JP2009217762A - Controller of power transducer - Google Patents

Controller of power transducer Download PDF

Info

Publication number
JP2009217762A
JP2009217762A JP2008063458A JP2008063458A JP2009217762A JP 2009217762 A JP2009217762 A JP 2009217762A JP 2008063458 A JP2008063458 A JP 2008063458A JP 2008063458 A JP2008063458 A JP 2008063458A JP 2009217762 A JP2009217762 A JP 2009217762A
Authority
JP
Japan
Prior art keywords
control
power
value
command value
acr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008063458A
Other languages
Japanese (ja)
Other versions
JP5033683B2 (en
Inventor
Hideyuki Watabe
英幸 渡部
Takahiro Omori
隆宏 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008063458A priority Critical patent/JP5033683B2/en
Publication of JP2009217762A publication Critical patent/JP2009217762A/en
Application granted granted Critical
Publication of JP5033683B2 publication Critical patent/JP5033683B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Voltage And Current In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control means which provides an operation amount as an operation command value also in an operation area except a power transducer operation rated point or a reference point. <P>SOLUTION: This controller of a power transducer provides each control system input of constant current control (ACR) and constant voltage control (AVR) with a bias value as a setting value, and reduces steady-state deviation in feedback control of primary lead delay control or primary delay control. Furthermore, the controller of the power transducer calculates, by automatic calculation, the bias value to be provided to each control system input of the constant current control (ACR) and the constant voltage control (AVR) as a linear function based on the fact that the bias value is proportional to a power instructed value (Pdp), a DC current instructed value (Idp) and a DC voltage instructed value (Vdp). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は電力変換器における制御装置に係わり、特に定電流制御や定電圧制御に1次遅れ制御や1次進み遅れ制御のフィードバック制御方式を使用した制御装置及びそれに関連する制御装置に関する。   The present invention relates to a control device in a power converter, and more particularly, to a control device using a feedback control method of primary delay control or primary advance delay control for constant current control or constant voltage control, and a control device related thereto.

従来の電力変換器の制御方式においてフィードバック制御を用いる場合、一次進み遅れ形で構成することが多い。これは積分系制御では、電力変換器の制御角が大きくなっても電流マージンが大きくならないのでリップル電流の影響を受けやすい等の現時点での課題があるためである。フィードバック制御を一次進み遅れ形で構成した場合は、定常偏差を生ずるために運転電力指令値と実運転電力は完全に一致しない。通常、この定常偏差を補正するために定格運転点において定格出力が得られるようにACRおよびAVRの各制御系入力にバイアス値(固定値)を入力して対応していた。制御系の入力に加算するバイアス値は、定格運転点において定格出力が得られるよう設定することとしており、このバイアス値の算出は、電力変換器を構成する機器の運転諸量と定格運転点における機器損失等の各種条件により導出できる制御量(制御角)と制御系ゲインとの関係から理論設定値を算出していた。このため、運転点が定格点から外れるにしたがって、バイアス値分が定常偏差に加算されるために運転指令値と実運転電力が一致しないという問題点がある。上記従来技術としては特開昭58−75224号公報が知られている。   When feedback control is used in a conventional power converter control method, it is often configured with a first-order advance-delay type. This is because the integration system control has problems at the present time such as being easily affected by ripple current because the current margin does not increase even when the control angle of the power converter increases. When the feedback control is configured in the primary advance / delay type, the operating power command value and the actual operating power do not completely coincide with each other in order to generate a steady deviation. Normally, in order to correct this steady deviation, a bias value (fixed value) is input to each ACR and AVR control system input so that a rated output is obtained at the rated operating point. The bias value to be added to the control system input is set so that the rated output is obtained at the rated operating point.The calculation of this bias value is based on the operating quantities of the equipment that constitutes the power converter and the rated operating point. The theoretical set value was calculated from the relationship between the control amount (control angle) that can be derived under various conditions such as equipment loss and the control system gain. For this reason, since the bias value is added to the steady deviation as the operation point deviates from the rated point, there is a problem that the operation command value and the actual operation power do not match. Japanese Unexamined Patent Publication No. 58-75224 is known as the above prior art.

特開昭58−75224号公報JP 58-75224 A

従来は、定格運転時でバイアス値を設定していたことから、定格点から外れた運転点においては運転指令値通りの運転量が得られないという問題があった。   Conventionally, since the bias value was set during rated operation, there was a problem that an operation amount equal to the operation command value could not be obtained at an operation point deviating from the rated point.

本発明の目的は定格点または基準点以外の運転領域においても運転指令値通りの運転量が得られる制御手段を提供することにある。   An object of the present invention is to provide a control means capable of obtaining an operation amount according to an operation command value even in an operation region other than a rated point or a reference point.

上記目的を達成するために、本発明の電力変換器の制御装置は定電流制御(ACR)や定電圧制御(AVR)の各制御系入力にバイアス値を設定値として与え、1次進み遅れ制御または1次遅れ制御のフィードバック制御における定常偏差を低減するものである。   In order to achieve the above object, the power converter control device of the present invention gives a bias value as a set value to each control system input of constant current control (ACR) or constant voltage control (AVR), and performs primary advance / delay control. Alternatively, the steady-state deviation in the feedback control of the first-order lag control is reduced.

更に、本発明の電力変換器の制御装置は定電流制御(ACR)や定電圧制御(AVR)の各制御系入力に与えるバイアス値を、電力指令値(Pdp),直流電流指令値(Idp),直流電圧指令値(Vdp)に比例することに基づいて一次関数として、自動計算により算出するものである。   Further, the control device for the power converter according to the present invention provides a bias value given to each control system input of constant current control (ACR) and constant voltage control (AVR) as a power command value (Pdp) and a direct current command value (Idp). , Is calculated by automatic calculation as a linear function based on being proportional to the DC voltage command value (Vdp).

本発明の制御装置は、運転指令値に応じた理論バイアス値をフィードバック制御に対して補正できるので、運転電力指令値に対して偏差が少ない制御量(運転量)を得ることができる効果がある。   Since the control device of the present invention can correct the theoretical bias value according to the operation command value with respect to the feedback control, there is an effect that a control amount (operation amount) having a small deviation from the operation power command value can be obtained. .

以下、本発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図2は電力変換器の主回路構成と制御方式の一例を示す構成図である。電力変換器31は変換用変圧器21を介して交流系統11に、電力変換器32は変換用変圧器22を介して交流系統12に接続されている。電力変換器31と32は直流送電線51,52を介して接続されており、直流送電線51の線路中には直流リアクトル41,42が設けられている。   FIG. 2 is a block diagram showing an example of the main circuit configuration and control method of the power converter. The power converter 31 is connected to the AC system 11 via the conversion transformer 21, and the power converter 32 is connected to the AC system 12 via the conversion transformer 22. The power converters 31 and 32 are connected via DC transmission lines 51 and 52, and DC reactors 41 and 42 are provided in the line of the DC transmission line 51.

図2では、直流送電(HVDC)設備の主回路構成例としているが、異系統直流連係(FC,BTB)設備においては直流送電線51,52を介せず、直流リアクトル1台を介して接続される構成となる。   In FIG. 2, the main circuit configuration example of the direct current power transmission (HVDC) facility is shown. However, in the different system direct current link (FC, BTB) facility, the direct current transmission lines 51 and 52 are not connected, but the direct current reactor is connected through one DC reactor. It becomes the composition to be done.

各電力変換器は、半導体素子としてサイリスタを用いた他励式の変換器で、それぞれ制御装置から与えられる点弧信号に応じてサイリスタをON,OFFし、交流電力を直流電力に、あるいは直流電力を交流電力に変換する。   Each power converter is a separately-excited converter that uses a thyristor as a semiconductor element. The thyristor is turned on and off in accordance with an ignition signal given from the control device, and AC power is converted to DC power or DC power is converted. Convert to AC power.

図2では、例として電力変換器31を交流電力を直流電力に変換する順変換器、電力変換器32を直流電力から交流電力に変換する逆変換器とした場合を示している。   FIG. 2 shows a case where the power converter 31 is a forward converter that converts AC power into DC power and the power converter 32 is an inverse converter that converts DC power to AC power as an example.

順変換器である電力変換器31,逆変換器である電力変換器32の間にある閉回路は直流回路であり、サイリスタ導通方向に流れる直流電流検出値(Id)61,順変換器側の電力変換器が出力する直流電圧検出値(Vd)62によって、直流電力(Pd)が決定される。   The closed circuit between the power converter 31 that is a forward converter and the power converter 32 that is an inverse converter is a DC circuit, and a DC current detection value (Id) 61 that flows in the thyristor conduction direction, The DC power (Pd) is determined by the DC voltage detection value (Vd) 62 output from the power converter.

直流電力(Pd)は電力設定器(Pdp)70により、設定された直流電力となるように制御される。   The DC power (Pd) is controlled by the power setting unit (Pdp) 70 so as to become the set DC power.

電力設定器(Pdp)70では、設定された電力指令値に基づき直流電流指令値(Idp),直流電圧指令値(Vdp)を生成し、順変換器側および逆変換器側の制御装置に対して出力する。   The power setting unit (Pdp) 70 generates a DC current command value (Idp) and a DC voltage command value (Vdp) based on the set power command value, and controls the forward converter side and the reverse converter side control devices. Output.

図2では、順変換器側に直流電流指令値(Idp)81,逆変換器側に直流電圧指令値(Vdp)82を図示しているが、指令値自体は順変換器側,逆変換器側それぞれにIdp,Vdpを出力している。   In FIG. 2, a DC current command value (Idp) 81 is shown on the forward converter side, and a DC voltage command value (Vdp) 82 is shown on the reverse converter side, but the command value itself is shown on the forward converter side and the reverse converter. Idp and Vdp are output to the respective sides.

通常、電力変換器の制御システムは順変換器側で定電流制御(ACR)を選択実施し、逆変換器側で定電圧制御(AVR)を選択実施することで直流電力を制御する構成としている。図2では、順変換器側に定電流制御(ACR)71,逆変換器側に定電圧制御(AVR)72を図示しているが、制御回路自体は順変換器側,逆変換器側それぞれにACR,AVRの各制御系が実装されている。   Usually, the control system of the power converter is configured to control DC power by selecting and executing constant current control (ACR) on the forward converter side and selecting and executing constant voltage control (AVR) on the reverse converter side. . In FIG. 2, constant current control (ACR) 71 is shown on the forward converter side, and constant voltage control (AVR) 72 is shown on the reverse converter side, but the control circuit itself is on the forward converter side and the reverse converter side. Each of the ACR and AVR control systems is implemented.

図2の定電流制御(ACR)71は、図1に示すように直流電流検出値Id61から、直流電流指令値Idp81を減算しさらに直流電流バイアス値91を加算して定電流制御(ACR)一次進み遅れ制御回路の入力としている。この直流電流バイアス値91は、従来、固定値入力としており、定格運転点で調整するのが一般的であった。このため、運転点が調整点から外れるにしたがって、バイアス値分が定常偏差に加算されるために電流指令値と実運転電流が一致しないという問題点があった。   The constant current control (ACR) 71 in FIG. 2 subtracts the direct current command value Idp81 from the direct current detection value Id61 and adds a direct current bias value 91 as shown in FIG. It is used as an input for the advance / delay control circuit. The DC current bias value 91 is conventionally a fixed value input and is generally adjusted at the rated operating point. For this reason, since the bias value is added to the steady deviation as the operating point deviates from the adjustment point, there is a problem that the current command value does not match the actual operating current.

本発明は、図1におけるバイアス補正回路101を付加することで、直流電流バイアス値91を従来の固定値入力から、直流電流指令値Idp81に応じた理論バイアス値入力とすることで定常偏差を低減するものである。   In the present invention, by adding the bias correction circuit 101 in FIG. 1, the steady-state deviation is reduced by changing the DC current bias value 91 from the conventional fixed value input to the theoretical bias value input corresponding to the DC current command value Idp81. To do.

バイアス補正回路101には、あらかじめ各運転電力と理論バイアス値の関係から直線近似により求めた傾きaと切片bを設定値として与えておき、直流電流指令値Idp81を入力に対しての一次関数の自動計算結果を直流電流バイアス値91として制御回路に加算する構成としている。これにより、運転点に応じたバイアス値とすることが可能である。   The bias correction circuit 101 is given in advance the slope a and intercept b obtained by linear approximation from the relationship between each operating power and the theoretical bias value as set values, and the direct current command value Idp81 is a linear function of the input. The automatic calculation result is added to the control circuit as a direct current bias value 91. Thereby, it is possible to set the bias value according to the operating point.

同様にして定電圧制御(AVR)のバイアス値もVdpの関数とすることが可能であり、補正回路を付加した制御回路を図3に示す。   Similarly, the bias value of constant voltage control (AVR) can also be a function of Vdp, and a control circuit with a correction circuit is shown in FIG.

図3に示すように直流電圧検出値Vd62から、直流電圧指令値Vdp82を加算しさらにバイアス補正回路102の自動計算結果である直流電圧バイアス値92を減算して定電圧制御(AVR)一次遅れ制御回路の入力とすることで定常偏差を低減することができる。   As shown in FIG. 3, constant voltage control (AVR) primary delay control is performed by adding a DC voltage command value Vdp82 from the DC voltage detection value Vd62 and further subtracting a DC voltage bias value 92, which is an automatic calculation result of the bias correction circuit 102. Steady deviation can be reduced by using the circuit as an input.

あらかじめ設定する傾きaと切片bの手法は、一般的には運転諸量の計算式から求められる理論バイアス値から算出する。   The method of the inclination a and the intercept b set in advance is generally calculated from a theoretical bias value obtained from a calculation formula for various operating quantities.

理論バイアス値は、元々フィードバック制御系を一次進み遅れ形または一次遅れ形で構成した場合に生じる定常偏差を補正する値であり、算出するための運転諸量は変換器制御角α、変換用変圧器2次電圧E2,変換用変圧器インピーダンスIX,機器損失による電圧降下VLoss,変換器ブリッジ段数ns,制御系フィードバックループゲインGACRまたはGAVR等の要素により構成されている。この運転諸量には機器損失等の運転電力に比例した要素が含まれており、理論バイアス値と運転電力(運転電力指令値)は比例した関係であることから、直線近似した一次関数として傾きaと切片bをあらかじめ算出することができる。   The theoretical bias value is a value that corrects the steady-state deviation that occurs when the feedback control system is originally configured in the first-order lag type or first-order lag type, and the operation quantities for calculation are the converter control angle α, the transformation transformer It is constituted by elements such as a secondary voltage E2, a transformer impedance IX for conversion, a voltage drop VLoss due to equipment loss, a converter bridge stage number ns, a control system feedback loop gain GACR or GAVR. This operating quantity includes elements proportional to the operating power, such as equipment loss, and the theoretical bias value and the operating power (operating power command value) are in a proportional relationship. a and intercept b can be calculated in advance.

以下に運転諸量と理論バイアス値の関係式を示す。   The relational expression between the operation quantities and the theoretical bias value is shown below.

理論バイアス値であるIdB,VdBは(1)〜(5)式を用いて反復計算により求めることができる。   The theoretical bias values IdB and VdB can be obtained by iterative calculation using equations (1) to (5).

(1)順変換器側運転諸量 (1) Forward converter side operation quantities

Figure 2009217762
Figure 2009217762

Figure 2009217762
Figure 2009217762

(2)逆変換側運転諸量 (2) Reverse conversion side operation quantities

Figure 2009217762
Figure 2009217762

Figure 2009217762
Figure 2009217762

Figure 2009217762
Figure 2009217762

α:変換器制御角,γ:変換器余裕角,u:重なり角
E2:変換用変圧器2次電圧,ns:変換器ブリッジ直列段数
IX:変換用変圧器インピーダンス,VLoss:機器損失による電圧降下
GACR:ACR制御フィードバックループゲイン
GAVR:AVR制御フィードバックループゲイン
Id:直流電流,Vd:直流電圧
Idp:直流電流指令値,Vdp:直流電圧指令値
IdB:直流電流理論バイアス値,VdB:直流電圧理論バイアス値
α: Converter control angle, γ: Converter margin angle, u: Overlap angle E2: Transformer transformer secondary voltage, ns: Converter bridge series stage IX: Transformer impedance for conversion, VLoss: Voltage drop due to equipment loss GACR: ACR control feedback loop gain GAVR: AVR control feedback loop gain Id: DC current, Vd: DC voltage Idp: DC current command value, Vdp: DC voltage command value IdB: DC current theoretical bias value, VdB: DC voltage theoretical bias value

図4は、ACR制御系において運転指令値と運転量の定常偏差(IdpとIdの偏差ΔId)を固定値(補正回路なし)として与えた場合と自動計算値(補正回路有り)として与えた場合の偏差量を比較した一例として示したものである。   FIG. 4 shows a case in which a steady deviation (Idd and Id deviation ΔId) between the operation command value and the operation amount is given as a fixed value (without a correction circuit) and an automatic calculation value (with a correction circuit) in the ACR control system. This is shown as an example in which the deviation amounts are compared.

運転指令値であるIdpと制御出力Idの偏差ΔIdは、定格点である1puで誤差が無いよう調整されている。   The deviation ΔId between the operation command value Idp and the control output Id is adjusted so that there is no error at the rated point of 1 pu.

補正回路が無い場合、最小運転点である0.1puでΔIdが約+0.7%の誤差が生じているが、このΔId曲線を点線の如く直線近似しておき、一次関数として補正回路を付加した場合、偏差ΔIdは、0.1%以下に低減することができる。   When there is no correction circuit, there is an error of about + 0.7% in ΔId at the minimum operating point of 0.1 pu, but this ΔId curve is linearly approximated as a dotted line, and a correction circuit is added as a linear function. In this case, the deviation ΔId can be reduced to 0.1% or less.

また、電力変換器運転中に運転指令値がリアルタイムに変化するシステムにおいては、指令値の過渡変化に対する理論バイアス値の応答を定電流制御(ACR)または定電圧制御(AVR)と協調をとる必要がある。   In a system in which the operation command value changes in real time during operation of the power converter, the response of the theoretical bias value to the transient change of the command value must be coordinated with constant current control (ACR) or constant voltage control (AVR). There is.

これは理論バイアス値がフィードバック制御回路に直接入力されていることから、理論バイアス値の過渡変化に対して定電流制御(ACR)または定電圧制御(AVR)が応答し、制御干渉による不安定現象の恐れがあるためである。   This is because the theoretical bias value is directly input to the feedback control circuit, so that the constant current control (ACR) or the constant voltage control (AVR) responds to a transient change in the theoretical bias value, and an unstable phenomenon due to control interference. Because there is a fear of.

理論バイアス値は制御安定時の定常偏差を補正する目的であり、過渡変化に対する応答は、定電流制御(ACR)または定電圧制御(AVR)に対し遅いほうが望ましく、故に運転指令値の変化に対し定電流制御(ACR)または定電圧制御が追従した後、理論バイアス値による偏差を補正することが必要とされる。   The theoretical bias value is for the purpose of correcting the steady-state deviation when the control is stable, and the response to the transient change is preferably slower than the constant current control (ACR) or the constant voltage control (AVR). After constant current control (ACR) or constant voltage control follows, it is necessary to correct the deviation due to the theoretical bias value.

図5は、図1の定電流制御(ACR)の補正回路に入力する直流電流指令値(Idp)に過渡応答防止用として一次遅れ回路を付加したものである。   FIG. 5 is obtained by adding a first-order lag circuit for preventing a transient response to the direct current command value (Idp) input to the constant current control (ACR) correction circuit of FIG.

この一次遅れ回路の遅れ時定数を、定電流制御(ACR)の遅れ時定数に対し十分に大きくしておくことで、直流電流指令値(Idp)の急峻な変化に対してもバイアス補正回路の計算結果である理論バイアス値の応答は、十分な遅れを持った補正が可能であり、制御干渉による不安定現象を防止できるため、運転指令値がリアルタイムに変化するシステムにおいても適用できる構成としている。   By making the delay time constant of the primary delay circuit sufficiently larger than the delay time constant of constant current control (ACR), the bias correction circuit of the bias correction circuit can be adapted to a sudden change in the DC current command value (Idp). The response of the theoretical bias value, which is the calculation result, can be corrected with a sufficient delay and can prevent instability due to control interference, so it can be applied to systems where the operation command value changes in real time. .

本発明の実施例(定電流制御ACR)を示す図。The figure which shows the Example (constant current control ACR) of this invention. 本発明の実施形態の電力変換システムの一例を示す図。The figure which shows an example of the power conversion system of embodiment of this invention. 本発明の実施例(定電圧制御AVR)を示す図。The figure which shows the Example (constant voltage control AVR) of this invention. 本発明の効果例を示す図。The figure which shows the example of an effect of this invention. 過渡応答防止機能を付加した実施例(定電流制御ACR)を示す図。The figure which shows the Example (constant current control ACR) which added the transient response prevention function.

符号の説明Explanation of symbols

11,12 交流系統
21,22 変換用変圧器
31,32 電力変換器
41,42 直流リアクトル
51,52 直流送電線
61 直流電流検出値Id
62 直流電圧検出値Vd
70 電力設定器
71 定電流制御(ACR)
72 定電圧制御(AVR)
81 直流電流指令値Idp
82 直流電圧指令値Vdp
91 直流電流バイアス値
92 直流電圧バイアス値
101,102 バイアス補正回路
111 一次遅れ回路(過渡応答防止用)
11, 12 AC system 21, 22 Conversion transformer 31, 32 Power converter 41, 42 DC reactor 51, 52 DC transmission line 61 DC current detection value Id
62 DC voltage detection value Vd
70 Power setting device 71 Constant current control (ACR)
72 Constant voltage control (AVR)
81 DC current command value Idp
82 DC voltage command value Vdp
91 DC current bias value 92 DC voltage bias value 101, 102 Bias correction circuit 111 First order lag circuit (for transient response prevention)

Claims (2)

交流電力を直流電力にまたは直流電力を交流電力に変換する電力変換器の制御装置で、電力設定器から与えられる電力指令値(Pdp)および直流電流指令値(Idp)又は直流電圧指令値(Vdp)に応じて電力制御のための定電流制御(ACR)や定電圧制御(AVR)を1次進み遅れ制御または1次遅れ制御のフィードバック制御方式で構成している電力変換器の制御装置において、前記定電流制御(ACR)や前記定電圧制御(AVR)の各制御系入力にバイアス値を設定値として与えることで、1次進み遅れ制御または1次遅れ制御のフィードバック制御における定常偏差を低減することを特徴とする電力変換器の制御装置。   A control device for a power converter that converts AC power into DC power or DC power into AC power, and includes a power command value (Pdp) and a DC current command value (Idp) or a DC voltage command value (Vdp) given from the power setter. ) In accordance with the control method of the power converter, in which the constant current control (ACR) and the constant voltage control (AVR) for power control are configured by the feedback control system of the primary advance / delay control or the primary delay control, By giving a bias value as a set value to each control system input of the constant current control (ACR) or the constant voltage control (AVR), the steady deviation in the feedback control of the primary advance / delay control or the primary delay control is reduced. The control apparatus of the power converter characterized by the above-mentioned. 請求項1記載の電力変換器の制御装置において、前記定電流制御(ACR)や前記定電圧制御(AVR)の各制御系入力に与えるバイアス値を、前記電力指令値(Pdp)、前記直流電流指令値(Idp)、前記直流電圧指令値(Vdp)に比例することに基づいて一次関数として、自動計算により算出することを特徴とする電力変換器の制御装置。   2. The control apparatus for a power converter according to claim 1, wherein a bias value given to each control system input of the constant current control (ACR) or the constant voltage control (AVR) is the power command value (Pdp), the direct current A control device for a power converter, wherein a control function is calculated by automatic calculation as a linear function based on a command value (Idp) and proportional to the DC voltage command value (Vdp).
JP2008063458A 2008-03-13 2008-03-13 Control device for power converter Expired - Fee Related JP5033683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008063458A JP5033683B2 (en) 2008-03-13 2008-03-13 Control device for power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008063458A JP5033683B2 (en) 2008-03-13 2008-03-13 Control device for power converter

Publications (2)

Publication Number Publication Date
JP2009217762A true JP2009217762A (en) 2009-09-24
JP5033683B2 JP5033683B2 (en) 2012-09-26

Family

ID=41189503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008063458A Expired - Fee Related JP5033683B2 (en) 2008-03-13 2008-03-13 Control device for power converter

Country Status (1)

Country Link
JP (1) JP5033683B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10305284B2 (en) 2015-08-27 2019-05-28 Lsis Co., Ltd. Apparatus and method of measuring data in high voltage direct current system
JP2020072566A (en) * 2018-10-31 2020-05-07 東芝三菱電機産業システム株式会社 Control arrangement of power converter

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875224A (en) * 1981-10-27 1983-05-06 Mitsubishi Electric Corp Constant current controller
JPS59216475A (en) * 1983-05-20 1984-12-06 Toshiba Corp Controlling method of power converter
JPS6082030A (en) * 1983-10-07 1985-05-10 株式会社東芝 Constant power controlling method of power converter
JPS63124704A (en) * 1986-11-12 1988-05-28 Toshiba Corp Electric car controller
JPH08147057A (en) * 1994-11-25 1996-06-07 Mitsubishi Electric Corp Device and method for generating reactive power
JPH08168253A (en) * 1994-12-09 1996-06-25 Mitsubishi Electric Corp Power transmission controller
JPH08168252A (en) * 1994-12-08 1996-06-25 Mitsubishi Electric Corp Method for controlling ac-dc converter
JP2005312144A (en) * 2004-04-20 2005-11-04 Toshiba Mitsubishi-Electric Industrial System Corp Load commutation type inverter device
JP2007020306A (en) * 2005-07-07 2007-01-25 Toshiba Corp Method of controlling alternating voltage in electric power system by power converter or reactive power compensator
JP2007068253A (en) * 2005-08-29 2007-03-15 Nissan Motor Co Ltd Controller for dc-dc converter

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875224A (en) * 1981-10-27 1983-05-06 Mitsubishi Electric Corp Constant current controller
JPS59216475A (en) * 1983-05-20 1984-12-06 Toshiba Corp Controlling method of power converter
JPS6082030A (en) * 1983-10-07 1985-05-10 株式会社東芝 Constant power controlling method of power converter
JPS63124704A (en) * 1986-11-12 1988-05-28 Toshiba Corp Electric car controller
JPH08147057A (en) * 1994-11-25 1996-06-07 Mitsubishi Electric Corp Device and method for generating reactive power
JPH08168252A (en) * 1994-12-08 1996-06-25 Mitsubishi Electric Corp Method for controlling ac-dc converter
JPH08168253A (en) * 1994-12-09 1996-06-25 Mitsubishi Electric Corp Power transmission controller
JP2005312144A (en) * 2004-04-20 2005-11-04 Toshiba Mitsubishi-Electric Industrial System Corp Load commutation type inverter device
JP2007020306A (en) * 2005-07-07 2007-01-25 Toshiba Corp Method of controlling alternating voltage in electric power system by power converter or reactive power compensator
JP2007068253A (en) * 2005-08-29 2007-03-15 Nissan Motor Co Ltd Controller for dc-dc converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10305284B2 (en) 2015-08-27 2019-05-28 Lsis Co., Ltd. Apparatus and method of measuring data in high voltage direct current system
JP2020072566A (en) * 2018-10-31 2020-05-07 東芝三菱電機産業システム株式会社 Control arrangement of power converter

Also Published As

Publication number Publication date
JP5033683B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
US9685903B2 (en) Method and system for controlling a power output of an inverter
EP2403123A2 (en) Three-level inverter, power conditioner, and power generating system
US11329565B2 (en) Feed-forward control for regulating a DC-DC voltage converter
US8344710B2 (en) Voltage and current regulation method for a two-stage DC-DC converter circuit
JP7006792B2 (en) Inverter device test device
JP2008289317A (en) Controller of parallel multiplex chopper
JP2020088971A (en) Current control system, fuel cell system, and method for controlling step-up converter
JP5033683B2 (en) Control device for power converter
JP2015100235A (en) Charge and discharge control device
US8237426B2 (en) Flux linkage compensator for uninterruptible power supply
JP4488846B2 (en) Control method of static reactive power compensator
JP5050825B2 (en) System controller
JP2018088073A (en) Photovoltaic power generation controller
JP6057876B2 (en) Power converter
JP4931129B2 (en) Power converter
JP3621926B2 (en) Solar power plant
JP6658111B2 (en) AC power supply device and control method thereof
JP2017046403A (en) Inverter control circuit, inverter control method, and power supply device
KR101437202B1 (en) The method for compensating automatic voltage regulator on inverter when power restoring and inverter using thereof
JP2013240176A (en) Digital control power supply
JP2009235949A (en) Steam turbine control device and control method
JPH04313108A (en) Reactive power compensating device
JP2024009358A (en) Power conversion device
JP5104502B2 (en) Instantaneous voltage drop compensation device
JP2004350437A (en) Automatic voltage regulator of synchronous generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

R151 Written notification of patent or utility model registration

Ref document number: 5033683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees