JPH0241679B2 - - Google Patents

Info

Publication number
JPH0241679B2
JPH0241679B2 JP57071933A JP7193382A JPH0241679B2 JP H0241679 B2 JPH0241679 B2 JP H0241679B2 JP 57071933 A JP57071933 A JP 57071933A JP 7193382 A JP7193382 A JP 7193382A JP H0241679 B2 JPH0241679 B2 JP H0241679B2
Authority
JP
Japan
Prior art keywords
valve
temperature
valve chamber
chamber
responsive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57071933A
Other languages
Japanese (ja)
Other versions
JPS58187672A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7193382A priority Critical patent/JPS58187672A/en
Publication of JPS58187672A publication Critical patent/JPS58187672A/en
Publication of JPH0241679B2 publication Critical patent/JPH0241679B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/36Safety valves; Equalising valves, e.g. pressure relief valves actuated in consequence of extraneous circumstances, e.g. shock, change of position
    • F16K17/38Safety valves; Equalising valves, e.g. pressure relief valves actuated in consequence of extraneous circumstances, e.g. shock, change of position of excessive temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Temperature-Responsive Valves (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は流体系から所定温度以下の流体を自動
的に排出する温度応動弁に関する。暖房用ラジエ
ータから復水を排出したり、油輸送管等を蒸気や
温水で保温するトレース管から低温水を排出した
り、蒸気や温水を用いる装置等が凍結しない用に
所定温度以下の水を排出する場合等に用いる。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a temperature-responsive valve that automatically discharges fluid below a predetermined temperature from a fluid system. Discharge condensate from heating radiators, discharge low-temperature water from trace pipes that keep oil transport pipes warm with steam or hot water, or supply water below a specified temperature to prevent equipment that uses steam or hot water from freezing. Used when discharging.

(従来の技術) 特願昭55―54644号で温度応動素子を形状記憶
合金で作つた温度応動弁を提案した。この弁の構
造の概要は次の通りである。弁ケーシングで入口
と、入口の流体が流入する弁室と、弁室の流体が
弁口を通して流出する出口とを形成する。弁口の
開口部分に弁座を形成する。弁座に着座して弁口
を塞ぎ弁座から離れて弁口を開く様に弁体を配置
する。所定温度以下に冷却されると母相からマル
テンサイト相に熱弾性型マルテンサイト変態をし
所定温度以上に加熱されるとその逆変態をする形
状記憶合金で作つた温度応動素子を弁室内に配置
し、温度応動素子が弁室内の流体の温度に応じて
変態し弁体を駆動して所定温度以上になると弁体
を弁座に着座させて弁口を塞ぐ様にする。
(Prior art) In Japanese Patent Application No. 54,644/1984, we proposed a temperature-responsive valve in which the temperature-responsive element was made of a shape memory alloy. The outline of the structure of this valve is as follows. The valve casing defines an inlet, a valve chamber into which the inlet fluid enters, and an outlet through which the valve chamber fluid exits through the valve port. A valve seat is formed at the opening of the valve port. The valve body is arranged so as to sit on the valve seat, close the valve port, and move away from the valve seat to open the valve port. A temperature-responsive element made of a shape memory alloy that undergoes a thermoelastic martensitic transformation from the parent phase to a martensitic phase when cooled below a predetermined temperature and reversely transforms when heated above a predetermined temperature is placed in the valve chamber. However, the temperature-responsive element transforms in response to the temperature of the fluid in the valve chamber and drives the valve body, so that when the temperature exceeds a predetermined temperature, the valve body is seated on the valve seat and closes the valve port.

(本発明が解決しようとする課題) この温度応動弁では温度応動素子が弁口に対し
て入口側に配置されているので、高温の流体系に
取付けた場合、形状記憶合金が最高使用温度以上
に加熱されることがある。現在実用できるチタン
―ニツケル、銅―亜鉛―アルミニウム合金等の最
高使用可能温度はほぼ120度Cである。従つて、
形状記憶合金が析出現象あるいは時効効果を起こ
して性能が劣悪になる欠点があつた。
(Problems to be Solved by the Invention) In this temperature-responsive valve, the temperature-responsive element is placed on the inlet side of the valve port, so when installed in a high-temperature fluid system, the shape memory alloy may exceed the maximum operating temperature. It may be heated to The maximum usable temperature of currently available titanium-nickel and copper-zinc-aluminum alloys is approximately 120 degrees Celsius. Therefore,
Shape memory alloys had the disadvantage of causing precipitation phenomena or aging effects, resulting in poor performance.

そこで、形状記憶合金で作つた温度応動素子を
弁口に対して出口側に配置すれば、温度応動素子
は弁口を塞ぐ設定温度以上に加熱されることがな
いので、性能が劣悪にならない。
Therefore, if a temperature-responsive element made of a shape memory alloy is placed on the outlet side with respect to the valve opening, the temperature-responsive element will not be heated above the set temperature that blocks the valve opening, so performance will not deteriorate.

しかしながら、この場合、形状記憶合金の相変
態サイクルが外気の温度の影響で短くなる欠点が
ある。
However, in this case, there is a drawback that the phase transformation cycle of the shape memory alloy becomes shorter due to the influence of the outside air temperature.

従つて、本発明の技術的課題は形状記憶合金で
作つた温度応動素子の相変態サイクルが外気の温
度の影響で短くなることを防止することである。
Therefore, the technical problem of the present invention is to prevent the phase transformation cycle of a temperature-responsive element made of a shape memory alloy from being shortened due to the influence of outside air temperature.

(課題を解決するための手段) 上記の技術的課題を解決するために講じた本発
明の技術的手段は次の通りである。弁ケーシング
で入口と、入口の流体が弁口を通して流入する弁
室と、弁室の流体が流出する出口とを形成する。
弁口の開口部分に弁座を形成する。弁座に着座し
て弁口を塞ぎ弁座から離れて弁口を開く様に弁体
を配置する。所定温度以下に冷却されると母相か
らマルテンサイト相に熱弾性型マルテンサイト変
態をし所定温度以上に加熱されるとその逆変態を
する形状記憶合金で作つた温度応動素子を弁室内
に配置し、温度応動素子が弁室内の流体の温度に
応じて変態し弁体を駆動して所定温度以上になる
と弁体を弁座に着座させて弁口を塞ぐ様にする。
弁室内に液体を溜めて温度応動素子が液体中に浸
かる様にする。
(Means for Solving the Problems) The technical means of the present invention taken to solve the above technical problems are as follows. The valve casing defines an inlet, a valve chamber into which fluid from the inlet enters through the valve port, and an outlet from which fluid from the valve chamber exits.
A valve seat is formed at the opening of the valve port. The valve body is arranged so that it seats on the valve seat to close the valve port and leaves the valve seat to open the valve port. A temperature-responsive element made of a shape memory alloy that undergoes a thermoelastic martensitic transformation from the parent phase to a martensitic phase when cooled below a predetermined temperature and reversely transforms when heated above a predetermined temperature is placed in the valve chamber. However, the temperature-responsive element transforms in response to the temperature of the fluid in the valve chamber and drives the valve body, and when the temperature reaches a predetermined temperature or higher, the valve body is seated on the valve seat and closes the valve port.
A liquid is stored in the valve chamber so that the temperature-responsive element is immersed in the liquid.

液体を溜めてその液体中に温度応動素子を浸け
る手段として、弁室と出口との間に小さな孔を多
数あけた隔壁を設け、弁口が塞がれているときに
液体を弁室内に溜めておく様にすること、あるい
は、出口を弁室の上部に開口させ、弁室内に液体
を溜め、その液体溜りに温度応動素子が浸かる様
にすることが適用出来る。
As a means of storing liquid and immersing the temperature-responsive element in the liquid, a partition wall with many small holes is provided between the valve chamber and the outlet, and the liquid is stored in the valve chamber when the valve port is blocked. Alternatively, the outlet may be opened at the upper part of the valve chamber, a liquid may be stored in the valve chamber, and the temperature-responsive element may be immersed in the liquid pool.

(作用) 上記の技術的手段の作用は次の通りである。流
体系の流体は入口から弁口を通つて弁室に入り、
弁室内に配置した温度応動素子を加熱あるいは冷
却する。形状記憶合金は所定温度以下に冷却され
ると母相からマルテンサイト相に熱弾性型マルテ
ンサイト変態をし所定温度以上に加熱されるとそ
の逆変態をする。温度応動素子はこの変態を利用
して弁体を駆動し、所定温度以上になると弁体を
弁座に着座させて弁口を塞ぐ。それ以下の温度の
流体は弁口を通つて弁室に流入し出口から外部に
流出する。弁室内は出口を通して一般に大気に連
通したりして、入口よりもかなり低い圧力にあ
り、高温水は低圧域にて再蒸発して温度が飽和温
度まで下がる。従つて、弁室内の温度は温度応動
素子が弁口を塞ぐ設定温度以上にはならないの
で、形状記憶合金は性能が劣悪にならない。
(Operation) The operation of the above technical means is as follows. Fluid in the fluid system enters the valve chamber from the inlet through the valve port;
A temperature responsive element placed inside the valve chamber is heated or cooled. When a shape memory alloy is cooled to a predetermined temperature or below, it undergoes a thermoelastic martensitic transformation from a parent phase to a martensitic phase, and when heated above a predetermined temperature, it undergoes the reverse transformation. The temperature-responsive element utilizes this transformation to drive the valve body, and when the temperature exceeds a predetermined temperature, the valve body seats on the valve seat and closes the valve port. Fluid at a temperature below this temperature flows into the valve chamber through the valve port and flows out through the outlet. The inside of the valve chamber generally communicates with the atmosphere through the outlet and is at a considerably lower pressure than the inlet, and the high-temperature water is re-evaporated in the low-pressure region and the temperature drops to the saturation temperature. Therefore, the temperature inside the valve chamber does not exceed the set temperature at which the temperature-responsive element closes the valve port, so the performance of the shape memory alloy does not deteriorate.

弁口が塞がれた閉弁時にも弁室内に液体が溜つ
ており、十分な熱量が確保されるので外気による
冷却がゆつくりと進む。低温の空気が弁室内に流
入することがない。従つて、温度応動素子の相変
態サイクルの短縮を防止できる。
Even when the valve is closed and the valve port is blocked, liquid remains in the valve chamber, ensuring a sufficient amount of heat, allowing the outside air to slowly cool the valve. Low temperature air does not flow into the valve chamber. Therefore, shortening of the phase transformation cycle of the temperature responsive element can be prevented.

(第1実施例) 第1図と、第2図に示す第1実施例を説明す
る。ニツプル形状の本体1で入口2と、入口の流
体が弁口10を通して流入する弁室4と、弁室内
の流体が流出する出口3を形成する。弁口10は
入口2と弁室4の間の隔壁に孔をあけて形成す
る。入口2には弁口10を覆つてストレーナ6を
配置する。弁口10の弁室側開口部分に弁座を形
成する。弁室4は内周壁を円筒形状に形成し、弁
体5を挿入する。弁体5の先端部12は円錐形状
で弁座11に着座して弁口10を塞ぐことができ
る。中央部分は第2図に明らかなように、ほぼ三
角柱形状で、角の部分は弁室4の内周壁に摺接す
る。後端は小径の円柱形状でその回りにコイル状
の形状記憶合金で作つた温度応動素子7を配置す
る。素子7は一端が弁体5の中央と後端部分の間
の段部に当り、他端が隔壁8に当る。形状記憶合
金としては可逆形状記憶効果を有する銅−亜鉛−
アルミニウム合金を用いる。この素子7は所定温
度以下に冷却されると熱弾性型マルテンサイト変
態して短くなり、所定温度以上に加熱されると逆
変態して長くなる。形状記憶合金としてチタン−
ニツケル合金を用いてもよい。隔壁8には直径が
1ミリメートル程度の孔を多数あける。また、ス
ナツプ・リング9で本体1に取付ける。
(First Example) A first example shown in FIG. 1 and FIG. 2 will be described. A nipple-shaped main body 1 forms an inlet 2, a valve chamber 4 into which fluid at the inlet flows in through a valve port 10, and an outlet 3 through which fluid in the valve chamber flows out. The valve port 10 is formed by drilling a hole in the partition wall between the inlet 2 and the valve chamber 4. A strainer 6 is arranged at the inlet 2 so as to cover the valve port 10. A valve seat is formed at the opening portion of the valve port 10 on the valve chamber side. The valve chamber 4 has an inner peripheral wall formed into a cylindrical shape, and a valve body 5 is inserted therein. The tip 12 of the valve body 5 has a conical shape and can be seated on the valve seat 11 to close the valve port 10. As is clear from FIG. 2, the central portion has a substantially triangular prism shape, and the corner portions come into sliding contact with the inner circumferential wall of the valve chamber 4. The rear end has a cylindrical shape with a small diameter, and a temperature-responsive element 7 made of a coiled shape memory alloy is arranged around it. One end of the element 7 is in contact with a step between the center and rear end portions of the valve body 5, and the other end is in contact with the partition wall 8. As a shape memory alloy, copper-zinc has a reversible shape memory effect.
Uses aluminum alloy. When this element 7 is cooled below a predetermined temperature, it undergoes thermoelastic martensitic transformation and becomes shorter, and when heated above a predetermined temperature, it undergoes reverse transformation and becomes longer. Titanium as a shape memory alloy
A nickel alloy may also be used. A large number of holes with a diameter of about 1 mm are made in the partition wall 8. Also, attach it to the main body 1 with a snap ring 9.

次の様に作動する。第1図に示す様に横向きに
取付けても、あるいは上・下向きに取付けてもよ
い。第1図は弁室4が低温であり、温度応動素子
7が短く、弁体5が弁座11から離れて弁口10
が開いている状態を示している。流体は入口2か
ら弁口10を通つて弁室4に流入し、弁室4の内
周壁と弁体5の間の空き間から素子7の回りを流
れ、隔壁8の孔を通つて出口3から流出する。こ
の間に流体の温度が高くなり加熱されて所定温度
に達すると、素子7はマルテンサイト相から母相
に逆変態して長くなり、弁体5を駆動して弁座1
1に着座させ、弁口10を塞ぐ。隔壁8にあけた
孔が小さいので弁室4の液体は表面張力の作用で
出口3側に流出しない。出口3側の空気等の気体
が弁室4に入らない。従つて、弁室4の液体の温
度はゆつくりと下がる。そして、所定温度まで下
がると素子7は母相からマルテンサイト相にマル
テンサイト変態して短くなる。弁体5は入口2側
の流体の圧力で押されて弁座11から離れて、弁
口10を開く。この様にして流体の温度に応じて
弁口を開閉して所定温度以下の流体を自動的に排
出する。
It operates as follows. It may be mounted horizontally as shown in FIG. 1, or may be mounted upwardly or downwardly. In FIG. 1, the valve chamber 4 is at a low temperature, the temperature-responsive element 7 is short, and the valve body 5 is separated from the valve seat 11 so that the valve opening 10
indicates that it is open. Fluid enters the valve chamber 4 from the inlet 2 through the valve port 10, flows around the element 7 through the gap between the inner circumferential wall of the valve chamber 4 and the valve body 5, and passes through the hole in the partition wall 8 to the outlet 3. flows out from. During this time, when the temperature of the fluid increases and reaches a predetermined temperature, the element 7 reversely transforms from the martensitic phase to the parent phase and becomes longer, driving the valve body 5 and moving the valve seat 1.
1 and close the valve port 10. Since the holes made in the partition wall 8 are small, the liquid in the valve chamber 4 does not flow out to the outlet 3 side due to surface tension. Gas such as air on the outlet 3 side does not enter the valve chamber 4. Therefore, the temperature of the liquid in the valve chamber 4 slowly decreases. Then, when the temperature drops to a predetermined temperature, the element 7 undergoes martensitic transformation from the parent phase to the martensitic phase and becomes shorter. The valve body 5 is pushed by the pressure of the fluid on the inlet 2 side, moves away from the valve seat 11, and opens the valve port 10. In this way, the valve opening is opened and closed according to the temperature of the fluid, and fluid below a predetermined temperature is automatically discharged.

本実施例では、可逆形状記憶効果を有する合金
を用いたので、温度応動素子は低温時に自から短
くなる。従つて、低圧流体でも弁体を押して弁口
を開けることができる。開弁用のバイアス・スプ
リングを必要としない。内部部品をニツプル形状
の本体内にコンパクトに配置したので、小形であ
る。材料が少ないから経済的につくれる。
In this example, since an alloy having a reversible shape memory effect is used, the temperature-responsive element automatically shortens at low temperatures. Therefore, even with low pressure fluid, the valve body can be pushed to open the valve port. Does not require a bias spring to open the valve. The internal parts are compactly arranged inside the nipple-shaped main body, so it is small. It can be made economically since it requires few materials.

(第2実施例) 第3図に示す第2実施例を説明する。デイスク
状本体27の中央部分に弁口28をあける。金属
製薄板を帽子状にした隔壁部材30を本体27の
片側に取付け、両部材の外周部分を気密的に溶接
する。隔壁部材30の中央部分には直径が1ミリ
メートル程度の小さな孔を多数あける。隔壁部材
30の中に球形弁体29と形状記憶合金でスパイ
ラル状に作つた温度応動素子31を配置する。素
子31は一端が弁体29に、他端が隔壁部材30
に当る。また、第1実施例と同様に、所定温度以
上に加熱されれば伸び所定温度以下に冷却されれ
ば縮む。弁体29は素子31の伸縮で駆動されて
弁口28を開閉する。上記ユニツトは入口23側
配管21と出口24側配管22のフランジの間に
ガスケツト32,33を挾んで取付けて使用す
る。番号25,26はボルト・ナツトを示す。
(Second Example) A second example shown in FIG. 3 will be described. A valve port 28 is opened in the center portion of the disc-shaped main body 27. A partition member 30 made of a thin metal plate shaped like a hat is attached to one side of the main body 27, and the outer peripheral portions of both members are welded airtightly. A large number of small holes with a diameter of about 1 mm are made in the center of the partition member 30. A spherical valve body 29 and a temperature responsive element 31 made of a shape memory alloy in a spiral shape are arranged in the partition member 30. The element 31 has one end connected to the valve body 29 and the other end connected to the partition member 30.
corresponds to Further, as in the first embodiment, it expands when heated above a predetermined temperature and contracts when cooled below a predetermined temperature. The valve body 29 is driven by the expansion and contraction of the element 31 to open and close the valve port 28. The above unit is used by attaching gaskets 32 and 33 between the flanges of the piping 21 on the inlet 23 side and the piping 22 on the outlet 24 side. Numbers 25 and 26 indicate bolts and nuts.

この実施例の作動は第1実施例と同様であり、
容易に理解されるので省略する。球形弁体と温度
応動素子をデイスク状本体と帽子状隔壁部材の中
にコンパクトに配置したので極めて小形である。
The operation of this embodiment is similar to that of the first embodiment,
Since it is easily understood, it will be omitted. The spherical valve body and the temperature-responsive element are compactly arranged within the disc-shaped main body and the cap-shaped partition member, making it extremely compact.

(第3実施例) 第4図に示す第3実施例を説明する。第1実施
例とほぼ同様の構造であるので、相応する部分は
参照番号の説明に止どめる。51は本体、52は
入口、53は出口、54は弁室、55は弁体、5
7は形状記憶合金で作つた温度応動素子、58は
小さな孔を多数あけた隔壁、59はスナツプ・リ
ング、60は弁口、61は弁座、62は弁頭であ
る。温度応動素子57は不可逆形状記憶型の合
金、すなわち母相の形状は記憶しているがマルテ
ンサイト相の形状は記憶していなくて、冷却され
て所定温度以下になつても自からは短くなれない
合金を用いてもよい。これを補うために弁口60
を形成する隔壁と弁体55の間にバイアス・スプ
リング56を配置した。
(Third Example) A third example shown in FIG. 4 will be described. Since the structure is almost the same as that of the first embodiment, explanations of corresponding parts will be limited to reference numerals. 51 is the main body, 52 is the inlet, 53 is the outlet, 54 is the valve chamber, 55 is the valve body, 5
7 is a temperature responsive element made of a shape memory alloy, 58 is a partition wall with many small holes, 59 is a snap ring, 60 is a valve port, 61 is a valve seat, and 62 is a valve head. The temperature-responsive element 57 is an irreversible shape-memory alloy, that is, it remembers the shape of the matrix phase but does not remember the shape of the martensitic phase, and cannot shorten itself even when cooled to a predetermined temperature or lower. You may also use alloys that do not have To compensate for this, valve port 60
A bias spring 56 is disposed between the partition wall forming the valve body 55 and the valve body 55.

この実施例の作動は、弁体を弁座から引き離す
ときに入口側の流体の圧力に加えて、バイアス・
スプリング56が作用することを考慮すれば、第
1実施例とほぼ同様であり、容易に理解できるの
で省略する。
The operation of this embodiment is based on the pressure of the fluid on the inlet side when the valve body is pulled away from the valve seat.
Considering that the spring 56 acts, this is almost the same as the first embodiment and can be easily understood, so a description thereof will be omitted.

(第4実施例) 第5図に示す第4実施例を説明する。第1実施
例とほぼ同様の構造であるので、相応する部分は
参照番号の説明に止どめる。71は本体、72は
入口、73は出口、74は弁室、75は弁体、7
7は形状記憶合金で作つた温度応動素子、78は
中央部に大きな孔をあけた温度応動素子の支持リ
ング、79はスナツプ・リング、80は弁口、8
1は弁座、82は弁頭である。
(Fourth Example) A fourth example shown in FIG. 5 will be described. Since the structure is almost the same as that of the first embodiment, explanations of corresponding parts will be limited to reference numerals. 71 is the main body, 72 is the inlet, 73 is the outlet, 74 is the valve chamber, 75 is the valve body, 7
7 is a temperature-responsive element made of a shape memory alloy, 78 is a support ring for the temperature-responsive element with a large hole in the center, 79 is a snap ring, 80 is a valve opening, 8
1 is a valve seat, and 82 is a valve head.

この実施例の弁は図示の用に入口を下にして取
付けて用いる。この様にすると弁室内は液体の溜
りとなり、小さな孔を多数あけた隔壁を用いなく
ても温度応動素子は液体溜りの中に浸かる。作動
は第1実施例とほぼ同様であり、容易に理解でき
るので省略する。
The valve of this embodiment is used with the inlet facing down for purposes of illustration. In this way, the inside of the valve chamber becomes a pool of liquid, and the temperature-responsive element is immersed in the liquid pool without using a partition wall with many small holes. The operation is almost the same as that in the first embodiment and is easily understood, so a description thereof will be omitted.

(本発明の効果) 形状記憶合金で作つた温度応動素子を弁口に対
して出口側に配置したので、形状記憶合金の最高
使用温度以上に加熱されることがない。従つて、
析出現象や時効効果が起こらないので、性能が劣
悪にならない。寿命が長くなる。
(Effects of the Invention) Since the temperature-responsive element made of a shape memory alloy is placed on the outlet side of the valve opening, it will not be heated above the maximum operating temperature of the shape memory alloy. Therefore,
Since precipitation phenomena and aging effects do not occur, performance does not deteriorate. Longer lifespan.

弁体を弁口に対して出口側に配置すれば、開弁
に流体の圧力を利用できるのでバイアス・スプリ
ングを省略できる。また、形状記憶合金の性能が
省悪となつた場合でも、弁口を塞がない。
If the valve body is placed on the outlet side with respect to the valve port, the pressure of the fluid can be used to open the valve, so the bias spring can be omitted. Furthermore, even if the performance of the shape memory alloy deteriorates, the valve port will not be blocked.

弁室内に液体を溜めて温度応動素子を浸ける様
にしたので、閉弁時にゆつくりと冷却される。従
つて、温度応動素子を弁口の出口側に配置して
も、形状記憶合金のマルテンサイト変態と逆変態
のサイクルの短縮を防止できる。寿命が長くな
る。
Since liquid is stored in the valve chamber and the temperature-responsive element is immersed in it, it is slowly cooled down when the valve is closed. Therefore, even if the temperature-responsive element is disposed on the outlet side of the valve port, the cycle of martensitic transformation and reverse transformation of the shape memory alloy can be prevented from being shortened. Longer lifespan.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の温度応動弁の実施例の断面
図、第2図は第1図のA―A線部断面図、第3図
から第5図はそれぞれその他の実施例の断面図で
ある。 2,23,52,72:入口、3,24,5
3,73:出口、4,54,74:弁室、5,2
9,55,75:弁体、7,31,57,77:
形状記憶合金で作つた温度応動素子、8,30,
58:隔壁部材、10,28,60,80:弁
口、56:バイアス・スプリング。
FIG. 1 is a sectional view of an embodiment of the temperature-responsive valve of the present invention, FIG. 2 is a sectional view taken along line AA in FIG. 1, and FIGS. 3 to 5 are sectional views of other embodiments. be. 2, 23, 52, 72: Entrance, 3, 24, 5
3, 73: Outlet, 4, 54, 74: Valve chamber, 5, 2
9, 55, 75: Valve body, 7, 31, 57, 77:
Temperature-responsive element made of shape memory alloy, 8, 30,
58: Partition member, 10, 28, 60, 80: Valve port, 56: Bias spring.

Claims (1)

【特許請求の範囲】 1 弁ケーシングで入口と、入口の流体が弁口を
通して流入する弁室と、弁室の流体が流出する出
口とを形成し、弁口の開口部分に弁座を形成し、
弁座に着座して弁口を塞ぎ弁座から離れて弁口を
開く様に弁体を配置し、所定温度以下に冷却され
ると母相からマルテンサイト相に熱弾性型マルテ
ンサイト変態をし所定温度以上に加熱されるとそ
の逆変態をする形状記憶合金で作つた温度応動素
子を弁室内に配置し、温度応動素子が弁室内の流
体の温度に応じて変態し弁体を駆動して所定温度
以上になると弁体を弁座に着座させて弁口を塞ぐ
様にし、弁室内に液体を溜めて温度応動素子が液
体中に浸かる様にしたことを特徴とする温度応動
弁。 2 弁室と出口との間に小さな孔を多数あけた隔
壁を設け、弁口が塞がれているときに液体を弁室
内に溜めておく様にしたことを特徴とする特許請
求の範囲第2項記載の温度応動弁。 3 出口を弁室の上部に開口させ、弁室内に液体
を溜め、その液体溜りに温度応動素子が浸かる様
にしたことを特徴とする特許請求の範囲第2項記
載の温度応動弁。
[Scope of Claims] 1 The valve casing forms an inlet, a valve chamber into which fluid from the inlet flows in through the valve port, and an outlet from which fluid from the valve chamber flows out, and a valve seat is formed at the opening of the valve port. ,
The valve body is arranged so that it seats on the valve seat and closes the valve port, and moves away from the valve seat to open the valve port. When the valve body is cooled to a predetermined temperature or less, the mother phase undergoes thermoelastic martensitic transformation to the martensitic phase. A temperature-responsive element made of a shape memory alloy that undergoes reverse transformation when heated above a predetermined temperature is placed inside the valve chamber, and the temperature-responsive element transforms according to the temperature of the fluid in the valve chamber and drives the valve body. A temperature-responsive valve characterized in that when the temperature exceeds a predetermined temperature, a valve body is seated on a valve seat to close a valve port, and a liquid is stored in a valve chamber so that a temperature-responsive element is immersed in the liquid. 2. Claim No. 2 characterized in that a partition wall with many small holes is provided between the valve chamber and the outlet, so that liquid is retained in the valve chamber when the valve port is closed. Temperature-responsive valve according to item 2. 3. The temperature-responsive valve according to claim 2, wherein the outlet is opened at the upper part of the valve chamber, liquid is stored in the valve chamber, and the temperature-responsive element is immersed in the liquid reservoir.
JP7193382A 1982-04-28 1982-04-28 Temperature-responsive valve Granted JPS58187672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7193382A JPS58187672A (en) 1982-04-28 1982-04-28 Temperature-responsive valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7193382A JPS58187672A (en) 1982-04-28 1982-04-28 Temperature-responsive valve

Publications (2)

Publication Number Publication Date
JPS58187672A JPS58187672A (en) 1983-11-01
JPH0241679B2 true JPH0241679B2 (en) 1990-09-18

Family

ID=13474808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7193382A Granted JPS58187672A (en) 1982-04-28 1982-04-28 Temperature-responsive valve

Country Status (1)

Country Link
JP (1) JPS58187672A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310215U (en) * 1986-07-07 1988-01-23
US5655892A (en) * 1996-08-21 1997-08-12 Walbro Corporation Thermally actuated fuel pump vapor vent valve
KR101715805B1 (en) * 2016-06-09 2017-03-15 (주)파워레인 Drain valve for sprinkler pipe

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150680A (en) * 1980-04-23 1981-11-21 Tlv Co Ltd Temperature response valve
JPS5728963B2 (en) * 1980-10-20 1982-06-19

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144061Y2 (en) * 1980-07-25 1986-12-12

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150680A (en) * 1980-04-23 1981-11-21 Tlv Co Ltd Temperature response valve
JPS5728963B2 (en) * 1980-10-20 1982-06-19

Also Published As

Publication number Publication date
JPS58187672A (en) 1983-11-01

Similar Documents

Publication Publication Date Title
JPH0241679B2 (en)
JPS5824692Y2 (en) thermo valve
JPS6141498Y2 (en)
JPH0127311B2 (en)
US1050225A (en) Valve.
JPS5911239Y2 (en) thermo valve
JPH0625750Y2 (en) Bypass valve
JPH0514066Y2 (en)
JPH0325485Y2 (en)
JPS5910493Y2 (en) Freeze prevention device for liquid supply pipelines
JP4334690B2 (en) Float type drain trap
JPS6054553B2 (en) Float type steam trap
JPH1089536A (en) Temperature response valve
JPH1089533A (en) Temperature response valve
JPH07159084A (en) Operation method for heat exchanger
JPH073108Y2 (en) Temperature control valve for constant temperature bath
JPH094755A (en) Temperature-sensitive valve
JP2000205492A (en) Thermally actuated steam trap
JP3355388B2 (en) Thermo-responsive steam trap
JPS595261Y2 (en) thermo valve
JPH0130040B2 (en)
JP2741319B2 (en) Thermo-responsive steam trap
JP2764227B2 (en) Free float steam trap
JP2003207098A (en) Thermally-actuated steam trap
JP3509956B2 (en) Thermo-responsive steam trap