JP2009216528A - Insulation inspection method and insulation inspection device - Google Patents

Insulation inspection method and insulation inspection device Download PDF

Info

Publication number
JP2009216528A
JP2009216528A JP2008060395A JP2008060395A JP2009216528A JP 2009216528 A JP2009216528 A JP 2009216528A JP 2008060395 A JP2008060395 A JP 2008060395A JP 2008060395 A JP2008060395 A JP 2008060395A JP 2009216528 A JP2009216528 A JP 2009216528A
Authority
JP
Japan
Prior art keywords
insulation
inspection
value
state
probes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008060395A
Other languages
Japanese (ja)
Other versions
JP5215004B2 (en
Inventor
Hiroshi Yamazaki
浩 山嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2008060395A priority Critical patent/JP5215004B2/en
Publication of JP2009216528A publication Critical patent/JP2009216528A/en
Application granted granted Critical
Publication of JP5215004B2 publication Critical patent/JP5215004B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulation inspection method and an insulation inspection device, capable of inspecting an insulation state of an inspection object in a short time. <P>SOLUTION: This insulation inspection method/device is provided with an electric power source part 3 for impressing a direct current voltage V1 between probes 2a, 2b connected to wiring patterns 11a, 11b, an ammeter 4 for measuring leak currents I<SB>L</SB>flowing in the probes 2a, 2b in an impressed state of the direct current voltage V1, and a processing part 5 for inspecting the insulation state of the wiring patterns 11a, 11b, based on the leak currents I<SB>L</SB>and a threshold value I<SB>Lth</SB>, and the processing part 5 executes a stationary value storage processing for storing a stationary value I<SB>Lo</SB>of the leak currents I<SB>L</SB>measured by the ammeter 4, when the direct current voltage V1 is impressed between the probes 2a, 2b, under an unconnected state of the wiring patterns 11a, 11b, and inspection processing for subtracting the stationary value I<SB>Lo</SB>from the current value of the leak currents I<SB>L</SB>measured by the ammeter 4, when the direct current voltage V1 is impressed, under a connected state of the wiring patterns 11a, 11b, and for inspecting the insulation state, based on a current value obtained by the subtraction and the threshold value I<SB>Lth</SB>. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、検査対象体に直流電圧を印加したときに流れる漏れ電流の電流値に基づいてこの検査対象体の絶縁状態を検査する絶縁検査方法および絶縁検査装置に関するものである。   The present invention relates to an insulation inspection method and an insulation inspection apparatus for inspecting an insulation state of an inspection object based on a current value of a leakage current that flows when a DC voltage is applied to the inspection object.

この種の絶縁検査装置として本願出願人は、絶縁検査を行う回路基板検査装置を下記の特許文献1において提案している。この絶縁検査装置は、検査対象としての一対の導体パターンの絶縁検査を行うものであって、一対の導体パターン間に検査電圧を印加する一対の検査用プローブと、複数の入力レンジを備えて切替制御された各入力レンジ毎の変換率で検査用プローブ間の電流を電圧変換するレンジ回路と、入力レンジを大電流用の入力レンジから小電流用の入力レンジに切替制御する制御回路と、一対の導体パターン間の絶縁抵抗値を演算する演算回路とを備えている。この絶縁検査装置では、制御回路が、各入力レンジの定格電流範囲内の下限値よりも低電流の基準値に達した時点で入力レンジを切替制御する。このため、電流が各入力レンジの定格電流範囲内の下限値に達した時点で入力レンジを切替制御する従来の絶縁検査装置と比較して、一対の導体パターン間の容量がより大電流の電流で、かつより長時間充電される。したがって、従来の絶縁検査装置における電流特性と比較して、その容量が素早く充電されるため、より短時間で絶縁抵抗値を演算可能な状態に到達する。この結果、この絶縁検査装置によれば、一対の導体パターンに対する絶縁検査をより短時間で、かつ精度良く行うことが可能となっている。
特開2001−91562号公報(第4−5頁、第1図)
As this type of insulation inspection apparatus, the applicant of the present application has proposed a circuit board inspection apparatus for performing an insulation inspection in Patent Document 1 below. This insulation inspection apparatus performs insulation inspection of a pair of conductor patterns as inspection targets, and includes a pair of inspection probes for applying an inspection voltage between a pair of conductor patterns and a plurality of input ranges. A range circuit that converts the current between inspection probes to a voltage at a controlled conversion rate for each input range, a control circuit that switches and controls the input range from the input range for large current to the input range for small current, And an arithmetic circuit for calculating an insulation resistance value between the conductor patterns. In this insulation inspection device, the control circuit switches and controls the input range when it reaches a reference value that is lower than the lower limit value in the rated current range of each input range. For this reason, compared with a conventional insulation inspection device that switches and controls the input range when the current reaches the lower limit value within the rated current range of each input range, the capacity between the pair of conductor patterns is larger. And is charged for a longer time. Therefore, the capacity is quickly charged as compared with the current characteristic in the conventional insulation inspection apparatus, and the state where the insulation resistance value can be calculated in a shorter time is reached. As a result, according to this insulation inspection apparatus, it is possible to perform the insulation inspection on the pair of conductor patterns in a shorter time and with higher accuracy.
JP 2001-91562 A (page 4-5, FIG. 1)

ところで、従来の絶縁検査装置は、複数の入力レンジを備えたレンジ回路を有して構成されている。しかしながら、このような入力レンジの切り替えを行うためのレンジ回路を備えていない絶縁検査装置、つまり入力レンジが1つに固定されている絶縁検査装置もあり、このような絶縁検査装置においても、絶縁検査を短縮したいという要請も多く存在している。また、上記した従来の絶縁検査装置(複数の入力レンジを備えた検査装置)においても、入力レンジの切替制御によって絶縁抵抗値の測定に適した低電流用入力レンジに達した以後は、電流値が小さくなるため、この部分でのさらなる時間短縮を行うことが望ましい。   By the way, the conventional insulation inspection apparatus has a range circuit having a plurality of input ranges. However, there is an insulation inspection device that does not include a range circuit for switching the input range, that is, an insulation inspection device in which the input range is fixed to one. There are many requests to shorten inspections. In addition, in the above-described conventional insulation inspection device (inspection device having a plurality of input ranges), after reaching the low current input range suitable for measuring the insulation resistance value by switching the input range, the current value Therefore, it is desirable to further reduce the time in this portion.

本発明は、かかる課題に鑑みてなされたものであり、検査対象体の絶縁状態を短時間で検査し得る絶縁検査方法および絶縁検査装置を提供することを主目的とする。   This invention is made | formed in view of this subject, and it aims at providing the insulation test | inspection method and insulation test | inspection apparatus which can test | inspect the insulation state of a test object in a short time.

上記目的を達成すべく請求項1記載の絶縁検査方法は、検査対象体に接続された一対のプローブ間に直流電圧を印加すると共に、当該直流電圧の印加状態において当該一対のプローブに流れる漏れ電流の電流値と予め規定された閾値とに基づいて当該検査対象体の絶縁状態を検査する絶縁検査方法であって、前記検査対象体の未接続状態において前記一対のプローブ間に前記直流電圧を印加したときの前記漏れ電流についての定常値を測定し、前記一対のプローブ間に前記検査対象体を接続して前記絶縁状態の検査を実行する際に、前記直流電圧の印加状態での前記漏れ電流の前記電流値を測定しつつ当該測定された電流値から前記定常値を減算し、当該減算によって得られた電流値と前記閾値とに基づいて前記絶縁状態を検査する。   In order to achieve the above object, the insulation inspection method according to claim 1 applies a DC voltage between a pair of probes connected to an object to be inspected, and a leakage current that flows through the pair of probes when the DC voltage is applied. An insulation inspection method for inspecting an insulation state of the inspection object based on a current value and a predetermined threshold value, wherein the DC voltage is applied between the pair of probes in an unconnected state of the inspection object. The leakage current in the applied state of the DC voltage is measured when a steady-state value of the leakage current is measured, and the inspection object is connected between the pair of probes to perform the inspection of the insulation state. The steady state value is subtracted from the measured current value while measuring the current value, and the insulation state is inspected based on the current value obtained by the subtraction and the threshold value.

また、請求項2記載の絶縁検査方法は、請求項1記載の絶縁検査方法において、前記絶縁状態の検査の非実行時に前記定常値の測定を定期的に実行する。   According to a second aspect of the present invention, in the insulation inspection method according to the first aspect, the steady-state value is periodically measured when the insulation state inspection is not performed.

また、請求項3記載の絶縁検査方法は、請求項2記載の絶縁検査方法において、所定時間間隔で前記定常値の測定を実行する。   According to a third aspect of the present invention, in the insulation inspection method according to the second aspect, the steady-state value is measured at predetermined time intervals.

また、請求項4記載の絶縁検査方法は、請求項1記載の絶縁検査方法において、所定数の前記検査対象体に対する前記絶縁状態の検査が完了する都度、前記定常値の測定を実行する。   According to a fourth aspect of the present invention, in the insulation inspection method according to the first aspect, the steady-state value is measured each time the insulation state inspection for a predetermined number of the inspection objects is completed.

また、請求項5記載の絶縁検査装置は、検査対象体に接続される一対のプローブと、当該一対のプローブ間に直流電圧を印加する電源部と、前記直流電圧の印加状態において前記一対のプローブに流れる漏れ電流の電流値を測定する電流測定部と、前記測定された漏れ電流の電流値と予め規定された閾値とに基づいて前記検査対象体の絶縁状態を検査する処理部とを備えた絶縁検査装置であって、前記処理部は、前記検査対象体の未接続状態において前記電源部から前記一対のプローブ間に前記直流電圧が印加されたときに前記電流測定部で測定される前記漏れ電流についての定常値を記憶する定常値記憶処理と、前記検査対象体の接続状態において前記電源部から前記一対のプローブ間に前記直流電圧が印加されたときに前記電流測定部に対して前記漏れ電流についての前記電流値を測定させつつ当該測定された電流値から前記定常値を減算すると共に、当該減算によって得られた電流値と前記閾値とに基づいて前記絶縁状態を検査する検査処理とを実行する。   The insulation inspection apparatus according to claim 5 is a pair of probes connected to an inspection object, a power supply unit that applies a DC voltage between the pair of probes, and the pair of probes in the DC voltage application state. And a processing unit for inspecting the insulation state of the inspection object based on the measured current value of the leakage current and a predetermined threshold value. In the insulation inspection apparatus, the processing unit is configured to measure the leakage measured by the current measurement unit when the DC voltage is applied between the pair of probes from the power supply unit in a state where the inspection object is not connected. A steady-state storage process for storing a steady-state value for the current, and when the DC voltage is applied between the pair of probes from the power supply unit in the connection state of the inspection object, the current measurement unit And subtracting the steady value from the measured current value while measuring the current value of the leakage current, and inspecting the insulation state based on the current value obtained by the subtraction and the threshold value The inspection process is executed.

また、請求項6記載の絶縁検査装置は、請求項5記載の絶縁検査装置において、前記処理部は、電源投入直後の所定期間内に前記定常値記憶処理を実行する。   According to a sixth aspect of the present invention, in the insulation testing apparatus according to the fifth aspect, the processing unit executes the steady value storage process within a predetermined period immediately after the power is turned on.

また、請求項7記載の絶縁検査装置は、請求項5記載の絶縁検査装置において、前記処理部は、前記検査処理の非実行時に前記定常値記憶処理を定期的に実行する。   The insulation inspection apparatus according to claim 7 is the insulation inspection apparatus according to claim 5, wherein the processing unit periodically executes the steady value storage process when the inspection process is not executed.

また、請求項8記載の絶縁検査装置は、請求項7記載の絶縁検査装置において、前記処理部は、所定時間間隔で前記定常値記憶処理を実行する。   The insulation inspection apparatus according to claim 8 is the insulation inspection apparatus according to claim 7, wherein the processing unit executes the steady value storage process at predetermined time intervals.

また、請求項9記載の絶縁検査装置は、請求項5記載の絶縁検査装置において、前記処理部は、所定数の前記検査対象体に対する前記検査処理が完了する都度、前記定常値記憶処理を実行する。   In addition, the insulation inspection apparatus according to claim 9 is the insulation inspection apparatus according to claim 5, wherein the processing unit executes the steady value storage process every time the inspection process for a predetermined number of the inspection objects is completed. To do.

請求項1記載の絶縁検査方法および請求項5記載の絶縁検査装置では、検査対象体の未接続状態において一対のプローブ間に直流電圧が印加されたときにプローブに流れる漏れ電流の定常値を測定し、一対のプローブ間に検査対象体を接続して絶縁状態の検査を実行する際に、直流電圧の印加状態での漏れ電流の電流値を測定しつつこの電流値から定常値を減算し、減算によって得られた電流値と閾値とを比較して、検査対象体(各プローブ間)の絶縁状態(絶縁の良否)を検査する。したがって、この絶縁検査処理および絶縁検査装置によれば、定常値を予め測定しておくことにより、検査対象体に絶縁不良が発生していないときには、定常値を減算した分だけ漏れ電流が閾値に早く達するため、検査対象体の絶縁状態が良好であることを一層短時間に検査することができる。   The insulation inspection method according to claim 1 and the insulation inspection apparatus according to claim 5 measure a steady value of a leakage current flowing through a probe when a DC voltage is applied between a pair of probes in an unconnected state of an inspection object. Then, when connecting the test object between the pair of probes and performing the insulation test, the steady value is subtracted from the current value while measuring the current value of the leakage current in the DC voltage application state, The current value obtained by subtraction is compared with a threshold value, and the insulation state (insulation quality) of the inspection object (between each probe) is inspected. Therefore, according to the insulation inspection process and the insulation inspection apparatus, by measuring the steady value in advance, when the insulation failure does not occur in the inspection object, the leakage current becomes the threshold value by the amount obtained by subtracting the steady value. Since it arrives early, it can test | inspect further in a short time that the insulation state of a test object is favorable.

請求項2,3,4記載の絶縁検査方法および請求項7,8,9記載の絶縁検査装置によれば、検査対象体に対する絶縁状態の検査の非実行時に定常値の測定および記憶を定期的に(例えば、絶縁状態の各検査の間で1回または複数回)実行したり、また所定時間間隔で定常値の測定および記憶を実行したり、また所定数の検査対象体に対する検査処理が完了する都度、定常値の測定および記憶を実行したりすることにより、湿度などの周囲環境によって変化しやすい定常値について、刻々変化する周囲環境に対応させて記憶させることができるため、定常値を用いた絶縁検査の精度を一層向上させることができる。   According to the insulation inspection method described in claims 2, 3, and 4 and the insulation inspection device described in claims 7, 8, and 9, the measurement and storage of the steady value are periodically performed when the inspection of the insulation state of the inspection object is not performed. (For example, one or more times between inspections in an insulated state), measurement and storage of steady values at predetermined time intervals, and completion of inspection processing for a predetermined number of inspection objects By measuring and storing steady values each time, steady values that are likely to change depending on the surrounding environment, such as humidity, can be stored in correspondence with the constantly changing surrounding environment. The accuracy of the insulation test can be further improved.

請求項6記載の絶縁検査装置によれば、電源投入直後の所定期間内に処理部が定常値記憶処理を実行することにより、湿度などの周囲環境によって変化しやすい定常値について、実際に絶縁検査処理を行うときの周囲環境に対応させて記憶部に記憶させることができる。このため、検査時間の短縮と共に絶縁検査の精度を向上させることができる。   According to the insulation inspection apparatus of the sixth aspect, since the processing unit executes the steady value storage process within a predetermined period immediately after the power is turned on, the insulation value is actually inspected with respect to the steady value that easily changes depending on the surrounding environment such as humidity. It can be stored in the storage unit in correspondence with the surrounding environment when processing is performed. For this reason, it is possible to improve the accuracy of the insulation inspection while shortening the inspection time.

以下、本発明に係る絶縁検査方法および絶縁検査装置の最良の形態について、添付図面を参照して説明する。   Hereinafter, the best mode of an insulation inspection method and an insulation inspection apparatus according to the present invention will be described with reference to the accompanying drawings.

最初に、本発明に係る絶縁検査装置1の構成について、図面を参照して説明する。   Initially, the structure of the insulation test | inspection apparatus 1 which concerns on this invention is demonstrated with reference to drawings.

図1に示す絶縁検査装置1は、一対のプローブ2a,2b、電源部3、本発明における電流測定部としての電流計4、処理部5、記憶部6、出力部7および操作部8を備え、検査対象体に対する絶縁検査を実行可能に構成されている。一対のプローブ2a,2bのうちの一方のプローブ2aは電源部3の出力端子(図示せず)に接続され、他方のプローブ2bは電流計4に接続されている。また、各プローブ2a,2bは検査対象体に接触可能に構成されている。なお、同図において符号Csを付した静電容量は各プローブ2a,2b間の浮遊容量(検査対象体が未接続の状態での静電容量。一例として約100nF)を示し、符号Rpを付した抵抗は各プローブ2a,2b間の絶縁抵抗(検査対象体が未接続の状態での絶縁抵抗。一例として約1GΩ)を示している。電源部3は、処理部5によって制御されて、所定の直流電圧V1(グランド電位を基準とした電圧。一例として100V)をその出力端子(図示せず)から出力する。なお、同図において符号3aを付した抵抗は、電源部3の出力抵抗を示している。   1 includes a pair of probes 2a and 2b, a power supply unit 3, an ammeter 4 as a current measuring unit in the present invention, a processing unit 5, a storage unit 6, an output unit 7, and an operation unit 8. The insulation inspection for the inspection object can be executed. One probe 2 a of the pair of probes 2 a and 2 b is connected to an output terminal (not shown) of the power supply unit 3, and the other probe 2 b is connected to the ammeter 4. Moreover, each probe 2a, 2b is comprised so that a test subject can be contacted. In the figure, the capacitance denoted by Cs indicates the stray capacitance between the probes 2a and 2b (capacitance when the test object is not connected. As an example, approximately 100 nF), and denoted by Rp. The resistance shown represents the insulation resistance between the probes 2a and 2b (insulation resistance when the test object is not connected, as an example, about 1 GΩ). The power supply unit 3 is controlled by the processing unit 5 and outputs a predetermined DC voltage V1 (voltage based on the ground potential, 100V as an example) from its output terminal (not shown). In the figure, the resistor denoted by reference numeral 3 a indicates the output resistance of the power supply unit 3.

電流計4は、図1に示すように、プローブ2bとグランドとの間に介装されている。また、電流計4は、一対のプローブ2a,2b間に流れる漏れ電流Iの電流値を所定のサンプリング周期で測定すると共に、測定の都度、測定した電流値を示すデータDiを出力する。処理部5は、一例としてCPUで構成されて、検査対象体に対する絶縁検査処理を実行する。記憶部6は、半導体メモリで構成されて、絶縁検査処理の実行の際に処理部5で測定した定常値IL0を記憶する。また、記憶部6には、絶縁検査のための閾値ILthが予め記憶されている。出力部7は、一例として表示装置で構成されて、処理部5が実行した絶縁検査処理の結果を表示する。操作部8は、処理部5に対する動作指示を入力する機能を備えている。 As shown in FIG. 1, the ammeter 4 is interposed between the probe 2b and the ground. The current meter 4, a pair of probes 2a, the current value of the leakage current I L flowing between 2b with measured at a predetermined sampling period, every measurement, and outputs the data Di indicating the measured current value. The processing unit 5 is configured by a CPU as an example, and executes an insulation inspection process on the inspection object. The storage unit 6 is composed of a semiconductor memory, and stores a steady value I L0 measured by the processing unit 5 when the insulation inspection process is executed. The storage unit 6 stores in advance a threshold value I Lth for insulation inspection. The output unit 7 is constituted by a display device as an example, and displays the result of the insulation inspection process executed by the processing unit 5. The operation unit 8 has a function of inputting an operation instruction to the processing unit 5.

次に、絶縁検査装置1の動作と共に、絶縁検査処理について説明する。なお、回路基板に形成された2つの配線パターンを検査対象体として、この両配線パターン間の絶縁状態を検査する例を挙げて説明する。また、絶縁抵抗Rxが100MΩ以上のときに配線パターン11a,11b間の絶縁が良好であると判別するため、閾値ILth(=1μA(=100V/100MΩ))が予め記憶されている。 Next, the insulation inspection process will be described together with the operation of the insulation inspection apparatus 1. An example in which two wiring patterns formed on a circuit board are used as inspection objects and an insulation state between the two wiring patterns is inspected will be described. Further, in order to determine that the insulation between the wiring patterns 11a and 11b is good when the insulation resistance Rx is 100 MΩ or more, a threshold value I Lth (= 1 μA (= 100 V / 100 MΩ)) is stored in advance.

この絶縁検査処理では、まず、各プローブ2a,2bを配線パターン11a,11bに接続する前(未接続状態のとき)に、絶縁検査装置1を作動させて、操作部8から処理部5に対して定常値記憶処理を実行する旨の動作指示を入力する。本例では一例として、絶縁検査装置1の電源投入後のウォームアップ期間(電源投入直後の所定期間)に動作指示を入力して、処理部5に定常値記憶処理を実行させる。この定常値記憶処理では、最初に、処理部5は、電源部3に対する制御を実行して、電源部3から直流電圧V1をステップ状に出力させる。この直流電圧V1はプローブ2a,2b間に印加され、これにより、漏れ電流Iが各プローブ2a,2bおよび電流計4を介してグランドに流れる。この場合、漏れ電流Iは、電源部3の出力抵抗3aおよび各プローブ2a,2b間に存在している浮遊容量Csを介してグランドに流れる漏れ電流ILCと、この出力抵抗3aおよび各プローブ2a,2b間に存在している絶縁抵抗Rpを介してグランドに流れる漏れ電流ILRp(一定)との合成電流となる。具体的には、この漏れ電流Iの波形は、図2において破線で示すような過渡応答波形(すなわち、直流電圧V1の印加直後に電流値が一旦大きくなり、その後は浮遊容量Csへの充電が進むにつれて(時間の経過に伴い)電流値が次第に低下し、浮遊容量Csの充電が完了した時点(直流電圧V1の印加からの経過時間が時間t1となった時点)で漏れ電流ILRp(=0.1μA(=100V/1GΩ)のみとなる波形)となる。 In this insulation inspection process, first, before connecting each probe 2a, 2b to the wiring patterns 11a, 11b (when not connected), the insulation inspection apparatus 1 is operated, and the operation unit 8 performs the processing on the processing unit 5. The operation instruction to execute the steady value storage process is input. In this example, as an example, an operation instruction is input during a warm-up period after power-on of the insulation inspection apparatus 1 (a predetermined period immediately after power-on), and the processing unit 5 performs a steady-state storage process. In the steady value storage process, first, the processing unit 5 executes control on the power supply unit 3 to output the DC voltage V1 from the power supply unit 3 in a stepped manner. The DC voltage V1 is applied between the probes 2a, 2b, thereby, flows to the ground leakage current I L through the probe 2a, 2b and ammeter 4. In this case, the leakage current I L, the output resistance 3a and each probe 2a of the power supply unit 3, the leakage current I LC flowing to the ground through a stray capacitance Cs which exists between 2b, the output resistance 3a and each probe It becomes a combined current with a leakage current I LRp (constant) flowing to the ground via the insulation resistance Rp existing between 2a and 2b. Specifically, the waveform of the leakage current I L, the transient response waveform (i.e., as shown by a broken line in FIG. 2, the current value becomes temporarily large immediately after application of the DC voltage V1, then charge the stray capacitance Cs Current value gradually decreases as time elapses (as time elapses), and leakage current I LRp (when the elapsed time from application of DC voltage V1 reaches time t1) when charging of stray capacitance Cs is completed (time t1). = 0.1 μA (= waveform with only 100 V / 1 GΩ).

電流計4は漏れ電流Iを所定のサンプリング周期で測定して、その電流値を示すデータDiを出力している。処理部5は、このデータDiを入力して、漏れ電流Iの電流値を検出しつつ、ほぼ一定になったとき(漏れ電流ILRpのみとなったとき)の電流値を定常的に流れる電流値である定常値IL0として記憶部6に記憶させる。最後に、処理部5は、電源部3に対する制御を行い、直流電圧V1の出力を停止させる。これにより、定常値記憶処理が完了する。これにより、絶縁検査装置1の起動の度に、起動時の周囲環境に対応した定常値IL0が記憶部6に記憶される。 The ammeter 4 measures the leakage current IL at a predetermined sampling period, and outputs data Di indicating the current value. Processing section 5 inputs the data Di, while detecting the current value of the leakage current I L, flows when it becomes substantially constant current value (when it becomes only the leakage current I LRP) steadily It is stored in the storage unit 6 as a steady value IL0 that is a current value. Finally, the processing unit 5 controls the power supply unit 3 to stop the output of the DC voltage V1. Thereby, the steady value storage process is completed. As a result, each time the insulation inspection apparatus 1 is activated, the steady value IL0 corresponding to the ambient environment at the time of activation is stored in the storage unit 6.

次いで、プローブ2aが配線パターン11aに接続され、かつプローブ2bが配線パターン11bに接続された状態(接続状態)において、操作部8から処理部5に対して検査処理を実行する旨の動作指示を入力する。この検査処理では、処理部5は、電源部3に対する制御を再度実行して、直流電圧V1をステップ状に出力させる。この直流電圧V1はプローブ2a,2b間と配線パターン11a,11b間とに印加され、これにより、漏れ電流Iが、各プローブ2a,2b、配線パターン11a,11bおよび電流計4を介してグランドに流れる。この場合、漏れ電流Iは、浮遊容量Csを介してグランドに流れる上記の漏れ電流ILCと、絶縁抵抗Rpを介してグランドに流れる上記の漏れ電流ILRp(一定)と、出力抵抗3aおよび各配線パターン11a,11b間の絶縁抵抗Rxを介してグランドに流れる漏れ電流ILRx(一定:(=0.2μA(=100V/500MΩ)))との合成電流となる。具体的には、漏れ電流Iの波形は、図2において実線で示すような過渡応答波形(すなわち、直流電圧V1の印加直後に電流値が一旦大きくなり、その後は浮遊容量Csへの充電が進むにつれて(時間の経過に伴い)電流値が次第に低下し、浮遊容量Csの充電が完了した時点(時間t1)で漏れ電流ILRpおよび漏れ電流ILRxの合成電流(一定)のみとなる波形)となる。なお、実際には配線パターン11a,11b間にも若干の浮遊容量が存在するが、プローブ2a,2bよりも配線パターン11a,11bは十分に短いため、この浮遊容量はプローブ2a,2b間の浮遊容量Csと比較して極めて小さい。このため、配線パターン11a,11b間の浮遊容量については、発明の理解を容易にするために考慮しないものとする。 Next, in a state where the probe 2a is connected to the wiring pattern 11a and the probe 2b is connected to the wiring pattern 11b (connected state), the operation unit 8 instructs the processing unit 5 to perform an inspection process. input. In this inspection process, the processing unit 5 executes the control on the power supply unit 3 again, and outputs the DC voltage V1 in a step shape. This DC voltage V1 is applied between the probes 2a and 2b and between the wiring patterns 11a and 11b, so that the leakage current IL is grounded via the probes 2a and 2b, the wiring patterns 11a and 11b and the ammeter 4. Flowing into. In this case, the leakage current I L includes the leakage current I LC that flows to the ground via the stray capacitance Cs, the leakage current I LRp (constant) that flows to the ground via the insulation resistance Rp, the output resistance 3a, and This is a combined current with a leakage current I LRx (constant: (= 0.2 μA (= 100 V / 500 MΩ)) that flows to the ground via the insulation resistance Rx between the wiring patterns 11 a and 11 b. Specifically, the waveform of the leakage current I L, the transient response waveform as shown by a solid line in FIG. 2 (i.e., the current value becomes temporarily large immediately after application of the DC voltage V1, it is then charged to the floating capacitance Cs (A waveform in which the current value gradually decreases as time progresses, and only the combined current (constant) of the leakage current I LRp and the leakage current I LRx is obtained when charging of the stray capacitance Cs is completed (time t1)) It becomes. Actually, there is some stray capacitance between the wiring patterns 11a and 11b. However, since the wiring patterns 11a and 11b are sufficiently shorter than the probes 2a and 2b, this stray capacitance is stray between the probes 2a and 2b. It is extremely small compared with the capacity Cs. For this reason, the stray capacitance between the wiring patterns 11a and 11b is not considered in order to facilitate understanding of the invention.

処理部5は、電流計4から出力されるデータDiを入力して漏れ電流Iの電流値を検出する都度、その電流値から記憶部6に記憶されている定常値IL0を減算すると共に、減算後の電流値と記憶部6に記憶されている閾値ILth(1μA)との比較を実行する。この比較の結果、減算後の電流値が閾値ILth以下となったときには、処理部5は、配線パターン11a,11b間の絶縁が十分なレベルにある(絶縁不良が発生していない)と判別する。この場合、図3に示すように、定常値IL0を減算しない漏れ電流Iの波形が閾値ILth以下となる時間t2よりも、定常値IL0を減算した漏れ電流Iの波形が閾値ILth以下となる時間t3の方が早く到来するため、定常値IL0を減算した漏れ電流Iの波形と閾値ILthとを比較する方法の方が、漏れ電流Iの波形が閾値ILth以下となったか否かを早く判別することができる。したがって、配線パターン11a,11bに対する検査処理の時間が短縮される。 Processing section 5, each for detecting a current value of the leakage current I L to input data Di output from the ammeter 4, while subtracting the constant value I L0 stored from the current value in the memory unit 6 Then, the current value after subtraction is compared with the threshold value I Lth (1 μA) stored in the storage unit 6. As a result of this comparison, when the current value after subtraction is equal to or less than the threshold value ILth , the processing unit 5 determines that the insulation between the wiring patterns 11a and 11b is at a sufficient level (no insulation failure has occurred). To do. In this case, as shown in FIG. 3, not subtract the constant value I L0 leakage current than I L time waveform is equal to or less than the threshold I Lth of t2, the waveform of the leakage current I L obtained by subtracting the constant value I L0 threshold since the direction of I Lth hereinafter become time t3 arrives early stationary value I L0 towards the method of comparing the waveform with a threshold value I Lth leakage current I L obtained by subtracting the leakage current I L of the waveform threshold value I It can be quickly determined whether or not Lth or less. Accordingly, the inspection processing time for the wiring patterns 11a and 11b is shortened.

一方、配線パターン11a,11b間に絶縁不良が発生している場合には、漏れ電流Iの電流値が増加しているため、時間t3に達したときでも、定常値IL0を減算した漏れ電流Iの波形が閾値ILth以下とならない状況が生じる。このため、この検査処理では、定常値IL0を減算した漏れ電流Iの波形が時間t3に達しても閾値ILthよりも大きいときには、処理部5は、配線パターン11a,11b間に絶縁不良が発生していると判別する。処理部5は、検査処理での結果を記憶部6に記憶させる。これにより、検査処理が完了する。最後に、処理部5は、記憶部6に記憶されている検査処理での結果を出力部7に出力させる。これにより、絶縁検査処理が完了する。 On the other hand, the leakage when the wiring pattern 11a, the insulation failure between 11b has occurred, because the current value of the leakage current I L is increased, even when reaching the time t3, which is obtained by subtracting the constant value I L0 situation that the waveform of the current I L does not become less than the threshold value I Lth occurs. Thus, in this inspection process, when the waveform of the leakage current I L obtained by subtracting the constant value I L0 is also greater than the threshold I Lth reached time t3, the processing unit 5, the wiring patterns 11a, insulation failure between 11b Is determined to have occurred. The processing unit 5 stores the result of the inspection process in the storage unit 6. Thereby, the inspection process is completed. Finally, the processing unit 5 causes the output unit 7 to output the result of the inspection process stored in the storage unit 6. Thereby, the insulation inspection process is completed.

また、一旦、定常値IL0を測定した後においては、この定常値IL0を使用することにより、定常値記憶処理を再度実行することなく、検査処理を繰り返すことができる。したがって、時間を要する定常値記憶処理を不要にできる分だけ、さらなる時間短縮を図ることができる。 In addition, once the steady value IL0 is measured, by using the steady value IL0 , the inspection process can be repeated without executing the steady value storage process again. Therefore, the time can be further shortened by the amount that can eliminate the time-consuming steady value storage process.

このように、この絶縁検査処理および絶縁検査装置1では、処理部5が、配線パターン11a,11bの未接続状態において各プローブ2a,2b間に直流電圧V1が印加されたときに電流計4で測定される漏れ電流Iの定常値IL0を測定し、配線パターン11a,11bの接続状態において各プローブ2a,2b間に直流電圧V1が印加されたときに電流計4で測定される漏れ電流Iから定常値IL0を減算すると共に、減算によって得られた電流値と閾値ILthとを比較して、プローブ2a,2b間の絶縁の良否を検査する。したがって、この絶縁検査処理および絶縁検査装置1によれば、定常値IL0を予め測定して記憶しておくことにより、配線パターン11a,11b間に絶縁不良が発生していないときには、定常値IL0を減算した分だけ漏れ電流Iが閾値ILthに早く達するため、配線パターン11a,11b間の絶縁状態が良好であることを一層短時間に検査することができる。 Thus, in this insulation inspection process and insulation inspection apparatus 1, the processing unit 5 uses the ammeter 4 when the DC voltage V1 is applied between the probes 2a and 2b when the wiring patterns 11a and 11b are not connected. the steady-state value I L0 of the measured leakage current I L is measured, the wiring patterns 11a, leakage current each probe 2a in the connection state of the 11b, the DC voltage V1 between 2b is measured by the ammeter 4 when applied while subtracting the constant value I L0 from I L, by comparing the current value and the threshold value I Lth obtained by the subtraction, examining the quality of the insulation between the probe 2a, 2b. Therefore, according to this insulation inspection process and insulation inspection apparatus 1, the steady value I L0 is measured and stored in advance, so that when there is no insulation failure between the wiring patterns 11a and 11b, the steady value I since the leakage current I L by the amount obtained by subtracting the L0 reaches quickly the threshold I Lth, it is possible to wiring patterns 11a, an insulating state between 11b inspecting the shorter time to be good.

また、この絶縁検査装置1によれば、絶縁検査装置1の電源投入後のウォームアップ期間(電源投入直後の所定期間)に処理部5が定常値記憶処理を実行することにより、湿度などの周囲環境によって変化しやすい定常値IL0について、絶縁検査装置1の起動の度に、起動時の周囲環境に対応した新たな定常値IL0を記憶部6に記憶させることができるため、この定常値IL0を用いて絶縁検査の精度を向上させることができる。 In addition, according to the insulation inspection apparatus 1, the processing unit 5 performs the steady value storage process during the warm-up period (a predetermined period immediately after the power is turned on) after the insulation inspection apparatus 1 is turned on. With respect to the steady-state value I L0 that is likely to change depending on the environment, a new steady-state value I L0 corresponding to the surrounding environment at the start-up can be stored in the storage unit 6 each time the insulation inspection apparatus 1 is started. The accuracy of the insulation inspection can be improved by using IL0 .

なお、本発明は、上記の構成に限定されない。例えば、複数(3以上)のプローブを備えた治具式の絶縁検査装置(複数の検査対象体に対応して複数のプローブを備えて、複数の検査対象体に対する絶縁検査処理を連続して実行する絶縁検査装置)に適用できるのは勿論である。また、検査対象体として回路基板に形成された配線パターン11a,11bを例に挙げて説明したが、検査対象体はこれに限らず、様々なものについての絶縁抵抗を検査することができる。また、定常値記憶処理の実行について、電源投入後のウォームアップ期間に実行する例について上記したが、これに限定されず、絶縁検査装置1が回路基板に対する検査処理を行っていない期間(本発明における検査の非実行時。例えば、回路基板が絶縁検査装置1に搬送されて来るまでの空き時間や、検査処理と検査処理との合間)において定期的に実行(1回以上の処理の実行や所定時間間隔での実行)したり、所定数の回路基板に対する検査が完了する都度実行したり、先の定常値記憶処理の実行から所定時間が経過する都度(または、予め決められた時刻が到来する都度)実行したりすることもできる。これにより、湿度などの周囲環境によって変化しやすい定常値IL0について、刻々変化する周囲環境に対応させて記憶部6に記憶させることができるため、定常値IL0を用いた絶縁検査の精度を一層向上させることができる。 In addition, this invention is not limited to said structure. For example, a jig-type insulation inspection device having a plurality (3 or more) of probes (equipped with a plurality of probes corresponding to a plurality of inspection objects, and continuously performing insulation inspection processing on the plurality of inspection objects) Of course, it can be applied to an insulation inspection apparatus). In addition, the wiring patterns 11a and 11b formed on the circuit board are described as examples of the inspection object, but the inspection object is not limited to this, and the insulation resistance of various objects can be inspected. Further, although the example in which the steady value storage process is executed during the warm-up period after turning on the power has been described above, the invention is not limited to this, and the period during which the insulation inspection apparatus 1 does not perform the inspection process on the circuit board (the present invention). Non-execution of inspection in step 1. For example, when the circuit board is transported to the insulation inspection apparatus 1 and is periodically executed (between inspection processing and inspection processing), Every time a predetermined number of circuit boards have been inspected, or every time a predetermined time has elapsed since the execution of the previous steady value storage process (or a predetermined time has arrived) You can also do it every time. As a result, since the steady value IL0 that is likely to change depending on the surrounding environment such as humidity can be stored in the storage unit 6 in correspondence with the constantly changing ambient environment, the accuracy of the insulation test using the steady value IL0 is improved. This can be further improved.

また、操作部8から処理部5に対して動作指示を入力する構成について上記したが、処理部5が、電源投入直後のウォームアップ期間であるか否か、または回路基板に対する絶縁検査処理の空き時間であるか否か、または所定数の回路基板に対する検査が完了したか否か、または先の定常値記憶処理の実行から所定時間が経過したか否かを判別して、定常値記憶処理を自動的に実行する構成を採用することもできる。この構成によれば、湿度などの周囲環境によって変化しやすい定常値IL0について、記憶部6の記憶内容を周囲環境の変化に対応させて自動的に更新することができるため、絶縁検査処理の精度を確実に向上させることができる。 In addition, the configuration in which an operation instruction is input from the operation unit 8 to the processing unit 5 has been described above. However, whether or not the processing unit 5 is in the warm-up period immediately after the power is turned on, or the insulation inspection processing for the circuit board is not performed. It is determined whether it is time, whether inspection for a predetermined number of circuit boards is completed, or whether a predetermined time has elapsed since the execution of the previous steady value storage process, and the steady value storage process It is also possible to adopt a configuration that executes automatically. According to this configuration, the stored value in the storage unit 6 can be automatically updated in response to a change in the surrounding environment for the steady-state value I L0 that easily changes depending on the surrounding environment such as humidity. The accuracy can be improved reliably.

絶縁検査装置1の構成を示す構成図である。1 is a configuration diagram showing a configuration of an insulation inspection device 1. 各プローブ2a,2b間に流れる漏れ電流Iの波形図である。Each probe 2a, a waveform diagram of a leakage current I L flowing between 2b. 漏れ電流Iの時間t2付近での拡大波形図である。It is an enlarged waveform diagram in the vicinity time t2 of the leakage current I L.

符号の説明Explanation of symbols

1 絶縁検査装置
2a,2b プローブ
3 電源部
4 電流計
5 処理部
6 記憶部
11a,11b 配線パターン
漏れ電流
L0 定常値
Rx 絶縁抵抗
V1 直流電圧
1 insulation test apparatus 2a, 2b probe 3 power supply unit 4 ammeter 5 processor 6 storage section 11a, 11b wiring patterns I L leakage current I L0 constant value Rx insulation resistance V1 DC voltage

Claims (9)

検査対象体に接続された一対のプローブ間に直流電圧を印加すると共に、当該直流電圧の印加状態において当該一対のプローブに流れる漏れ電流の電流値と予め規定された閾値とに基づいて当該検査対象体の絶縁状態を検査する絶縁検査方法であって、
前記検査対象体の未接続状態において前記一対のプローブ間に前記直流電圧を印加したときの前記漏れ電流についての定常値を測定し、
前記一対のプローブ間に前記検査対象体を接続して前記絶縁状態の検査を実行する際に、前記直流電圧の印加状態での前記漏れ電流の前記電流値を測定しつつ当該測定された電流値から前記定常値を減算し、当該減算によって得られた電流値と前記閾値とに基づいて前記絶縁状態を検査する絶縁検査方法。
A DC voltage is applied between the pair of probes connected to the inspection object, and the inspection object is based on a current value of a leakage current flowing through the pair of probes in a state where the DC voltage is applied and a predetermined threshold value. An insulation inspection method for inspecting an insulation state of a body,
Measure the steady value of the leakage current when the DC voltage is applied between the pair of probes in the unconnected state of the inspection object,
When the inspection object is connected between the pair of probes and the insulation state is inspected, the current value measured while measuring the current value of the leakage current in the DC voltage application state An insulation inspection method for subtracting the steady value from the value and inspecting the insulation state based on the current value obtained by the subtraction and the threshold value.
前記絶縁状態の検査の非実行時に前記定常値の測定を定期的に実行する請求項1記載の絶縁検査方法。   The insulation inspection method according to claim 1, wherein the measurement of the steady value is periodically performed when the insulation state inspection is not performed. 所定時間間隔で前記定常値の測定を実行する請求項2記載の絶縁検査方法。   The insulation inspection method according to claim 2, wherein the steady-state value is measured at predetermined time intervals. 所定数の前記検査対象体に対する前記絶縁状態の検査が完了する都度、前記定常値の測定を実行する請求項1記載の絶縁検査方法。   The insulation inspection method according to claim 1, wherein the measurement of the steady value is executed every time the inspection of the insulation state for a predetermined number of the inspection objects is completed. 検査対象体に接続される一対のプローブと、
当該一対のプローブ間に直流電圧を印加する電源部と、
前記直流電圧の印加状態において前記一対のプローブに流れる漏れ電流の電流値を測定する電流測定部と、
前記測定された漏れ電流の電流値と予め規定された閾値とに基づいて前記検査対象体の絶縁状態を検査する処理部とを備えた絶縁検査装置であって、
前記処理部は、前記検査対象体の未接続状態において前記電源部から前記一対のプローブ間に前記直流電圧が印加されたときに前記電流測定部で測定される前記漏れ電流についての定常値を記憶する定常値記憶処理と、前記検査対象体の接続状態において前記電源部から前記一対のプローブ間に前記直流電圧が印加されたときに前記電流測定部に対して前記漏れ電流についての前記電流値を測定させつつ当該測定された電流値から前記定常値を減算すると共に、当該減算によって得られた電流値と前記閾値とに基づいて前記絶縁状態を検査する検査処理とを実行する絶縁検査装置。
A pair of probes connected to the object to be examined;
A power supply unit for applying a DC voltage between the pair of probes;
A current measurement unit that measures a current value of a leakage current flowing through the pair of probes in the application state of the DC voltage;
An insulation inspection apparatus comprising a processing unit that inspects an insulation state of the inspection object based on a current value of the measured leakage current and a predetermined threshold value,
The processing unit stores a steady value of the leakage current measured by the current measuring unit when the DC voltage is applied between the pair of probes from the power supply unit in a state where the inspection object is not connected. The current value for the leakage current to the current measuring unit when the DC voltage is applied between the pair of probes from the power source unit in the connection state of the inspection object. An insulation inspection apparatus that subtracts the steady value from the measured current value while performing measurement, and performs an inspection process for inspecting the insulation state based on the current value obtained by the subtraction and the threshold value.
前記処理部は、電源投入直後の所定期間内に前記定常値記憶処理を実行する請求項5記載の絶縁検査装置。   The insulation inspection apparatus according to claim 5, wherein the processing unit executes the steady value storage processing within a predetermined period immediately after power-on. 前記処理部は、前記検査処理の非実行時に前記定常値記憶処理を定期的に実行する請求項5記載の絶縁検査装置。   The insulation inspection apparatus according to claim 5, wherein the processing unit periodically executes the steady value storage processing when the inspection processing is not executed. 前記処理部は、所定時間間隔で前記定常値記憶処理を実行する請求項7記載の絶縁検査装置。   The insulation inspection apparatus according to claim 7, wherein the processing unit executes the steady value storage process at predetermined time intervals. 前記処理部は、所定数の前記検査対象体に対する前記検査処理が完了する都度、前記定常値記憶処理を実行する請求項5記載の絶縁検査装置。   The insulation inspection apparatus according to claim 5, wherein the processing unit executes the steady value storage processing every time the inspection processing for a predetermined number of the inspection objects is completed.
JP2008060395A 2008-03-11 2008-03-11 Insulation inspection method and insulation inspection apparatus Active JP5215004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008060395A JP5215004B2 (en) 2008-03-11 2008-03-11 Insulation inspection method and insulation inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008060395A JP5215004B2 (en) 2008-03-11 2008-03-11 Insulation inspection method and insulation inspection apparatus

Publications (2)

Publication Number Publication Date
JP2009216528A true JP2009216528A (en) 2009-09-24
JP5215004B2 JP5215004B2 (en) 2013-06-19

Family

ID=41188540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008060395A Active JP5215004B2 (en) 2008-03-11 2008-03-11 Insulation inspection method and insulation inspection apparatus

Country Status (1)

Country Link
JP (1) JP5215004B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009257801A (en) * 2008-04-14 2009-11-05 Hioki Ee Corp Method and apparatus for measuring insulation resistance
CN105259483A (en) * 2015-10-30 2016-01-20 山西漳泽电力股份有限公司电力技术研究中心 Method for measuring insulating state of generator rotor winding to iron core and shaft system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815342A (en) * 1994-06-29 1996-01-19 Hewlett Packard Japan Ltd Impedance measuring apparatus
JP2001035759A (en) * 1999-07-16 2001-02-09 Matsushita Electric Ind Co Ltd Apparatus for measuring impedance of capacitor
JP2001051003A (en) * 1999-08-05 2001-02-23 Asia Electronics Inc Pixel capacitance inspecting apparatus with leak correction function
JP2001091562A (en) * 1999-09-28 2001-04-06 Hioki Ee Corp Device for inspecting circuit board
JP2005055212A (en) * 2003-08-07 2005-03-03 Hioki Ee Corp Circuit board inspection device
JP2005274561A (en) * 2004-02-25 2005-10-06 Sanyo Electric Co Ltd Measuring device of solid electrolytic capacitor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815342A (en) * 1994-06-29 1996-01-19 Hewlett Packard Japan Ltd Impedance measuring apparatus
JP2001035759A (en) * 1999-07-16 2001-02-09 Matsushita Electric Ind Co Ltd Apparatus for measuring impedance of capacitor
JP2001051003A (en) * 1999-08-05 2001-02-23 Asia Electronics Inc Pixel capacitance inspecting apparatus with leak correction function
JP2001091562A (en) * 1999-09-28 2001-04-06 Hioki Ee Corp Device for inspecting circuit board
JP2005055212A (en) * 2003-08-07 2005-03-03 Hioki Ee Corp Circuit board inspection device
JP2005274561A (en) * 2004-02-25 2005-10-06 Sanyo Electric Co Ltd Measuring device of solid electrolytic capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009257801A (en) * 2008-04-14 2009-11-05 Hioki Ee Corp Method and apparatus for measuring insulation resistance
CN105259483A (en) * 2015-10-30 2016-01-20 山西漳泽电力股份有限公司电力技术研究中心 Method for measuring insulating state of generator rotor winding to iron core and shaft system
CN105259483B (en) * 2015-10-30 2017-12-19 山西漳泽电力股份有限公司电力技术研究中心 A kind of generator amature winding is to iron core and the insulation measurement method of shafting

Also Published As

Publication number Publication date
JP5215004B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
KR101346936B1 (en) Insulation inspecting device and insulation inspecting method
KR20150111865A (en) Resistance measuring apparatus, substrate test apparatus, test method and method of maintaining jig for test
JP5507430B2 (en) Circuit board inspection equipment
JP5496620B2 (en) Insulation inspection device and insulation inspection method
JP5391869B2 (en) Board inspection method
JP5225731B2 (en) Insulation resistance measuring method and insulation resistance measuring apparatus
JP6104578B2 (en) Inspection apparatus and inspection method
JP5897393B2 (en) Resistance measuring device
JP5215004B2 (en) Insulation inspection method and insulation inspection apparatus
JP2009109379A (en) Insulation inspecting apparatus
JP6486665B2 (en) Insulation resistance measuring device
JP5317554B2 (en) Circuit board inspection apparatus and circuit board inspection method
JP2009162669A (en) Insulation resistance measurement circuit
KR101553206B1 (en) Semiconductor test system and relay driving test method therefor
JP2007198758A (en) Apparatus and method for inspection
JP2021021685A (en) Device and method for inspecting power storage device
JP2007315981A (en) Measuring device and inspection device
JP5425709B2 (en) Insulation inspection device and insulation inspection method
JP2023107032A (en) Insulation resistance detector and fault detection method
JP4259692B2 (en) Circuit board inspection equipment
JP6008493B2 (en) Substrate inspection apparatus and substrate inspection method
JP2014219335A (en) Inspection apparatus and inspection method
JP2021113728A (en) Apparatus and method for measuring power storage device
KR101208045B1 (en) Storage battery defect detecting method for distribution automatization control enclosure
JP6400347B2 (en) Inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121122

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130228

R150 Certificate of patent or registration of utility model

Ref document number: 5215004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250