844847B2 (en) 2008-03-17 2008-03-17 Hollow valve

Publications (2)

Publication Number Publication Date
JP2009221974A true JP2009221974A (en) 2009-10-01
JP4844847B2 JP4844847B2 (en) 2011-12-28

Family

ID=41239005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008067823A Expired - Fee Related JP4844847B2 (en) 2008-03-17 2008-03-17 Hollow valve

Country Status (1)

Country Link
JP (1) JP4844847B2 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040907A (en) * 1973-02-19 1975-04-15
JPS60122507A (en) * 1983-12-08 1985-07-01 株式会社ソノベ鞄製作所 Knapsack
JPS6314807A (en) * 1986-07-04 1988-01-22 Toyota Motor Corp Direct molding and fixing of green compact molding to hollow shaft member
JPH0465907A (en) * 1990-07-03 1992-03-02 Toshiba Corp Agc circuit for fm front end section
JPH04143406A (en) * 1990-10-05 1992-05-18 Nissan Motor Co Ltd Cam structure in exhaust valve system
JPH04339113A (en) * 1991-02-18 1992-11-26 Mazda Motor Corp Engine valve temperature control device
JPH09184404A (en) * 1995-12-28 1997-07-15 Fuji Oozx Inc Hollow valve element for internal combustion engine
JP2000170507A (en) * 1998-12-08 2000-06-20 Nissan Motor Co Ltd Variable valve system for engine
JP2001059408A (en) * 1999-07-20 2001-03-06 Eaton Corp Hollow poppet valve
JP2005036697A (en) * 2003-07-18 2005-02-10 Fuji Heavy Ind Ltd Internal combustion engine
JP2006097499A (en) * 2004-09-28 2006-04-13 Toyota Motor Corp Hollow valve for internal combustion engine
JP2006125277A (en) * 2004-10-28 2006-05-18 Toyota Motor Corp Cylinder head for internal combustion engine
JP2006266091A (en) * 2005-03-22 2006-10-05 Aisin Seiki Co Ltd Oil feeder

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040907A (en) * 1973-02-19 1975-04-15
JPS60122507A (en) * 1983-12-08 1985-07-01 株式会社ソノベ鞄製作所 Knapsack
JPS6314807A (en) * 1986-07-04 1988-01-22 Toyota Motor Corp Direct molding and fixing of green compact molding to hollow shaft member
JPH0465907A (en) * 1990-07-03 1992-03-02 Toshiba Corp Agc circuit for fm front end section
JPH04143406A (en) * 1990-10-05 1992-05-18 Nissan Motor Co Ltd Cam structure in exhaust valve system
JPH04339113A (en) * 1991-02-18 1992-11-26 Mazda Motor Corp Engine valve temperature control device
JPH09184404A (en) * 1995-12-28 1997-07-15 Fuji Oozx Inc Hollow valve element for internal combustion engine
JP2000170507A (en) * 1998-12-08 2000-06-20 Nissan Motor Co Ltd Variable valve system for engine
JP2001059408A (en) * 1999-07-20 2001-03-06 Eaton Corp Hollow poppet valve
JP2005036697A (en) * 2003-07-18 2005-02-10 Fuji Heavy Ind Ltd Internal combustion engine
JP2006097499A (en) * 2004-09-28 2006-04-13 Toyota Motor Corp Hollow valve for internal combustion engine
JP2006125277A (en) * 2004-10-28 2006-05-18 Toyota Motor Corp Cylinder head for internal combustion engine
JP2006266091A (en) * 2005-03-22 2006-10-05 Aisin Seiki Co Ltd Oil feeder

Also Published As

Publication number Publication date
JP4844847B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP5259980B2 (en) Method for controlling an expansion valve and in particular an expansion valve for a vehicle air-conditioning system operating with CO2 as coolant
JP4841619B2 (en) Multi-spark plug with open chamber
JP2008138673A (en) Thermostat assembly for engine cooling system
EP3374613B1 (en) Cooling circuit for a motor vehicle
JP5312235B2 (en) Oil jet
JP4844847B2 (en) Hollow valve
EP3385585B1 (en) Valve for closing a fluid line
JP2008274779A (en) Intake-exhaust valve and valve mechanism
JP2007003130A (en) Stirling cycle engine
CN108916428B (en) A kind of intelligent valve and its working method of residual neat recovering system
JP2005220772A (en) Engine cooling device
JP2011012619A (en) Oil jet
JP2000292022A (en) Gas cycle engine refrigerating machine
JP6145904B2 (en) Heat exchange device
JP2020180662A (en) Thermo-actuator
JP2007247460A (en) Cylinder block
JPH0447106A (en) Valve
JP2002161746A (en) Thermostat and engine cooling circuit
JP2007285189A (en) Heat storage device and engine
RU2039876C1 (en) Thermostat for liquid cooling system of internal combustion engine
JPH0241679B2 (en)
Dotsenko et al. A really simple cryogenic valve
JP2016211773A (en) Loop heat pipe
KR100411042B1 (en) Thermostat system
TWM284832U (en) Overheating halting plug combustion valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110928

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees