JP2009215329A - Energy ray-curable resin composition, adhesive using the same, and cured form - Google Patents

Energy ray-curable resin composition, adhesive using the same, and cured form Download PDF

Info

Publication number
JP2009215329A
JP2009215329A JP2008056998A JP2008056998A JP2009215329A JP 2009215329 A JP2009215329 A JP 2009215329A JP 2008056998 A JP2008056998 A JP 2008056998A JP 2008056998 A JP2008056998 A JP 2008056998A JP 2009215329 A JP2009215329 A JP 2009215329A
Authority
JP
Japan
Prior art keywords
resin composition
curable resin
energy ray
adhesive
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008056998A
Other languages
Japanese (ja)
Other versions
JP4934085B2 (en
Inventor
Keiji Goto
慶次 後藤
Kenji Fukao
健司 深尾
Kazuhiro Oshima
和宏 大島
Atsushi Watanabe
淳 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2008056998A priority Critical patent/JP4934085B2/en
Publication of JP2009215329A publication Critical patent/JP2009215329A/en
Application granted granted Critical
Publication of JP4934085B2 publication Critical patent/JP4934085B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide: an energy ray-curable resin composition capable of satisfying adhesion, heat resistance, low moisture permeability and low curing-constractility in an advantageous balance and having excellent storage stability; an adhesive and a cured body using the same. <P>SOLUTION: This energy ray-curable resin composition comprises (A) an alicyclic epoxy compound, (B) silica particles having a uranium content of 1 ppb or less, (C) a photopolymerization initiator for cationic polymerization, and (D) a silane coupling agent. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本願発明は、エネルギー線硬化性樹脂組成物とそれを用いた接着剤及び硬化体に関する。   The present invention relates to an energy ray curable resin composition, an adhesive using the same, and a cured product.

近年のエレクトロニクス分野では、機器の高性能化に伴い、特に、液晶や有機エレクトロルミネッセンス(以下、有機ELという)等のディスプレイ部品や、CCD、CMOSといったイメージセンサー等の電子部品、さらに半導体部品等で用いられる素子パッケージ等の接着においては、面積1cm以下の微少面積接着、さらに膜厚20〜100μm以下の薄膜接着可能な接着剤が求められる。 In recent years, in the field of electronics, with the improvement in performance of devices, display components such as liquid crystals and organic electroluminescence (hereinafter referred to as organic EL), electronic components such as image sensors such as CCD and CMOS, and semiconductor components, etc. In the bonding of element packages and the like to be used, an adhesive capable of bonding a small area of 1 cm 2 or less and a thin film of 20 to 100 μm or less is required.

一方、接着面積や接着厚みの薄小化に反して、接着剤に要求される特性は、ガラス、セラミックス、樹脂等、各種被着体への高い接着強度や、例えば250℃の高温に晒されるはんだリフロー工程においても剥離を生じない高耐熱性、さらに高温多湿雰囲気への暴露下でも素子ダメージの要因となる湿気を通さない低透湿性等、その要求レベルは年々高まっている。さらには、硬化収縮に起因する内部応力が各パッケージ素材に影響を及ぼさないよう硬化収縮が低く接着歪みの少ないことや、常温で長期保管可能な貯蔵安定性に優れた接着剤の開発が望まれている。   On the other hand, contrary to the reduction in bonding area and bonding thickness, the properties required of adhesives are exposed to high adhesion strength to various adherends such as glass, ceramics, resins, and high temperatures such as 250 ° C. In the solder reflow process, the required level is increasing year by year, such as high heat resistance that does not cause peeling, and low moisture permeability that prevents element damage even under exposure to a high-temperature and high-humidity atmosphere. Furthermore, it is desirable to develop adhesives that have low cure shrinkage and low adhesive distortion so that internal stress due to cure shrinkage does not affect each package material, and that have excellent storage stability that can be stored for long periods at room temperature. ing.

このような技術の潮流の中で、当該分野における接着剤は、耐熱性に優れた熱硬化型のエポキシ系接着剤、シリコーン系接着剤、ポリイミド系接着剤等が用いられているが、量産化を考慮したとき、従来の熱硬化型を代替する速硬化性を有した紫外線などのエネルギー線硬化性接着剤が望まれている。   In this trend of technology, thermosetting epoxy adhesives, silicone adhesives, polyimide adhesives, etc. with excellent heat resistance are used as adhesives in this field. In view of the above, there is a demand for energy ray-curable adhesives such as ultraviolet rays having fast curing properties that replace conventional thermosetting types.

エネルギー線硬化性エポキシ系接着剤は、硬化収縮が低く、さらには各種被着体への接着性や、耐熱性、透湿性に優れており、特許文献1にはラミネート用接着剤、特許文献2にはポリオレフィン用接着剤、特許文献3にはアルカリガラス、金属接合用接着剤、特許文献4にはCCD用接着剤、特許文献5には有機EL素子封止用接着剤についての記載があるように、各分野で使用されている。
特開平8−231938号公報 特開2001−131516号公報 特開2003−327785号公報 特開2004−269554号公報 特開2006−169540号公報
The energy ray curable epoxy adhesive has low curing shrinkage and is excellent in adhesion to various adherends, heat resistance, and moisture permeability. Patent Document 1 discloses an adhesive for lamination, Patent Document 2 Describes an adhesive for polyolefins, Patent Document 3 describes alkali glass, adhesive for metal bonding, Patent Document 4 describes an adhesive for CCD, and Patent Document 5 describes an adhesive for sealing an organic EL element. It is used in each field.
Japanese Patent Laid-Open No. 8-231938 JP 2001-131516 A JP 2003-327785 A JP 2004-269554 A JP 2006-169540 A

しかしながら、上述の公知の接着剤では、近年のエレクトロニクス分野にて高度に要求される特性、特に耐熱性、低透湿性、低硬化収縮性、そして常温で長期保管可能な貯蔵安定性をバランスよく満足するものはない。   However, the above-mentioned known adhesives satisfy the properties required in the recent electronics field, particularly heat resistance, low moisture permeability, low curing shrinkage, and storage stability that can be stored at room temperature for a long time. There is nothing to do.

即ち、本願発明の目的は、微少面積、薄膜接着においても高度に要求される、接着性、耐熱性、低透湿性、低硬化収縮性、そして常温で長期保管可能な貯蔵安定性を有するエネルギー線硬化性樹脂組成物とそれを用いた接着剤及び硬化体を提供することである。   That is, the object of the present invention is to provide an energy beam having a small area and a high degree of demand for thin film bonding, adhesiveness, heat resistance, low moisture permeability, low curing shrinkage, and storage stability that can be stored for a long time at room temperature. It is to provide a curable resin composition, and an adhesive and a cured body using the same.

本願発明によれば、(A)脂環式エポキシ化合物、(B)ウラン含量1ppb以下のシリカ粒子、(C)光カチオン重合開始剤及び(D)シランカップリング剤を含有することを特徴とするエネルギー線硬化性樹脂組成物が提供される。   According to the present invention, (A) an alicyclic epoxy compound, (B) silica particles having a uranium content of 1 ppb or less, (C) a photocationic polymerization initiator, and (D) a silane coupling agent are included. An energy ray curable resin composition is provided.

上記構成からなるエネルギー線硬化性樹脂組成物は、接着性、耐熱性、低透湿性、低硬化収縮性をバランスよく満足することができ、優れた貯蔵安定性を有する。   The energy ray-curable resin composition having the above structure can satisfy the adhesiveness, heat resistance, low moisture permeability, and low curing shrinkage in a well-balanced manner and has excellent storage stability.

本願発明によれば、接着性、耐熱性、低透湿性、低硬化収縮性をバランスよく満足することができ、優れた貯蔵安定性を有するエネルギー線硬化性樹脂組成物とそれを用いた接着剤及び硬化体を提供できる。   According to the present invention, an energy ray-curable resin composition that can satisfy a good balance of adhesiveness, heat resistance, low moisture permeability, and low curing shrinkage and has excellent storage stability and an adhesive using the same And a cured product.

<用語の説明>
本願明細書において、エネルギー線硬化性樹脂組成物とは、エネルギー線を照射することによって硬化させることができる樹脂組成物を意味する。ここで、エネルギー線とは、紫外線、可視光線等に代表されるエネルギー線を意味する。
<Explanation of terms>
In the present specification, the energy ray curable resin composition means a resin composition that can be cured by irradiation with energy rays. Here, the energy rays mean energy rays typified by ultraviolet rays and visible rays.

本願明細書において、樹脂組成物の硬化体の弾性維持率Rは、Eaを約25℃の貯蔵弾性率、Ebを約250℃の貯蔵弾性率としたとき、次式によって定義される。
R=Eb/Ea
In the present specification, the elastic retention rate R of the cured body of the resin composition is defined by the following equation, where Ea is a storage elastic modulus of about 25 ° C. and Eb is a storage elastic modulus of about 250 ° C.
R = Eb / Ea

貯蔵弾性率とは、複素弾性率の実数部で、粘弾性体に正弦波のひずみを加えたときの同位相の応力成分の大きさを意味する。ここで、複素弾性率とは、動的粘弾性において、最大応力と最大ひずみとの比で、ベクトルとして複素数演算したものを意味する。動的粘弾性とは、材料に定常的な正弦波のひずみを与えたときの粘性と弾性との組合せの挙動をいう。これは、ひずみに対する応力、又は応力に対するひずみを測定して求められる。   The storage elastic modulus is the real part of the complex elastic modulus, and means the magnitude of the in-phase stress component when a sinusoidal strain is applied to the viscoelastic body. Here, the complex elastic modulus means a value obtained by calculating a complex number as a vector in the ratio of maximum stress to maximum strain in dynamic viscoelasticity. Dynamic viscoelasticity refers to the behavior of a combination of viscosity and elasticity when a constant sinusoidal strain is applied to a material. This is obtained by measuring stress against strain or strain against stress.

貯蔵弾性率の測定は、公知の動的粘弾性スペクトルメーター(例えば、エスアイアイ・ナノテクノロジー社製のDMSシリーズや、ティー・エー・インスツルメント社製のRSAシリーズ)等を用いることが好ましい。   The storage elastic modulus is preferably measured using a known dynamic viscoelasticity spectrum meter (for example, DMS series manufactured by SII Nanotechnology, RSA series manufactured by TA Instruments) or the like.

また、本願明細書において、「〜」という記号は「以上」及び「以下」を意味する。例えば、「A〜B」というのは、A以上でありB以下であるという意味である。   In the present specification, the symbol “to” means “above” and “below”. For example, “A to B” means not less than A and not more than B.

以下、本願発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本実施形態に係るエネルギー線硬化性樹脂組成物は、(A)脂環式エポキシ化合物、(B)ウラン含量1ppb以下のシリカ粒子、(C)光カチオン重合開始剤及び(D)シランカップリング剤を含有することを特徴とする。   The energy ray-curable resin composition according to this embodiment includes (A) an alicyclic epoxy compound, (B) silica particles having a uranium content of 1 ppb or less, (C) a photocationic polymerization initiator, and (D) a silane coupling agent. It is characterized by containing.

上記構成からなるエネルギー線硬化性樹脂組成物は、接着性、耐熱性、低透湿性、低硬化収縮性をバランスよく満足することができ、優れた貯蔵安定性を有する。   The energy ray-curable resin composition having the above structure can satisfy the adhesiveness, heat resistance, low moisture permeability, and low curing shrinkage in a well-balanced manner and has excellent storage stability.

次に、本実施形態に係るエネルギー線硬化性樹脂組成物の成分について説明する。   Next, components of the energy beam curable resin composition according to the present embodiment will be described.

((A)脂環式エポキシ化合物)
本実施形態に係るエネルギー線硬化性樹脂組成物は、(A)脂環式エポキシ化合物を必須成分とする。脂環式エポキシ化合物を用いることにより、本実施形態に係るエネルギー線硬化性樹脂組成物は優れた接着性と耐熱性を示す。
((A) Alicyclic epoxy compound)
The energy beam curable resin composition according to the present embodiment includes (A) an alicyclic epoxy compound as an essential component. By using an alicyclic epoxy compound, the energy ray-curable resin composition according to the present embodiment exhibits excellent adhesiveness and heat resistance.

(A)脂環式エポキシ化合物としては、少なくとも1個のシクロへキセンまたはシクロペンテン環、ピネン環等のシクロアルカン環を有する化合物を、過酸化水素、過酸等の適当な酸化剤でエポキシ化することによって得られる化合物もしくはその誘導体や、ビスフェノールA型エポキシ化合物等の芳香族エポキシ化合物を水素化して得られる水素化エポキシ化合物等が挙げられる。これらの化合物もしくは誘導体は、単独または2種類以上を選択して使用してもよい。   (A) As an alicyclic epoxy compound, a compound having at least one cyclohexene or cycloalkane ring such as cyclopentene ring or pinene ring is epoxidized with an appropriate oxidizing agent such as hydrogen peroxide or peracid. And hydrogenated epoxy compounds obtained by hydrogenating aromatic epoxy compounds such as bisphenol A type epoxy compounds. These compounds or derivatives may be used alone or in combination of two or more.

ここで、特に、1分子内に1個以上のエポキシ基と1個以上のエステル基を含有する脂環式エポキシ化合物であることが好ましい。このような脂環式エポキシ化合物は、エステル基同士又はエステル基と(B)成分であるウラン含量1ppb以下のシリカ粒子との相互作用により耐熱性に優れるため好ましい。   Here, in particular, an alicyclic epoxy compound containing one or more epoxy groups and one or more ester groups in one molecule is preferable. Such an alicyclic epoxy compound is preferable because of excellent heat resistance due to interaction between ester groups or ester groups and silica particles having a uranium content of 1 ppb or less, which is the component (B).

そのような脂環式エポキシ化合物としては、特に限定されないが、3,4−エポキシシクロヘキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレート、3,4−エポキシシクロヘキシルメチルメタアクリレート等が挙げられる。   Examples of such alicyclic epoxy compounds include, but are not limited to, 3,4-epoxycyclohexenylmethyl-3 ', 4'-epoxycyclohexenecarboxylate, 3,4-epoxycyclohexylmethyl methacrylate, and the like.

((B)ウラン含量1ppb以下のシリカ粒子)
本実施形態に係るエネルギー線硬化性樹脂組成物は、(B)ウラン含量1ppb以下のシリカ粒子を必須成分とする。(B)ウラン含量1ppb以下のシリカ粒子を用いることにより、本実施形態に係るエネルギー線硬化性樹脂組成物は低透湿性、および低硬化収縮性を示し、さらに(A)成分である脂環式エポキシ樹脂と併用することで優れた耐熱性を示す。さらにウラン含量が1ppb以下であるため、従来のシリカ粒子では困難であった常温長期保管が可能な、優れた貯蔵安定性を有するエネルギー線硬化性組成物とそれを用いた接着剤を提供できる。
((B) Silica particles having a uranium content of 1 ppb or less)
The energy beam curable resin composition according to the present embodiment includes (B) silica particles having a uranium content of 1 ppb or less as an essential component. (B) By using silica particles having a uranium content of 1 ppb or less, the energy ray-curable resin composition according to the present embodiment exhibits low moisture permeability and low cure shrinkage, and (A) is an alicyclic compound. Excellent heat resistance when used in combination with epoxy resin. Furthermore, since the uranium content is 1 ppb or less, it is possible to provide an energy ray curable composition having excellent storage stability that can be stored at room temperature for a long time, which was difficult with conventional silica particles, and an adhesive using the same.

ここで、シリカ粒子とは、化学組成としてSiO(1≦X≦2)で表される99%以上の純度であるシリカ粒子のことであり、ウラン含量1ppb以下の低ウランシリカ粒子のことを言う。 Here, the silica particle is a silica particle having a purity of 99% or more represented by SiO X (1 ≦ X ≦ 2) as a chemical composition, and a low uranium silica particle having a uranium content of 1 ppb or less. To tell.

低ウランシリカ粒子の合成法としては、特に限定されないが、ケイ酸アルカリを中和、ゲル乾燥、粉砕後火炎溶融する方法、アルコキシシランを火炎分解する方法、四塩化ケイ素等の揮発性ケイ素化合物を気相加水分解する方法、低ウラン水晶を粉砕しそれを溶融して製造する方法等が挙げられる。これらの方法では、安定した低ウランシリカ粒子を容易に得ることができるので好ましい。   The method for synthesizing the low uranium silica particles is not particularly limited, but a method of neutralizing alkali silicate, gel drying, flame melting after pulverization, flame decomposition of alkoxysilane, and volatile silicon compounds such as silicon tetrachloride. Examples thereof include a method of hydrolyzing gas phase and a method of pulverizing and melting low uranium quartz. These methods are preferable because stable low uranium silica particles can be easily obtained.

ウラン含量の測定方法としては、分光蛍光光度計(例えば、日立計測器社製、測定限界0.01ppb)等を用いる測定方法が挙げられる。   Examples of the method for measuring the uranium content include a measurement method using a spectrofluorometer (for example, a measurement limit of 0.01 ppb, manufactured by Hitachi Keiki Co., Ltd.).

(B)ウラン含量1ppb以下のシリカ粒子は、(A)脂環式エポキシ化合物100質量部に対して、150質量部以上400質量部以下の割合で含有させることが好ましい。150質量部以上であれば、低硬化収縮性を得ることができ、400質量部以下であれば接着性を低下させることもない。   (B) Silica particles having a uranium content of 1 ppb or less are preferably contained at a ratio of 150 parts by mass or more and 400 parts by mass or less with respect to 100 parts by mass of (A) the alicyclic epoxy compound. If it is 150 parts by mass or more, low curing shrinkage can be obtained, and if it is 400 parts by mass or less, the adhesiveness is not lowered.

(B)ウラン含量1ppb以下のシリカ粒子の粒子径は、50%粒子径が0.1μm以上15μm以下の範囲であって、90%粒子径が50%粒子径以上20μm以下の範囲であることが好ましい。50%粒子径が0.1μm以上15μm以下の範囲であって、90%粒子径が50%粒子径以上20μm以下の範囲にあれば、粒子径が小さすぎ凝集し易くなってしまうこともないし、粒子径が大きすぎ沈降し易くなってしまうこともない。   (B) The particle diameter of silica particles having a uranium content of 1 ppb or less is such that the 50% particle diameter is in the range of 0.1 μm to 15 μm, and the 90% particle diameter is in the range of 50% particle diameter to 20 μm. preferable. If the 50% particle size is in the range of 0.1 μm or more and 15 μm or less, and the 90% particle size is in the range of 50% or more and 20 μm or less, the particle size is too small to easily aggregate. The particle size is too large to easily settle.

ここでいう50%粒子径および90%粒子径とは、体積累積頻度50%時および90%時の粒子径のこという。   The 50% particle diameter and 90% particle diameter here refer to the particle diameter when the volume cumulative frequency is 50% and 90%.

粒子径の測定方法としては、特に限定されないが、例えば、レーザー回折粒度分布計、レーザードップラー粒度分布計、動的光散乱粒度分布計、超音波粒度分布計等が挙げられる。   The method for measuring the particle size is not particularly limited, and examples thereof include a laser diffraction particle size distribution meter, a laser Doppler particle size distribution meter, a dynamic light scattering particle size distribution meter, and an ultrasonic particle size distribution meter.

(B)ウラン含量1ppb以下のシリカ粒子の形状は、例えば、破砕状、球状等が挙げられ、特に限定されないが、高充填が可能で、素子を破損する恐れのある鋭利な角部がない球状シリカ粒子が好ましく用いられる。   (B) The shape of the silica particles having a uranium content of 1 ppb or less includes, for example, a crushed shape, a spherical shape, and the like, and is not particularly limited, but is a spherical shape that can be highly filled and has no sharp corners that may damage the device. Silica particles are preferably used.

また、(B)ウラン含量1ppb以下のシリカ粒子は、表面水酸基量が3〜20個/nmの範囲にあることが好ましい。3個/nm以上であれば、シランカップリング剤が好適に表面に吸着するため分散性が向上し、その結果好適な接着性を得ることができるし、20個/nm以下であれば、粒子同士が凝集し易くなって、貯蔵安定性が低下してしまうこともない。   Further, (B) silica particles having a uranium content of 1 ppb or less preferably have a surface hydroxyl group content in the range of 3 to 20 particles / nm. If it is 3 pieces / nm or more, the silane coupling agent is favorably adsorbed on the surface, so that the dispersibility is improved. As a result, suitable adhesiveness can be obtained. They do not easily aggregate and storage stability does not deteriorate.

((C)光カチオン重合開始剤)
本実施形態に係るエネルギー線硬化性樹脂組成物は、(C)光カチオン重合開始剤を含有する。光カチオン重合開始剤を用いることで、本実施形態に係るエネルギー線硬化性樹脂組成物は紫外線などのエネルギー線照射により硬化可能となる。
((C) Photocationic polymerization initiator)
The energy beam curable resin composition according to the present embodiment contains (C) a photocationic polymerization initiator. By using a cationic photopolymerization initiator, the energy ray-curable resin composition according to this embodiment can be cured by irradiation with energy rays such as ultraviolet rays.

(C)光カチオン重合開始剤としては、アリールスルホニウム塩誘導体(例えば、ダウケミカル社製のサイラキュアUVI−6990、サイラキュアUVI−6974、旭電化工業社製のアデカオプトマーSP−150、アデカオプトマーSP−152、アデカオプトマーSP−170、アデカオプトマーSP−172、サンアプロ社製のCPI−100P、CPI−101A、CPI−200K、CPI−210S、ダブルボンド社製チバキュアー1190等)、アリールヨードニウム塩誘導体(例えば、チバスペシャリティーケミカルズ社製のイルガキュア250、ローディア・ジャパン社製のRP−2074)、アレン−イオン錯体誘導体、ジアゾニウム塩誘導体、トリアジン系開始剤及びその他のハロゲン化物等の酸発生剤が挙げられる。これら光カチオン重合開始剤は、1種のみ又は2種以上を選択して使用してもよい。   (C) As the cationic photopolymerization initiator, arylsulfonium salt derivatives (for example, Cyracure UVI-6990, Cyracure UVI-6974, manufactured by Dow Chemical Company, Adekaoptomer SP-150, Adekaoptomer SP, manufactured by Asahi Denka Kogyo Co., Ltd.) -152, Adekaoptomer SP-170, Adekaoptomer SP-172, CPI-100P, CPI-101A, CPI-200K, CPI-210S, Ciba-Cure 1190 manufactured by Double Bond, etc.), aryliodonium salt derivatives (For example, Irgacure 250 manufactured by Ciba Specialty Chemicals, RP-2074 manufactured by Rhodia Japan), acid generators such as allene-ion complex derivatives, diazonium salt derivatives, triazine initiators and other halides. Et That. These photocationic polymerization initiators may be used alone or in combination of two or more.

(C)光カチオン重合開始剤のアニオン種としては、特に限定されないが、例えば、ホウ素化合物、リン化合物、アンチモン化合物、ヒ素化合物、アルキルスルホン酸化合物等のハロゲン化物が挙げられる。さらには、UV硬化性が良く、その結果、接着性、耐熱性、低透湿性が向上する点からフッ化物が好ましい。   (C) Although it does not specifically limit as anion seed | species of a photocationic polymerization initiator, For example, halides, such as a boron compound, a phosphorus compound, an antimony compound, an arsenic compound, and an alkylsulfonic acid compound, are mentioned. Further, fluoride is preferable from the viewpoint of good UV curability and, as a result, improved adhesion, heat resistance and low moisture permeability.

(C)光カチオン重合開始剤は、(A)脂環式エポキシ化合物100質量部に対して、0.1〜5質量部の割合で含有させることが好ましい。光カチオン重合開始剤の含有量が0.1質量部以上であれば硬化性が悪くなることもないし、5質量部以下であれば耐熱性を低下させることもない。   (C) It is preferable to contain a photocationic polymerization initiator in the ratio of 0.1-5 mass parts with respect to 100 mass parts of (A) alicyclic epoxy compounds. If the content of the cationic photopolymerization initiator is 0.1 parts by mass or more, the curability is not deteriorated, and if it is 5 parts by mass or less, the heat resistance is not lowered.

また、(C)光カチオン重合開始剤の感度を向上させるため、各種光増感剤を併用してもよい。   Moreover, in order to improve the sensitivity of the (C) photocationic polymerization initiator, various photosensitizers may be used in combination.

光増感剤としては、特に限定されないが、例えば、チオキサントン誘導体、ベンゾフェノン誘導体、フェノチアジン誘導体、フェニルケトン誘導体等が挙げられる。しかし、これらに限定されず公知の光増感剤を適用することができる。   Although it does not specifically limit as a photosensitizer, For example, a thioxanthone derivative, a benzophenone derivative, a phenothiazine derivative, a phenyl ketone derivative etc. are mentioned. However, it is not limited to these, and a known photosensitizer can be applied.

((D)シランカップリング剤)
また、本実施形態に係るエネルギー線硬化性樹脂組成物は、(D)シランカップリング剤を含有する。シランカップリング剤を用いることにより、本実施形態に係るエネルギー線硬化性樹脂組成物は、さらに優れた耐熱性と貯蔵安定性を示す。
((D) Silane coupling agent)
Moreover, the energy beam curable resin composition which concerns on this embodiment contains (D) silane coupling agent. By using a silane coupling agent, the energy ray-curable resin composition according to the present embodiment further exhibits excellent heat resistance and storage stability.

(D)シランカップリング剤としては、γ−クロロプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリクロルシラン、ビニルトリエトキシシラン、ビニル−トリス(β−メトキシエトキシ)シラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−アクリロキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルメチルジメトキシシラン及びγ−ユレイドプロピルトリエトキシシラン等が挙げられ、好ましくはβ−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン等が挙げられる。これらのシランカップリング剤は、1種のみまたは2種以上を選択して使用してもよい。   (D) As a silane coupling agent, γ-chloropropyltrimethoxysilane, vinyltrimethoxysilane, vinyltrichlorosilane, vinyltriethoxysilane, vinyl-tris (β-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxy Silane, γ-acryloxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxy Silane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropylmethyldimethoxysilane, γ-ureidopropyltriethoxysilane and the like are preferable, Is β- ( 3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane and the like. These silane coupling agents may be used alone or in combination of two or more.

(D)シランカップリング剤は、(A)脂環式エポキシ化合物100質量部に対して、0.1〜10質量部の割合で含有させることが好ましい。シランカップリング剤の含有量が0.1質量部以上であれば好適な分散性を得ることができ、10質量部以下であれば接着性を低下させることもない。   (D) It is preferable to contain a silane coupling agent in the ratio of 0.1-10 mass parts with respect to 100 mass parts of (A) alicyclic epoxy compounds. If the content of the silane coupling agent is 0.1 parts by mass or more, suitable dispersibility can be obtained, and if it is 10 parts by mass or less, the adhesiveness is not lowered.

(カチオン重合性化合物)
本実施形態に係るエネルギー線硬化性樹脂組成物には、さらに芳香族エポキシ化合物、脂肪族エポキシ化合物、オキセタン化合物、ビニルエーテル化合物等の他のカチオン重合性化合物を含有してもよい。これらを含有することによって粘度や硬度を調整することが可能となる。
(Cationically polymerizable compound)
The energy beam curable resin composition according to this embodiment may further contain other cationically polymerizable compounds such as an aromatic epoxy compound, an aliphatic epoxy compound, an oxetane compound, and a vinyl ether compound. By containing these, the viscosity and hardness can be adjusted.

ここで、芳香族エポキシ化合物としては、モノマー、オリゴマーまたはポリマーのいずれも使用可能である。芳香族エポキシ化合物としては、特に限定されないが、例えば、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、ビフェニル型エポキシ化合物、フルオレン型エポキシ化合物、ノボラックフェノール型エポキシ化合物、クレゾールノボラック型エポキシ化合物、またはこれらの変性物等が挙げられる。   Here, as the aromatic epoxy compound, any of a monomer, an oligomer or a polymer can be used. Although it does not specifically limit as an aromatic epoxy compound, For example, bisphenol A type epoxy compound, bisphenol F type epoxy compound, bisphenol S type epoxy compound, biphenyl type epoxy compound, fluorene type epoxy compound, novolak phenol type epoxy compound, cresol novolak Type epoxy compounds or modified products thereof.

脂肪族エポキシ化合物としては、特に限定されないが、例えば、脂肪族多価アルコールあるいはそのアルキレンオキサイド付加体のジまたはポリグリシジルエーテル等が挙げられる。脂肪族エポキシ化合物としては、エチレングリコールのジグリシジルエーテル、プロピレングリコールのジグリシジルエーテルまたは1,6−ヘキサンジオールのジグリシジルエーテル等のアルキレングリコールのジグリシジルエーテル、グリセリンあるいはそのアルキレンオキサイド付加体のジまたはトリグリシジルエーテル等の多価アルコールのポリグリシジルエーテル、ポリエチレングリコールあるいはそのアルキレンオキサイド付加体のジグリシジルエーテル、ポリプロピレングリコールあるいはそのアルキレンオキサイド付加体のジグリシジルエーテル等のポリアルキレングリコールのジグリシジルエーテル等が挙げられる。ここで、アルキレンオキサイドとしては、エチレンオキサイド及びプロピレンオキサイド等が挙げられる。   Although it does not specifically limit as an aliphatic epoxy compound, For example, di or polyglycidyl ether of aliphatic polyhydric alcohol or its alkylene oxide adduct etc. are mentioned. Examples of the aliphatic epoxy compound include diglycidyl ether of ethylene glycol, diglycidyl ether of propylene glycol or diglycidyl ether of 1,6-hexanediol, diglycidyl ether of alkylene glycol, glycerin or its alkylene oxide adduct di- or Polyglycidyl ether of polyhydric alcohol such as triglycidyl ether, diglycidyl ether of polyethylene glycol or its alkylene oxide adduct, diglycidyl ether of polyalkylene glycol such as diglycidyl ether of polypropylene glycol or its alkylene oxide adduct, etc. It is done. Here, examples of the alkylene oxide include ethylene oxide and propylene oxide.

オキセタン化合物としては、特に限定されないが、例えば、3−エチル−3−ヒドロキシメチルオキセタン(東亜合成(株)製商品名OXT101等)、1,4−ビス[(3−エチル−3−オキセタニル)メトキシメチル]ベンゼン(同OXT121等)、3−エチル−3−(フェノキシメチル)オキセタン(同OXT211等)、ジ(1−エチル−3−オキセタニル)メチルエーテル(同OXT221等)、3−エチル−3−(2−エチルヘキシロキシメチル)オキセタン(同OXT212等)等が挙げられる。このオキセタン化合物とは、分子内に1以上のオキセタン環を有する化合物である。   The oxetane compound is not particularly limited. For example, 3-ethyl-3-hydroxymethyloxetane (trade name OXT101 manufactured by Toa Gosei Co., Ltd.), 1,4-bis [(3-ethyl-3-oxetanyl) methoxy Methyl] benzene (same as OX121), 3-ethyl-3- (phenoxymethyl) oxetane (same as OXT211), di (1-ethyl-3-oxetanyl) methyl ether (same as OXT221), 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane (such as OXT212) and the like. This oxetane compound is a compound having one or more oxetane rings in the molecule.

ビニルエーテル化合物としては、特に限定されないが、例えば、エチレングリコールジビニルエーテル、エチレングリコールモノビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールモノビニルエーテル、トリエチレングリコールジビニルエーテル、プロピレングリコールジビニルエーテル、ジプロピレングリコールジビニルエーテル、ブタンジオールジビニルエーテル、ヘキサンジオールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、ヒドロキシエチルモノビニルエーテル、ヒドロキシノニルモノビニルエーテル、トリメチロールプロパントリビニルエーテル等のジまたはトリビニルエーテル化合物、エチルビニルエーテル、n−ブチルビニルエーテル、イソブチルビニルエーテル、オクタデシルビニルエーテル、シクロヘキシルビニルエーテル、ヒドロキシブチルビニルエーテル、2−エチルヘキシルビニルエーテル、シクロヘキサンジメタノールモノビニルエーテル、n−プロピルビニルエーテル、イソプロピルビニルエーテル、イソプロペニルエーテル−o−プロピレンカーボネート、ドデシルビニルエーテル、ジエチレングリコールモノビニルエーテル、オクタデシルビニルエーテル等のモノビニルエーテル化合物等が挙げられる。   Although it does not specifically limit as a vinyl ether compound, For example, ethylene glycol divinyl ether, ethylene glycol monovinyl ether, diethylene glycol divinyl ether, triethylene glycol monovinyl ether, triethylene glycol divinyl ether, propylene glycol divinyl ether, dipropylene glycol divinyl ether, butane Di- or trivinyl ether compounds such as diol divinyl ether, hexanediol divinyl ether, cyclohexane dimethanol divinyl ether, hydroxyethyl monovinyl ether, hydroxynonyl monovinyl ether, trimethylolpropane trivinyl ether, ethyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether, Tadecyl vinyl ether, cyclohexyl vinyl ether, hydroxybutyl vinyl ether, 2-ethylhexyl vinyl ether, cyclohexanedimethanol monovinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, isopropenyl ether-o-propylene carbonate, dodecyl vinyl ether, diethylene glycol monovinyl ether, octadecyl vinyl ether, etc. And monovinyl ether compounds.

(無機充填剤)
本実施形態に係るエネルギー線硬化性樹脂組成物は、無機充填剤をさらに含有していてもよい。
(Inorganic filler)
The energy beam curable resin composition according to the present embodiment may further contain an inorganic filler.

無機充填剤としては、ガラスフィラー、球状アルミナ、破砕アルミナ、酸化マグネシウム、酸化ベリリウム、酸化チタン等の酸化物類、窒化ホウ素、窒化ケイ素、窒化アルミニウム等の窒化物類、炭化ケイ素等の炭化物類、水酸化アルミニウム、水酸化マグネシウム等の水酸化物類、銅、銀、鉄、アルミニウム、ニッケル、チタン等の金属類や合金類、ダイヤモンド、カーボン等の炭素系充填材などが挙げられる。これらの無機充填剤を含有することによって、エネルギー線硬化性樹脂組成物の放熱性が向上するので好ましい。   Examples of inorganic fillers include glass fillers, spherical alumina, crushed alumina, oxides such as magnesium oxide, beryllium oxide and titanium oxide, nitrides such as boron nitride, silicon nitride and aluminum nitride, carbides such as silicon carbide, Examples thereof include hydroxides such as aluminum hydroxide and magnesium hydroxide, metals and alloys such as copper, silver, iron, aluminum, nickel and titanium, and carbon-based fillers such as diamond and carbon. By containing these inorganic fillers, the heat radiation property of the energy beam curable resin composition is improved, which is preferable.

また、本実施形態に係るエネルギー線硬化性樹脂組成物は、本実施形態の目的を損なわない範囲で、アクリルゴム、ウレタンゴムなどの各種エラストマー、メタクリル酸メチル−ブタジエン−スチレン系グラフト共重合体やアクリロニトリル−ブタジエン−スチレン系グラフト共重合体などのグラフト共重合体、溶剤、増量材、補強材、可塑剤、増粘剤、染料、顔料、難燃剤及び界面活性剤等の添加剤を使用することができる。   In addition, the energy ray curable resin composition according to the present embodiment includes various elastomers such as acrylic rubber and urethane rubber, a methyl methacrylate-butadiene-styrene graft copolymer, and the like within a range that does not impair the purpose of the present embodiment. Use additives such as acrylonitrile-butadiene-styrene graft copolymers, solvents, fillers, reinforcing materials, plasticizers, thickeners, dyes, pigments, flame retardants and surfactants. Can do.

上記構成からなるエネルギー線硬化性樹脂組成物は、エネルギー線の照射により硬化させ、硬化体としてもよい。   The energy ray-curable resin composition having the above-described configuration may be cured by irradiation with energy rays to form a cured body.

また、上記構成からなるエネルギー線硬化性樹脂組成物は接着剤として用いてもよい。この接着剤は、液晶や有機EL等のディスプレイ部品、CCD、CMOSといったイメージセンサー等の電子部品、さらに半導体部品等で用いられる素子パッケージ等の接着に好適に用いることができる。   Moreover, you may use the energy-beam curable resin composition which consists of the said structure as an adhesive agent. This adhesive can be preferably used for bonding display components such as liquid crystal and organic EL, electronic components such as image sensors such as CCD and CMOS, and element packages used for semiconductor components.

上記接着剤は、面積1cm以下の微少面積接着、さらに膜厚5μm〜100μm以下の薄膜接着が可能であり、上記部品の接着に好適に用いることができる。 The adhesive can be used for adhesion of the above components because it can be adhered to a minute area having an area of 1 cm 2 or less, and further to a thin film having a thickness of 5 μm to 100 μm.

[製造方法]
本実施形態に係るエネルギー線硬化性樹脂組成物の製造方法については、上記の材料を十分に混合できれば特に制限はない。材料の混合方法としては、特に限定されないが、例えば、プロペラの回転に伴う撹拌力を利用する撹拌法、ロール練り混込み法及びサンドミル、自転公転による遊星式撹拌機等の通常の分散機等が挙げられる。これらの混合方法は、低コストで、安定した混合を行えるので好ましい。
[Production method]
About the manufacturing method of the energy beam curable resin composition which concerns on this embodiment, if said material can fully be mixed, there will be no restriction | limiting in particular. The mixing method of the material is not particularly limited, but for example, a normal dispersing machine such as a stirring method using a stirring force accompanying rotation of a propeller, a roll kneading method and a sand mill, a planetary stirrer by rotation and revolution, etc. Can be mentioned. These mixing methods are preferable because stable mixing can be performed at low cost.

上記の混合を行った後、下記の光源を用いたエネルギー線の照射によりエネルギー線硬化性樹脂組成物の硬化を行ってもよい。   After performing the above mixing, the energy ray curable resin composition may be cured by irradiation with energy rays using the following light source.

(光源)
本実施形態において、エネルギー線硬化性樹脂組成物の硬化、接着に用いられる光源としては、特に限定されないが、例えば、ハロゲンランプ、メタルハライドランプ、ハイパワーメタルハライドランプ(インジウム等を含有する)、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、キセノンエキシマランプ、キセノンフラッシュランプ、ライトエミッティングダイオード(以下、LEDという)等が挙げられる。これらの光源は、それぞれの光重合開始剤の反応波長に対応したエネルギー線の照射を効率よく行えるので好ましい。
(light source)
In the present embodiment, the light source used for curing and adhering the energy beam curable resin composition is not particularly limited. For example, a halogen lamp, a metal halide lamp, a high-power metal halide lamp (containing indium, etc.), low-pressure mercury Lamp, high pressure mercury lamp, ultra high pressure mercury lamp, xenon lamp, xenon excimer lamp, xenon flash lamp, light emitting diode (hereinafter referred to as LED), and the like. These light sources are preferable because they can efficiently irradiate energy rays corresponding to the reaction wavelength of each photopolymerization initiator.

上記光源は、各々放射波長、エネルギー分布が異なる。そのため、上記光源は光重合開始剤の反応波長などにより適宜選択される。また、自然光(太陽光)も反応開始光源になり得る。   Each of the light sources has a different emission wavelength and energy distribution. Therefore, the light source is appropriately selected depending on the reaction wavelength of the photopolymerization initiator. Natural light (sunlight) can also be a reaction initiation light source.

上記光源は、直接照射、反射鏡等による集光照射、ファイバー等による集光照射を行ってもよい。また、低波長カットフィルター、熱線カットフィルター、コールドミラー等を用いることもできる。   The light source may perform direct irradiation, condensing irradiation using a reflecting mirror, or condensing irradiation using a fiber or the like. Moreover, a low wavelength cut filter, a heat ray cut filter, a cold mirror, etc. can also be used.

<作用効果> <Effect>

上記構成からなるエネルギー線硬化性樹脂組成物は、接着性、耐熱性、低透湿性、低硬化収縮性をバランスよく満足することができ、優れた貯蔵安定性を有するエネルギー線硬化性樹脂組成物とそれを用いた接着剤を提供できる。   The energy ray curable resin composition having the above-described configuration can satisfy the balance of adhesiveness, heat resistance, low moisture permeability, and low cure shrinkage, and has an excellent storage stability. And an adhesive using the same.

上記エネルギー線硬化性樹脂組成物は、(A)成分を100質量部としたとき、(B)成分を150〜400質量部、(C)成分を0.1〜5質量部、(D)成分を0.1〜10質量部含有することが好ましい。これにより、接着性、耐熱性、低透湿性、低硬化収縮性及び貯蔵安定性を、さらに向上させることができる。   When the energy ray curable resin composition is 100 parts by mass of the component (A), the component (B) is 150 to 400 parts by mass, the component (C) is 0.1 to 5 parts by mass, and the component (D). It is preferable to contain 0.1-10 mass parts. Thereby, adhesiveness, heat resistance, low moisture permeability, low curing shrinkage and storage stability can be further improved.

上記エネルギー線硬化性樹脂組成物において、(B)ウラン含量が1ppb以下のシリカ粒子の50%粒子径が0.1μm以上15μm以下の範囲であって、90%粒子径が50%粒子径以上20μm以下の範囲であることが好ましい。これにより、粒子径が小さすぎて凝集し易くなってしまうこともないし、粒子径が大きすぎて沈降し易くなってしまうこともない。   In the energy ray curable resin composition, (B) 50% particle size of silica particles having a uranium content of 1 ppb or less is in the range of 0.1 μm to 15 μm, and 90% particle size is 50% particle size to 20 μm. The following range is preferable. Thereby, the particle diameter is not too small to easily aggregate, and the particle diameter is not too large to easily settle.

上記エネルギー線硬化性樹脂組成物において、(A)脂環式エポキシ化合物が、分子内に1個以上のエポキシ基と1個以上のエステル基を含有することが好ましい。これにより、エステル基同士又はエステル基と(B)成分であるウラン含量1ppb以下のシリカ粒子との相互作用により耐熱性に優れるエネルギー線硬化性樹脂組成物が得られる。   In the energy beam curable resin composition, the (A) alicyclic epoxy compound preferably contains one or more epoxy groups and one or more ester groups in the molecule. Thereby, the energy beam curable resin composition which is excellent in heat resistance by the interaction between ester groups or ester groups and silica particles having a uranium content of 1 ppb or less as the component (B) is obtained.

また、上記エネルギー線硬化性樹脂組成物の硬化体の弾性維持率Rが0.10以上であることが好ましい。これにより、約250℃の高温に晒されるはんだリフロー工程等においても剥離を生じない、耐熱性に優れた接着剤として用いることができる。   Moreover, it is preferable that the elasticity maintenance factor R of the hardening body of the said energy-beam curable resin composition is 0.10 or more. Thereby, it can be used as an adhesive excellent in heat resistance that does not cause peeling even in a solder reflow process exposed to a high temperature of about 250 ° C.

以下に、実施例及び比較例を挙げて、本願発明を更に詳細に説明するが、本願発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

実施例及び比較例では、以下の化合物を使用した。
(A)成分の脂環式エポキシ化合物として下記を用いた。
(A−1)3,4−エポキシシクロヘキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレート(ダイセル化学社製「セロキサイド2021P」)
(A−2)3,4−エポキシシクロヘキセニルメチルメタクリレート(ダイセル化学社製「サイクロマーM−100」)
In the examples and comparative examples, the following compounds were used.
The following was used as the alicyclic epoxy compound of component (A).
(A-1) 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexene carboxylate (“Celoxide 2021P” manufactured by Daicel Chemical Industries)
(A-2) 3,4-epoxycyclohexenylmethyl methacrylate ("Cyclomer M-100" manufactured by Daicel Chemical Industries)

また、比較のためのエポキシ化合物として下記を用いた。
(A−3)液状ビスフェノールA型エポキシ樹脂(ADEKA社製「アデカオプトマーKRM−2410」)
Moreover, the following was used as an epoxy compound for a comparison.
(A-3) Liquid bisphenol A type epoxy resin (“ADEKA OPTMER KRM-2410” manufactured by ADEKA)

(B)成分のウラン含量1ppb以下のシリカ粒子として下記を用いた。その形状、ウラン含量、50%粒子径、90%粒子径については表1に示す。
(B−1)デンカ溶融シリカ FB−5SDX(電気化学工業社製)
(B−2)デンカ溶融シリカ FB−3SDX(電気化学工業社製)
(B−3)デンカ溶融シリカ FB−1SDX(電気化学工業社製)
The following were used as silica particles having a uranium content of 1 ppb or less as the component (B). The shape, uranium content, 50% particle size, and 90% particle size are shown in Table 1.
(B-1) Denka fused silica FB-5SDX (manufactured by Denki Kagaku Kogyo Co., Ltd.)
(B-2) Denka fused silica FB-3SDX (manufactured by Denki Kagaku Kogyo Co., Ltd.)
(B-3) Denka fused silica FB-1SDX (manufactured by Denki Kagaku Kogyo Co., Ltd.)

また、比較のためのシリカ粒子として下記を用いた。
(B−4)デンカ溶融シリカ FB−5D(電気化学工業社製)
(B−5)デンカ溶融シリカ FS−44(電気化学工業社製)
Moreover, the following was used as a silica particle for a comparison.
(B-4) Denka fused silica FB-5D (manufactured by Denki Kagaku Kogyo Co., Ltd.)
(B-5) Denka fused silica FS-44 (manufactured by Denki Kagaku Kogyo Co., Ltd.)

Figure 2009215329
Figure 2009215329

(C)成分の光カチオン重合開始剤として下記を用いた。
(C−1)トリアリールスルフォニウム塩ヘキサフルオロアンチモネート(ADEKA社製「アデカオプトマーSP−170」)
The following was used as the photocationic polymerization initiator of component (C).
(C-1) Triarylsulfonium salt hexafluoroantimonate (“ADEKA OPTMER SP-170” manufactured by ADEKA)

(D)成分のシランカップリング剤として下記を用いた。
(D−1)γ−グリシドキシプロピルトリメトキシシラン(信越シリコーン社製 「KBM−403」)
The following was used as the silane coupling agent of component (D).
(D-1) γ-Glycidoxypropyltrimethoxysilane (“KBM-403” manufactured by Shin-Etsu Silicone)

表2及び3に示す種類の原材料を、表2及び3に示す組成割合で混合し、実施例1〜5及び比較例1〜6の樹脂組成物を調製した。   The raw materials of the types shown in Tables 2 and 3 were mixed at the composition ratios shown in Tables 2 and 3, and resin compositions of Examples 1 to 5 and Comparative Examples 1 to 6 were prepared.

Figure 2009215329
Figure 2009215329
Figure 2009215329
Figure 2009215329

実施例及び比較例の樹脂組成物について、下記の各測定を行った。その結果を表2及び3に示す。   The following measurements were performed on the resin compositions of Examples and Comparative Examples. The results are shown in Tables 2 and 3.

〔貯蔵安定性の評価〕
遮光ポリ容器中で樹脂組成物を温度25℃の環境下に静置し、経時で粘度測定を実施し、粘度変化が少ないものを○、著しく粘度が上昇したものや、シリカ粒子が沈降してしまう等で測定不可となったものを×として評価した。尚、粘度測定は、25℃の環境下にてB型粘度計を用い、回転数20rpmにて測定した。
[Evaluation of storage stability]
The resin composition is allowed to stand in an environment with a temperature of 25 ° C. in a light-shielding plastic container, and the viscosity is measured over time. Those that could not be measured due to, for example, were evaluated as x. The viscosity was measured at a rotational speed of 20 rpm using a B-type viscometer in an environment of 25 ° C.

〔光硬化性の評価〕
樹脂組成物の光硬化に際しては、下記条件により硬化させた。
無電極放電メタルハライドランプ搭載UV硬化装置(フュージョン社製)により、365nmの波長の積算光量4,000mJ/cmの条件にて硬化させた。
[Evaluation of photocurability]
When the resin composition was photocured, it was cured under the following conditions.
It hardened | cured on the conditions of the integrated light quantity of 4,000 mJ / cm < 2 > of the wavelength of 365 nm with the UV hardening apparatus (made by Fusion company) mounted with an electrodeless discharge metal halide lamp.

〔硬化収縮率の評価〕
樹脂組成物を前記光硬化条件にて硬化させて、硬化体試料を調製し、この硬化体の23℃における密度(値をKとする)をJIS K7112のA法に従い測定した。一方、硬化前の樹脂組成物の液体の23℃における密度(値をLとする)をJIS K 6833に従い比重瓶を用いて測定した。得られた硬化体および樹脂組成物液の密度値から、次式により硬化収縮率(%)を算出した。
硬化収縮率(%)=(K―L)/K×100
[Evaluation of curing shrinkage]
The resin composition was cured under the above-mentioned photocuring conditions to prepare a cured product sample, and the density (value is K) of this cured product at 23 ° C. was measured in accordance with A method of JIS K7112. On the other hand, the density (value is L) of the liquid of the resin composition before curing at 23 ° C. was measured using a specific gravity bottle in accordance with JIS K 6833. From the density values of the obtained cured product and resin composition liquid, the cure shrinkage rate (%) was calculated by the following formula.
Curing shrinkage (%) = (KL) / K × 100

〔透湿度の評価〕
厚さ0.1mmのシート状の接着剤硬化体を前記光硬化条件にて作製し、JIS Z0208「防湿包装材料の透湿度試験方法(カップ法)」に準じ、吸湿剤として塩化カルシウム(無水)を用い、雰囲気温度60℃、相対湿度90%の条件で評価した。
[Evaluation of moisture permeability]
A sheet-like adhesive cured body having a thickness of 0.1 mm was prepared under the above-mentioned photocuring conditions, and calcium chloride (anhydrous) as a hygroscopic agent in accordance with JIS Z0208 “Method of testing moisture permeability of moisture-proof packaging material (cup method)” Was used under the conditions of an atmospheric temperature of 60 ° C. and a relative humidity of 90%.

〔弾性維持率Rの評価〕
5mm×50mm×1mmの形状の接着剤硬化体を前記光硬化条件にて調製し、動的粘弾性スペクトルメーター(エスアイアイ・ナノテクノロジー社製 DMS−210)にて、チャック間距離20mmでセットし、周波数1Hz、昇温速度2℃/分、引張モードにて測定した。このとき、約25℃での貯蔵弾性率をEa、約250℃での貯蔵弾性率をEbとし、下記の式により定義される弾性維持率Rを算出した。
R=Eb/Ea
[Evaluation of elastic retention ratio R]
Prepare a 5 mm x 50 mm x 1 mm adhesive cured body under the above-mentioned photocuring conditions, and set it with a dynamic viscoelasticity spectrum meter (DMS-210 manufactured by SII Nanotechnology) with a distance between chucks of 20 mm. The frequency was 1 Hz, the heating rate was 2 ° C./min, and the tensile mode was used. At this time, the storage elastic modulus at about 25 ° C. was Ea, the storage elastic modulus at about 250 ° C. was Eb, and the elastic retention rate R defined by the following formula was calculated.
R = Eb / Ea

〔引張剪断接着強さの評価〕
ホウ珪酸ガラス試験片「25×25×2.0mm厚、テンパックス(登録商標)」を2枚用い、接着面積0.5cm、接着厚み80μmで前記光硬化条件にて接着剤を硬化させた。硬化後、接着剤で接合した試験片を用い、引張り剪断接着強さ(単位:MPa)を、温度23℃、相対湿度50%の環境下で引張速度10mm/分で測定した。
[Evaluation of tensile shear bond strength]
Using two borosilicate glass test pieces “25 × 25 × 2.0 mm thickness, Tempax (registered trademark)”, the adhesive was cured under the above-mentioned photocuring conditions with an adhesive area of 0.5 cm 2 and an adhesive thickness of 80 μm. . After curing, using a test piece bonded with an adhesive, the tensile shear bond strength (unit: MPa) was measured at an elongation of 10 mm / min in an environment of a temperature of 23 ° C. and a relative humidity of 50%.

〔接着耐熱性の評価〕
ホウ珪酸ガラス試験片「25×25×2.0mm厚、テンパックス(登録商標)」を2枚用い、接着面積0.5cm、接着厚み80μmで前記光硬化条件にて接着剤を硬化させた。硬化後、接着剤で接合した試験片を用い、約250℃の環境下に10分間暴露し、暴露前後の接着剤の変化を観察した。変化が少なかったものを○、剥離、ボイド発生、干渉縞発生等変化したものは×として評価した。
[Evaluation of adhesive heat resistance]
Using two borosilicate glass test pieces “25 × 25 × 2.0 mm thickness, Tempax (registered trademark)”, the adhesive was cured under the above-mentioned photocuring conditions with an adhesive area of 0.5 cm 2 and an adhesive thickness of 80 μm. . After curing, a test piece bonded with an adhesive was used and exposed to an environment of about 250 ° C. for 10 minutes, and changes in the adhesive before and after the exposure were observed. Those with little change were evaluated as ○, and those with changes such as peeling, void generation, interference fringe generation were evaluated as x.

<考察> <Discussion>

本願発明に係る実施例1〜5のエネルギー線硬化性樹脂組成物は、接着性、耐熱性、低透湿性、低硬化収縮性及び貯蔵安定性をバランスよく有していることがわかる。そのことについて、以下に説明する。   It turns out that the energy-beam curable resin composition of Examples 1-5 which concerns on this invention has adhesiveness, heat resistance, low moisture permeability, low cure shrinkage, and storage stability in good balance. This will be described below.

まず、表2からわかるように、実施例1〜5のエネルギー線硬化性樹脂組成物は貯蔵安定性に優れており、7日間の保管でも粘度変化が少ない。これは、シリカ粒子のウラン含量が1ppb以下であるためだと考えられる。   First, as can be seen from Table 2, the energy ray curable resin compositions of Examples 1 to 5 are excellent in storage stability, and change in viscosity is small even after storage for 7 days. This is probably because the uranium content of the silica particles is 1 ppb or less.

また、実施例1〜5のエネルギー線硬化性樹脂組成物は硬化収縮率も小さく、実施例2については、ほぼ収縮が起こっていない。そして、実施例1〜5のエネルギー線硬化性樹脂組成物は、低透湿性を示している。これは、ウラン含量が1ppb以下のシリカ粒子を配合しているためだと考えられる。   In addition, the energy ray curable resin compositions of Examples 1 to 5 have a small cure shrinkage rate, and in Example 2, almost no shrinkage occurs. And the energy-beam curable resin composition of Examples 1-5 has low moisture permeability. This is probably because silica particles having a uranium content of 1 ppb or less are blended.

さらに、実施例1〜5のエネルギー線硬化性樹脂組成物は、高温環境下でも変化が少なく、接着耐熱性が良いことがわかる。これは、脂環式エポキシ化合物を用いているためだと考えられる。   Furthermore, it turns out that the energy-beam curable resin composition of Examples 1-5 has little change also in a high temperature environment, and adhesive heat resistance is good. This is thought to be due to the use of an alicyclic epoxy compound.

また、実施例1〜5のエネルギー線硬化性樹脂組成物は、上記特性を有しながらも、18MPa以上の充分な接着強度を有している。   Moreover, the energy beam curable resin compositions of Examples 1 to 5 have sufficient adhesive strength of 18 MPa or more while having the above characteristics.

以上のような実施例1〜5の実験結果に対して、比較例1〜6の結果は以下のようであった。   In contrast to the experimental results of Examples 1 to 5 as described above, the results of Comparative Examples 1 to 6 were as follows.

比較例1及び2では、貯蔵安定性が悪く、測定不可となった。また、比較例3では、接着耐熱性が低く、剥離やボイドが生じた。また、比較例4では、硬化収縮率が高く、透湿度が高いことがわかる。また、比較例5では、樹脂組成物が硬化していない。これは、光カチオン重合開始剤を添加していないためだと考えられる。そして、比較例6では、貯蔵安定性が悪く、また接着耐熱性が低い。これは、シランカップリング剤を配合していないためだと考えられる。   In Comparative Examples 1 and 2, the storage stability was poor and measurement was impossible. Moreover, in Comparative Example 3, the adhesion heat resistance was low, and peeling and voids occurred. Moreover, in the comparative example 4, it turns out that a cure shrinkage rate is high and a water vapor transmission rate is high. In Comparative Example 5, the resin composition is not cured. This is probably because no photocationic polymerization initiator was added. In Comparative Example 6, the storage stability is poor and the adhesion heat resistance is low. This is considered to be because the silane coupling agent is not blended.

以上の実験結果からわかるように、本願発明に係るエネルギー線硬化性樹脂組成物は、接着性、耐熱性、低透湿性、低硬化収縮性をバランスよく満足することができ、優れた貯蔵安定性を有する。   As can be seen from the above experimental results, the energy ray curable resin composition according to the present invention can satisfy a good balance of adhesiveness, heat resistance, low moisture permeability, and low curing shrinkage, and has excellent storage stability. Have

以上のように、本願発明によれば、(A)脂環式エポキシ化合物、(B)ウラン含量1ppb以下のシリカ粒子、(C)光カチオン重合開始剤及び(D)シランカップリング剤を含有することを特徴とするエネルギー線硬化性樹脂組成物が提供される。上記構成からなるエネルギー線硬化性樹脂組成物は、接着性、耐熱性、低透湿性、低硬化収縮性をバランスよく満足することができ、優れた貯蔵安定性を有する。   As described above, according to the present invention, (A) an alicyclic epoxy compound, (B) silica particles having a uranium content of 1 ppb or less, (C) a photocationic polymerization initiator, and (D) a silane coupling agent are contained. An energy beam curable resin composition is provided. The energy ray-curable resin composition having the above structure can satisfy the adhesiveness, heat resistance, low moisture permeability, and low curing shrinkage in a well-balanced manner and has excellent storage stability.

Claims (7)

(A)脂環式エポキシ化合物、(B)ウラン含量1ppb以下のシリカ粒子、(C)光カチオン重合開始剤及び(D)シランカップリング剤を含有することを特徴とするエネルギー線硬化性樹脂組成物。 An energy ray-curable resin composition comprising (A) an alicyclic epoxy compound, (B) silica particles having a uranium content of 1 ppb or less, (C) a cationic photopolymerization initiator, and (D) a silane coupling agent. object. 前記(A)成分を100質量部としたとき、前記(B)成分を150〜400質量部、前記(C)成分を0.1〜5質量部、前記(D)成分を0.1〜10質量部含有することを特徴とする請求項1に記載のエネルギー線硬化性樹脂組成物。 When the component (A) is 100 parts by mass, the component (B) is 150 to 400 parts by mass, the component (C) is 0.1 to 5 parts by mass, and the component (D) is 0.1 to 10 parts. The energy ray-curable resin composition according to claim 1, further comprising: 前記(B)ウラン含量1ppb以下のシリカ粒子の50%粒子径が0.1μm以上15μm以下の範囲であって、90%粒子径が50%粒子径以上20μm以下の範囲であることを特徴とする請求項1又は2のいずれかに記載のエネルギー線硬化性樹脂組成物。 (B) The silica particles having a uranium content of 1 ppb or less have a 50% particle size in the range of 0.1 to 15 μm, and a 90% particle size in the range of 50 to 20 μm. The energy beam curable resin composition according to claim 1. 前記(A)脂環式エポキシ化合物が、分子内に1個以上のエポキシ基と1個以上のエステル基を含有することを特徴とする請求項1〜3のいずれかに記載のエネルギー線硬化性樹脂組成物。 The energy ray curable according to any one of claims 1 to 3, wherein the (A) alicyclic epoxy compound contains one or more epoxy groups and one or more ester groups in the molecule. Resin composition. 前記エネルギー線硬化性樹脂組成物を硬化してなる硬化体の弾性維持率Rが0.10以上であることを特徴とする請求項1〜4のいずれかに記載のエネルギー線硬化性樹脂組成物。 5. The energy ray-curable resin composition according to claim 1, wherein the elastic body has an elastic retention ratio R of 0.10 or more by curing the energy ray-curable resin composition. . 請求項1〜5のいずれかに記載の前記エネルギー線硬化性樹脂組成物を硬化してなる硬化体。 The hardening body formed by hardening | curing the said energy-beam curable resin composition in any one of Claims 1-5. 請求項1〜5のいずれかに記載の前記エネルギー線硬化性樹脂組成物からなる接着剤。 The adhesive agent which consists of the said energy-beam curable resin composition in any one of Claims 1-5.
JP2008056998A 2008-03-06 2008-03-06 Energy ray curable resin composition, adhesive and cured product using the same Active JP4934085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008056998A JP4934085B2 (en) 2008-03-06 2008-03-06 Energy ray curable resin composition, adhesive and cured product using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008056998A JP4934085B2 (en) 2008-03-06 2008-03-06 Energy ray curable resin composition, adhesive and cured product using the same

Publications (2)

Publication Number Publication Date
JP2009215329A true JP2009215329A (en) 2009-09-24
JP4934085B2 JP4934085B2 (en) 2012-05-16

Family

ID=41187534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008056998A Active JP4934085B2 (en) 2008-03-06 2008-03-06 Energy ray curable resin composition, adhesive and cured product using the same

Country Status (1)

Country Link
JP (1) JP4934085B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165239A1 (en) * 2011-06-01 2012-12-06 住友ベークライト株式会社 Liquid resin composition and semiconductor device using same
CN104725549A (en) * 2014-02-24 2015-06-24 长兴化学工业(中国)有限公司 High-performance nano composite latex
CN107868643A (en) * 2017-11-28 2018-04-03 长春永固科技有限公司 Smart card temperature curing epoxy low adhesive and smart card low-temperature setting method for packing
CN110484182A (en) * 2019-09-27 2019-11-22 江苏矽时代材料科技有限公司 A kind of smooth heat dual curing black shading resin combination and preparation method thereof
JP7416116B2 (en) 2017-03-31 2024-01-17 株式会社レゾナック Epoxy resin compositions, curable resin compositions, and electronic component devices

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57195151A (en) * 1981-05-27 1982-11-30 Denki Kagaku Kogyo Kk Low-radioactive resin composition
JPS61221222A (en) * 1985-03-27 1986-10-01 Toshiba Corp Epoxy resin composition for sealing semiconductor
JPH0657103A (en) * 1992-08-11 1994-03-01 Yokohama Rubber Co Ltd:The Photocurable resin composition
JPH11199651A (en) * 1998-01-12 1999-07-27 Sumitomo Bakelite Co Ltd Ultraviolet light-curable adhesive resin composition for sealing hollow package for device
JP2002037620A (en) * 2000-07-25 2002-02-06 Ube Nitto Kasei Co Ltd Spherical silica particle bulk materials and method of preparing it and resin composition using it
JP2002060484A (en) * 2000-08-23 2002-02-26 Toagosei Co Ltd Photocurable composition, bonding method using the same and bonded product
JP2003330169A (en) * 2002-05-15 2003-11-19 Taiyo Ink Mfg Ltd Low radiation photosetting-thermosetting resin composition and its cured film
JP2006256913A (en) * 2005-03-17 2006-09-28 Admatechs Co Ltd Spherical silica particle, resin composition and semiconductor liquid sealing material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57195151A (en) * 1981-05-27 1982-11-30 Denki Kagaku Kogyo Kk Low-radioactive resin composition
JPS61221222A (en) * 1985-03-27 1986-10-01 Toshiba Corp Epoxy resin composition for sealing semiconductor
JPH0657103A (en) * 1992-08-11 1994-03-01 Yokohama Rubber Co Ltd:The Photocurable resin composition
JPH11199651A (en) * 1998-01-12 1999-07-27 Sumitomo Bakelite Co Ltd Ultraviolet light-curable adhesive resin composition for sealing hollow package for device
JP2002037620A (en) * 2000-07-25 2002-02-06 Ube Nitto Kasei Co Ltd Spherical silica particle bulk materials and method of preparing it and resin composition using it
JP2002060484A (en) * 2000-08-23 2002-02-26 Toagosei Co Ltd Photocurable composition, bonding method using the same and bonded product
JP2003330169A (en) * 2002-05-15 2003-11-19 Taiyo Ink Mfg Ltd Low radiation photosetting-thermosetting resin composition and its cured film
JP2006256913A (en) * 2005-03-17 2006-09-28 Admatechs Co Ltd Spherical silica particle, resin composition and semiconductor liquid sealing material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165239A1 (en) * 2011-06-01 2012-12-06 住友ベークライト株式会社 Liquid resin composition and semiconductor device using same
CN104725549A (en) * 2014-02-24 2015-06-24 长兴化学工业(中国)有限公司 High-performance nano composite latex
CN104725549B (en) * 2014-02-24 2018-09-04 长兴化学工业(中国)有限公司 High-performance nano composite emulsion
JP7416116B2 (en) 2017-03-31 2024-01-17 株式会社レゾナック Epoxy resin compositions, curable resin compositions, and electronic component devices
CN107868643A (en) * 2017-11-28 2018-04-03 长春永固科技有限公司 Smart card temperature curing epoxy low adhesive and smart card low-temperature setting method for packing
CN110484182A (en) * 2019-09-27 2019-11-22 江苏矽时代材料科技有限公司 A kind of smooth heat dual curing black shading resin combination and preparation method thereof

Also Published As

Publication number Publication date
JP4934085B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP5919574B2 (en) UV curable resin composition, optical component adhesive, and organic EL device sealing material
JP5153498B2 (en) Resin composition
JP6761972B2 (en) Ultraviolet curable resin composition, manufacturing method of organic EL light emitting device and organic EL light emitting device
JP2010018797A (en) Curable composition for optical parts, adhesive agent for optical parts, and sealing agent for organic electroluminescence element
JP3976778B2 (en) Oxetane compound and curable composition containing the same
JP4934085B2 (en) Energy ray curable resin composition, adhesive and cured product using the same
KR102006993B1 (en) Energy-beam-curable resin composition
JP5302496B2 (en) Cationic curable epoxy resin composition
WO2010002008A1 (en) Epoxy resin composition
JP5152213B2 (en) Cationic curable resin composition comprising a polymer having two or more oxetanyl groups
JP2009298887A (en) Curable composition for optical component
JP5498832B2 (en) Energy ray curable resin composition, adhesive and cured product using the same
JP6080064B2 (en) UV curable resin composition, adhesive for optical parts, and sealing material
KR20170023834A (en) Photocurable composition and optical element adhesive including same
JP2008305580A (en) Post-light curing composition, sealant for organic electroluminescent element, manufacturing method of organic electroluminescent display, and organic electroluminescent display
JP5684275B2 (en) Energy ray curable resin composition, adhesive and cured product using the same
JP6098938B2 (en) Adhesive for electronic component sealing
JP7078720B2 (en) Sealant for display elements and its cured product
JP2015010169A (en) Resin composition for optical three-dimensional molding, and three-dimensional molded article
JP2019001995A (en) Ultraviolet-curable resin composition, method of manufacturing organic el light-emitting device, and organic el light-emitting device
JP4524127B2 (en) Novel epoxy resin and curable resin composition containing the same
WO2020036234A1 (en) Composition for moistureproof sealing material
JP2005187636A (en) Photo-curable resin composition, adhesive for display device, method of bonding and display device
JP6880809B2 (en) Composition for active energy ray-curable encapsulant
JPH11302358A (en) Photosetting resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120217

R150 Certificate of patent or registration of utility model

Ref document number: 4934085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250