JP5153498B2 - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
JP5153498B2
JP5153498B2 JP2008188294A JP2008188294A JP5153498B2 JP 5153498 B2 JP5153498 B2 JP 5153498B2 JP 2008188294 A JP2008188294 A JP 2008188294A JP 2008188294 A JP2008188294 A JP 2008188294A JP 5153498 B2 JP5153498 B2 JP 5153498B2
Authority
JP
Japan
Prior art keywords
resin composition
mass
parts
composition according
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008188294A
Other languages
Japanese (ja)
Other versions
JP2010024364A (en
Inventor
慶次 後藤
健司 深尾
和宏 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2008188294A priority Critical patent/JP5153498B2/en
Publication of JP2010024364A publication Critical patent/JP2010024364A/en
Application granted granted Critical
Publication of JP5153498B2 publication Critical patent/JP5153498B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本願発明は、樹脂組成物とそれを用いた接着剤及び硬化体に関する。例えば、エネルギー線硬化性樹脂組成物に関する。 The present invention relates to a resin composition, an adhesive using the resin composition, and a cured body. For example, the present invention relates to an energy ray curable resin composition.

近年のエレクトロニクス分野では、機器が高性能化している。特に、液晶や有機エレクトロルミネッセンス(以下、有機ELという)等のディスプレイ部品や、CCD、CMOSといったイメージセンサー等の電子部品、さらに半導体部品等で用いられる素子パッケージ等の接着においては、微量かつ微少面積で高精度に塗布することが可能な接着剤が求められている。 In the electronics field in recent years, equipment has become more sophisticated. In particular, in bonding of display components such as liquid crystal and organic electroluminescence (hereinafter referred to as organic EL), electronic components such as image sensors such as CCD and CMOS, and device packages used in semiconductor components, etc. Therefore, there is a demand for an adhesive that can be applied with high accuracy.

接着剤量や接着面積は、微量・微少化している。接着剤に要求される特性は、ガラス、セラミックス、樹脂等、各種被着体への高い接着性や、さらに高温多湿雰囲気への暴露下でも素子ダメージの要因となる湿気を通さない低透湿性、接着耐久性等である。その要求レベルは年々高まっている。 The amount of adhesive and the bonding area are very small and very small. The properties required for adhesives are high adhesion to various adherends such as glass, ceramics, resin, etc., and low moisture permeability that does not allow moisture to pass through even when exposed to high temperature and high humidity atmosphere. For example, adhesion durability. The demand level is increasing year by year.

このような技術の潮流の中で、当該分野における接着剤としては、接着性、透湿性に優れた熱硬化型のエポキシ系接着剤が主に用いられている。しかしながら、量産化を考慮したとき、従来の熱硬化型の代わりに、速硬化性を有するエネルギー線硬化性接着剤が望まれている。エネルギー線としては、紫外線等が挙げられる。 In the trend of such technology, thermosetting epoxy adhesives having excellent adhesion and moisture permeability are mainly used as adhesives in this field. However, when mass production is taken into consideration, an energy beam curable adhesive having a fast curing property is desired instead of the conventional thermosetting type. Examples of energy rays include ultraviolet rays.

エネルギー線硬化性エポキシ系接着剤は、硬化収縮が低く、さらには各種被着体への接着性に優れている。特許文献1にはラミネート用接着剤、特許文献2にはポレオレフィン用接着剤、特許文献3にはアルカリガラス、金属接合用接着剤、特許文献4にはCCD用接着剤、特許文献5には有機EL素子封止用接着剤についての記載があるように、エネルギー線硬化性エポキシ系接着剤は各分野で使用されている。 The energy ray curable epoxy adhesive has low curing shrinkage and is excellent in adhesion to various adherends. Patent Document 1 has a laminate adhesive, Patent Document 2 has a polyolefin adhesive, Patent Document 3 has alkali glass, metal bonding adhesive, Patent Document 4 has a CCD adhesive, Patent Document 5 has As described about the adhesive for sealing an organic EL element, energy ray curable epoxy adhesives are used in various fields.

特開平8−231938号公報JP-A-8-231938 特開2001−131516号公報JP 2001-131516 A 特開2003−327785号公報JP 2003-327785 A 特開2004−269554号公報JP 2004-269554 A 特開2006−169540号公報JP 2006-169540 A

しかしながら、上述の接着剤は、CCD、CMOS、有機EL等の素子パッケージ用接着剤に要求される特性を満足するものはなかった。CCD、CMOS、有機EL等の素子パッケージ用接着剤に要求される特性としては、微量且つ高精度な塗布性等が挙げられる。 However, none of the above-described adhesives satisfy the characteristics required for element package adhesives such as CCD, CMOS, and organic EL. Characteristics required for an element package adhesive such as a CCD, CMOS, and organic EL include a minute amount and high-precision coating property.

即ち、本願発明の目的は、高精度な塗布性を有する接着剤を提供することである。 That is, an object of the present invention is to provide an adhesive having a highly accurate coating property.

本願発明は、下記成分を含有することを特徴とする樹脂組成物であり、
(A)(a−1)脂環式エポキシ化合物と(a−2)芳香環を有するエポキシ樹脂を含有し、かつ、(a−1)と(a−2)の合量100質量部中、(a−2)成分が20〜80質量部であるエポキシ化合物、
(B)ノボラック樹脂、
(C)光カチオン重合開始剤、
(D)(A)成分と(B)成分の合量100質量部に対して、10〜60質量部の割合で含有する扁平形状のタルク
下記成分を含有することを特徴とする樹脂組成物であり、
(A)(a−1)脂環式エポキシ化合物と(a−2)芳香環を有するエポキシ樹脂を含有し、かつ、(a−1)と(a−2)の合量100質量部中、(a−2)成分が50〜80質量部であるエポキシ化合物、
(B)(A)及び(B)成分の合量100質量部中、10〜25質量部の割合で含有するノボラック樹脂、
(C)光カチオン重合開始剤、
(D)(A)成分と(B)成分の合量100質量部に対して、10〜60質量部の割合で含有する扁平形状のタルク
(B)ノボラック樹脂の軟化点が50℃以上150℃以下であり、ノボラック樹脂の水酸基当量が、80〜130(g/eq)の範囲であることを特徴とする該樹脂組成物であり、(D)フィラーの粒子径が0.1〜20μmであることを特徴とする該樹脂組成物であり、(D)フィラーの粒子径が0.1〜2.5μmであることを特徴とする該樹脂組成物であり、さらに(E)シランカップリング剤を含有することを特徴とする該樹脂組成物であり、(a−1)脂環式エポキシ化合物が、3,4−エポキシシクロヘキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレートであることを特徴とする該樹脂組成物であり、(a−2)芳香環を有するエポキシ樹脂が、ビスフェノールF型エポキシ樹脂であることを特徴とする該樹脂組成物であり、該樹脂組成物の粘度が、せん断速度:10〜100(1/s)の範囲で、せん断粘度:10〜500Pa・sの範囲であることを特徴とする樹脂組成物であり、該樹脂組成物の速度勾配を(式1)にて定義した場合、速度勾配が1〜2の範囲であることを特徴とする樹脂組成物であり、
(式1)
速度勾配=(10(1/s)でのせん断粘度)÷(100(1/s)でのせん断粘度)
該樹脂組成物を含有することを特徴とするエネルギー線硬化性樹脂組成物であり、該樹脂組成物からなる接着剤であり、該樹脂組成物からなる硬化体であり、該エネルギー線硬化性樹脂組成物に光照射をした後に、後加熱処理を行うことを特徴とする硬化方法である。
The present invention is a resin composition characterized by containing the following components:
(A) (a-1) containing an alicyclic epoxy compound and (a-2) an epoxy resin having an aromatic ring, and in a total amount of 100 parts by mass of (a-1) and (a-2), (A-2) an epoxy compound whose component is 20 to 80 parts by mass ,
(B) novolac resin,
(C) a photocationic polymerization initiator,
(D) Flat talc contained in a proportion of 10 to 60 parts by mass with respect to 100 parts by mass of the total amount of components (A) and (B)
It is a resin composition characterized by containing the following components,
(A) (a-1) containing an alicyclic epoxy compound and (a-2) an epoxy resin having an aromatic ring, and (a-1) and (a-2) in a total amount of 100 parts by mass, (A-2) an epoxy compound whose component is 50 to 80 parts by mass,
(B) A novolak resin contained in a proportion of 10 to 25 parts by mass in 100 parts by mass of the total amount of components (A) and (B),
(C) a photocationic polymerization initiator,
(D) The softening point of the flat talc (B) novolac resin contained at a ratio of 10 to 60 parts by mass with respect to 100 parts by mass of the total amount of the components (A) and (B) is 50 ° C. or higher and 150 ° C. Ri der hereinafter, a hydroxyl equivalent of the novolak resin is a resin composition, wherein the range der Rukoto of 80~130 (g / eq), ( D) the particle size of the filler is 0.1~20μm (D) The resin composition, wherein the filler has a particle size of 0.1 to 2.5 μm, and (E) a silane coupling. And (a-1) the alicyclic epoxy compound is 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexenecarboxylate. The resin composition characterized by Yes, (a-2) an epoxy resin having an aromatic ring, a resin composition which is a bisphenol F type epoxy resin, the viscosity of the resin composition, shear rate: 10 to 100 (1 / S), shear viscosity: a resin composition characterized by a range of 10 to 500 Pa · s. When the velocity gradient of the resin composition is defined by (Equation 1), the velocity gradient Is a resin composition characterized by being in the range of 1-2,
(Formula 1)
Velocity gradient = (shear viscosity at 10 (1 / s)) / (shear viscosity at 100 (1 / s))
An energy ray curable resin composition comprising the resin composition, an adhesive comprising the resin composition, a cured body comprising the resin composition, and the energy ray curable resin. A curing method is characterized in that after the composition is irradiated with light, a post-heating treatment is performed.

本願発明によれば、高精度な塗布性を有する。 According to the invention of the present application, it has high-precision applicability.

<用語の説明>
本願明細書において、エネルギー線硬化性樹脂組成物とは、エネルギー線を照射することによって硬化させることができる樹脂組成物を意味する。ここで、エネルギー線とは、紫外線、可視光線等に代表されるエネルギー線を意味する。
<Explanation of terms>
In the present specification, the energy ray curable resin composition means a resin composition that can be cured by irradiation with energy rays. Here, the energy rays mean energy rays typified by ultraviolet rays and visible rays.

又、本願明細書において、「〜」という記号は「以上」及び「以下」を意味し。例えば、「A〜B」というのは、A以上でありB以下であるという意味である。   In the present specification, the symbol “to” means “above” and “below”. For example, “A to B” means not less than A and not more than B.

以下、本願発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.

本実施形態に係る樹脂組成物としては、エネルギー線硬化性樹脂組成物が好ましい。エネルギー線硬化性樹脂組成物は、(A)エポキシ化合物、(B)ノボラック樹脂、(C)光カチオン重合開始剤、(D)フィラーを含有することを特徴とする。 As the resin composition according to this embodiment, an energy ray curable resin composition is preferable. The energy ray-curable resin composition contains (A) an epoxy compound, (B) a novolak resin, (C) a photocationic polymerization initiator, and (D) a filler.

次に、本実施形態に係るエネルギー線硬化性樹脂組成物の成分について説明する。 Next, components of the energy beam curable resin composition according to the present embodiment will be described.

((A)エポキシ化合物)
本実施形態に係るエネルギー線硬化性樹脂組成物は、(A)エポキシ化合物を必須成分とする。エポキシ化合物を用いることにより、本実施形態に係るエネルギー線硬化性樹脂組成物は優れた接着性、低透湿性、接着耐久性を示す。
((A) Epoxy compound)
The energy beam curable resin composition according to this embodiment includes (A) an epoxy compound as an essential component. By using an epoxy compound, the energy ray-curable resin composition according to the present embodiment exhibits excellent adhesion, low moisture permeability, and adhesion durability.

(A)エポキシ化合物としては、(a−1)脂環式エポキシ化合物や、(a−2)芳香環を有するエポキシ樹脂が、優れた接着性、低透湿性、接着耐久性が得られることから、好適に用いられる。 (A) As an epoxy compound, (a-1) an alicyclic epoxy compound and (a-2) an epoxy resin having an aromatic ring can provide excellent adhesion, low moisture permeability, and adhesion durability. Are preferably used.

(a−1)脂環式エポキシ化合物としては、少なくとも1個のシクロへキセン又はシクロペンテン環、ピネン環等のシクロアルカン環を有する化合物を、過酸化水素、過酸等の適当な酸化剤でエポキシ化することによって得られる化合物もしくはその誘導体や、ビスフェノールA型エポキシ化合物等の芳香族エポキシ化合物を水素化して得られる水素化エポキシ化合物等の脂環式エポキシ化合物等が挙げられる。これらの化合物は、1種又は2種以上を選択して使用してもよい。 (A-1) As an alicyclic epoxy compound, a compound having at least one cyclohexene or a cycloalkane ring such as a cyclopentene ring or a pinene ring is treated with an appropriate oxidizing agent such as hydrogen peroxide or peracid. And alicyclic epoxy compounds such as hydrogenated epoxy compounds obtained by hydrogenating aromatic epoxy compounds such as bisphenol A type epoxy compounds. These compounds may be used alone or in combination of two or more.

ここで、特に、1分子内に1個以上のエポキシ基と1個以上のエステル基を含有する脂環式エポキシ化合物であることが好ましい。このような脂環式エポキシ化合物は、特に接着性、光硬化性に優れるため好ましい。 Here, in particular, an alicyclic epoxy compound containing one or more epoxy groups and one or more ester groups in one molecule is preferable. Such an alicyclic epoxy compound is particularly preferable because of excellent adhesion and photocurability.

脂環式エポキシ化合物としては、3,4−エポキシシクロヘキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレート、3,4−エポキシシクロヘキシルメチルメタアクリレート等が挙げられる。 Examples of the alicyclic epoxy compound include 3,4-epoxycyclohexenylmethyl-3 ', 4'-epoxycyclohexenecarboxylate, 3,4-epoxycyclohexylmethyl methacrylate, and the like.

(a−2)芳香環を有するエポキシ樹脂としては、モノマー、オリゴマー又はポリマーのいずれも使用可能であり、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、ノボラックフェノール型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、又これらの変性物等が挙げられる。これらのエポキシ樹脂は、1種又は2種以上を選択して使用してもよい。特に好ましくは、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂からなる群のうちの1種又は2種以上が、接着性、低透湿性に優れるために、好ましい。 (A-2) As an epoxy resin having an aromatic ring, any of a monomer, an oligomer or a polymer can be used, and bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, Naphthalene type epoxy resin, fluorene type epoxy resin, novolac phenol type epoxy resin, cresol novolak type epoxy resin, and modified products thereof may be mentioned. These epoxy resins may be used alone or in combination of two or more. Particularly preferably, one or more members selected from the group consisting of bisphenol A type epoxy resin, bisphenol F type epoxy resin, and biphenyl type epoxy resin are preferable because they are excellent in adhesiveness and low moisture permeability.

又、(a−1)脂環式エポキシ化合物と、(a−2)芳香環を有するエポキシ樹脂は、単独又は2種類以上を併用して用いることができる。光硬化性、高精度塗布性、接着性、透湿性、接着耐久性のバランスを考慮した場合、(a−1)と(a−2)の合量100質量部中、(a−2)成分が20〜80質量部の範囲であることが好ましく、特に40〜60質量部の範囲であることが好ましい。   The (a-1) alicyclic epoxy compound and the (a-2) epoxy resin having an aromatic ring can be used alone or in combination of two or more. In consideration of the balance of photocurability, high-precision applicability, adhesion, moisture permeability, and adhesion durability, component (a-2) in the total amount of 100 parts by mass of (a-1) and (a-2) Is preferably in the range of 20 to 80 parts by mass, particularly preferably in the range of 40 to 60 parts by mass.

((B)ノボラック樹脂)
本実施形態に係るエネルギー線硬化性樹脂組成物には、さらにノボラック樹脂を含有することで、優れた高精度塗布性と低透湿性を両立できる。
((B) Novolac resin)
The energy beam curable resin composition according to the present embodiment can have both excellent high-precision applicability and low moisture permeability by further containing a novolac resin.

ノボラック樹脂としては、公知のノボラック樹脂が適用可能である。ノボラック樹脂として、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールA型ノボラック樹脂等が挙げられる。これらのノボラック樹脂は、1種又は2種以上を選択して使用してもよい。特にフェノールノボラック樹脂が、塗布性に優れるため、好ましい。 As the novolac resin, a known novolac resin can be applied. Examples of the novolak resin include phenol novolak resin, cresol novolak resin, bisphenol A type novolak resin, and the like. These novolac resins may be used alone or in combination of two or more. In particular, a phenol novolac resin is preferable because of excellent coating properties.

フェノールノボラック樹脂としては、軟化温度が50℃以上150℃以下であるフェノールノボラック樹脂が好ましく、特に70℃以上100℃以下であるフェノールノボラック樹脂が好ましい。軟化温度が50℃以上150℃以下であるフェノールノボラック樹脂としては、大日本インキ化学工業社製のPHENOLITE TD−2131、TD−2106、TD−2093、TD−2091、TD−2090等が挙げられる。これらのフェノールノボラック樹脂は、1種又は2種以上を選択して使用してもよい。 As the phenol novolak resin, a phenol novolak resin having a softening temperature of 50 ° C. or higher and 150 ° C. or lower is preferable, and a phenol novolak resin having a softening temperature of 70 ° C. or higher and 100 ° C. or lower is particularly preferable. Examples of the phenol novolak resin having a softening temperature of 50 ° C. or higher and 150 ° C. or lower include PHENOLITE TD-2131, TD-2106, TD-2093, TD-2091, and TD-2090 manufactured by Dainippon Ink & Chemicals, Inc. These phenol novolac resins may be used alone or in combination of two or more.

又、ノボラック樹脂の水酸基当量は、80〜130(g/eq)の範囲であることが(A)成分であるエポキシ化合物との相溶性、低透湿性の点から好ましく、特に好ましくは100〜120(g/eq)の範囲であることが好ましい。   The hydroxyl equivalent of the novolak resin is preferably in the range of 80 to 130 (g / eq) from the viewpoint of compatibility with the epoxy compound (A) and low moisture permeability, and particularly preferably 100 to 120. A range of (g / eq) is preferred.

(B)軟化点が50℃以上150℃以下のノボラック樹脂の組成割合は、(A)及び(B)成分の合量100質量部中、(B)成分が10〜30質量部の割合で含有させることが、優れた高精度塗布性と、低透湿性をバランスよく得ることができるため好ましく、特に15〜25質量部の割合で含有させることが好ましい。 (B) The composition ratio of the novolak resin having a softening point of 50 ° C. or higher and 150 ° C. or lower is contained in a ratio of 10 to 30 parts by mass of the component (B) in 100 parts by mass of the total amount of the components (A) and (B). Since it is possible to obtain excellent high-precision applicability and low moisture permeability in a well-balanced manner, it is particularly preferable to contain them in a proportion of 15 to 25 parts by mass.

((C)光カチオン重合開始剤)
本実施形態に係るエネルギー線硬化性樹脂組成物は、(C)光カチオン重合開始剤を含有する。光カチオン重合開始剤を用いることで、本実施形態に係るエネルギー線硬化性樹脂組成物は紫外線等のエネルギー線照射により硬化可能となる。
((C) Photocationic polymerization initiator)
The energy beam curable resin composition according to the present embodiment contains (C) a photocationic polymerization initiator. By using a cationic photopolymerization initiator, the energy ray-curable resin composition according to this embodiment can be cured by irradiation with energy rays such as ultraviolet rays.

(C)光カチオン重合開始剤としては、アリールスルホニウム塩誘導体(例えば、ダウケミカル社製のサイラキュアUVI−6990、サイラキュアUVI−6974、旭電化工業社製のアデカオプトマーSP−150、アデカオプトマーSP−152、アデカオプトマーSP−170、アデカオプトマーSP−172、サンアプロ社製のCPI−100P、CPI−101A、CPI−200K、CPI−210S、ダブルボンド社製チバキュアー1190等)、アリールヨードニウム塩誘導体(例えば、チバスペシャリティーケミカルズ社製のイルガキュア250、ローディア・ジャパン社製のRP−2074)、アレン−イオン錯体誘導体、ジアゾニウム塩誘導体、トリアジン系開始剤及びその他のハロゲン化物等の酸発生剤等が挙げられる。これらの光カチオン重合開始剤は、1種又は2種以上を選択して使用してもよい。 (C) As the cationic photopolymerization initiator, arylsulfonium salt derivatives (for example, Cyracure UVI-6990, Cyracure UVI-6974, manufactured by Dow Chemical Company, Adekaoptomer SP-150, Adekaoptomer SP, manufactured by Asahi Denka Kogyo Co., Ltd.) -152, Adekaoptomer SP-170, Adekaoptomer SP-172, CPI-100P, CPI-101A, CPI-200K, CPI-210S, Ciba-210S manufactured by San Apro, etc. (For example, Irgacure 250 manufactured by Ciba Specialty Chemicals, RP-2074 manufactured by Rhodia Japan), acid generators such as allene-ion complex derivatives, diazonium salt derivatives, triazine initiators and other halides, etc. Raising It is. These photocationic polymerization initiators may be used alone or in combination of two or more.

(C)光カチオン重合開始剤のアニオン種としては、ホウ素化合物、リン化合物、アンチモン化合物、ヒ素化合物、アルキルスルホン酸化合物等のハロゲン化物等が挙げられる。これらのアニオン種は、1種又は2種以上を選択して使用してもよい。光硬化性に優れ、接着性、接着耐久性が向上する点から、フッ化物が好ましい。 (C) Examples of the anionic species of the cationic photopolymerization initiator include halides such as boron compounds, phosphorus compounds, antimony compounds, arsenic compounds, and alkyl sulfonic acid compounds. These anionic species may be used alone or in combination of two or more. Fluoride is preferable from the viewpoint of excellent photocurability and improved adhesion and adhesion durability.

(C)光カチオン重合開始剤は、(A)成分と(B)成分の合量100質量部に対して、0.01〜5質量部の割合で含有させることが好ましく、特に0.05〜3質量部の割合で含有させることが好ましい。光カチオン重合開始剤の含有量が0.01質量部以上であれば光硬化性が悪くなることもないし、5質量部以下であれば接着耐久性を低下させることもない。 (C) It is preferable to contain a photocationic polymerization initiator in the ratio of 0.01-5 mass parts with respect to 100 mass parts of total amounts of (A) component and (B) component, and especially 0.05- It is preferable to make it contain in the ratio of 3 mass parts. If the content of the cationic photopolymerization initiator is 0.01 parts by mass or more, the photocurability is not deteriorated, and if it is 5 parts by mass or less, the adhesion durability is not lowered.

(C)光カチオン重合開始剤の感度を向上させるため、各種光増感剤を併用してもよい。 (C) In order to improve the sensitivity of the photocationic polymerization initiator, various photosensitizers may be used in combination.

((D)フィラー)
本実施形態に係るエネルギー線硬化性樹脂組成物は、(D)フィラーを含有する。(D)フィラーを含有することにより、本実施形態に係るエネルギー線硬化性樹脂組成物は、優れた高精度塗布性、接着性、低透湿性、接着耐久性を提供できる。
((D) filler)
The energy beam curable resin composition according to the present embodiment contains (D) a filler. (D) By containing a filler, the energy-beam curable resin composition which concerns on this embodiment can provide the outstanding high precision applicability | paintability, adhesiveness, low moisture permeability, and adhesive durability.

フィラーの粒子径は、0.1〜20μmであることが好ましく、1〜10μmであることが、 高精度な塗布性に優れるため好ましい。 The particle diameter of the filler is preferably 0.1 to 20 μm, and preferably 1 to 10 μm because it is excellent in high-precision coating properties.

フィラーとしては、扁平フィラーが好ましい。扁平フィラーとは、平板状のフィラーのことを言う。扁平フィラーは、平面の直径が0.5〜10μm、特に1〜5μmであることが好ましく、厚さが0.001〜1μm、特に0.01〜0.1μmの範囲にあることが、透湿性に優れるため、好ましい。扁平フィラーとしては、タルク、マイカ等の天然鉱物や、窒化ホウ素等のセラミックス等が挙げられる。高精度塗布性と低透湿性の両立に優れる点から、タルクが好ましい。 As the filler, a flat filler is preferable. A flat filler means a flat filler. The flat filler preferably has a plane diameter of 0.5 to 10 μm, particularly 1 to 5 μm, and a thickness of 0.001 to 1 μm, particularly 0.01 to 0.1 μm. Is preferable. Examples of the flat filler include natural minerals such as talc and mica, and ceramics such as boron nitride. Talc is preferred because it is excellent in both high precision applicability and low moisture permeability.

ここで、タルクとは、例えば、化学組成としてMgO・SiO(1≦X≦2)で表される99%以上の純度であるタルクのことを言う。 Here, talc means, for example, talc having a purity of 99% or more represented by MgO.SiO X (1 ≦ X ≦ 2) as a chemical composition.

(D)扁平形状のタルクは、上記(A)成分と(B)成分の合量100質量部に対して、10〜60質量部の割合で含有させることが好ましく、特に15〜55質量部の割合で含有させることがより好ましい。15質量部以上であれば、優れた低透湿性を得ることができ、60質量部以下であれば高精度塗布性や接着性を低下させることもない。 (D) The flat talc is preferably contained in a proportion of 10 to 60 parts by mass, particularly 15 to 55 parts by mass with respect to 100 parts by mass of the total amount of the components (A) and (B). It is more preferable to make it contain in a ratio. If it is 15 parts by mass or more, excellent low moisture permeability can be obtained, and if it is 60 parts by mass or less, high-precision applicability and adhesiveness are not deteriorated.

((E)シランカップリング剤)
本実施形態に係るエネルギー線硬化性樹脂組成物は、シランカップリング剤を含有してもよい。シランカップリング剤を含有することにより、本実施形態に係るエネルギー線硬化性樹脂組成物は、優れた接着性及び接着耐久性を示す。
((E) Silane coupling agent)
The energy beam curable resin composition according to the present embodiment may contain a silane coupling agent. By containing a silane coupling agent, the energy ray-curable resin composition according to the present embodiment exhibits excellent adhesion and adhesion durability.

シランカップリング剤としては、γ−クロロプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリクロルシラン、ビニルトリエトキシシラン、ビニル−トリス(β−メトキシエトキシ)シラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−アクリロキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルメチルジメトキシシラン及びγ−ユレイドプロピルトリエトキシシラン等が挙げられ、好ましくはβ−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン等が挙げられる。これらのシランカップリング剤は、1種又は2種以上を選択して使用してもよい。 Examples of silane coupling agents include γ-chloropropyltrimethoxysilane, vinyltrimethoxysilane, vinyltrichlorosilane, vinyltriethoxysilane, vinyl-tris (β-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxysilane, γ -Acryloxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N -Β- (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropylmethyldimethoxysilane, γ-ureidopropyltriethoxysilane, and the like, preferably β- (3,4 -Epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane and the like. These silane coupling agents may be used alone or in combination of two or more.

シランカップリング剤は、(A)成分と(B)成分の合量100質量部に対して、0.1〜10質量部の割合で含有させることが好ましく、特に0.5〜5質量部の割合で含有させることがより好ましい。シランカップリング剤の含有量が0.1質量部以上10質量部以下であれば好適な接着性、接着耐久性を得ることができる。 It is preferable to contain a silane coupling agent in the ratio of 0.1-10 mass parts with respect to 100 mass parts of total amounts of (A) component and (B) component, especially 0.5-5 mass parts. It is more preferable to make it contain in a ratio. If content of a silane coupling agent is 0.1 mass part or more and 10 mass parts or less, suitable adhesiveness and adhesion durability can be obtained.

(その他のカチオン重合性化合物)
本実施形態に係るエネルギー線硬化性樹脂組成物は、脂肪族エポキシ化合物、オキセタン化合物、ビニルエーテル化合物等の他のカチオン重合性化合物を目的の物性を損なわない範囲で含有してもよい。
(Other cationic polymerizable compounds)
The energy beam curable resin composition according to the present embodiment may contain other cationically polymerizable compounds such as aliphatic epoxy compounds, oxetane compounds, vinyl ether compounds, and the like within a range that does not impair the intended physical properties.

本実施形態に係るエネルギー線硬化性樹脂組成物は、本実施形態の目的の物性を損なわない範囲で、アクリルゴム、ウレタンゴム等の各種エラストマー、メタクリル酸メチル−ブタジエン−スチレン系グラフト共重合体やアクリロニトリル−ブタジエン−スチレン系グラフト共重合体等のグラフト共重合体、無機充填剤、溶剤、増量材、補強材、可塑剤、増粘剤、染料、顔料、難燃剤及び界面活性剤等の添加剤を使用することができる。 The energy ray curable resin composition according to the present embodiment is within a range that does not impair the intended physical properties of the present embodiment, various elastomers such as acrylic rubber and urethane rubber, methyl methacrylate-butadiene-styrene graft copolymer, Additives such as graft copolymers such as acrylonitrile-butadiene-styrene graft copolymers, inorganic fillers, solvents, extenders, reinforcing materials, plasticizers, thickeners, dyes, pigments, flame retardants and surfactants Can be used.

上記構成からなるエネルギー線硬化性樹脂組成物は、エネルギー線の照射により硬化させ、硬化体としてもよい。 The energy ray-curable resin composition having the above-described configuration may be cured by irradiation with energy rays to form a cured body.

又、上記構成からなるエネルギー線硬化性樹脂組成物は、接着剤として用いてもよい。この接着剤は、液晶や有機EL等のディスプレイ部品、CCD、CMOSといったイメージセンサー等の電子部品、さらに半導体部品等で用いられる素子パッケージ等の接着に、好適に用いることができる。 Moreover, you may use the energy-beam curable resin composition which consists of the said structure as an adhesive agent. This adhesive can be suitably used for bonding display components such as liquid crystal and organic EL, electronic components such as image sensors such as CCD and CMOS, and element packages used for semiconductor components.

[製造方法]
本実施形態に係るエネルギー線硬化性樹脂組成物の製造方法については、上記の材料を十分に混合できれば特に制限はない。材料の混合方法としては、プロペラの回転に伴う撹拌力を利用する撹拌法、ロール練り混込み法、サンドミルや自転公転による遊星式撹拌機等の通常の分散機を使用する混合方法等が挙げられる。これらの混合方法は、低コストで、安定した混合を行えるので好ましい。
[Production method]
About the manufacturing method of the energy-beam curable resin composition which concerns on this embodiment, if said material can fully be mixed, there will be no restriction | limiting in particular. Examples of the mixing method of the material include a stirring method using a stirring force accompanying rotation of the propeller, a roll kneading mixing method, a mixing method using a normal disperser such as a sand mill or a planetary stirrer by rotation revolution, and the like. . These mixing methods are preferable because stable mixing can be performed at low cost.

上記の混合を行った後、下記の光源を用いたエネルギー線の照射によりエネルギー線硬化性樹脂組成物の硬化を行ってもよい。   After performing the above mixing, the energy ray curable resin composition may be cured by irradiation with energy rays using the following light source.

[光源]
本実施形態において、エネルギー線硬化性樹脂組成物の硬化、接着に用いられる光源としては、ハロゲンランプ、メタルハライドランプ、ハイパワーメタルハライドランプ(インジウム等を含有する)、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、キセノンエキシマランプ、キセノンフラッシュランプ、ライトエミッティングダイオード(以下、LEDという)等が挙げられる。これらの光源は、それぞれの光重合開始剤の反応波長に対応したエネルギー線の照射を効率よく行えるので、好ましい。
[light source]
In the present embodiment, the light source used for curing and bonding the energy ray curable resin composition includes a halogen lamp, a metal halide lamp, a high power metal halide lamp (containing indium, etc.), a low pressure mercury lamp, a high pressure mercury lamp, Examples thereof include a high-pressure mercury lamp, a xenon lamp, a xenon excimer lamp, a xenon flash lamp, and a light emitting diode (hereinafter referred to as LED). These light sources are preferable because they can efficiently irradiate energy rays corresponding to the reaction wavelengths of the respective photopolymerization initiators.

上記光源は、各々放射波長、エネルギー分布が異なる。そのため、上記光源は光重合開始剤の反応波長等により適宜選択される。又、自然光(太陽光)も反応開始光源になり得る。 Each of the light sources has a different emission wavelength and energy distribution. Therefore, the light source is appropriately selected depending on the reaction wavelength of the photopolymerization initiator. Natural light (sunlight) can also be a reaction initiation light source.

上記光源は、直接照射、反射鏡等による集光照射、ファイバー等による集光照射を行ってもよい。又、低波長カットフィルター、熱線カットフィルター、コールドミラー等も用いることもできる。 The light source may perform direct irradiation, condensing irradiation using a reflecting mirror, or condensing irradiation using a fiber or the like. A low wavelength cut filter, a heat ray cut filter, a cold mirror, or the like can also be used.

又、本発明のエネルギー線硬化性樹脂組成物は、光照射後の硬化速度を促進するために、後加熱処理をしてもよい。後加熱の温度は、有機EL、CCD、CMOS等のセンサー素子パッケージへの適用を鑑み、素子にダメージを与えない点で、120℃以下、特に好ましくは80℃以下であることが好ましい。   In addition, the energy beam curable resin composition of the present invention may be subjected to post-heating treatment in order to accelerate the curing rate after light irradiation. In view of application to sensor element packages such as organic EL, CCD, and CMOS, the post-heating temperature is preferably 120 ° C. or less, particularly preferably 80 ° C. or less, from the viewpoint of not damaging the element.

[粘度]
本実施形態において、エネルギー線硬化性樹脂組成物の粘度は、優れた高精度塗布性を得るために、せん断速度:10〜100(1/s)の範囲で、せん断粘度:10〜500Pa・sの範囲であることが好ましく、特に20〜400Pa・sの範囲であることがより好ましい。せん断粘度が10Pa・s以上であれば、接着剤が必要以上に濡れ広がってしまうこともないし、500Pa・s以下であればディスペンサー等市販の塗布装置を用い、高精度に塗布することが可能となる。
[viscosity]
In the present embodiment, the viscosity of the energy beam curable resin composition is in the range of shear rate: 10 to 100 (1 / s) and shear viscosity: 10 to 500 Pa · s in order to obtain excellent high precision applicability. It is preferable that it is the range of 20-400 Pa.s in particular. If the shear viscosity is 10 Pa · s or more, the adhesive does not spread more than necessary, and if it is 500 Pa · s or less, it can be applied with high accuracy using a commercially available application device such as a dispenser. Become.

高精度な塗布性を有するために、せん断速度依存性(以下、速度勾配という)が一定値以下であることが好ましい。速度勾配を下記式にて定義したとき、その値が1〜2の範囲にあることが好ましく、特に1.0〜1.6の範囲にあることがより好ましい。速度勾配が1以上2以下であれば、ディスペンサー等市販の塗布装置にて塗布量のバラツキなく、微量かつ微少面積で高精度に塗布できる。 In order to have high-precision applicability, it is preferable that the shear rate dependency (hereinafter referred to as a velocity gradient) is a certain value or less. When the velocity gradient is defined by the following formula, the value is preferably in the range of 1 to 2, and more preferably in the range of 1.0 to 1.6. If the speed gradient is 1 or more and 2 or less, it can be applied with a small amount and a very small area with high accuracy without using a commercially available coating apparatus such as a dispenser.

(式1)
速度勾配=(10(1/s)でのせん断粘度)÷(100(1/s)でのせん断粘度)
(Formula 1)
Velocity gradient = (shear viscosity at 10 (1 / s)) / (shear viscosity at 100 (1 / s))

せん断粘度の測定は、公知の装置を用いることができる。特にレオメーター(例えば、日本シイベルヘグナー社製「MCR−301」等)が、せん断粘度の速度依存性を精度良く測定できる。 A known apparatus can be used for the measurement of the shear viscosity. In particular, a rheometer (for example, “MCR-301” manufactured by Nippon Siebel Hegner Co., Ltd.) can accurately measure the speed dependence of the shear viscosity.

以下に、実施例及び比較例を挙げて、本願発明を更に詳細に説明するが、本願発明はこれらに限定されるものではない。特記しない限り、23℃、相対湿度50質量%で試験した。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Unless otherwise stated, the test was performed at 23 ° C. and a relative humidity of 50% by mass.

実施例及び比較例では、以下の化合物を使用した。
(A)成分のエポキシ化合物として下記を用いた。
(A−1)3,4−エポキシシクロヘキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレート(ダイセル化学社製「セロキサイド2021P」)
(A−2)ビスフェノールF型エポキシ樹脂(ジャパンエポキシレジン社製「YL−938U」)
In the examples and comparative examples, the following compounds were used.
The following was used as the epoxy compound of component (A).
(A-1) 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexene carboxylate (“Celoxide 2021P” manufactured by Daicel Chemical Industries)
(A-2) Bisphenol F type epoxy resin ("YL-938U" manufactured by Japan Epoxy Resin Co., Ltd.)

(B)成分の軟化点が50℃以上150℃以下のノボラック樹脂として下記を用いた。その軟化点及び水酸基当量については表1に示す。
(B−1)フェノールノボラック樹脂(大日本インキ化学工業社製「TD−2131」)
(B−2)フェノールノボラック樹脂(大日本インキ化学工業社製「TD−2090」)
(B−3)ビスフェノールA型ノボラック樹脂(大日本インキ化学工業社製「KH−6021」)
(B) The following was used as a novolak resin having a softening point of 50 ° C. or higher and 150 ° C. or lower. The softening point and hydroxyl equivalent are shown in Table 1.
(B-1) Phenol novolac resin (“TD-2131” manufactured by Dainippon Ink and Chemicals, Inc.)
(B-2) Phenol novolac resin (“TD-2090” manufactured by Dainippon Ink and Chemicals, Inc.)
(B-3) Bisphenol A type novolak resin ("KH-6021" manufactured by Dainippon Ink & Chemicals, Inc.)

Figure 0005153498
Figure 0005153498

(C)成分の光カチオン重合開始剤として下記を用いた。
(C−1)トリアリールスルフォニウム塩ヘキサフルオロアンチモネート(ADEKA社製「アデカオプトマーSP−170」)
The following was used as the photocationic polymerization initiator of component (C).
(C-1) Triarylsulfonium salt hexafluoroantimonate (“ADEKA OPTMER SP-170” manufactured by ADEKA)

(D)扁平形状のタルクとして下記を用いた。その平均粒子径については表2に示す。平均粒子径の測定は、レーザー回折粒度分布測定装置、SALD−2200「島津製作所社製」を使用した。
(D−1)ハイフィラー 5000PJ(松村産業社製)
(D−2)SG−95(日本タルク社製)
(D−3)ミストロンベーパー(日本ミストロン社製)
(D) The following was used as flat talc. The average particle diameter is shown in Table 2. The average particle size was measured using a laser diffraction particle size distribution analyzer, SALD-2200 “manufactured by Shimadzu Corporation”.
(D-1) High filler 5000PJ (Matsumura Sangyo Co., Ltd.)
(D-2) SG-95 (Nippon Talc Co., Ltd.)
(D-3) Mistron vapor (manufactured by Nippon Mistron)

比較として下記球状シリカを用いた。
(D−4)球状シリカ(電気化学工業社製「デンカ溶融シリカFB−5SDX)
For comparison, the following spherical silica was used.
(D-4) Spherical silica (“DENKA Fused Silica FB-5SDX” manufactured by Denki Kagaku Kogyo Co., Ltd.)

Figure 0005153498
Figure 0005153498

(E)成分のシランカップリング剤として下記を用いた。
(E−1)γ−グリシドキシプロピルトリメトキシシラン(信越シリコーン社製 「KBM−403」)
The following was used as the silane coupling agent of component (E).
(E-1) γ-Glycidoxypropyltrimethoxysilane (“KBM-403” manufactured by Shin-Etsu Silicone)

表3及び4に示す種類の原材料を、表3及び4に示す組成割合で混合し、実施例1〜9及び比較例1〜4の樹脂組成物を調製した。組成割合の単位は質量部である。 The raw materials of the types shown in Tables 3 and 4 were mixed at the composition ratios shown in Tables 3 and 4, and resin compositions of Examples 1 to 9 and Comparative Examples 1 to 4 were prepared. The unit of the composition ratio is part by mass.

Figure 0005153498
Figure 0005153498

Figure 0005153498
Figure 0005153498

実施例及び比較例の樹脂組成物について、下記の各測定を行った。その結果を表3及び4に示す。 The following measurements were performed on the resin compositions of Examples and Comparative Examples. The results are shown in Tables 3 and 4.

〔粘度〕
粘度測定は、レオメーター(日本シイベルヘグナー社製「MCR−301」)を用い、下記条件にて、せん断速度10(1/s)と100(1/s)の時のせん断粘度を測定した。
・プレート:円形平板25mmφ
・試料厚:0.1mm
・ノーマルフォース:0N
・温度:25±0.5℃
〔viscosity〕
Viscosity was measured using a rheometer (“MCR-301” manufactured by Nippon Shibel Hegner) under the following conditions and the shear viscosity at shear rates of 10 (1 / s) and 100 (1 / s).
・ Plate: Circular flat plate 25mmφ
・ Sample thickness: 0.1 mm
・ Normal force: 0N
・ Temperature: 25 ± 0.5 ℃

せん断速度依存性を評価するため、速度勾配を下記式にて求め、速度勾配2以下のものを良好とした。
(式2)
速度勾配=(10(1/s)でのせん断粘度)÷(100(1/s)でのせん断粘度)
In order to evaluate the shear rate dependency, the velocity gradient was obtained by the following equation, and the velocity gradient of 2 or less was considered good.
(Formula 2)
Velocity gradient = (shear viscosity at 10 (1 / s)) / (shear viscosity at 100 (1 / s))

〔硬化条件〕
樹脂組成物の硬化物性及び接着性の評価に際しては、下記光照射条件により硬化させた。
無電極放電メタルハライドランプ搭載UV硬化装置(フュージョン社製)により、365nmの波長の積算光量4,000mJ/cmの条件にて光硬化させた後、80℃のオーブン中で、30分間の後加熱処理を実施した。
[Curing conditions]
In evaluating the cured properties and adhesiveness of the resin composition, the resin composition was cured under the following light irradiation conditions.
After photocuring under the condition of an integrated light amount of 4,000 mJ / cm 2 with a wavelength of 365 nm by a UV curing device equipped with an electrodeless discharge metal halide lamp (manufactured by Fusion), post-heating in an oven at 80 ° C. for 30 minutes Processing was carried out.

〔透湿度の評価〕
厚さ0.1mmのシート状の接着剤硬化体を前記光硬化条件にて作製し、JIS Z0208「防湿包装材料の透湿度試験方法(カップ法)」に準じ、吸湿剤として塩化カルシウム(無水)を用い、雰囲気温度60℃、相対湿度90%の条件で評価した。
[Evaluation of moisture permeability]
A sheet-like adhesive cured body having a thickness of 0.1 mm was prepared under the above-mentioned photocuring conditions, and calcium chloride (anhydrous) as a hygroscopic agent in accordance with JIS Z0208 “Method of testing moisture permeability of moisture-proof packaging material (cup method)” Was used under the conditions of an atmospheric temperature of 60 ° C. and a relative humidity of 90%.

〔引張剪断接着強さ(初期)の評価〕
ホウ珪酸ガラス試験片「25mm縦×25mm横×2.0mm厚、テンパックス(登録商標)」を2枚用い、接着面積0.5cm、接着厚み80μmで前記光硬化条件にて接着剤を硬化させた。硬化後、接着剤で接合した試験片を用い、引張剪断接着強さ(単位:MPa)を、温度23℃、相対湿度50%の環境下で引張速度10mm/分で測定した。
[Evaluation of tensile shear bond strength (initial)]
Use two borosilicate glass test pieces "25 mm long x 25 mm wide x 2.0 mm thick, Tempax (registered trademark)", cure the adhesive under the above-mentioned photocuring conditions with a bonding area of 0.5 cm 2 and a bonding thickness of 80 μm. I let you. After curing, using a test piece joined with an adhesive, the tensile shear adhesive strength (unit: MPa) was measured at an elongation of 10 mm / min in an environment of a temperature of 23 ° C. and a relative humidity of 50%.

〔接着耐久性(PCT)の評価〕
ホウ珪酸ガラス試験片「25mm縦×25mm横×2.0mm厚、テンパックス(登録商標)」を2枚用い、接着面積0.5cm、接着厚み80μmで前記光硬化条件にて接着剤を硬化させた。硬化後、接着剤で接合した試験片を用い、プレッシャークッカー(以下、PCTという)121℃、100%RH、2atmの雰囲気下に10時間暴露し、暴露後の試験片の引張剪断接着強さ(単位:MPa)を、温度23℃、相対湿度50%の環境下で引張速度10mm/分で測定し、接着保持率を下記式にて求め、接着保持率50%以上のものを耐久性良好とした。
[Evaluation of adhesion durability (PCT)]
Use two borosilicate glass test pieces "25 mm long x 25 mm wide x 2.0 mm thick, Tempax (registered trademark)", cure the adhesive under the above-mentioned photocuring conditions with a bonding area of 0.5 cm 2 and a bonding thickness of 80 μm. I let you. After curing, a test piece bonded with an adhesive was used and exposed to a pressure cooker (hereinafter referred to as PCT) 121 ° C., 100% RH, 2 atm for 10 hours, and the tensile shear bond strength of the test piece after exposure ( (Unit: MPa) is measured at a tensile rate of 10 mm / min in an environment of a temperature of 23 ° C. and a relative humidity of 50%, and the adhesion retention is determined by the following formula. did.

(式3)
接着保持率(%)=(PCT後の引張剪断接着強さ)÷(初期の引張剪断接着強さ)×100
(Formula 3)
Adhesion retention (%) = (Tensile shear adhesive strength after PCT) ÷ (Initial tensile shear adhesive strength) × 100

上記実施例から以下のことが判る。本願発明は、微量な使用量で、高精度な塗布性、接着性、低透湿性、接着耐久性に優れたエネルギー線硬化性樹脂組成物を提供できる。高精度な塗布性を有することは、速度勾配が1〜2の範囲にあることから裏付けられる。低透湿性を有することは、透湿度が小さいことから裏付けられる。 The following can be seen from the above examples. The present invention can provide an energy ray-curable resin composition that is excellent in coating properties, adhesiveness, low moisture permeability, and adhesion durability with a small amount of use. Having high-precision applicability is supported by the fact that the velocity gradient is in the range of 1-2. Having low moisture permeability is supported by low moisture permeability.

本願発明は、エレクトロニクス製品、特に、液晶や有機EL等のディスプレイ部品や、CCD、CMOSといったイメージセンサー等の電子部品、さらに半導体部品等で用いられる素子パッケージ等の接着において、好適に適用することができる。 The present invention can be suitably applied to bonding of electronic products, particularly display components such as liquid crystal and organic EL, electronic components such as image sensors such as CCD and CMOS, and device packages used in semiconductor components. it can.

Claims (14)

下記成分を含有することを特徴とする樹脂組成物。
(A)(a−1)脂環式エポキシ化合物と(a−2)芳香環を有するエポキシ樹脂を含有し、かつ、(a−1)と(a−2)の合量100質量部中、(a−2)成分が20〜80質量部であるエポキシ化合物、
(B)ノボラック樹脂、
(C)光カチオン重合開始剤、
(D)(A)成分と(B)成分の合量100質量部に対して、10〜60質量部の割合で含有する扁平形状のタルク
A resin composition comprising the following components:
(A) (a-1) containing an alicyclic epoxy compound and (a-2) an epoxy resin having an aromatic ring, and in a total amount of 100 parts by mass of (a-1) and (a-2), (A-2) an epoxy compound whose component is 20 to 80 parts by mass ,
(B) novolac resin,
(C) a photocationic polymerization initiator,
(D) Flat talc contained in a proportion of 10 to 60 parts by mass with respect to 100 parts by mass of the total amount of components (A) and (B)
下記成分を含有することを特徴とする樹脂組成物。
(A)(a−1)脂環式エポキシ化合物と(a−2)芳香環を有するエポキシ樹脂を含有し、かつ、(a−1)と(a−2)の合量100質量部中、(a−2)成分が50〜80質量部であるエポキシ化合物、
(B)(A)及び(B)成分の合量100質量部中、10〜25質量部の割合で含有するノボラック樹脂、
(C)光カチオン重合開始剤、
(D)(A)成分と(B)成分の合量100質量部に対して、10〜60質量部の割合で含有する扁平形状のタルク
A resin composition comprising the following components:
(A) (a-1) containing an alicyclic epoxy compound and (a-2) an epoxy resin having an aromatic ring, and (a-1) and (a-2) in a total amount of 100 parts by mass, (A-2) an epoxy compound whose component is 50 to 80 parts by mass ,
(B) A novolak resin containing 10 to 25 parts by mass in 100 parts by mass of the total amount of components (A) and (B) ,
(C) a photocationic polymerization initiator,
(D) Flat talc contained in a proportion of 10 to 60 parts by mass with respect to 100 parts by mass of the total amount of components (A) and (B)
(B)ノボラック樹脂の軟化点が50℃以上150℃以下であり、ノボラック樹脂の水酸基当量が、80〜130(g/eq)の範囲であることを特徴とする請求項1ないし2のいずれか1項に記載の樹脂組成物。 (B) softening point of the novolak resin Ri der 50 ° C. or higher 0.99 ° C. or less, the novolak resin hydroxyl equivalent, 80~130 (g / eq) according to claim 1 or 2, characterized in range der Rukoto of The resin composition according to any one of the above. (D)フィラーの粒子径が0.1〜20μmであることを特徴とする請求項1ないし3のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein (D) the filler has a particle size of 0.1 to 20 µm. (D)フィラーの粒子径が0.1〜2.5μmであることを特徴とする請求項1ないし3のいずれか1項に記載の樹脂組成物。The resin composition according to any one of claims 1 to 3, wherein (D) the filler has a particle size of 0.1 to 2.5 µm. さらに(E)シランカップリング剤を含有することを特徴とする請求項1ないしのいずれかに1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 5 , further comprising (E) a silane coupling agent. (a−1)脂環式エポキシ化合物が、3,4−エポキシシクロヘキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレートであることを特徴とする請求項1ないし6のいずれか1項に記載の樹脂組成物。The (a-1) alicyclic epoxy compound is 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexenecarboxylate, according to any one of claims 1 to 6. Resin composition. (a−2)芳香環を有するエポキシ樹脂が、ビスフェノールF型エポキシ樹脂であることを特徴とする請求項1ないし7のいずれか1項に記載の樹脂組成物。(A-2) The epoxy resin having an aromatic ring is a bisphenol F type epoxy resin, The resin composition according to any one of claims 1 to 7. 請求項1ないし8のいずれか1項に記載の樹脂組成物の粘度が、せん断速度:10〜100(1/s)の範囲で、せん断粘度:10〜500Pa・sの範囲であることを特徴とする樹脂組成物。 The viscosity of the resin composition according to any one of claims 1 to 8, wherein the shear rate is in the range of 10 to 100 (1 / s) and the shear viscosity is in the range of 10 to 500 Pa · s. A resin composition. 請求項1ないし9のいずれか1項に記載の樹脂組成物の速度勾配を(式1)にて定義した場合、速度勾配が1〜2の範囲であることを特徴とする樹脂組成物。
(式1)
速度勾配=(10(1/s)でのせん断粘度)÷(100(1/s)でのせん断粘度)
A resin composition characterized by having a velocity gradient in the range of 1 to 2 when the velocity gradient of the resin composition according to any one of claims 1 to 9 is defined by (Equation 1).
(Formula 1)
Velocity gradient = (shear viscosity at 10 (1 / s)) / (shear viscosity at 100 (1 / s))
請求項1ないし10のいずれか1項に記載の樹脂組成物を含有することを特徴とするエネルギー線硬化性樹脂組成物。 An energy ray-curable resin composition comprising the resin composition according to any one of claims 1 to 10. 請求項1ないし10のいずれか1項に記載の樹脂組成物からなる接着剤。 An adhesive comprising the resin composition according to any one of claims 1 to 10. 請求項1ないし10のいずれか1項に記載の樹脂組成物からなる硬化体。 A cured body comprising the resin composition according to any one of claims 1 to 10. 請求項11に記載のエネルギー線硬化性樹脂組成物に光照射をした後に、後加熱処理を行うことを特徴とする硬化方法。 A curing method comprising performing post-heating treatment after irradiating the energy ray-curable resin composition according to claim 11 with light.
JP2008188294A 2008-07-22 2008-07-22 Resin composition Active JP5153498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008188294A JP5153498B2 (en) 2008-07-22 2008-07-22 Resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008188294A JP5153498B2 (en) 2008-07-22 2008-07-22 Resin composition

Publications (2)

Publication Number Publication Date
JP2010024364A JP2010024364A (en) 2010-02-04
JP5153498B2 true JP5153498B2 (en) 2013-02-27

Family

ID=41730480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008188294A Active JP5153498B2 (en) 2008-07-22 2008-07-22 Resin composition

Country Status (1)

Country Link
JP (1) JP5153498B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2439240A1 (en) * 2010-10-06 2012-04-11 Henkel AG & Co. KGaA Radiation curable composition
SG11201500481RA (en) 2012-07-26 2015-04-29 Denki Kagaku Kogyo Kk Resin composition
JP5901070B2 (en) 2012-10-26 2016-04-06 日本化薬株式会社 Photosensitive resin composition, resist laminate and cured product thereof
JP5967824B2 (en) 2012-10-26 2016-08-10 日本化薬株式会社 Photosensitive resin composition, resist laminate and cured product thereof
JP5939964B2 (en) 2012-11-22 2016-06-29 日本化薬株式会社 Photosensitive resin composition, resist laminate and cured product thereof
JP6066413B2 (en) 2012-11-22 2017-01-25 日本化薬株式会社 Photosensitive resin composition, resist laminate and cured product thereof
KR101999614B1 (en) * 2012-11-28 2019-07-12 닛뽄 가야쿠 가부시키가이샤 Resin composition, and cured product(1) thereof
WO2014192839A1 (en) 2013-05-28 2014-12-04 株式会社ダイセル Curable composition for sealing optical semiconductor
JP6369201B2 (en) * 2013-08-09 2018-08-08 東亞合成株式会社 Active energy ray-curable adhesive composition for plastic film or sheet
JP2023038868A (en) * 2021-09-07 2023-03-17 株式会社エネコートテクノロジーズ perovskite solar cell

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09176606A (en) * 1995-12-22 1997-07-08 Sumitomo Bakelite Co Ltd Adhesive for fixing optical part
JPH10102026A (en) * 1996-08-07 1998-04-21 Sumitomo Bakelite Co Ltd Ultraviolet-curable adhesive for sealing hollow package of optical and electronic device
JP2006269887A (en) * 2005-03-25 2006-10-05 Sumitomo Bakelite Co Ltd Adhesive film for semiconductor, and semiconductor device using this
JP4789733B2 (en) * 2006-07-21 2011-10-12 日本化薬株式会社 Photosensitive resin composition, laminate thereof, cured product thereof, and pattern forming method using the composition
JP2008026667A (en) * 2006-07-21 2008-02-07 Nippon Kayaku Co Ltd Permanent resist composition and resist laminate
JP5153123B2 (en) * 2006-11-20 2013-02-27 三井化学株式会社 SEALING AGENT FOR LIQUID CRYSTAL DROPING METHOD, LIQUID CRYSTAL DISPLAY PANEL MANUFACTURING METHOD USING SAME, AND LIQUID CRYSTAL DISPLAY PANEL

Also Published As

Publication number Publication date
JP2010024364A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
JP5153498B2 (en) Resin composition
JP5919574B2 (en) UV curable resin composition, optical component adhesive, and organic EL device sealing material
JP5401767B2 (en) Curable composition and optical device
US8828500B2 (en) Photocurable resin composition for sealing organic EL device
JP4877429B2 (en) Cationic polymerizable adhesive and polarizing plate obtained using the same
TWI525121B (en) Curable composition and the use thereof, cured product, electronic or optoelectronic device, and method of affecting the transmission of water vapor with respect to an electronic or optoelectronic device
JP7007592B2 (en) Cationic Curable Adhesive Compositions for Camera Modules, Cured Products and Bonds
JP3982499B2 (en) Active energy ray-curable resin composition and cured product thereof
JP2010018797A (en) Curable composition for optical parts, adhesive agent for optical parts, and sealing agent for organic electroluminescence element
JP4947244B2 (en) Cationic polymerizable composition, adhesive containing the same, and cured product and polarizing plate obtained using the same
JP6080064B2 (en) UV curable resin composition, adhesive for optical parts, and sealing material
JP2011111598A (en) Photocurable resin composition for touch panel and touch panel
JP4934085B2 (en) Energy ray curable resin composition, adhesive and cured product using the same
JP2013157205A (en) Sealant for organic electroluminescent display element
JP2008305580A (en) Post-light curing composition, sealant for organic electroluminescent element, manufacturing method of organic electroluminescent display, and organic electroluminescent display
WO2018051868A1 (en) Ultraviolet-curable resin composition and laminated body
KR102490648B1 (en) Encapsulant for display element and cured product thereof
JP2008308589A (en) Curable composition and optical device using the same
KR20220038275A (en) Encapsulant for organic EL display elements
WO2017175735A1 (en) Cationic-curable resin composition
JP2010032766A (en) Cationic polymerizable adhesive for bonding polarizer and protective film together, and polarizing plate obtained by using the same
KR20060130396A (en) Radiation curable adhesive resin composition and the article bonded by radiation curing with the composition
JP4426198B2 (en) UV curable epoxy resin composition
JP2006008740A (en) Ultraviolet curable resin composition
WO2021117396A1 (en) Cationically curable composition, cured product, and joined body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5153498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250