JP2009211965A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP2009211965A
JP2009211965A JP2008054284A JP2008054284A JP2009211965A JP 2009211965 A JP2009211965 A JP 2009211965A JP 2008054284 A JP2008054284 A JP 2008054284A JP 2008054284 A JP2008054284 A JP 2008054284A JP 2009211965 A JP2009211965 A JP 2009211965A
Authority
JP
Japan
Prior art keywords
lithium ion
secondary battery
ion secondary
electrode
insulating base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008054284A
Other languages
Japanese (ja)
Inventor
Kazuhiro Yamada
和弘 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2008054284A priority Critical patent/JP2009211965A/en
Publication of JP2009211965A publication Critical patent/JP2009211965A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide the constitution of a lithium ion secondary battery making a distinction of polarity between a positive electrode and a negative electrode unnecessary. <P>SOLUTION: A lithium ion secondary battery 1 includes a lithium ion secondary battery base body 10 including a first electrode 11, a second electrode 12 and a solid electrolyte 13; and a housing member 20 housing the lithium ion secondary battery base body 10. Each active material of the first electrode and the second electrode of the lithium ion secondary battery base body 10 contains Li<SB>2</SB>FeS<SB>2</SB>. The housing member 20 includes an insulating substrate 21 having a surface on which the lithium ion secondary battery base body 10 is placed and a metallic cover member 22 joined with the insulating substrate 21 so as to cover the lithium ion secondary battery base body 10 placed on the surface of the insulating substrate 21. An insulator 30 is arranged in the inner space of the housing member 20 so as to surround the lithium ion secondary battery base body 10. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、リチウムイオン二次電池に関するものである。   The present invention relates to a lithium ion secondary battery.

近年、携帯電話、携帯用パーソナルコンピュータ等の携帯電子機器の電源としてリチウムイオン二次電池が用いられている。携帯電子機器のより一層の小型化に伴って、リチウムイオン二次電池をさらに小型化して、外部電気回路基板への接続を容易にすることが要求されている。   In recent years, lithium ion secondary batteries have been used as power sources for portable electronic devices such as mobile phones and portable personal computers. With the further miniaturization of portable electronic devices, it is required to further reduce the size of lithium ion secondary batteries and facilitate connection to an external electric circuit board.

このような要求に対応するために、外部電気回路基板に表面実装可能な電池ケースと電池が、たとえば、特開2005−71889号公報(特許文献1)に開示されている。この文献には、電池としてリチウムイオン二次電池が開示されており、その正極活物質にはコバルト酸リチウム(LiCoO)やマンガン酸リチウム(LiMn)等が使用され、負極活物質にはコークスや炭素繊維等の炭素材料が使用されることが例示されている。
特開2005−71889号公報
In order to meet such a demand, a battery case and a battery that can be surface-mounted on an external electric circuit board are disclosed in, for example, Japanese Patent Laid-Open No. 2005-71889 (Patent Document 1). In this document, a lithium ion secondary battery is disclosed as a battery. As the positive electrode active material, lithium cobaltate (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), or the like is used. It is exemplified that carbon materials such as coke and carbon fiber are used.
JP 2005-71889 A

しかしながら、リチウムイオン二次電池を外部電気回路基板に表面実装する際に、誤って正極と負極を逆にして取り付けてしまうことがある。正極と負極を逆にして取り付けてしまうと、装置が正常に動作しなかったり、故障や破損の原因となる。したがって、リチウムイオン二次電池の外表面にマーキング等を施すことによって正極と負極の区別ができるようにしたり、イメージセンサー等を用いて正極と負極を逆に取り付けることがないようにする必要がある。   However, when a lithium ion secondary battery is surface-mounted on an external electric circuit board, the positive electrode and the negative electrode may be installed incorrectly. If the positive electrode and the negative electrode are installed in reverse, the device may not operate normally, or it may cause failure or damage. Therefore, it is necessary to make it possible to distinguish between the positive electrode and the negative electrode by marking the outer surface of the lithium ion secondary battery, or to prevent the positive electrode and the negative electrode from being attached reversely using an image sensor or the like. .

そこで、この発明の目的は、正極と負極という極性を区別して用いる必要がないリチウムイオン二次電池の構成を提供することである。   Accordingly, an object of the present invention is to provide a configuration of a lithium ion secondary battery in which it is not necessary to distinguish between polarities of positive electrode and negative electrode.

この発明の一つの局面に従ったリチウムイオン二次電池は、第1の電極と第2の電極と電解質とを備えたリチウムイオン二次電池において、第1の電極と第2の電極の活物質の各々がLiFeSを含むことを特徴とするものである。 A lithium ion secondary battery according to one aspect of the present invention is a lithium ion secondary battery including a first electrode, a second electrode, and an electrolyte. The active material of the first electrode and the second electrode Each of which contains Li 2 FeS 2 .

この発明の一つの局面に従ったリチウムイオン二次電池では、第1の電極と第2の電極の活物質の材料として同一の材料LiFeSを用いているので、充放電時には、第1の電極または第2の電極の一方を正極、第1の電極または第2の電極の他方を負極とすると、正極と負極において以下に示す反応が行われる。 In the lithium ion secondary battery according to one aspect of the present invention, the same material Li 2 FeS 2 is used as the active material of the first electrode and the second electrode. When one of the first electrode and the second electrode is a positive electrode and the other of the first electrode and the second electrode is a negative electrode, the following reactions are carried out at the positive electrode and the negative electrode.

正極では、充電時に以下の反応が行われる。   In the positive electrode, the following reaction is performed during charging.

LiFeS → Li2−xFeS + xLi + xe
また、正極では、放電時に以下の反応が行われる。
Li 2 FeS 2 → Li 2-x FeS 2 + xLi + + xe
In the positive electrode, the following reaction is performed during discharge.

Li2−xFeS + xLi + xe → LiFeS
負極では、充電時に以下の反応が行われる。
Li 2−x FeS 2 + xLi + + xe → Li 2 FeS 2
In the negative electrode, the following reaction is performed during charging.

LiFeS + xLi + xe → Li2+xFeS
また、負極では、放電時に以下の反応が行われる。
Li 2 FeS 2 + xLi + + xe → Li 2 + x FeS 2
In the negative electrode, the following reaction is performed during discharge.

Li2+xFeS → LiFeS + xLi + xe
なお、上記の反応式において、0<x≦2である。
Li 2 + x FeS 2 → Li 2 FeS 2 + xLi + + xe -
In the above reaction formula, 0 <x ≦ 2.

本発明の一つの局面に従ったリチウムイオン二次電池では、一種の濃淡電池のように正極と負極において反応が行われるので、第1の電極と第2の電極を正極と負極というように極性を区別して用いる必要がない。このため、第1の電極と第2の電極を逆に取り付けることによる装置の動作異常、故障、破損等の発生を防止することができる。また、第1の電極と第2の電極に対して正極と負極の区別ができるようにリチウムイオン二次電池の外表面にマーキング等を施す必要がない。   In the lithium ion secondary battery according to one aspect of the present invention, since the reaction is performed in the positive electrode and the negative electrode as in a kind of concentration battery, the first electrode and the second electrode are polar as the positive electrode and the negative electrode. Need not be used separately. For this reason, it is possible to prevent the occurrence of abnormal operation, failure, breakage, etc. of the apparatus due to the reverse attachment of the first electrode and the second electrode. Further, it is not necessary to mark the outer surface of the lithium ion secondary battery so that the positive electrode and the negative electrode can be distinguished from the first electrode and the second electrode.

この発明の一つの局面に従ったリチウムイオン二次電池においては、電解質が固体電解質であることが好ましい。電解質が固体電解質であれば、リチウムイオン二次電池は、リフロー炉内の加熱温度に耐えることができるので、リフローはんだ付けによって、外部電気回路基板に実装することができる。   In the lithium ion secondary battery according to one aspect of the present invention, the electrolyte is preferably a solid electrolyte. If the electrolyte is a solid electrolyte, the lithium ion secondary battery can withstand the heating temperature in the reflow furnace and can be mounted on the external electric circuit board by reflow soldering.

この発明のもう一つの局面に従ったリチウムイオン二次電池は、第1の電極と第2の電極と固体電解質とを含むリチウムイオン二次電池素体と、リチウムイオン二次電池素体を収容する収容部材とを備える。リチウムイオン二次電池素体の第1の電極と第2の電極の活物質の各々がLiFeSを含む。収容部材は、その上にリチウムイオン二次電池素体が載置される表面を有する絶縁基材と、絶縁基材の表面上に載置されたリチウムイオン二次電池素体を覆うように絶縁基材に接合された蓋部材とを含む。収容部材の内部空間にはリチウムイオン二次電池素体の周りを囲むように絶縁材が配置されている。 A lithium ion secondary battery according to another aspect of the present invention contains a lithium ion secondary battery body including a first electrode, a second electrode, and a solid electrolyte, and a lithium ion secondary battery body A receiving member. Each of the active material of the first electrode and the second electrode of the lithium ion secondary battery element body includes Li 2 FeS 2 . The housing member is insulated so as to cover the insulating base material having a surface on which the lithium ion secondary battery body is placed, and the lithium ion secondary battery body placed on the surface of the insulating base material. A lid member joined to the substrate. An insulating material is disposed in the internal space of the housing member so as to surround the periphery of the lithium ion secondary battery body.

この発明のもう一つの局面に従ったリチウムイオン二次電池においては、第1の電極と第2の電極を逆に取り付けることによる装置の動作異常、故障、破損等の発生を防止することができるだけでなく、収容部材が、液状の電解質ではなく、固体電解質を含む電池素体を収容しているので、リフロー炉内の加熱温度に耐えることが可能である。これにより、この発明のもう一つの局面に従ったリチウムイオン二次電池は、リフローはんだ付けによって基板に表面実装することができる。   In the lithium ion secondary battery according to another aspect of the present invention, it is possible to prevent the occurrence of abnormal operation, failure, breakage, etc. of the device by attaching the first electrode and the second electrode in reverse. In addition, since the housing member houses the battery element body containing the solid electrolyte instead of the liquid electrolyte, it is possible to withstand the heating temperature in the reflow furnace. Thereby, the lithium ion secondary battery according to another aspect of the present invention can be surface-mounted on a substrate by reflow soldering.

ところで、本発明のもう一つの局面に従ったリチウムイオン二次電池では、電池素体は固体のみで構成されているので、充放電時に体積変化する。このとき、充放電時において電池素体の体積変化が繰り返されることに伴って、電極活物質の粒子同士、電極活物質の粒子と電解質材料の粒子のそれぞれの接触状態が変化するので、電池の電圧が不安定になるという問題がある。本発明のもう一つの局面に従ったリチウムイオン二次電池においては、収容部材の内部空間には電池素体の周りを囲むように絶縁材が配置されているので、上記の問題を解消することができる。したがって、本発明のもう一つの局面に従ったリチウムイオン二次電池は電池の充放電時において電圧の安定性を図ることができる。なお、絶縁材が軟性の樹脂などからなり、その外側の収容部材が硬性の材料からなると、電池素体の周りを囲む絶縁材の変形を抑制することができるので、上記の効果をより高めることができる。   By the way, in the lithium ion secondary battery according to another aspect of the present invention, since the battery body is composed of only a solid, the volume changes during charge and discharge. At this time, as the volume change of the battery body is repeated at the time of charging / discharging, the contact state of the electrode active material particles, the electrode active material particles and the electrolyte material particles changes. There is a problem that the voltage becomes unstable. In the lithium ion secondary battery according to another aspect of the present invention, since the insulating material is disposed so as to surround the battery element body in the internal space of the housing member, the above problem is solved. Can do. Therefore, the lithium ion secondary battery according to another aspect of the present invention can achieve voltage stability during charging and discharging of the battery. If the insulating material is made of a soft resin and the outer housing member is made of a hard material, it is possible to suppress deformation of the insulating material surrounding the battery body, thereby further enhancing the above effect. Can do.

以上のようにこの発明の一つの局面に従ったリチウムイオン二次電池によれば、第1の電極と第2の電極を逆に取り付けることによる装置の動作異常、故障、破損等の発生を防止することができる。また、この発明のもう一つの局面に従ったリチウムイオン二次電池によれば、第1の電極と第2の電極を逆に取り付けることによる装置の動作異常、故障、破損等の発生を防止することができるだけでなく、リチウムイオン二次電池をリフローはんだ付けによって基板に表面実装することを可能にし、また電池の充放電時において電圧の安定性を図ることができる。   As described above, according to the lithium ion secondary battery according to one aspect of the present invention, it is possible to prevent the occurrence of abnormal operation, failure, damage, etc. of the apparatus by attaching the first electrode and the second electrode in reverse. can do. In addition, according to the lithium ion secondary battery according to another aspect of the present invention, the occurrence of abnormal operation, failure, breakage, etc. of the device due to the reverse attachment of the first electrode and the second electrode is prevented. In addition, the lithium ion secondary battery can be surface-mounted on the substrate by reflow soldering, and voltage stability can be achieved during charging and discharging of the battery.

以下、この発明の一つの実施の形態を図面に基づいて説明する。   An embodiment of the present invention will be described below with reference to the drawings.

図1は、この発明の一つの実施の形態としてリチウムイオン二次電池の構成を示す模式的な断面図である。   FIG. 1 is a schematic cross-sectional view showing a configuration of a lithium ion secondary battery as one embodiment of the present invention.

図1に示すように、リチウムイオン二次電池1は、リチウムイオン二次電池素体10と、リチウムイオン二次電池素体10を収容する収容部材20とから構成される。   As shown in FIG. 1, the lithium ion secondary battery 1 includes a lithium ion secondary battery body 10 and a housing member 20 that houses the lithium ion secondary battery body 10.

リチウムイオン二次電池素体10として、たとえば、全固体二次電池は、第1の電極11と第2の電極12の間に挟まれた固体電解質13を備え、第1の電極11の外側表面には導電性接着剤111が付着され、第2の電極12の外側表面には導電性接着剤121が付着されている。第1の電極11と第2の電極12は、正極または負極のいずれとしても動作可能であり、正極活物質または負極活物質のいずれかの電極活物質としてのLiFeSと、固体電解質としてのLiS−P系組成物とを含む。第1の電極11と第2の電極12の間に挟まれた固体電解質13はLiS−P系組成物である。導電性接着剤111と121は、たとえば、銀(Ag)−エポキシ系の導電性接着剤である。 As the lithium ion secondary battery body 10, for example, an all-solid secondary battery includes a solid electrolyte 13 sandwiched between a first electrode 11 and a second electrode 12, and an outer surface of the first electrode 11. A conductive adhesive 111 is attached to the second electrode 12, and a conductive adhesive 121 is attached to the outer surface of the second electrode 12. The first electrode 11 and the second electrode 12 can operate as either a positive electrode or a negative electrode, and Li 2 FeS 2 as an electrode active material of either the positive electrode active material or the negative electrode active material, and a solid electrolyte Li 2 S—P 2 S 5 based composition. The solid electrolyte 13 sandwiched between the first electrode 11 and the second electrode 12 is a Li 2 S—P 2 S 5 composition. The conductive adhesives 111 and 121 are, for example, silver (Ag) -epoxy conductive adhesives.

収容部材20は、絶縁基材21と、金属蓋部材22とから構成される。絶縁基材21は、リチウムイオン二次電池素体10を収容する凹部を有する。絶縁基材21の表面としての凹部の底面には、リチウムイオン二次電池素体10が導電性接着剤111を介在して搭載されて固着されている。金属蓋部材22は、絶縁基材21の表面上に搭載されたリチウムイオン二次電池素体10を覆うように、絶縁基材21の凹部の頂面にメタライズ層221、222を介在して接合されている。メタライズ層221、222は、たとえば、タングステン(W)等の金属粉末を主成分とする金属ペーストを印刷塗布して焼成することによって形成される。絶縁基材21は、たとえば、アルミナ等のセラミックスから形成される。金属蓋部材22は、アルミニウム(Al)、銅(Cu)等の金属、または鉄(Fe)−ニッケル(Ni)−コバルト(Co)合金等の合金から形成される。このように、リチウムイオン二次電池素体10が絶縁基材21に強固に固着されているので、充放電時におけるリチウムイオン二次電池素体10の体積変化による特性劣化を抑制することができる。   The housing member 20 includes an insulating base material 21 and a metal lid member 22. The insulating base material 21 has a recess that accommodates the lithium ion secondary battery body 10. The lithium ion secondary battery body 10 is mounted and fixed to the bottom surface of the recess as the surface of the insulating base material 21 with the conductive adhesive 111 interposed therebetween. The metal lid member 22 is joined to the top surface of the concave portion of the insulating base material 21 with metallized layers 221 and 222 so as to cover the lithium ion secondary battery body 10 mounted on the surface of the insulating base material 21. Has been. The metallized layers 221 and 222 are formed, for example, by printing and applying a metal paste whose main component is a metal powder such as tungsten (W). Insulating base material 21 is formed from ceramics, such as alumina, for example. The metal lid member 22 is made of a metal such as aluminum (Al) or copper (Cu), or an alloy such as iron (Fe) -nickel (Ni) -cobalt (Co) alloy. Thus, since the lithium ion secondary battery body 10 is firmly fixed to the insulating base material 21, it is possible to suppress deterioration of characteristics due to a volume change of the lithium ion secondary battery body 10 during charging and discharging. .

また、この実施の形態では、絶縁基材21は、セラミックスから形成された例を示したが、リフロー炉内での加熱温度に耐えることが可能な合成樹脂等の絶縁材料で形成されてもよい。この場合、熱変形温度が270℃以上の合成樹脂を用いて絶縁基材21を形成するのが好ましい。   Moreover, in this embodiment, although the insulating base material 21 showed the example formed from ceramics, you may form with insulating materials, such as a synthetic resin which can endure the heating temperature in a reflow furnace. . In this case, it is preferable to form the insulating base material 21 using a synthetic resin having a heat distortion temperature of 270 ° C. or higher.

収容部材20の内部空間には、リチウムイオン二次電池素体10の周りを取り囲むように絶縁材30が配置されて充填されている。絶縁材30は、たとえば、エポキシ樹脂、ポリイミド樹脂等の材料からなる。   An insulating material 30 is disposed and filled in the internal space of the housing member 20 so as to surround the lithium ion secondary battery body 10. The insulating material 30 is made of a material such as an epoxy resin or a polyimide resin, for example.

絶縁基材21の内部には導体部112、122が配置されている。導体部112、122の形成は以下のようにして行われる。まず、絶縁基材21を構成するセラミックスのグリーンシートに、たとえば、タングステン(W)等の金属粉末を主成分とする金属ペーストを、グリーンシートの表面に印刷塗布して、または、グリーンシートに形成された孔に印刷充填して、導体部となる印刷パターンを形成する。次に、これらの印刷パターンを形成したグリーンシートを積層して焼成することによって、内部に導体部112、122を有する絶縁基材21を作製する。   Conductor portions 112 and 122 are disposed inside the insulating base material 21. The conductor portions 112 and 122 are formed as follows. First, for example, a metal paste mainly composed of a metal powder such as tungsten (W) is printed on the surface of the green sheet, or formed on the green sheet of the ceramic constituting the insulating base 21. The printed holes are printed and filled to form a printed pattern to be a conductor portion. Next, the insulating base material 21 which has the conductor parts 112 and 122 inside is produced by laminating | stacking and baking the green sheet in which these printing patterns were formed.

絶縁基材21の一方側の外表面としての下面には、端子110、120が配置されている。リチウムイオン二次電池素体10の第1の電極11は、導電性接着剤111、導体部112を通じて端子110に接続されている。リチウムイオン二次電池素体10の第2の電極12は、導電性接着剤121、金属ワイヤ123、導体部122を通じて端子120に接続されている。端子110、120の形成は以下のようにして行われる。まず、絶縁基材21を構成するセラミックスのグリーンシートに、タングステン(W)等の金属粉末を主成分とする金属ペーストを印刷塗布して端子となる印刷パターンを形成する。次に、これらの印刷パターンを形成したグリーンシートを焼成することによって、外表面に端子110、120を有する絶縁基材21を作製する。端子110、120の形成は、上記の導体部112、122の形成と同じ工程で行われる。半田との濡れ性を良くするために、端子110、120の表面には、ニッケル(Ni)層と金(Au)層がめっき法等により形成されるのが好ましい。   Terminals 110 and 120 are disposed on the lower surface as the outer surface of one side of the insulating base material 21. The first electrode 11 of the lithium ion secondary battery body 10 is connected to the terminal 110 through the conductive adhesive 111 and the conductor portion 112. The second electrode 12 of the lithium ion secondary battery body 10 is connected to the terminal 120 through the conductive adhesive 121, the metal wire 123, and the conductor portion 122. The terminals 110 and 120 are formed as follows. First, a metal paste having a metal powder such as tungsten (W) as a main component is printed and applied to a ceramic green sheet constituting the insulating base 21 to form a printed pattern serving as a terminal. Next, the insulating base material 21 having the terminals 110 and 120 on the outer surface is produced by firing the green sheet on which these printed patterns are formed. The terminals 110 and 120 are formed in the same process as the conductor portions 112 and 122 described above. In order to improve the wettability with the solder, it is preferable that a nickel (Ni) layer and a gold (Au) layer are formed on the surfaces of the terminals 110 and 120 by a plating method or the like.

以上のように構成された発明の一つの実施の形態において、リチウムイオン二次電池素体10では、正極活物質と負極活物質の材料として同一の材料LiFeSを用いて、充放電時には正極と負極において一種の濃淡電池のように反応が行われるので、第1の電極と第2の電極を正極と負極というように極性を区別して用いる必要がない。このため、第1の電極と第2の電極を逆に取り付けることによる装置の動作異常、故障、破損等の発生を防止することができる。また、第1の電極と第2の電極に対して正極と負極の区別ができるようにリチウムイオン二次電池素体10の外表面にマーキング等を施す必要がない。 In one embodiment of the invention configured as described above, in the lithium ion secondary battery body 10, the same material Li 2 FeS 2 is used as the material of the positive electrode active material and the negative electrode active material, and at the time of charging and discharging. Since the reaction is performed in the positive electrode and the negative electrode like a kind of concentration cell, it is not necessary to distinguish the polarity of the first electrode and the second electrode as in the case of the positive electrode and the negative electrode. For this reason, it is possible to prevent the occurrence of abnormal operation, failure, breakage, etc. of the apparatus due to the reverse attachment of the first electrode and the second electrode. Further, it is not necessary to mark the outer surface of the lithium ion secondary battery body 10 so that the positive electrode and the negative electrode can be distinguished from the first electrode and the second electrode.

また、この発明のリチウムイオン二次電池1は、収容部材20が、液状の電解質ではなく、固体電解質13を含むリチウムイオン二次電池素体10を収容しているので、リフロー炉内の加熱温度に耐えることが可能である。これにより、このリチウムイオン二次電池1は、リフローはんだ付けによって基板に表面実装することができる。   Further, in the lithium ion secondary battery 1 of the present invention, since the housing member 20 houses the lithium ion secondary battery body 10 including the solid electrolyte 13 instead of the liquid electrolyte, the heating temperature in the reflow furnace Can withstand. Thereby, this lithium ion secondary battery 1 can be surface-mounted on a substrate by reflow soldering.

ところで、リチウムイオン二次電池素体10の充放電時に、リチウムイオンが出入りすることによって電極活物質の結晶構造が変化し、体積が変化する。本発明におけるリチウムイオン二次電池素体10は液体成分を含まず固体のみで構成されているので、電極活物質の粒子の体積変化を吸収できず、第1の電極11および第2の電極12の体積が充放電時に変化する。このとき、充放電時においてリチウムイオン二次電池素体10の体積変化が繰り返されることに伴って、電極活物質の粒子同士、電極活物質の粒子と電解質材料の粒子のそれぞれの接触状態が変化するので、電池の電圧が不安定になるという問題がある。本発明のリチウムイオン二次電池1においては、収容部材20の内部空間にはリチウムイオン二次電池素体10の周りを囲むように絶縁材30が配置されているので、上記の問題を解消することができる。したがって、本発明のリチウムイオン二次電池1はリチウムイオン二次電池素体10の充放電時において電圧の安定性を図ることができる。なお、絶縁材30が軟性の樹脂などからなり、その外側の収容部材20が硬性の材料からなると、リチウムイオン二次電池素体10の周りを囲む絶縁材30の変形を抑制することができるので、上記の効果をより高めることができる。   By the way, when the lithium ion secondary battery body 10 is charged and discharged, the crystal structure of the electrode active material is changed and the volume is changed by the lithium ions entering and leaving. Since the lithium ion secondary battery body 10 in the present invention does not contain a liquid component and is composed only of a solid, it cannot absorb the volume change of the particles of the electrode active material, and the first electrode 11 and the second electrode 12. The volume changes during charging and discharging. At this time, as the volume change of the lithium ion secondary battery body 10 is repeated during charging and discharging, the contact states of the electrode active material particles, the electrode active material particles, and the electrolyte material particles change. Therefore, there is a problem that the voltage of the battery becomes unstable. In the lithium ion secondary battery 1 of the present invention, since the insulating material 30 is disposed in the internal space of the housing member 20 so as to surround the lithium ion secondary battery body 10, the above problem is solved. be able to. Therefore, the lithium ion secondary battery 1 of the present invention can achieve voltage stability during charging and discharging of the lithium ion secondary battery body 10. In addition, if the insulating material 30 is made of a soft resin and the outer housing member 20 is made of a hard material, deformation of the insulating material 30 surrounding the lithium ion secondary battery body 10 can be suppressed. The above effects can be further enhanced.

さらにまた、この発明のリチウムイオン二次電池1においては、リチウムイオン二次電池素体10を構成する第1の電極と第2の電極の活物質の各々がLiFeSを含み、固体電解質がLiSとPとを含む。この場合、リチウムイオン二次電池素体10において、固体電解質がLiSとPとを含むとともに第1の電極と第2の電極の活物質がLiFeSを含むと、硫化物からなる第1の電極と第2の電極の活物質は固体電解質との反応性が低い。また、リチウムイオン二次電池素体10に所定の温度で熱処理を施しても、熱処理後に電池の容量等の特性が低下する割合が従来の固体電解質を備えた固体電池に比べて低い。これらにより、本発明のリチウムイオン二次電池素体10においては、従来の固体電池よりも耐熱性を高めることができるので、Pbフリーはんだを用いて相対的に高い加熱温度のリフロー炉内ではんだ付け工程を行っても、電池の容量等の特性の劣化を低く抑えることができる。 Furthermore, in the lithium ion secondary battery 1 of the present invention, each of the active materials of the first electrode and the second electrode constituting the lithium ion secondary battery body 10 contains Li 2 FeS 2 , and the solid electrolyte Includes Li 2 S and P 2 S 5 . In this case, in the lithium ion secondary battery body 10, if the solid electrolyte contains Li 2 S and P 2 S 5 and the active material of the first electrode and the second electrode contains Li 2 FeS 2 , The active material of the 1st electrode and 2nd electrode which consist of a thing has low reactivity with a solid electrolyte. In addition, even if the lithium ion secondary battery body 10 is subjected to heat treatment at a predetermined temperature, the rate at which the battery capacity and other characteristics decrease after the heat treatment is lower than that of a solid battery provided with a conventional solid electrolyte. Accordingly, in the lithium ion secondary battery body 10 of the present invention, the heat resistance can be increased as compared with the conventional solid battery, so that the solder is used in a reflow furnace having a relatively high heating temperature using Pb-free solder. Even if the attaching process is performed, deterioration of characteristics such as battery capacity can be suppressed to a low level.

この発明のリチウムイオン二次電池1においては、絶縁基材21の内部に導体部112、122が配置されており、絶縁基材21の下面には端子110、120が配置されており、リチウムイオン二次電池素体10の第1の電極11と第2の電極12は、それぞれ、導体部112、122を通じて端子110、120に接続されている。   In the lithium ion secondary battery 1 according to the present invention, the conductor portions 112 and 122 are disposed inside the insulating base material 21, and the terminals 110 and 120 are disposed on the lower surface of the insulating base material 21. The first electrode 11 and the second electrode 12 of the secondary battery body 10 are connected to the terminals 110 and 120 through the conductor portions 112 and 122, respectively.

このように構成されているので、端子110、120が絶縁基材21の一方側の外表面である下面に配置されているので、端子110、120に接続する配線基板上の箇所に予めペースト状のはんだ材料を供給しておいて、リフローはんだ付け工程を行うことができる。   Since it is configured in this way, the terminals 110 and 120 are arranged on the lower surface, which is the outer surface on one side of the insulating base material 21, so that a paste-like shape is previously formed on the wiring board connected to the terminals 110 and 120. The reflow soldering process can be performed by supplying the solder material.

以下、この発明の実施例について説明する。   Examples of the present invention will be described below.

固体電解質としてLiS−P系組成物を用いて図1に示すリチウムイオン二次電池素体10を作製した。 A lithium ion secondary battery body 10 shown in FIG. 1 was produced using a Li 2 S—P 2 S 5 composition as a solid electrolyte.

固体電解質は、LiSとPとをモル比7:3で混合して、内面を炭素で被覆した石英管に上記の混合物を真空封入し、900℃で2時間加熱した後に氷水で急冷することによって作製した。第1の電極と第2の電極の活物質としてのLiFeSは、LiSとFeSとをモル比1:1で混合して、内面を炭素で被覆した石英管に上記の混合物を真空封入し、950℃で5時間加熱することによって作製した。 The solid electrolyte was prepared by mixing Li 2 S and P 2 S 5 in a molar ratio of 7: 3, vacuum-sealing the above mixture in a quartz tube whose inner surface was covered with carbon, heating at 900 ° C. for 2 hours, It was prepared by quenching with Li 2 FeS 2 as the active material of the first electrode and the second electrode is prepared by mixing Li 2 S and FeS at a molar ratio of 1: 1 and mixing the above mixture into a quartz tube whose inner surface is coated with carbon. It was produced by vacuum-sealing and heating at 950 ° C. for 5 hours.

上記で得られた第1の電極と第2の電極の活物質としてのLiFeSと固体電解質とを重量比1:1で混合することによって電極材料を作製した。この電極材料は第1の電極11と第2の電極12に共通する材料である。 An electrode material was prepared by mixing Li 2 FeS 2 as an active material of the first electrode and the second electrode obtained above and a solid electrolyte in a weight ratio of 1: 1. This electrode material is a material common to the first electrode 11 and the second electrode 12.

以上のようにして得られた電極材料と固体電解質とを、電極材料/固体電解質/電極材料の順に積層して3層構造のペレットを、圧力3000kgf/cmでプレス成形することによって作製した。このようにして、図1に示されるように、第1の電極11と第2の電極12の間に挟まれた固体電解質13を備えたリチウムイオン二次電池素体10を得た。 The electrode material and the solid electrolyte obtained as described above were laminated in the order of electrode material / solid electrolyte / electrode material, and a three-layered pellet was press-molded at a pressure of 3000 kgf / cm 2 . In this way, as shown in FIG. 1, a lithium ion secondary battery element body 10 including the solid electrolyte 13 sandwiched between the first electrode 11 and the second electrode 12 was obtained.

一方、図1に示される絶縁基材21を構成するセラミックスのグリーンシートとしてアルミナの成形体に、タングステン(W)の金属粉末を主成分とする金属ペーストを印刷塗布して導体部と端子となる印刷パターンを形成した。次に、これらの印刷パターンを形成したグリーンシートを積層して焼成することによって、内部に導体部112、122を有し、外表面に端子110、120を有する絶縁基材21を作製した。このとき、絶縁基材21の凹部の頂面にはメタライズ層221、222を形成した。半田との濡れ性を良くするために、端子110、120の表面には、ニッケル(Ni)層と金(Au)層をめっき法により形成した。   On the other hand, as a ceramic green sheet constituting the insulating base 21 shown in FIG. 1, a metal paste mainly composed of tungsten (W) metal powder is printed and applied to an alumina compact as a conductor and terminals. A printed pattern was formed. Next, the green sheets on which these printed patterns were formed were stacked and baked to produce the insulating base material 21 having the conductor portions 112 and 122 inside and the terminals 110 and 120 on the outer surface. At this time, metallized layers 221 and 222 were formed on the top surface of the concave portion of the insulating base material 21. In order to improve the wettability with the solder, a nickel (Ni) layer and a gold (Au) layer were formed on the surfaces of the terminals 110 and 120 by a plating method.

上記で得られたリチウムイオン二次電池素体10と絶縁基材21とを用いて、図1に示すように、リチウムイオン二次電池素体10の第1の電極11側を下にして、絶縁基材21の凹部の底面上に、導電性接着剤111として銀(Ag)−エポキシ系導電性接着剤を介在させてリチウムイオン二次電池素体10を載置して接着剤を硬化させた。これにより、導体部112と第1の電極11の間で導通するようにリチウムイオン二次電池素体10を絶縁基材21に接合した。   Using the lithium ion secondary battery body 10 and the insulating base material 21 obtained above, as shown in FIG. 1, the first electrode 11 side of the lithium ion secondary battery body 10 is turned down, The lithium ion secondary battery body 10 is placed on the bottom surface of the recess of the insulating base material 21 with a silver (Ag) -epoxy conductive adhesive as the conductive adhesive 111, and the adhesive is cured. It was. Thereby, the lithium ion secondary battery body 10 was joined to the insulating base material 21 so as to conduct between the conductor portion 112 and the first electrode 11.

その後、第2の電極12の一部表面を銀(Ag)−エポキシ系導電性接着剤からなる導電性接着剤121で覆った。導電性接着剤121と導体部122とを金属ワイヤ123で接続した。リチウムイオン二次電池素体10の周りを取り囲んで被覆するように絶縁材30としてのエポキシ樹脂を配置した。   Thereafter, a part of the surface of the second electrode 12 was covered with a conductive adhesive 121 made of a silver (Ag) -epoxy conductive adhesive. The conductive adhesive 121 and the conductor portion 122 were connected by a metal wire 123. An epoxy resin as an insulating material 30 was disposed so as to surround and cover the periphery of the lithium ion secondary battery body 10.

次に、絶縁基材21の表面上に搭載されたリチウムイオン二次電池素体10を覆うように、絶縁基材21の凹部の頂面にメタライズ層221、222を介在して金属蓋部材22を配置した。さらに、金属蓋部材22と絶縁基材21とを溶接によって接合した。その後、絶縁材30としてのエポキシ樹脂を硬化させることにより、金属蓋部材22と絶縁材30と絶縁基材21とを一体化させた。このようにして、4mm×4mm角の大きさの小型のリチウムイオン二次電池1を作製した。   Next, the metal lid member 22 is interposed on the top surface of the concave portion of the insulating base material 21 with the metallized layers 221 and 222 so as to cover the lithium ion secondary battery body 10 mounted on the surface of the insulating base material 21. Arranged. Furthermore, the metal lid member 22 and the insulating base material 21 were joined by welding. Then, the metal lid member 22, the insulating material 30, and the insulating base material 21 were integrated by hardening the epoxy resin as the insulating material 30. In this way, a small lithium ion secondary battery 1 having a size of 4 mm × 4 mm square was produced.

作製されたリチウムイオン二次電池1に収容されたリチウムイオン二次電池素体10に第1の電極11を正極として用いて16μA/cmの電流密度で充電した後、放電を行い、第1の電極の活物質の単位重量当たりの放電容量を測定した。充放電は、以下の手順で行った。上記の電流密度で充電を開始した後、電位が急激に変化した時点で充電完了とみなし、充電を停止した。その後、放電に切り替え、電位が0Vになった時点で放電完了とみなし、放電を停止した。この充放電試験は周囲温度が20℃の条件で行った。 The lithium ion secondary battery body 10 accommodated in the manufactured lithium ion secondary battery 1 is charged at a current density of 16 μA / cm 2 using the first electrode 11 as a positive electrode, and then discharged to obtain a first The discharge capacity per unit weight of the active material was measured. Charging / discharging was performed according to the following procedure. After starting charging at the current density described above, charging was considered to be complete when the potential changed rapidly and charging was stopped. Thereafter, switching to discharging was performed, and when the potential became 0 V, it was considered that discharging was completed, and discharging was stopped. This charge / discharge test was performed under conditions where the ambient temperature was 20 ° C.

充放電試験の測定結果を図2に示す。図2から、作製されたリチウムイオン二次電池素体10では約100μAhの充放電容量を示すことがわかる。LiFeSからなる第1の電極と第2の電極の活物質の各々の質量は0.3mgであったので、単位質量あたりの充放電容量の実測値は、約350mAh/gであった。この実測値は、単位質量あたりの充放電容量の理論値400mAh/gに対して約75%である。 The measurement results of the charge / discharge test are shown in FIG. FIG. 2 shows that the fabricated lithium ion secondary battery body 10 exhibits a charge / discharge capacity of about 100 μAh. Since the mass of each of the active materials of the first electrode and the second electrode made of Li 2 FeS 2 was 0.3 mg, the measured value of the charge / discharge capacity per unit mass was about 350 mAh / g. . This measured value is about 75% with respect to the theoretical value of 400 mAh / g of charge / discharge capacity per unit mass.

なお、この測定結果は、第1の電極11を正極、第2の電極12を負極とした場合についてのものであるが、第2の電極12を正極、第1の電極11を負極とした場合でも同様の結果が得られることはいうまでもない。   This measurement result is for the case where the first electrode 11 is a positive electrode and the second electrode 12 is a negative electrode, but the case where the second electrode 12 is a positive electrode and the first electrode 11 is a negative electrode. However, it goes without saying that similar results can be obtained.

これに対して、正極活物質と負極活物質の材料としてLi0.5CoOを用いて、LiCoOとCoOとの間で充放電反応を行うと、単位質量あたりの充放電容量の理論値は136mAh/gである。また、正極活物質と負極活物質の材料としてLi0.5Mnを用いて、LiMnとMnとの間で充放電反応を行うと、単位質量あたりの充放電容量の理論値は74mAh/gである。 On the other hand, when Li 0.5 CoO 2 is used as a material for the positive electrode active material and the negative electrode active material and charge / discharge reaction is performed between LiCoO 2 and CoO 2 , the theory of charge / discharge capacity per unit mass is obtained. The value is 136 mAh / g. In addition, when Li 0.5 Mn 2 O 4 is used as a material for the positive electrode active material and the negative electrode active material and charge / discharge reaction is performed between LiMn 2 O 4 and Mn 2 O 4 , charge / discharge per unit mass is performed. The theoretical value of capacity is 74 mAh / g.

本発明のリチウムイオン二次電池では、単位質量あたりの充放電容量の値は、理論値でも実測値でも、正極活物質と負極活物質の材料としてLi0.5CoOやLi0.5Mnを用いたリチウムイオン二次電池に比べて相対的に大きな値である。 In the lithium ion secondary battery of the present invention, the charge / discharge capacity value per unit mass is Li 0.5 CoO 2 or Li 0.5 Mn as the material of the positive electrode active material and the negative electrode active material, whether theoretical or measured. This is a relatively large value compared to a lithium ion secondary battery using 2 O 4 .

また、正極活物質と負極活物質の材料としてのLi0.5CoOやLi0.5Mnは、LiCoOやLiMnを一方の電極活物質として用い、炭素材料等の他の材料を他方の電極活物質として用いて電池を構成し、目的とする組成になるまで充電することによって得られる。しかし、Li0.5CoOやLi0.5Mnは金属酸化物等の素原料から合成することは容易ではない。 In addition, Li 0.5 CoO 2 and Li 0.5 Mn 2 O 4 as materials of the positive electrode active material and the negative electrode active material use LiCoO 2 or LiMn 2 O 4 as one electrode active material, A battery is formed using another material as the other electrode active material, and is obtained by charging until a desired composition is obtained. However, it is not easy to synthesize Li 0.5 CoO 2 and Li 0.5 Mn 2 O 4 from raw materials such as metal oxides.

これに対して、本発明のリチウムイオン二次電池の第1の電極と第2の電極の活物質の材料に用いられるLiFeSはLiSとFeSから容易に合成することができる。 On the other hand, Li 2 FeS 2 used for the material of the active material of the first electrode and the second electrode of the lithium ion secondary battery of the present invention can be easily synthesized from Li 2 S and FeS.

さらに、正極活物質と負極活物質の材料としてLi0.5CoOやLi0.5Mnを用いてリチウムイオン二次電池を構成した場合、容量を上げるために負極に挿入されるLiが過剰になるまで充電すると、結晶構造が変化する。このため、電気抵抗が大きくなるので、電圧が降下する。したがって、理論値以上の容量を得ることは不可能であり、実際には理論値どおりの容量を得ることも困難である。 Further, when a lithium ion secondary battery is configured using Li 0.5 CoO 2 or Li 0.5 Mn 2 O 4 as a material for the positive electrode active material and the negative electrode active material, it is inserted into the negative electrode in order to increase the capacity. If the battery is charged until Li is excessive, the crystal structure changes. For this reason, the electrical resistance increases, and the voltage drops. Therefore, it is impossible to obtain a capacity higher than the theoretical value, and it is difficult to actually obtain a capacity as the theoretical value.

なお、本発明のリチウムイオン二次電池は、負極活物質に炭素材料を用いた従来のリチウムイオン二次電池と比較すると、得られる電圧が低くなるが、メモリーバックアップ用等の相対的に電圧が低くてもよい用途の電源に用いられ得る。   In addition, the lithium ion secondary battery of the present invention has a lower voltage when compared with a conventional lithium ion secondary battery using a carbon material as the negative electrode active material, but the voltage for a memory backup or the like is relatively low. It can be used as a power source for applications that may be low.

今回開示された実施の形態と実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は以上の実施の形態と実施例ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての修正や変形を含むものであることが意図される。   It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above embodiments and examples but by the scope of claims, and is intended to include all modifications and variations within the meaning and scope equivalent to the scope of claims. .

この発明の一つの実施の形態としてリチウムイオン二次電池の構成を示す模式的な断面図である。It is typical sectional drawing which shows the structure of a lithium ion secondary battery as one embodiment of this invention. この発明の一つの実施例で作製されたリチウムイオン二次電池の充放電試験の測定結果を示す図である。It is a figure which shows the measurement result of the charging / discharging test of the lithium ion secondary battery produced in one Example of this invention.

符号の説明Explanation of symbols

1:リチウムイオン二次電池、10:リチウムイオン二次電池素体、11:第1の電極、12:第2の電極、13:固体電解質、20:収容部材、21:絶縁基材、22:金属蓋部材、30:絶縁材、112,122:導体部、110,120:端子。   1: lithium ion secondary battery, 10: lithium ion secondary battery body, 11: first electrode, 12: second electrode, 13: solid electrolyte, 20: housing member, 21: insulating base material, 22: Metal lid member, 30: insulating material, 112, 122: conductor portion, 110, 120: terminal.

Claims (3)

第1の電極と第2の電極と電解質とを備えたリチウムイオン二次電池において、
第1の電極と第2の電極の活物質の各々がLiFeSを含むことを特徴とする、リチウムイオン二次電池。
In a lithium ion secondary battery comprising a first electrode, a second electrode, and an electrolyte,
Each of the active material of the first electrode and the second electrode is characterized in that it comprises a Li 2 FeS 2, the lithium ion secondary battery.
前記電解質が固体電解質である、請求項1に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the electrolyte is a solid electrolyte. 第1の電極と第2の電極と固体電解質とを含むリチウムイオン二次電池素体と
前記リチウムイオン二次電池素体を収容する収容部材とを備え、
前記リチウムイオン二次電池素体の第1の電極と第2の電極の活物質の各々がLiFeSを含み、
前記収容部材は、
その上に前記リチウムイオン二次電池素体が載置される表面を有する絶縁基材と、
前記絶縁基材の表面上に載置された前記リチウムイオン二次電池素体を覆うように前記絶縁基材に接合された蓋部材とを含み、
前記収容部材の内部空間には前記リチウムイオン二次電池素体の周りを囲むように絶縁材が配置されている、リチウムイオン二次電池。
A lithium ion secondary battery element body including a first electrode, a second electrode, and a solid electrolyte; and a housing member that accommodates the lithium ion secondary battery element body,
Each of the active materials of the first electrode and the second electrode of the lithium ion secondary battery element body includes Li 2 FeS 2 ,
The housing member is
An insulating base material having a surface on which the lithium ion secondary battery body is placed;
A lid member joined to the insulating base material so as to cover the lithium ion secondary battery body placed on the surface of the insulating base material,
A lithium ion secondary battery in which an insulating material is disposed in the internal space of the housing member so as to surround the lithium ion secondary battery body.
JP2008054284A 2008-03-05 2008-03-05 Lithium ion secondary battery Pending JP2009211965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008054284A JP2009211965A (en) 2008-03-05 2008-03-05 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008054284A JP2009211965A (en) 2008-03-05 2008-03-05 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2009211965A true JP2009211965A (en) 2009-09-17

Family

ID=41184913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008054284A Pending JP2009211965A (en) 2008-03-05 2008-03-05 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2009211965A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9793573B2 (en) 2011-06-20 2017-10-17 Namics Corporation Lithium ion secondary battery containing a non-polar active material

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01120765A (en) * 1987-10-31 1989-05-12 Sony Corp Nonaqueous electrolyte secondary battery
JPH11297358A (en) * 1998-04-14 1999-10-29 Matsushita Electric Ind Co Ltd Lithium secondary battery
JPH11297359A (en) * 1998-04-15 1999-10-29 Matsushita Electric Ind Co Ltd All solid lithium secondary battery
JP2002042862A (en) * 2000-07-26 2002-02-08 Kyocera Corp Lithium battery
JP2005071889A (en) * 2003-08-26 2005-03-17 Kyocera Corp Case for battery, and battery
JP2005183373A (en) * 2003-11-27 2005-07-07 Kyocera Corp Battery case, manufacturing method thereof and battery, electric double-layer capacitor case and manufacturing method thereof, and electric double-layer capacitor
JP2005228586A (en) * 2004-02-13 2005-08-25 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
JP2006164695A (en) * 2004-12-06 2006-06-22 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2007086289A1 (en) * 2006-01-25 2007-08-02 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell, manufacturing method thereof, and mounting method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01120765A (en) * 1987-10-31 1989-05-12 Sony Corp Nonaqueous electrolyte secondary battery
JPH11297358A (en) * 1998-04-14 1999-10-29 Matsushita Electric Ind Co Ltd Lithium secondary battery
JPH11297359A (en) * 1998-04-15 1999-10-29 Matsushita Electric Ind Co Ltd All solid lithium secondary battery
JP2002042862A (en) * 2000-07-26 2002-02-08 Kyocera Corp Lithium battery
JP2005071889A (en) * 2003-08-26 2005-03-17 Kyocera Corp Case for battery, and battery
JP2005183373A (en) * 2003-11-27 2005-07-07 Kyocera Corp Battery case, manufacturing method thereof and battery, electric double-layer capacitor case and manufacturing method thereof, and electric double-layer capacitor
JP2005228586A (en) * 2004-02-13 2005-08-25 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
JP2006164695A (en) * 2004-12-06 2006-06-22 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2007086289A1 (en) * 2006-01-25 2007-08-02 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell, manufacturing method thereof, and mounting method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9793573B2 (en) 2011-06-20 2017-10-17 Namics Corporation Lithium ion secondary battery containing a non-polar active material

Similar Documents

Publication Publication Date Title
KR101862883B1 (en) Lithium ion secondary battery and electronic device
US9972868B2 (en) Curved electrode stack and battery pack including the same
JP5742503B2 (en) Electrochemical cell
JP2006093109A (en) Secondary battery
JP5396801B2 (en) battery
US20130280598A1 (en) Solid State Battery
WO2022113989A1 (en) All-solid-state battery with case
WO2018062085A1 (en) All solid-state lithium ion secondary battery
US10074830B2 (en) Battery housing structure
JP2004356009A (en) Electrochemical cell
JP6264188B2 (en) Power storage device, electronic device using the same, and power storage unit
JP6379659B2 (en) Power storage device
JP6299418B2 (en) Power storage device
KR20100060677A (en) Battery pack
WO2003030281A1 (en) Electrochemical cell with terminals
WO2020202928A1 (en) Solid state battery
JP4373743B2 (en) Battery case and battery
JP2014165054A (en) Nonaqueous electrolyte secondary battery
JP2009211965A (en) Lithium ion secondary battery
JP4671652B2 (en) Battery case and battery
US20220077501A1 (en) All-solid battery
JP2004234880A (en) Laminated battery
JP4583014B2 (en) Battery case and battery
JP2005135726A (en) Case for battery, and battery
JP2005209640A (en) Battery housing and battery, and housing for battery and electric double-layer capacitor and electric double-layer capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130528