JP2009220418A - Tire forming mold and tire manufacturing method - Google Patents

Tire forming mold and tire manufacturing method Download PDF

Info

Publication number
JP2009220418A
JP2009220418A JP2008067728A JP2008067728A JP2009220418A JP 2009220418 A JP2009220418 A JP 2009220418A JP 2008067728 A JP2008067728 A JP 2008067728A JP 2008067728 A JP2008067728 A JP 2008067728A JP 2009220418 A JP2009220418 A JP 2009220418A
Authority
JP
Japan
Prior art keywords
tire
tread
mold
embedded
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008067728A
Other languages
Japanese (ja)
Other versions
JP5020133B2 (en
Inventor
Nobuyuki Kamata
信行 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2008067728A priority Critical patent/JP5020133B2/en
Publication of JP2009220418A publication Critical patent/JP2009220418A/en
Application granted granted Critical
Publication of JP5020133B2 publication Critical patent/JP5020133B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/0601Vulcanising tyres; Vulcanising presses for tyres
    • B29D30/0662Accessories, details or auxiliary operations
    • B29D2030/0675Controlling the vulcanization processes
    • B29D2030/0677Controlling temperature differences

Landscapes

  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tire forming mold which can change hardness within a micro range such as defined by a groove edge part or a sipe edge part, and a tire manufacturing method. <P>SOLUTION: This tire forming mold is equipped with a tread mold part 1 for molding the tread face of a tire, a cone ring 24 for heating the tread mold part 1 from the back and an imbedded member 6 which is imbedded in the tread mold part 1 and has the end part 6a projecting from the molding face 1a of the tread mold part 1. In addition, the tread mold part 1 has an inside member 11 including the molding face 1a, and a back member 12 arranged on the back face side of the inside member 11. Further, the imbedded member 6 has a penetration part 6b which penetrates the back member 12, and is formed of a material with a different heat conductivity from the inside member 11. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、タイヤを加硫成形するためのタイヤ成形型とタイヤ製造方法に関する。   The present invention relates to a tire mold and a tire manufacturing method for vulcanizing a tire.

通常、空気入りタイヤのトレッド面には、周方向溝や横溝などの溝部と、その溝部により区分されたブロックやリブなどの陸部とが設けられ、要求されるタイヤ性能や使用条件に応じた各種のトレッドパターンが形成される。また、冬用タイヤとして有用なスタッドレスタイヤでは、陸部にサイプと呼ばれる切り込みを形成しており、このサイプによるエッジ効果によって、摩擦係数が低いアイス路面での走行性能を高めている。   Normally, the tread surface of a pneumatic tire is provided with groove portions such as circumferential grooves and lateral grooves, and land portions such as blocks and ribs divided by the groove portions, depending on the required tire performance and use conditions. Various tread patterns are formed. In addition, in a studless tire useful as a winter tire, a cut called a sipe is formed in a land portion, and an edge effect by the sipe enhances running performance on an ice road surface having a low friction coefficient.

図8に示したブロック90は陸部の一例であり、その周囲を溝部91に取り囲まれている。この例では、2本のサイプ92が、ブロック90の表面で直線状に延びて並設されている。溝部91の縁となるグルーブエッジ部GE、及び、サイプ92の縁となるサイプエッジ部SEは、ブロック90の倒れ込み等によりエッジ効果を奏する箇所であり、タイヤの制動性能や耐偏摩耗性能に及ぼす影響が大きい。   The block 90 shown in FIG. 8 is an example of a land portion, and its periphery is surrounded by a groove portion 91. In this example, two sipes 92 are arranged in a straight line on the surface of the block 90. The groove edge portion GE serving as the edge of the groove portion 91 and the sipe edge portion SE serving as the edge of the sipe 92 are places where an edge effect is exerted due to the collapse of the block 90 or the like, and influences on the braking performance and uneven wear resistance performance of the tire. Is big.

ところで、下記特許文献1には、グルーブエッジ部の硬度を局部的に高めたタイヤが記載されている。更に、下記特許文献2には、グルーブエッジ部だけでなく、サイプエッジ部の硬度をも局部的に高めたタイヤが記載されている。これらのタイヤは、グルーブエッジ部やサイプエッジ部によるエッジ効果を高めて、アイス路面における制動性能(アイス制動性能)を向上することを企図したものである。   By the way, the following Patent Document 1 describes a tire in which the hardness of the groove edge portion is locally increased. Further, Patent Document 2 described below describes a tire in which the hardness of the sipe edge portion as well as the groove edge portion is locally increased. These tires are intended to enhance the edge effect by the groove edge portion and the sipe edge portion and improve the braking performance (ice braking performance) on the ice road surface.

しかし、下記特許文献1,2記載のタイヤは、発泡ゴムを主体とする特殊なトレッド構造を有するものであり、その製造方法は、発泡ゴムからなるトレッドゴムの表面に無発泡ゴムを薄膜状に配設し、その上からトレッドパターンを形成するというものである。これらのタイヤは、グルーブエッジ部やサイプエッジ部を異配合ゴムにより形成しているに過ぎず、製作上の問題があるほか、界面剥離などの不具合も懸念される。   However, the tires described in the following Patent Documents 1 and 2 have a special tread structure mainly composed of foam rubber, and the manufacturing method thereof includes forming a non-foam rubber into a thin film on the surface of the tread rubber made of foam rubber. It is arranged and a tread pattern is formed thereon. In these tires, the groove edge part and the sipe edge part are merely formed of different blended rubbers, and there are problems in manufacturing and there are concerns about problems such as interface peeling.

このような異配合ゴムを利用する場合を除き、グルーブエッジ部又はサイプエッジ部の硬度を局部的に異ならせたタイヤ、並びに、そのようなタイヤを成形できるタイヤ成形型及びタイヤ製造方法は、本発明者が知る限りにおいて本出願時までに存在しない。   Except for the case of using such a different compound rubber, a tire in which the hardness of the groove edge portion or the sipe edge portion is locally different, and a tire mold and a tire manufacturing method capable of forming such a tire are described in the present invention. As far as the person knows, it does not exist by the time of this application.

下記特許文献3には、タイヤのトレッド面を成形する型部に加熱手段又は冷却手段を設けて、ブロックの蹴り出し側と踏み込み側とに剛性差を付けるタイヤ成形型が開示されている。しかし、このタイヤ成形型は、トレッド面から離れた位置に設けた管路やヒーターによって、トレッド面を間接的に加熱又は冷却するものであるため、トレッド面の近傍だけで剛性差を生じ易く、その剛性差を生じた部分が摩耗により早期に消滅してしまう。   Patent Document 3 below discloses a tire molding die in which a heating unit or a cooling unit is provided in a mold part for molding a tread surface of a tire so that a rigidity difference is provided between a kicking side and a stepping side of a block. However, since this tire molding die is for heating or cooling the tread surface indirectly by a pipe line or a heater provided at a position away from the tread surface, a rigidity difference is easily generated only in the vicinity of the tread surface, The portion where the difference in rigidity is caused disappears early due to wear.

一方、下記特許文献3に記載のタイヤ成形型を用いて、ブロックの蹴り出し側と踏み込み側とに剛性差を付けるに際し、ある程度の広がりを持った領域を対象として、管路やヒーターによる加熱や冷却を行うことも考えられる。しかし、その場合には、剛性差を生じる部分が深く形成されるものの、グルーブエッジ部やサイプエッジ部といった微小な範囲での剛性変化は得られない。
特開平8−175116号公報 特開平5−147412号公報 特開平11−165320号公報
On the other hand, using the tire molding die described in Patent Document 3 below, when applying a rigidity difference between the kicking side and the stepping side of the block, heating with a pipe line or a heater is performed for a region having a certain extent. Cooling is also conceivable. However, in this case, although the portion causing the rigidity difference is formed deeply, the change in rigidity in a minute range such as the groove edge portion or the sipe edge portion cannot be obtained.
JP-A-8-175116 Japanese Patent Laid-Open No. 5-147412 JP 11-165320 A

本発明は上記実情に鑑みてなされたものであり、その目的は、グルーブエッジ部やサイプエッジ部といった微小な範囲で硬度を変化させることができるタイヤ成形型及びタイヤ製造方法を提供することにある。   This invention is made | formed in view of the said situation, The objective is to provide the tire shaping | molding die and tire manufacturing method which can change hardness in a micro range, such as a groove edge part and a sipe edge part.

上記目的は、下記の如き本発明により達成できる。即ち、本発明に係るタイヤ成形型は、タイヤのトレッド面を成形するトレッド型部と、前記トレッド型部を背面側から加熱する加熱手段と、前記トレッド型部に埋め込まれて前記トレッド型部の成形面から端部が突出した埋込部材とを備え、前記トレッド型部が、前記成形面を含む内側部材と、前記内側部材の背面側に配置されたバック部材とを有し、前記埋込部材が、前記バック部材に侵入した侵入部を有するとともに、前記内側部材とは熱伝導率が異なる素材により形成されているものである。   The above object can be achieved by the present invention as described below. That is, the tire mold according to the present invention includes a tread mold part that molds a tread surface of a tire, a heating unit that heats the tread mold part from the back side, and a tread mold part embedded in the tread mold part. An embedding member having an end projecting from a molding surface, and the tread mold portion includes an inner member including the molding surface and a back member disposed on the back side of the inner member, The member has an intrusion portion that has invaded the back member, and is formed of a material having a thermal conductivity different from that of the inner member.

このタイヤ成形型では、トレッド型部が、成形面を含む内側部材とその背面側に配置されたバック部材とを有することから、まずはバック部材が高温となり、その熱が内側部材を介してタイヤのトレッド面に伝達される。また、上記の如き埋込部材を備えることにより、バック部材の熱を内側部材を介してトレッド面に伝達しつつ、内側部材と埋込部材との熱伝導の差を利用して、埋込部材の突出した端部の温度を成形面の温度と異ならせることができる。このため、埋込部材の突出した端部周辺のゴムの硬度を局部的に変化させることができ、延いてはグルーブエッジ部やサイプエッジ部といった微小な範囲で硬度を変化させてタイヤ性能を改善することができる。   In this tire mold, since the tread mold portion includes the inner member including the molding surface and the back member disposed on the back side thereof, the back member first becomes high temperature, and the heat of the tire passes through the inner member. It is transmitted to the tread surface. In addition, by providing the embedded member as described above, the heat of the back member is transmitted to the tread surface via the inner member, and the embedded member is utilized by utilizing the difference in heat conduction between the inner member and the embedded member. The temperature of the protruding end portion of can be made different from the temperature of the molding surface. For this reason, the hardness of the rubber around the protruding end of the embedded member can be locally changed, and the tire performance is improved by changing the hardness within a minute range such as the groove edge portion and the sipe edge portion. be able to.

また、本発明のタイヤ成形型によれば、硬度が変化する部分を、埋込部材の突出した端部に沿って深く形成することが可能であり、タイヤ性能の改善効果を摩耗末期まで良好に持続できる。しかも、グルーブエッジ部やサイプエッジ部を異配合ゴムにより形成する必要がないため、通常の未加硫タイヤを使用することができ、硬度が異なる箇所で界面剥離が起こる心配もない。   Further, according to the tire molding die of the present invention, it is possible to deeply form the portion where the hardness changes along the protruding end portion of the embedded member, and the improvement effect of the tire performance is improved until the end of wear. It can last. And since it is not necessary to form a groove edge part and a sipe edge part with different compounded rubber, a normal unvulcanized tire can be used and there is no fear that interface peeling will occur in a place where hardness differs.

本発明に係るタイヤ製造方法は、タイヤ成形型に未加硫のタイヤをセットした後、そのタイヤを加熱するとともにトレッド面にトレッド型部の成形面を押し当てて加硫成形する工程を含むタイヤ製造方法において、前記トレッド型部が、前記成形面を含む内側部材と、前記内側部材の背面側に配置されたバック部材とを有し、前記トレッド型部に埋め込まれて前記成形面から端部が突出した埋込部材が、前記バック部材に侵入した侵入部を有するとともに、前記内側部材とは熱伝導率が異なる素材により形成されているタイヤ成形型を用いて、タイヤを加硫成形する際に、前記トレッド型部を背面側から加熱して前記バック部材の熱を前記内側部材を介してトレッド面に伝達しつつ、前記内側部材と前記埋込部材との熱伝導の差を利用して、前記埋込部材の突出した端部の温度を前記成形面の温度と異ならせることを特徴とする。   The tire manufacturing method according to the present invention includes a step of setting an unvulcanized tire in a tire mold and then heating the tire and pressing the molding surface of the tread mold portion against the tread surface to perform vulcanization molding. In the manufacturing method, the tread mold portion includes an inner member including the molding surface and a back member disposed on the back side of the inner member, and is embedded in the tread mold portion to end from the molding surface. When the embedded member from which the protrusion protrudes has a penetrating portion that has penetrated into the back member, and the tire is vulcanized and molded using a tire mold that is formed of a material having a thermal conductivity different from that of the inner member. Further, the difference between the heat conduction between the inner member and the embedded member is utilized while heating the tread mold part from the back side and transferring the heat of the back member to the tread surface through the inner member. , The temperature of the protruding ends of the serial embedded members and wherein varying the temperature of the molding surface.

このタイヤ製造方法では、タイヤを加硫成形するに際し、トレッド型部の内側部材とそのトレッド型部に埋め込まれた埋込部材との熱伝導の差を利用して、埋込部材の突出した端部の温度を成形面の温度と異ならせることができるため、埋込部材の突出した端部周辺のゴムの硬度を局部的に変化させることができ、延いてはグルーブエッジ部やサイプエッジ部といった微小な範囲で硬度を変化させてタイヤ性能を改善することができる。   In this tire manufacturing method, when the tire is vulcanized, the protruding end of the embedded member is utilized by utilizing the difference in heat conduction between the inner member of the tread mold portion and the embedded member embedded in the tread mold portion. Since the temperature of the part can be made different from the temperature of the molding surface, the hardness of the rubber around the protruding end of the embedding member can be locally changed. The tire performance can be improved by changing the hardness within a certain range.

また、本発明のタイヤ製造方法によれば、硬度が変化する部分を、埋込部材の突出した端部に沿って深く形成することが可能であり、タイヤ性能の改善効果を摩耗末期まで良好に持続できる。しかも、グルーブエッジ部やサイプエッジ部を異配合ゴムにより形成する必要がないため、通常の未加硫タイヤを使用することができ、硬度が異なる箇所で界面剥離が起こる心配もない。   Further, according to the tire manufacturing method of the present invention, it is possible to deeply form the portion where the hardness changes along the protruding end portion of the embedded member, and the improvement effect of the tire performance is improved until the end of wear. It can last. And since it is not necessary to form a groove edge part and a sipe edge part with different compounded rubber, a normal unvulcanized tire can be used and there is no fear that interface peeling will occur in a place where hardness differs.

本発明に係るタイヤ成形型及びタイヤ製造方法では、前記埋込部材の突出した端部が、トレッド面に溝部を形成するための骨部、又は、陸部にサイプを形成するためのブレードを構成することができる。   In the tire molding die and the tire manufacturing method according to the present invention, the protruding end portion of the embedded member constitutes a bone portion for forming a groove portion on the tread surface or a blade for forming a sipe on the land portion. can do.

埋込部材の突出した端部が骨部を構成する場合にはグルーブエッジ部の硬度を、ブレードを構成する場合にはサイプエッジ部の硬度を、それぞれ局部的に変化させることが可能である。その結果、例えばグルーブエッジ部やサイプエッジ部の硬度を局部的に高めて剛性を上げることで、ブロックの稜線やサイプによるエッジ効果を高めてアイス制動性能を向上することができ、冬用タイヤとして特に有用となる。   It is possible to locally change the hardness of the groove edge portion when the protruding end portion of the embedding member constitutes a bone portion, and the hardness of the sipe edge portion when it constitutes a blade. As a result, for example, by increasing the hardness of the groove edge part and sipe edge part locally to increase the rigidity, the edge effect due to the ridge line of the block and the sipe can be improved and the ice braking performance can be improved. Useful.

また、ドライ路面での走行時においては、陸部の中央部よりもグルーブエッジ部の接地圧が高く、それに起因して接地圧が不均一化する傾向にある。そのため、グルーブエッジ部の硬度を局部的に低くして剛性を下げることで、グルーブエッジ部での接地圧を低めて陸部における接地圧を均一化し、ドライ路面における制動性能や耐偏摩耗性能を向上することができ、夏用タイヤとして特に有用となる。   Further, when traveling on a dry road surface, the contact pressure at the groove edge portion is higher than that at the central portion of the land portion, and as a result, the contact pressure tends to be uneven. Therefore, by lowering the rigidity locally by lowering the hardness of the groove edge part, the contact pressure at the groove edge part is lowered and the contact pressure at the land part is made uniform, and the braking performance and uneven wear resistance performance on the dry road surface are improved. It can be improved and is particularly useful as a summer tire.

以下、本発明の実施の形態について図面を参照しながら説明する。図1は、本発明に係るタイヤ成形型の一例を概略的に示す縦断面図であり、型締め状態を示している。図1において、タイヤ(不図示)はタイヤ軸方向が上下になるようにセットされ、図1右側がタイヤ径方向内側、図1左側がタイヤ径方向外側となる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view schematically showing an example of a tire mold according to the present invention, showing a clamped state. In FIG. 1, the tire (not shown) is set so that the tire axial direction is up and down, the right side in FIG. 1 is the inside in the tire radial direction, and the left side in FIG. 1 is the outside in the tire radial direction.

このタイヤ成形型20(以下、単に「成形型20」と称する場合がある。)は、タイヤのトレッド面を成形する環状のトレッド型部1と、タイヤのサイドウォール部外面を成形する一対のサイド型部2,3と、サイド型部2,3のタイヤ径方向内側に配された一対のビードリング4とを備える。成形型20にセットされたタイヤは、ビードリング4によってビード部を固定された状態となる。   The tire mold 20 (hereinafter sometimes simply referred to as “mold 20”) includes an annular tread mold portion 1 that molds a tread surface of a tire and a pair of sides that mold an outer surface of a sidewall portion of the tire. The mold parts 2 and 3 and a pair of bead rings 4 disposed on the inner side in the tire radial direction of the side mold parts 2 and 3 are provided. The tire set in the mold 20 is in a state where the bead portion is fixed by the bead ring 4.

トレッド型部1の内周側となる成形面1aには、タイヤのトレッド面に溝部を形成するための骨部と、その骨部によって区分された、陸部を形成するための凹所とが設けられている。また、トレッド面の陸部にサイプを形成するためのブレードが、必要に応じて凹所に配設される。加硫成形時には、未加硫タイヤのトレッド面に成形面1aが押し当てられ、骨部と凹所に対応したトレッドパターンが形成される。   The molding surface 1a on the inner peripheral side of the tread mold portion 1 has a bone portion for forming a groove portion in the tread surface of the tire and a recess for forming a land portion divided by the bone portion. Is provided. A blade for forming a sipe on the land portion of the tread surface is disposed in the recess as necessary. At the time of vulcanization molding, the molding surface 1a is pressed against the tread surface of the unvulcanized tire, and a tread pattern corresponding to the bone portion and the recess is formed.

本実施形態の成形型20は、所謂セグメンテッドモールドであり、トレッド型部1はタイヤ周方向に分割されたセクターの組み合わせからなる。すなわち、トレッド型部1は、型締め時には各セクターが互いに寄り集まって連続した円環状をなす状態となり、型開き時には各セクターがタイヤ径方向外側に変位して互いに離間した状態となる。   The mold 20 of the present embodiment is a so-called segmented mold, and the tread mold portion 1 is composed of a combination of sectors divided in the tire circumferential direction. That is, the tread mold portion 1 is in a state in which the sectors are gathered together to form a continuous annular shape when the mold is clamped, and is in a state of being separated from each other by being displaced outward in the tire radial direction when the mold is opened.

トレッド型部1は、成形面1aを含む内側部材11と、その内側部材11の背面側に配置されたバック部材12とを有する。内側部材11は、図2(a)に示すように一体的に構成してもよいが、図2(b)に示すような複数のピースの組み合わせにより構成することもできる。内側部材11は、バック部材12の内周側に嵌め込まれ、ボルトやストッパー等により脱落しないように固定される。なお、図2では成形面1aの凹凸形状(骨部と凹所)について記載を省略している。   The tread mold portion 1 includes an inner member 11 including a molding surface 1 a and a back member 12 disposed on the back side of the inner member 11. The inner member 11 may be integrally formed as shown in FIG. 2A, but may be constituted by a combination of a plurality of pieces as shown in FIG. The inner member 11 is fitted on the inner peripheral side of the back member 12 and is fixed so as not to drop off by a bolt, a stopper, or the like. In addition, in FIG. 2, description about the uneven | corrugated shape (bone part and a recess) of the molding surface 1a is abbreviate | omitted.

内側部材11の素材としては、アルミニウムが例示される。このアルミニウムとは、純アルミ系の素材のみならず、アルミニウム合金を含む概念であり、例えばAl−Cu系、Al−Mg系、Al−Mg−Si系、Al−Zn−Mg系、Al−Mn系、Al−Si系が挙げられる。一方、バック部材12の素材としては、内側部材11とは異なる素材が好ましく採用され、スチール等の鉄系材料が例示される。   An example of the material of the inner member 11 is aluminum. This aluminum is a concept that includes not only pure aluminum materials but also aluminum alloys. For example, Al-Cu, Al-Mg, Al-Mg-Si, Al-Zn-Mg, Al-Mn System and Al-Si system. On the other hand, as the material of the back member 12, a material different from the inner member 11 is preferably adopted, and an iron-based material such as steel is exemplified.

トレッド型部1は、加熱手段としてのコーンリング24によって外周を取り囲まれている。コーンリング24には通路26が設けられていて、その内部を加熱流体が流動するように構成されている。加熱流体としては、スチームやガス、温水などが例示される。この加熱流体の流動によって、トレッド型部1が背面側から所定の温度に加熱される。   The tread mold 1 is surrounded by a cone ring 24 as a heating means. The cone ring 24 is provided with a passage 26 so that the heating fluid flows through the passage 26. Examples of the heating fluid include steam, gas, and hot water. By the flow of the heating fluid, the tread mold portion 1 is heated to a predetermined temperature from the back side.

図示を省略しているが、サイド型部2の下方には下側プラテンが配設され、サイド型部3の上方には上側プラテンが配設されている。これらのプラテンには、それぞれ内部に通路が形成され、コーンリング24と同様に加熱流体が流動するように構成されている。この加熱流体の流動によって、サイド型部2,3が所定の温度に加熱される。   Although not shown, a lower platen is disposed below the side mold part 2, and an upper platen is disposed above the side mold part 3. Each of these platens has a passage formed therein, and is configured so that the heated fluid flows in the same manner as the cone ring 24. The side mold parts 2 and 3 are heated to a predetermined temperature by the flow of the heating fluid.

トレッド型部1の背面側となる外周面には、セクターごとにコンテナ21が取り付けられている。コンテナ21は、昇降自在に構成されたサイドプレート23の下面に、タイヤ径方向に沿って摺動可能に取り付けられている。コーンリング24は、コンテナ21の外側斜面に設けられたレール25に嵌合されており、サイドプレート23に対して相対的に昇降自在に構成されている。   A container 21 is attached to each outer peripheral surface on the back side of the tread mold 1 for each sector. The container 21 is slidably attached along the tire radial direction to the lower surface of a side plate 23 configured to be movable up and down. The cone ring 24 is fitted to a rail 25 provided on the outer slope of the container 21, and is configured to be movable up and down relatively with respect to the side plate 23.

図1に示した型締め状態において、コーンリング24を上昇させてコンテナ21をタイヤ径方向外側に移動させると、トレッド型部1が拡径してサイド型部2,3から離間し、更にサイドプレート23及びコンテナ21を上昇させると、トレッド型部1とサイド型部3が持ち上がって型開き状態に移行する。型開き状態から型締め状態への移行は、上記動作を逆に行えばよい。   In the mold clamping state shown in FIG. 1, when the cone ring 24 is raised and the container 21 is moved outward in the tire radial direction, the tread mold part 1 expands and is separated from the side mold parts 2 and 3, and further the side When the plate 23 and the container 21 are raised, the tread mold part 1 and the side mold part 3 are lifted to shift to the mold open state. The transition from the mold opening state to the mold clamping state may be performed by reversing the above operation.

図示を省略しているが、成形型20の内部にはブラダーと呼ばれるゴムバッグが設置されている。加硫成形時には、ブラダーをタイヤ径方向外側に膨張させることにより、タイヤのトレッド面が成形面1aに押し当てられる。なお、ブラダーに代えて剛性コアを使用することも可能である。   Although not shown, a rubber bag called a bladder is installed inside the mold 20. At the time of vulcanization molding, the tread surface of the tire is pressed against the molding surface 1a by expanding the bladder outward in the tire radial direction. It is also possible to use a rigid core instead of the bladder.

図1に示すように、この成形型20は、トレッド型部1に埋め込まれてトレッド型部1の成形面1aから端部6aが突出した埋込部材6を備える。この端部6aは、タイヤのトレッド面に押し当たって凹みを形成する部分となる。したがって、埋込部材6の突出した端部6aは、トレッド面に溝部を形成するための骨部、又は、トレッド面の陸部にサイプを形成するためのブレードを構成することができる。   As shown in FIG. 1, the molding die 20 includes an embedding member 6 embedded in the tread mold portion 1 and having an end portion 6 a protruding from the molding surface 1 a of the tread mold portion 1. The end portion 6a is a portion that presses against the tread surface of the tire to form a recess. Therefore, the protruding end portion 6a of the embedded member 6 can constitute a bone portion for forming a groove portion on the tread surface or a blade for forming a sipe on the land portion of the tread surface.

埋込部材6は、バック部材12に侵入する侵入部6bを有する。本実施形態では、埋込部材6の端部6aとは反対側となる端部がバック部材12にまで入り込んでおり、この端部が侵入部6bとなる。また、埋込部材6は、内側部材11とは熱伝導率が異なる素材により形成されている。このため、コーンリング24により加熱されて高温となったバック部材12から、内側部材11と埋込部材6とにそれぞれ熱が供給されるものの、その熱の伝わり易さは異なったものとなる。   The embedded member 6 has an intrusion portion 6 b that enters the back member 12. In the present embodiment, the end opposite to the end 6a of the embedded member 6 enters the back member 12, and this end becomes the intrusion 6b. The embedded member 6 is made of a material having a thermal conductivity different from that of the inner member 11. For this reason, although heat is supplied from the back member 12 heated by the cone ring 24 to the inner member 11 and the embedded member 6, the heat is easily transmitted differently.

図3は、トレッド型部1の断面を概念的に示した要部拡大図である。この図では1本の骨部61と1枚のブレード62とを代表的に示しているが、実際の成形面1aには複数本の骨部と複数枚のブレードが複雑に配設される。   FIG. 3 is an essential part enlarged view conceptually showing a cross section of the tread mold part 1. In this figure, one bone portion 61 and one blade 62 are representatively shown, but a plurality of bone portions and a plurality of blades are arranged in a complex manner on the actual molding surface 1a.

図3に示すように、骨部61及びブレード62は、いずれも埋込部材6の突出した端部6aにより構成されている。すなわち、トレッド型部1に埋め込まれた埋込部材6A,6Bは、その端部を成形面1aから突出させていて、その突出した端部が骨部61やブレード62として供される。また、埋込部材6A,6Bは、骨部61又はブレード62を構成する端部とは反対側の端部63,64をバック部材12に入り込ませていて、これらが侵入部6bを構成する。   As shown in FIG. 3, each of the bone portion 61 and the blade 62 is constituted by the protruding end portion 6 a of the embedded member 6. That is, the embedded members 6 </ b> A and 6 </ b> B embedded in the tread mold 1 have their end portions protruding from the molding surface 1 a, and the protruding end portions serve as the bone portion 61 and the blade 62. Further, the embedded members 6A and 6B have end portions 63 and 64 opposite to the end portions constituting the bone portion 61 or the blade 62 inserted into the back member 12, and these constitute the intrusion portion 6b.

図4は、従来の成形型が備えるトレッド型部の断面を概念的に示した要部拡大図である。図4に示すように、従来の成形型が備えるトレッド型部95では、骨部96が成形面98と一体的に設けられていたり、ブレード97が数ミリ程度の深さで成形面98に埋設されていたりする。そのため、トレッド型部95を所定の温度に加熱することによって、骨部96、ブレード97及び成形面98の温度は同等となる。   FIG. 4 is an enlarged view of a main part conceptually showing a cross section of a tread mold part included in a conventional mold. As shown in FIG. 4, in the tread mold part 95 provided in the conventional mold, the bone part 96 is provided integrally with the molding surface 98, or the blade 97 is embedded in the molding surface 98 at a depth of about several millimeters. Have been. Therefore, by heating the tread mold portion 95 to a predetermined temperature, the temperatures of the bone portion 96, the blade 97, and the molding surface 98 become equal.

本発明において、埋込部材6の素材は、内側部材11と熱伝導率が異なるものであれば特に限られない。埋込部材6の熱伝導率を内側部材11よりも高くするか低くするかについては、改善すべきタイヤ性能に応じて適宜に選択すればよく、詳しくは後述する。また、埋込部材6と内側部材11との間に断熱材を介在させて、それらの間での熱伝達を抑えることは好適である。   In the present invention, the material of the embedded member 6 is not particularly limited as long as it has a thermal conductivity different from that of the inner member 11. Whether to set the thermal conductivity of the embedded member 6 higher or lower than that of the inner member 11 may be appropriately selected according to the tire performance to be improved, and will be described in detail later. In addition, it is preferable to interpose a heat insulating material between the embedded member 6 and the inner member 11 to suppress heat transfer between them.

本実施形態では、内側部材11をアルミニウムで形成し、バック部材12をスチールで形成し、埋込部材6を内側部材11よりも熱伝導率が低い素材(例えばSUS)で形成した例を示す。参考までに、室温付近での熱伝導率として、アルミニウムは236、鉄は84、銅は390であることが知られている(単位はW/(m・K))。   In the present embodiment, an example is shown in which the inner member 11 is formed of aluminum, the back member 12 is formed of steel, and the embedded member 6 is formed of a material (for example, SUS) having a lower thermal conductivity than the inner member 11. For reference, it is known that the thermal conductivity near room temperature is 236 for aluminum, 84 for iron, and 390 for copper (unit: W / (m · K)).

本発明のタイヤ成形型では、トレッド型部やサイド型部の形状や移動機構、骨部や凹所、ブレードの形状、ブレードの有無などは、用途や条件に応じて適宜に変更することが可能である。また、本発明は、トレッド型部がタイヤ幅方向に分割された所謂2ピースモールドであっても適用可能である。   In the tire molding die of the present invention, the shape and moving mechanism of the tread mold part and the side mold part, the bone part and the recess, the shape of the blade, the presence / absence of the blade, and the like can be appropriately changed according to the use and conditions. It is. The present invention can also be applied to a so-called two-piece mold in which the tread mold portion is divided in the tire width direction.

以下、上記の成形型を用いてタイヤを製造する方法について説明する。まずは、成形型20に未加硫のタイヤをセットして型締めする。次に、ブラダーを膨張させて、タイヤのトレッド面を成形面1aに押し当てるとともに、タイヤのサイドウォール部外面をサイド型部2,3の内周面に押し当てる。このとき、骨部61によってトレッド面に溝部が形成され、ブレード62によってトレッド面にサイプが形成される。   Hereinafter, a method for manufacturing a tire using the above mold will be described. First, an unvulcanized tire is set in the mold 20 and clamped. Next, the bladder is inflated so that the tread surface of the tire is pressed against the molding surface 1 a and the outer surface of the sidewall portion of the tire is pressed against the inner peripheral surfaces of the side mold portions 2 and 3. At this time, a groove portion is formed on the tread surface by the bone portion 61, and a sipe is formed on the tread surface by the blade 62.

トレッド型部1及びサイド型部2,3は、それぞれコーンリング24とプラテンによって所定の温度に加熱されており、成形型20内の未加硫タイヤは適切な加硫温度(例えば160〜180℃程度)にて加硫される。トレッド型部1について詳しく言えば、コーンリング24がトレッド型部1を背面側から加熱することで、まずはバック部材12が高温となり、その熱が内側部材11を介してタイヤのトレッド面に伝達され、主にトレッドゴムの加硫に供される。   The tread mold part 1 and the side mold parts 2 and 3 are heated to a predetermined temperature by the cone ring 24 and the platen, respectively, and the unvulcanized tire in the mold 20 has an appropriate vulcanization temperature (for example, 160 to 180 ° C.). Degree). More specifically, the cone ring 24 heats the tread mold part 1 from the back side, so that the back member 12 first becomes high temperature, and the heat is transmitted to the tread surface of the tire via the inner member 11. , Mainly used for vulcanization of tread rubber.

このとき、バック部材12の熱を内側部材11を介してトレッド面に伝達しつつ、内側部材11と埋込部材6との熱伝導の差を利用して、埋込部材6の突出した端部6aの温度を成形面1aの温度と異ならせる。本実施形態では、内側部材11よりも埋込部材6の熱伝導率が低く、内側部材11と比べてバック部材12からの熱が伝わり難いので、端部6aの温度を成形面1aの温度よりも低くできる。   At this time, while the heat of the back member 12 is transmitted to the tread surface via the inner member 11, the projecting end portion of the embedded member 6 is utilized by utilizing the difference in thermal conduction between the inner member 11 and the embedded member 6. The temperature of 6a is made different from the temperature of the molding surface 1a. In this embodiment, since the thermal conductivity of the embedded member 6 is lower than that of the inner member 11 and heat from the back member 12 is less likely to be transmitted as compared to the inner member 11, the temperature of the end portion 6a is set higher than the temperature of the molding surface 1a. Can also be lowered.

このため、埋込部材6の端部6aが骨部61を構成する場合であれば、図5に示すように、トレッド面Trに押し当たった骨部61が溝部81を形成するに際し、骨部61の周辺となる領域Aの温度を他部よりも低くし、その領域Aにおけるゴムの硬度を高くすることができる。その結果、溝部81の縁となるグルーブエッジ部GEの硬度を局部的に高くすることができる。   Therefore, if the end 6a of the embedded member 6 constitutes the bone 61, the bone 61 pressed against the tread surface Tr forms the groove 81 as shown in FIG. The temperature of the area A around 61 can be made lower than the other parts, and the hardness of the rubber in the area A can be increased. As a result, the hardness of the groove edge portion GE serving as the edge of the groove portion 81 can be locally increased.

また、埋込部材6の端部6aがブレード62を構成する場合であれば、図6に示すように、トレッド面Trに押し当たったブレード62がサイプ82を形成するに際し、ブレード62の周辺となる領域Bの温度を他部よりも低くし、その領域Bにおけるゴムの硬度を高くすることができる。その結果、サイプ82の縁となるサイプエッジ部SEの硬度を局部的に高くすることができる。   If the end 6a of the embedded member 6 constitutes the blade 62, as shown in FIG. 6, when the blade 62 pressed against the tread surface Tr forms a sipe 82, Thus, the temperature of the region B can be made lower than that of the other parts, and the hardness of the rubber in the region B can be increased. As a result, the hardness of the sipe edge portion SE that becomes the edge of the sipe 82 can be locally increased.

このようにグルーブエッジ部GEやサイプエッジ部SEの硬度を局部的に高くして剛性を高めることにより、ブロックの稜線やサイプによるエッジ効果を高めて、アイス制動性能を向上することができる。しかも、ゴムの硬度の高い部分を、領域A,Bの如く溝部81又はサイプ82の深さ方向に沿って深く形成できることから、摩耗が進行してもグルーブエッジ部GEやサイプエッジ部SEは常に硬度が高いものとなり、タイヤ性能の改善効果を摩耗末期まで良好に持続することができる。   Thus, by increasing the hardness of the groove edge portion GE and the sipe edge portion SE locally to increase the rigidity, the edge effect due to the ridge line of the block and the sipe can be enhanced, and the ice braking performance can be improved. In addition, since the hard part of the rubber can be formed deeply along the depth direction of the groove 81 or sipe 82 as in the areas A and B, the groove edge part GE and the sipe edge part SE always have hardness even if wear progresses. Therefore, the effect of improving the tire performance can be favorably maintained until the end of wear.

本発明では、成形面1a内の全ての骨部やブレードを埋込部材6の端部6aで構成できるが、成形面1a内の一部の骨部又はブレードに対してだけ適用しても構わない。したがって、例えば横溝を形成する骨部に係る埋込部材だけを冷却してもよく、その場合には、グルーブエッジ部の中でも特に制動性能への寄与が大きい部分に対して集中的に硬度を高められる。また、複数本のサイプが並設された場合にサイプエッジ部の硬度を1本置きに変えるなど、本発明において硬度を変化させる箇所の配置に関しては様々なバリエーションが考えられる。   In the present invention, all the bones and blades in the molding surface 1a can be constituted by the end 6a of the embedding member 6. However, the present invention may be applied only to some bones or blades in the molding surface 1a. Absent. Therefore, for example, only the embedded member related to the bone portion forming the transverse groove may be cooled, and in that case, the hardness is intensively increased especially in the groove edge portion which has a large contribution to the braking performance. It is done. In addition, in the present invention, various variations are conceivable with respect to the arrangement of the places where the hardness is changed, such as changing the hardness of the sipe edge portion every other when a plurality of sipes are arranged in parallel.

ところで、本発明では、埋込部材6を内側部材11よりも熱伝導率が高い素材(例えば銅系材料)で形成し、バック部材12からの熱が内側部材11よりも伝わり易くして、端部6aの温度を成形面1aの温度よりも高めることが可能である。この場合、上記とは逆に、端部6a周辺のゴムの硬度を低くして剛性を下げることができる。その結果、例えば、ドライ路面で接地圧が高くなりがちなグルーブエッジ部GEの剛性を下げ、それによって陸部の接地圧を均一化し、ドライ路面における制動性能や耐偏摩耗性能を向上することができる。   By the way, in the present invention, the embedded member 6 is formed of a material having a higher thermal conductivity than the inner member 11 (for example, a copper-based material), and heat from the back member 12 is more easily transmitted than the inner member 11, It is possible to raise the temperature of the part 6a higher than the temperature of the molding surface 1a. In this case, contrary to the above, the rigidity of the rubber around the end portion 6a can be lowered to reduce the rigidity. As a result, for example, it is possible to reduce the rigidity of the groove edge portion GE, which tends to increase the contact pressure on the dry road surface, thereby making the contact pressure on the land portion uniform, and improving the braking performance and uneven wear resistance performance on the dry road surface. it can.

アイス制動性能やドライ制動性能の向上といったタイヤ性能の改善効果を適切に奏する観点から、端部6a周辺のゴムと他部におけるゴムとの間で4°以上の硬度差を生じさせることが好ましい。このゴム硬度は、JISK6253のデュロメータ硬さ試験(タイプA)に準じて測定した値である。   From the viewpoint of appropriately exerting the tire performance improvement effect such as the improvement of the ice braking performance and the dry braking performance, it is preferable to cause a hardness difference of 4 ° or more between the rubber around the end portion 6a and the rubber in the other portion. This rubber hardness is a value measured according to the JISK6253 durometer hardness test (type A).

このようなゴムの硬度差を述べる場合、端部6a周辺のゴム硬度は、図7においてハッチングを施した領域で測定したものとし、他部のゴム硬度は、その領域外で測定したものとする。すなわち、グルーブエッジ部GEの硬度は、ブロックの稜線から陸部長さX,Yの10%となる範囲内で測定するものとし、サイプエッジ部SEの硬度は、サイプ82からの距離dが1mm程度となる範囲内で測定するものとする。   When describing such a rubber hardness difference, it is assumed that the rubber hardness around the end portion 6a is measured in the hatched region in FIG. 7, and the rubber hardness of the other portion is measured outside the region. . That is, the hardness of the groove edge portion GE is measured within a range of 10% of the land lengths X and Y from the ridge line of the block, and the hardness of the sipe edge portion SE is such that the distance d from the sipe 82 is about 1 mm. It shall be measured within the range.

上記では、端部6aの温度を低めることで周辺のゴムの硬度が上がり、端部6aの温度を高めることで周辺のゴムの硬度が下がると記述したが、この現象は加硫温度と加硫挙動との関係から説明できる。すなわち、ゴムの加硫では、加硫温度が高いほど加硫戻りの開始時期が早くなるため、一般的なタイヤの加硫成形に採用される加硫時間においては、加硫温度が高いほどゴムの硬度が低くなる傾向にある。   In the above description, it has been described that the hardness of the peripheral rubber is increased by lowering the temperature of the end portion 6a, and the hardness of the peripheral rubber is decreased by increasing the temperature of the end portion 6a. It can be explained from the relationship with behavior. In other words, in rubber vulcanization, the higher the vulcanization temperature, the earlier the start time of vulcanization reversion. Therefore, the higher the vulcanization temperature, the more rubber the vulcanization time used for general tire vulcanization molding. The hardness tends to be low.

したがって、例えば加硫戻りが起こらない程度に加硫時間が短い場合など、加硫時間やゴム配合などの条件によっては、上記とは逆に、埋込部材の端部の温度を低めると周辺のゴムの硬度が下がるという現象が起きる可能性がある。しかし、このことは本発明では特に問題とはならない。なぜなら、実施する加硫条件において、どちらの現象が起こるのかは予め容易に把握できるものであり、埋込部材の端部周辺にて硬度を高めるのか或いは低下させるのかに応じて、埋込部材の熱伝導率を内側部材よりも高くするか低くするかを選択すればよいからである。   Therefore, depending on conditions such as the vulcanization time and rubber compounding, such as when the vulcanization time is short enough that reversion does not occur, contrary to the above, if the temperature at the end of the embedded member is lowered, There is a possibility that the hardness of the rubber will decrease. However, this is not a problem in the present invention. This is because it can be easily grasped in advance which phenomenon will occur under the vulcanization conditions to be carried out, depending on whether the hardness is increased or decreased around the end of the embedded member. This is because it is only necessary to select whether the thermal conductivity is higher or lower than that of the inner member.

本発明に係るタイヤ製造方法は、タイヤを加硫成形する際に、上記の如き内側部材と埋込部材との熱伝導の差を利用して、埋込部材の突出した端部の温度を成形面の温度と異ならせること以外は、通常のタイヤ製造方法と同様であり、加硫成形に関する工程を除けば、従来公知の製法や工程を適用することが可能である。   In the tire manufacturing method according to the present invention, when the tire is vulcanized and molded, the temperature of the protruding end portion of the embedded member is formed by utilizing the difference in heat conduction between the inner member and the embedded member as described above. Except for making it different from the temperature of the surface, it is the same as the normal tire manufacturing method, and conventionally known manufacturing methods and steps can be applied except for the steps related to vulcanization molding.

以下、本発明の構成と効果を具体的に示す実施例について説明する。タイヤの各性能評価は、次のようにして行った。   Examples that specifically show the structure and effects of the present invention will be described below. Each performance evaluation of the tire was performed as follows.

(1)アイス制動性能
タイヤを2500ccクラスの乗用車(後輪駆動)に装着し、氷盤路面(摩擦係数μ≒0.1)を走行させ、速度40km/hで制動力をかけてABSを作動させたときの制動距離を指数で評価した。比較例1の結果を100とし、数値が大きいほど制動距離が短く、アイス制動性能に優れていることを示す。
(1) Ice braking performance The tire is mounted on a 2500cc class passenger car (rear wheel drive), runs on the ice platen road surface (friction coefficient μ ≒ 0.1), and the braking force is applied at a speed of 40km / h to operate the ABS. The braking distance was evaluated with an index. The result of Comparative Example 1 is set to 100, and the larger the value, the shorter the braking distance and the better the ice braking performance.

(2)ドライ制動性能
タイヤを2500ccクラスの乗用車(後輪駆動)に装着し、ドライ路面(摩擦係数μ≒1.0)を走行させ、速度100km/hで制動力をかけてABSを作動させたときの制動距離を指数で評価した。比較例2の結果を100とし、数値が大きいほど制動距離が短く、ドライ制動性能に優れていることを示す。
(2) Dry braking performance The tire is mounted on a 2500cc class passenger car (rear wheel drive), driven on a dry road surface (friction coefficient μ ≒ 1.0), and braking force is applied at a speed of 100km / h to operate the ABS. The braking distance was evaluated with an index. The result of Comparative Example 2 is set to 100, and the larger the value, the shorter the braking distance and the better the dry braking performance.

未加硫タイヤとしては、トレッドゴムの配合が異なる2種を用意した。一方は、一般的なスタッドレスタイヤ(冬用タイヤ)に用いられるゴム配合(A配合)であり、もう一方は、一般的なサマータイヤ(夏用タイヤ)に用いられるゴム配合(B配合)である。このA配合とB配合のゴムに対して、加硫時間を10分間としたときの、加硫温度とゴム硬度との関係を表1に示す。   Two types of unvulcanized tires with different tread rubber formulations were prepared. One is a rubber compounding (A compounding) used for a general studless tire (winter tire), and the other is a rubber compounding (B compounding) used for a general summer tire (summer tire). . Table 1 shows the relationship between the vulcanization temperature and the rubber hardness when the vulcanization time is 10 minutes for the rubbers of A and B.

Figure 2009220418
Figure 2009220418

表1における測定値は、上述した硬さ試験に準じて測定した値を指す。後掲の表2におけるゴム硬度も同様である。表1から、このA配合とB配合のゴムは、10分間の加硫において加硫温度が高いほど硬度が低くなることが分かる。したがって、この場合、ゴム硬度を高くしたいのであれば加硫温度を低く設定すればよいことになる。   The measured value in Table 1 refers to the value measured according to the hardness test described above. The same applies to the rubber hardness in Table 2 below. From Table 1, it can be seen that the rubbers of these A blends and B blends have lower hardness as the vulcanization temperature is higher during vulcanization for 10 minutes. Therefore, in this case, if it is desired to increase the rubber hardness, the vulcanization temperature may be set low.

比較例1
タイヤサイズが215/60R16であってトレッドゴムの配合がA配合である未加硫のタイヤを、通常の方法により加硫成形したものを比較例1とした。加硫温度は180℃、加硫時間は10分間、サイプ間距離(ブレード間距離)は4mmとした。比較例1では、トレッド型部の成形面と骨部及びブレードとが同じ温度に加熱保持された状態にて、未加硫タイヤのトレッド面に押し当たることになる。
Comparative Example 1
Comparative Example 1 was obtained by vulcanizing and molding an unvulcanized tire having a tire size of 215 / 60R16 and a tread rubber compounding of compounding A by a usual method. The vulcanization temperature was 180 ° C., the vulcanization time was 10 minutes, and the sipe distance (blade distance) was 4 mm. In Comparative Example 1, the tread mold portion is pressed against the tread surface of the unvulcanized tire in a state where the molding surface of the tread portion, the bone portion, and the blade are heated and held at the same temperature.

実施例1
未加硫のタイヤを加硫成形するにあたり、上記の如きタイヤ成形型を用いたこと以外は比較例1と同じにしたものを実施例1とした。この成形型は、内側部材の素材がアルミニウム、バック部材及び埋込部材の素材がSUSである。実施例1では、トレッド型部の成形面の温度と埋込部材の端部の温度とが異なり、骨部及びサイプの周辺のゴムの硬度を局部的に変化させたものとなる。
Example 1
In vulcanization molding of an unvulcanized tire, Example 1 was made the same as Comparative Example 1 except that the tire molding die as described above was used. In this mold, the material of the inner member is aluminum, and the material of the back member and the embedded member is SUS. In Example 1, the temperature of the molding surface of the tread mold part is different from the temperature of the end part of the embedded member, and the hardness of the rubber around the bone part and the sipe is locally changed.

比較例2
トレッドゴムの配合をB配合、加硫温度を160℃としたこと以外は、比較例1と同じにしたものを比較例2とした。なお、比較例2では成形型にブレードを設けていない。
Comparative Example 2
Comparative Example 2 was the same as Comparative Example 1 except that the tread rubber was mixed with B and the vulcanization temperature was 160 ° C. In Comparative Example 2, no blade is provided in the mold.

実施例2
未加硫のタイヤを加硫成形するにあたり、上記の如きタイヤ成形型を用いたこと以外は比較例2と同じにしたものを実施例2とした。この成形型は、内側部材の素材がアルミニウム、バック部材の素材がSUS、埋込部材の素材が銅である。実施例2では、トレッド型部の成形面の温度と埋込部材の端部の温度とが異なり、骨部の周辺のゴムの硬度を局部的に変化させたものとなる。
Example 2
Example 2 was the same as Comparative Example 2 except that a tire mold as described above was used for vulcanization molding of an unvulcanized tire. In this mold, the inner member is made of aluminum, the back member is made of SUS, and the embedded member is made of copper. In Example 2, the temperature of the molding surface of the tread mold part is different from the temperature of the end part of the embedding member, and the hardness of the rubber around the bone part is locally changed.

比較例1,2及び実施例1,2に対し、トレッドゴムの硬度、エッジ部の硬度及び制動性能を調べた結果を表2に示す。表2において、「エッジ部の硬度」とは、比較例1及び実施例1ではサイプエッジ部にて測定したゴム硬度であり、比較例2及び実施例2ではグルーブエッジ部にて測定したゴム硬度である。   Table 2 shows the results of examining the hardness of the tread rubber, the hardness of the edge portion, and the braking performance of Comparative Examples 1 and 2 and Examples 1 and 2. In Table 2, “the hardness of the edge portion” is the rubber hardness measured at the sipe edge portion in Comparative Example 1 and Example 1, and the rubber hardness measured at the groove edge portion in Comparative Example 2 and Example 2. is there.

Figure 2009220418
Figure 2009220418

表2より、比較例1ではトレッドゴムの硬度が一様に45°であるのに対し、実施例1ではサイプエッジ部にて硬度が局部的に高く変化していることが分かる。その結果、実施例1ではエッジ効果を高めてアイス制動性能を向上できている。また、比較例2では、トレッドゴムの硬度が一様に54°であるのに対し、実施例2ではグルーブエッジ部にて硬度が局部的に低く変化していることが分かる。その結果、実施例2ではブロック内の接地圧を均一化してドライ制動性能を向上できている。   From Table 2, it can be seen that in Comparative Example 1, the hardness of the tread rubber is uniformly 45 °, whereas in Example 1, the hardness changes locally at the sipe edge portion. As a result, in Example 1, the edge effect is enhanced and the ice braking performance can be improved. In Comparative Example 2, it can be seen that the hardness of the tread rubber is uniformly 54 °, whereas in Example 2, the hardness changes locally at the groove edge portion. As a result, in the second embodiment, the ground contact pressure in the block is made uniform to improve the dry braking performance.

本発明に係るタイヤ成形型の一例を概略的に示す縦断面図1 is a longitudinal sectional view schematically showing an example of a tire mold according to the present invention. トレッド型部を構成するセクターの1つを概略的に示す斜視図The perspective view which shows roughly one of the sectors which comprise a tread type | mold part 本実施形態のタイヤ成形型が備えるトレッド型部の断面を概念的に示した要部拡大図The principal part enlarged view which showed notionally the cross section of the tread type | mold part with which the tire shaping | molding die of this embodiment is equipped 従来のタイヤ成形型が備えるトレッド型部の断面を概念的に示した要部拡大図The principal part enlarged view which showed notionally the cross section of the tread type | mold part with which the conventional tire shaping | molding die is equipped 加硫成形時における骨部周辺の様子を示す断面図Cross-sectional view showing the surroundings of the bone during vulcanization molding 加硫成形時におけるブレード周辺の様子を示す断面図Sectional view showing the surroundings of the blade during vulcanization molding ゴム硬度の測定領域を示すためのブロックの平面図Plan view of block to show rubber hardness measurement area サイプが形成されたブロックの斜視図Perspective view of block with sipes formed

符号の説明Explanation of symbols

1 トレッド型部
1a 成形面
6 埋込部材
6a 埋込部材の突出した端部
6b 侵入部
11 内側部材
12 バック部材
20 タイヤ成形型
24 コーンリング(加熱手段)
26 通路
61 骨部
62 ブレード
81 溝部
82 サイプ
GE グルーブエッジ部
SE サイプエッジ部
DESCRIPTION OF SYMBOLS 1 Tread type | mold part 1a Molding surface 6 Embedded member 6a End part 6b which the embedded member protruded Intrusion part 11 Inner member 12 Back member 20 Tire shaping | molding die 24 Cone ring (heating means)
26 Passage 61 Bone 62 Blade 81 Groove 82 Sipe GE Groove Edge SE SEipe Edge

Claims (4)

タイヤのトレッド面を成形するトレッド型部と、前記トレッド型部を背面側から加熱する加熱手段と、前記トレッド型部に埋め込まれて前記トレッド型部の成形面から端部が突出した埋込部材とを備え、
前記トレッド型部が、前記成形面を含む内側部材と、前記内側部材の背面側に配置されたバック部材とを有し、前記埋込部材が、前記バック部材に侵入した侵入部を有するとともに、前記内側部材とは熱伝導率が異なる素材により形成されているタイヤ成形型。
A tread mold part that molds the tread surface of the tire, a heating means that heats the tread mold part from the back side, and an embedded member that is embedded in the tread mold part and protrudes from the molding surface of the tread mold part And
The tread mold portion includes an inner member including the molding surface and a back member disposed on the back side of the inner member, and the embedded member includes an intrusion portion that has penetrated the back member, A tire molding die formed of a material having a thermal conductivity different from that of the inner member.
前記埋込部材の突出した端部が、トレッド面に溝部を形成するための骨部、又は、陸部にサイプを形成するためのブレードを構成する請求項1に記載のタイヤ成形型。   The tire molding die according to claim 1, wherein the projecting end portion of the embedded member constitutes a bone portion for forming a groove portion on a tread surface or a blade for forming a sipe on a land portion. タイヤ成形型に未加硫のタイヤをセットした後、そのタイヤを加熱するとともにトレッド面にトレッド型部の成形面を押し当てて加硫成形する工程を含むタイヤ製造方法において、
前記トレッド型部が、前記成形面を含む内側部材と、前記内側部材の背面側に配置されたバック部材とを有し、前記トレッド型部に埋め込まれて前記成形面から端部が突出した埋込部材が、前記バック部材に侵入した侵入部を有するとともに、前記内側部材とは熱伝導率が異なる素材により形成されているタイヤ成形型を用いて、
タイヤを加硫成形する際に、前記トレッド型部を背面側から加熱して前記バック部材の熱を前記内側部材を介してトレッド面に伝達しつつ、前記内側部材と前記埋込部材との熱伝導の差を利用して、前記埋込部材の突出した端部の温度を前記成形面の温度と異ならせることを特徴とするタイヤ製造方法。
In a tire manufacturing method including a step of vulcanizing and molding an unvulcanized tire in a tire mold and then heating the tire and pressing a molding surface of a tread mold portion on the tread surface,
The tread mold portion includes an inner member including the molding surface and a back member disposed on the back side of the inner member, and is embedded in the tread mold portion and having an end protruding from the molding surface. Using the tire mold that is formed of a material having a heat conductivity different from that of the inner member, while the intruding member has an intrusion portion that has invaded the back member,
When the tire is vulcanized and molded, the tread mold part is heated from the back side to transfer the heat of the back member to the tread surface through the inner member, and the heat of the inner member and the embedded member. A tire manufacturing method, wherein the temperature of the protruding end portion of the embedded member is made different from the temperature of the molding surface by utilizing a difference in conduction.
前記埋込部材の突出した端部が、トレッド面に溝部を形成するための骨部、又は、陸部にサイプを形成するためのブレードを構成する請求項3に記載のタイヤ製造方法。   The tire manufacturing method according to claim 3, wherein the protruding end portion of the embedded member constitutes a bone portion for forming a groove portion on a tread surface or a blade for forming a sipe on a land portion.
JP2008067728A 2008-03-17 2008-03-17 Tire mold and tire manufacturing method Expired - Fee Related JP5020133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008067728A JP5020133B2 (en) 2008-03-17 2008-03-17 Tire mold and tire manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008067728A JP5020133B2 (en) 2008-03-17 2008-03-17 Tire mold and tire manufacturing method

Publications (2)

Publication Number Publication Date
JP2009220418A true JP2009220418A (en) 2009-10-01
JP5020133B2 JP5020133B2 (en) 2012-09-05

Family

ID=41237740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008067728A Expired - Fee Related JP5020133B2 (en) 2008-03-17 2008-03-17 Tire mold and tire manufacturing method

Country Status (1)

Country Link
JP (1) JP5020133B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101093759B1 (en) 2009-12-18 2011-12-19 한국타이어 주식회사 Vulcanizing apparatus for stud hole pin
KR101407761B1 (en) 2012-11-05 2014-06-16 한국타이어 주식회사 Tire Vulcanizing method, vulcanizing mold and a tire manufactured by the above method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724843A (en) * 1993-07-13 1995-01-27 Sumitomo Rubber Ind Ltd Vulcanizing molds for elastomer article
JPH082211A (en) * 1994-06-21 1996-01-09 Sumitomo Rubber Ind Ltd Manufacture of tire and vulcanized forming die therewith
JPH08175116A (en) * 1994-12-27 1996-07-09 Bridgestone Corp Pneumatic tire with improved on-ice performance
JPH11226961A (en) * 1998-02-19 1999-08-24 Bridgestone Corp Mold for vulcanization of tire and method for vulcanization of tire
JPH11254483A (en) * 1998-03-09 1999-09-21 Fuji Photo Film Co Ltd Mold for sprue injection molding
JP2005001310A (en) * 2003-06-13 2005-01-06 Yokohama Rubber Co Ltd:The Tire mold
JP2006044072A (en) * 2004-08-04 2006-02-16 Yokohama Rubber Co Ltd:The Tire mold
JP2007098907A (en) * 2005-10-07 2007-04-19 Sumitomo Rubber Ind Ltd Mold for tire and method for producing tire

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724843A (en) * 1993-07-13 1995-01-27 Sumitomo Rubber Ind Ltd Vulcanizing molds for elastomer article
JPH082211A (en) * 1994-06-21 1996-01-09 Sumitomo Rubber Ind Ltd Manufacture of tire and vulcanized forming die therewith
JPH08175116A (en) * 1994-12-27 1996-07-09 Bridgestone Corp Pneumatic tire with improved on-ice performance
JPH11226961A (en) * 1998-02-19 1999-08-24 Bridgestone Corp Mold for vulcanization of tire and method for vulcanization of tire
JPH11254483A (en) * 1998-03-09 1999-09-21 Fuji Photo Film Co Ltd Mold for sprue injection molding
JP2005001310A (en) * 2003-06-13 2005-01-06 Yokohama Rubber Co Ltd:The Tire mold
JP2006044072A (en) * 2004-08-04 2006-02-16 Yokohama Rubber Co Ltd:The Tire mold
JP2007098907A (en) * 2005-10-07 2007-04-19 Sumitomo Rubber Ind Ltd Mold for tire and method for producing tire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101093759B1 (en) 2009-12-18 2011-12-19 한국타이어 주식회사 Vulcanizing apparatus for stud hole pin
KR101407761B1 (en) 2012-11-05 2014-06-16 한국타이어 주식회사 Tire Vulcanizing method, vulcanizing mold and a tire manufactured by the above method

Also Published As

Publication number Publication date
JP5020133B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP5115299B2 (en) Pneumatic tire and tire mold
US9403332B2 (en) Tire tread with sipes and a method for the manufacture of a tire tread with sipes
JP2007331597A (en) Precure tread and retreaded tire using the same
JP2009067378A (en) Pneumatic tire, shoe, tire chain, and pneumatic tire vulcanization-mold
JP4834008B2 (en) Pneumatic tire
JP5020133B2 (en) Tire mold and tire manufacturing method
JPH11165320A (en) Tire vulcanizing apparatus
JP2005262973A (en) Pneumatic tire, sipe forming blade, and tire molding die having the sipe forming blade
JP4972571B2 (en) Tire mold and tire manufacturing method
JP2007320044A (en) Manufacturing method of precured tread for tire
JP5170416B2 (en) Pneumatic tires for snowy and snowy roads
JP2009269235A (en) Bladder for vulcanizing tire, method for vulcanization molding tire, and pneumatic tire
CN109262908A (en) Tyre vulcanized mould
JP2006151222A (en) Pneumatic tire
JP5362263B2 (en) Tire vulcanizer
JP2009051158A (en) Tire vulcanizing mold and method of manufacturing pneumatic tire using the same
JP2006151233A (en) Pneumatic tire
JP2024005412A (en) Tread mold, tire vulcanization mold, and tire vulcanization method
JP2006151231A (en) Pneumatic tire
JP4526364B2 (en) Pneumatic tire
JP5614102B2 (en) Tire manufacturing method, sipe blade used for tire molding die, and tire molding die
JP4052386B2 (en) Tire mold and method of manufacturing pneumatic tire using the same
CN105492192A (en) Methods for forming a retreaded tire
JP5281709B1 (en) Pneumatic tire manufacturing method and pneumatic tire
JP6981925B2 (en) Tire vulcanization method and equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120612

R150 Certificate of patent or registration of utility model

Ref document number: 5020133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees