JP2009210623A - 光複合モジュールおよび光送受信器 - Google Patents

光複合モジュールおよび光送受信器 Download PDF

Info

Publication number
JP2009210623A
JP2009210623A JP2008050614A JP2008050614A JP2009210623A JP 2009210623 A JP2009210623 A JP 2009210623A JP 2008050614 A JP2008050614 A JP 2008050614A JP 2008050614 A JP2008050614 A JP 2008050614A JP 2009210623 A JP2009210623 A JP 2009210623A
Authority
JP
Japan
Prior art keywords
fiber
optical
refractive index
length
coreless fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008050614A
Other languages
English (en)
Inventor
Michitaka Okuda
通孝 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008050614A priority Critical patent/JP2009210623A/ja
Publication of JP2009210623A publication Critical patent/JP2009210623A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

【課題】光の損失が少ない光複合モジュールおよびこれを用いた光送受信器を提供する。
【解決手段】光を反射・透過する第1光学素子と、その光入射面の一方に対向する第1コアレスファイバと、光入射面の他方と対向する第2コアレスファイバとから成る第1のコアレスファイバ部と、第3および第4の光入出射射面を有し、光を透過する第2光学素子と、第3の光入射面と対向配置される第3コアレスファイバと、第4の光入射面と対向する第4コアレスファイバとから成る第2のコアレスファイバ部と、第1コアレスファイバの他方の端面と対向する第1の屈折率分布ファイバと、第2コアレスファイバの他方の端面と対向し、かつ第3コアレスファイバの他方の端面と対向する第2の屈折率分布ファイバと、第4コアレスファイバの他方の端面と対向する第3の屈折率分差ファイバとを含み、第2のコアレスファイバ部の光学長さを、第1のコアレスファイバ部の長さより短くした。
【選択図】図1

Description

本発明は、複数の光波長を用いる光多重伝送方式の光複合モジュール、とりわけ光を反射および透過する光学素子と光を透過する光学素子とを備えた光複合モジュール、およびこれを用いた光送受信器に関する。
光の反射機能と透過機能とを有する第1の光学素子と、光の透過機能を有する第2の機能を有し、この第1の光学素子と第2の光学素子をコアレスファイバおよび屈折率分布ファイバを用いて、結合した光複合モジュールが広く知られている(例えば特許文献1)。
図7は、このような光複合モジュール100を示す図である。波長λ1、λ2、λ3より成る光が、ポートP1より入射し、シングルモードファイバ103a、屈折率分布ファイバ102a、コアレスファイバ101aを通り、第1の光学素子(光フィルタ)104aに入射する。第1の光学素子104aに入った光は、第1の光学素子104a内で透光部材を通りフィルタ膜に達する。そして、波長λ1の光だけが、フィルタ膜で反射され、コアレスファイバ101eを通り図中のポートP3より外部に出てくる。
一方、波長λ2およびλ3の光は、フィルタ膜を透過し、コアレスファイバ101b、屈折率分布ファイバ102bおよびコアレスファイバ101cを通り、第2の光学素子104b(光フィルタ)に達する。そして、第2の光学素子104bのフィルタ膜を透過できる波長λ2の光のみが、コアレスファイバ101dおよび屈折率分布ファイバ102cを通り図中のポートP2より外部に出てくる。
即ち、図7に例示した光複合モジュール100は、波長λ1、λ2、λ3を含む光から、波長λ1と波長λ2を分離するフィルタ機能を有するが、これ以外にも、複合モジュール100は、第1および第2の光学素子の組み合わせにより合分波機能、分岐結合機能、反射機能、減衰機能、光アイソレータ機能、ファラデー回転機能、および偏光機能を実現できることから、例えば光ファイバ増幅器の光回路用光部品、波長多重伝送の送受信機用光部品等の幅広い用途で用いられている。
特開2007−272000号公報
しかしながら、従来の光複合モジュール100では、光学系を司る各光ファイバがほぼ同一のもの(屈折率、長さ等)を用いた状態で、異なる機能を有する2つの光学素子を使用する場合、各光学素子に求められる入射光の最適な発散角を片側一方の特性に合わせて設定することが困難であり、とりわけ、透過機能を有する第2の光学素子104bを透過する光の損失が大きい場合があるという問題があった。
そこで、本発明は、光を反射および透過する第1の光学素子と光を透過する第2の光学素子とを備えた光複合モジュールであって、光の損失が少ない、とりわけ第2の光学素子での透過光の損失が少ない光複合モジュールおよびこれを用いた光送受信器の提供を目的とする。
本発明の第1態様は、第1および第2の光入出射面を有する、光を反射および透過する第1光学素子と、一方の端面が前記第1の光入出射面と対向して配置される第1コアレスファイバと、一方の端面が前記第2の光入射面と対向して配置される第2コアレスファイバとから成る第1のコアレスファイバ部と、第3および第4の光入出射面を有する光を透過する第2光学素子と、一方の端面が前記第3の光入出射面と対向して配置される第3コアレスファイバと、一方の端面が前記第4の光入出射面と対向して配置される第4コアレスファイバとから成る第2のコアレスファイバ部と、一方の端面が前記第1コアレスファイバの他方の端面と対向して配置される第1の屈折率分布ファイバと、一方の端面が前記第2コアレスファイバの他方の端面と対向し、他方の端面が前記第3コアレスファイバの他方の端面と対向して配置される第2の屈折率分布ファイバと、一方の端面が前記第4コアレスファイバの他方の端面と対向して配置される第3の屈折率分差ファイバと、を含み、前記第2のコアレスファイバ部の光学長さが、前記第1のコアレスファイバ部の長さより短いことを特徴とする光複合モジュールである。
本発明の態様2は、前記第1のコアレスファイバ部の屈折率が前記第2のコアレスファイバ部の屈折率と異なることを特徴とする態様1に記載の光複合モジュールである。
本発明の態様3は、前記第1乃至第3の屈折率分布ファイバが、同じ比屈折率差と同じコア半径を有し、第2の屈折率分布ファイバの長さが以下の(4)式で表される長さZ2の0.97倍〜1.03倍の範囲であることを特徴とする態様1または2に記載の光複合モジュールである。
Figure 2009210623
本発明の態様4は、前記第1乃至第3の屈折率分布ファイバ1が同じコア半径を有し、前記第1の屈折率分布ファイバの屈折率差Δ1が前記第3の屈折率分布ファイバの比屈折率差Δ3と異なり、前記第2の屈折率分布ファイバが、前記第2コアレスファイバの他方の端面と対向する、下記(5)式で表される長さLAの0.97倍〜1.03倍の長さの部分と、前記第3コアレスファイバの他方の端面と対向する、下記(6)式で表される長さLBの0.97倍〜1.03倍の長さの部分とから成ることを特徴とする請求項1または2に記載の光複合モジュールである。
Figure 2009210623
本発明の態様5は、態様1〜4のいずれかに記載の光モジュールと、該光モジュールに入射する光を送信する発光手段と、該発光手段から送信された光を、前記光モジュールを介して受信する受光手段と、を備えたことを特徴とする光送受信器である。
本発明は、光を反射および透過する第1の光学素子と光を透過する第2の光学素子とを備えた光複合モジュールにおいて、第2の光学素子での透過光の損失を低減できることから、損失の少ない、すなわち効率のよい光複合モジュールを提供できる。また、この光モジュールを用いた光の損失の少ない光送受信器の提供も可能となる。
以下、図面に基づいて本発明の実施形態を詳細に説明する。なお、以下の説明では、必要に応じて特定の方向や位置を示す用語(例えば、「上」、「下」、「右」、「左」及びそれらの用語を含む別の用語)を用いるが、それらの用語の使用は図面を参照した発明の理解を容易にするためであって、それらの用語の意味によって本発明の技術的範囲が限定されるものではない。また、複数の図面に表れる同一符号の部分は同一の部分又は部材を示す。
図1は、本発明の実施形態にかかる光複合モジュール10を例示する上面図であり、図2は光複合モジュール10の側面図である。第2の光学素子4bと、その2つの光入出射面(図1では、光学素子4bの左右の面)と対向(接続)するコアレスファイバ1cおよび1dよりなる第2のコアレスファイバ部11bは光学長さCL2を有する。一方、第1の光学素子4aと、その2つの光入出射面(図1の光学素子4bの左右の面)と対向(接続)するコアレスファイバ1aおよび1bよりなる第1のコアレスファイバ部11aは光学長さCL1を有する。
光複合モジュール10では、詳細は後述するが、第2のコアレスファイバ部11bの長さCL2を第1のコアレスファイバ部11aの長さCL1より短くすることで、第2の光学素子4bを透過する光の損失を低減している。
以下に、光モジュール10の詳細および低損失を達成できるメカニズムについて説明する。
光復合モジュール10は、基体5の上にX字状に形成された2本の溝(図示せず)の一方に直線状にシングルモードファイバ3a、第1の屈折率分布ファイバ(GIファイバ)2a、第1のコアレスファイバ部11a(第1コアレスファイバ1a、第1の光学素子4a、第2コアレスファイバ1b)、第2の屈折率分布ファイバ2b、第2のコアレスファイバ部11b(第3コアレスファイバ1c、第2の光学素子4b、第4コアレスファイバ1d)、第3の屈折率分布ファイバ2cが、光学的に接続され配置されている。
一方の溝に対し角度Θを有する他方の溝(図示せず)には、第5のシングルモードファイバ3e、第4の屈折率分布ファイバ2eおよび第5のコアレスファイバ1eが第1の光学素子4aと光学的に接続するように配置されている。
波長領域λ1、λ2、λ3を含む光は、ポートP1よりシングルモードファイバ3aに入射されると、屈折率分布ファイバ2aのレンズ機能により、動作距離WD1を有するように屈折し、コアレスファイバ部11aに進入する。
ここで、動作距離(または、ワーキングディスタンス)WD1とは、第1の屈折率分布ファイバ端面からコアレスファイバ内の伝搬光のビームウエストまでの距離である。2WD1=CL1とすることで、屈折率分布ファイバ2aと2b間のスポット径が一致し、最適な低損失結合条件とすることができる。
コアレスファイバ部11aの光学素子4aで反射される波長λ2の光の屈折率分布ファイバ2aと2e間の光路長は、同様に2WD1が最適である。それを確保するために、コアレスファイバ部11aの光学長さCL1を、例えばCL1≧2a/sin(Θ/2)の関係のような長さに設定する必要がある。そして、光学長さCL1の半分の値となる作動距離WD1を得るように、第1の屈折率分布ファイバ2aの屈折率Δ1、コア半径aおよび光学長さZ1が選択される。
第1のコアレスファイバ部11aに進入した光は、光学素子4aのフィルタ膜に到達すると波長λ1の光は反射され、光学素子4aの第1の光入出射面(図1では左側の入手斜面を)から出て、第5のコアレスファイバ1eおよび屈折率分布ファイバ2eを通り、ポートP3に達する。
一方、波長λ2、λ3の光は、光学素子4aの第2の光入出射面(図1では、右側の面)を出て、第2コアレスファイバ1b、および第2屈折率分布ファイバ(GIファイバ)2bを通り、第3コアレスファイバ1cを通り、第2の光学素子4bの一方の光入出射面(第3の光入出射面、図1の光学素子4bの左側の面)より第2の光学素子4bに入る。
そして、波長λ2の光のみが光学素子4bを透過できる。従って、波長λ2の光が光学素子4bの他方の光入出射面(図1の光学素子4bの右側の面)より出て、第4コアレスファイバ1dと第3屈折率分布ファイバ2cを通りポートP2に達する。これにより光複合モジュール10は、λ1、λ2、λ3の波長の光より、波長λ1の光とλ2の光を分離できるフィルタ機能を有する。
ところで、図7に示す、従来の光複合モジュール100では、第2のコアレスファイバ部(第3コアレスファイバ101cと第2光学素子104bと第4コアレスファイバ101cとから成る部分)の光学長さは、第1のコアレスファイバ部(第1コアレスファイバ101aと第1光学素子104aと第2コアレスファイバ101bとから成る部分)の光学長さと同じであった。従って、第3の屈折率分布ファイバ102cの作動距離は、第1の屈折率分布ファイバ102aの作動距離と同じでよいため、第3の屈折率分布ファイバ102cと第1の屈折率分布ファイバ102aと同じものを用いていた。
しかし、本願発明者が鋭意検討を行い、第2のコアレスファイバ部の光学距離が長いとλ2の波長を有する光の第2のコアレスファイバ部での損失が大きくなることを見出した。
第2の光学素子4bでは反射光を取り出さないことから、反射光の光路確保の必要がない。そこで、本願発明者は、第2のコアレスファイバ部11bの光学長さCL2を、例えばWD1>WD2、好ましくは2WD2>CL2>L2/cos(Θ/2)のように、第1のコアレスファイバ部の光学長さCL1より短くして、損失を低減できる、光複合モジュール10を発明するに至った。なお、第1のコアレスファイバ部11aの光学長さCL1とは、図1に示すように、第1の屈折率分布ファイバ2aの第2の屈折率分布ファイバ2bとの間の光学長さを指す。
なお、第2のコアレスファイバ部11bの光学長さを短くできることは、光複合モジュール10を小型化できるという効果ももたらす。
第2のコアレスファイバ部11bの光学長さCL2を第1のコアレスファイバ部11aの光学長さCL1よりも短く、上述の効果が得られる値に設定する。そして、第3の屈折率分布ファイバ2cの作動距離WD2が、光学長さCL2の半分となるように、第3の屈折率分布ファイバ2cの光学長さZ3、コア半径aおよび比屈折率差Δ3を選択することが好ましい。また、第2の屈折率分布ファイバ2bの光学長さZ2についても、第1の屈折率分布ファイバ2aの光学長さZ1および第3の屈折率分布ファイバ2cの光学長さZ3に対応した詳細を後述する長さにすることが好ましい。
そこで以下に、第1のコアレスファイバ部11aの光学長さCL1を反射の光路を確保できる適正な値とし、第2のコアレスファイブ11bの光学長さCL2を、光学長さ1より短くし、損失を低減できる適正な値に設定した場合の好ましい光学長さZ1、Z2、Z3を得る方法を具体的に示す。
図3は、上述した適正な第1のコアレスファイバ部11aの光学長さCL1と、第2のコアレスファイバ部11bの光学長さCL2を設定し、光学長さCL1とCL2に対応する、好ましい第1の屈折率分布ファイバ2aの長さZ1、第2の屈折率分布ファイバ2bの長さZ2、第3の屈折率分布ファイバ2cの長さZ3を有する光複合モジュール10の第1の屈折分布ファイバ2aから第3の屈折率分布ファイバ2cに至るまでの光線追跡を示した図である。図3(a)は、使用する屈折率分布ファイバ2a、2bおよび2cのそれぞれの比屈折率差Δ1、Δ2およびΔ3が等しい場合の光線追跡結果を示したものであり、図3(b)は、使用する屈折率分布ファイバ1aおよび1cのそれぞれの比屈折率差Δ1およびΔ3が異なる場合の光線追跡結果を示したものである。
図4は、レーザービームの断面パターンをガウシアン形状で取り扱うガウシアンビーム法の計算により求めた屈折率分布ファイバ(GIファイバ)の比屈折率差Δ、コア半径aにおける作動距離(ビームウエスト位置)WDと屈折率分布ファイバ(GIファイバ)の長さとの関係を示すグラフである。図4(a)は、第1および第2コアレスファイバ部の屈折率nCL=1.45の場合、(b)はnCL=1.65の場合の関係を示したものである。
なお、コアレスファイバ部の屈折率nCLとは、コアレスファイバの材質に依存しており、材質に石英を用いた場合はnCL=1.45である。ガラス系材料を用いた場合は、nCL=1.5〜1.95程度の高屈折率を実現できる。光学素子とコアレスファイバの屈折率が異なる場合のコアレスファイバの屈折率nCLは、とりわけ、nCL=(光学素子の屈折率+屈折率分布ファイバの屈折率)/2 となるようにして用いた方がよい。
なお、コアレスファイバ部と光学素子間での急激な屈折率変化により生じるフレネル損失を避ける為、コアレスファイバと光学素子の透過性部材とは、略同じ屈折率を有する材料を用いることが好ましい。
図4を用いて屈折率分布ファイバ2aおよび2cそれぞれの好ましい長さZ1およびZ3を求める方法を以下に示す。
例えば、第1のコアレスファイバ部11aは屈折率(nCL)が1.45で長さCL1が2400μmであり、一方、第2のコアレスファイバ部11bは、屈折率(nCL)が1.45で長さCL2が1600μmに設定し、屈折率分布ファイバ(GIファイバ)2aおよび2cは、コア半径60μm、比屈折率差Δ1=0.67%のものを用いるとする。
前述のように作動距離(WD)は、コアレスファイバ部の長さの半分であることから(図3(a)参照)、第1の屈折率分布ファイバ2aの作動距離WD1は、CL1の半分の1200μmとなる。同様に第3の屈折率分布ファイバ2cの作動距離WD2は、CL2の半分の800μmとなる。
図4(a)のグラフにおいて、Δが0.67%、コア半径が60μmのファイバの特性を示す曲線とWD=1200μmの交点より、GIファイバ(屈折率分布ファイバ)2aの長さZ1は、840μm及び1000μmであることがわかる。
一方、図4(a)の同じ曲線とWD=800μmの交点より、GIファイバ2cの長さZ3は、830μm、1100μmのいずれでもよいことがわかる。Z3が830μmと1100μmとの場合では、図3(a)に示す発散角γ1が異なる。図5は、異なる比屈折率差Δおよびコア半径を有するGIファイバ(屈折率分布ファイバ)の長さと、ビーム発散角γの関係を示す。
図5(a)はコアレスファイバ部の屈折率nCL=1.45の場合、図5(b)はコアレスファイバ部の屈折率nCL=1.65の場合の関係を示す。屈折率nCLが大きい屈折率分布ファイバの方が、発散角γが小さい。図5(a)より、前述の比屈折率差Δ1=0.67%の屈折率分布ファイバ2cにおいて、Z3=830μmの時は、γ=0.55°、Z3=1100μmの時は、γ=6°であることがわかる。
通常、光学素子は、異なる屈折率を有するSiO、TiO等の材料からなる誘電体多層膜を蒸着することにより、ARコート、合分波機能、分岐結合機能等の所望の機能を確保している。誘電体多層膜への光の入射については、全光束が同じ角度の平行光に近いほど、すなわち入射角度が0に近いほど、誘電体多層膜の特性がよくなる。故に、結合系のビーム発散角γは0°に近い方が誘電体多層膜の特性が安定している。従って、γ=0.55°となるZ3=830μmの屈折率分布ファイバ2cを使用することが好ましい。
なお、比屈折率差Δが小さいと、屈折率分布ファイバのコア内での光の閉じこめが弱くなり、クラッド境界面で反射が生じ、伝搬光の散乱により損失が増大する。そこで、通常比屈折率差Δは0.5%以上が望ましい。
また、コアレスファイバ部の屈折率nCLが大きいほど、光学長さが延びるため、作動距離(WD)は大きくなる。従って、例えば第1のコアレスファイバ部11aでは屈折率nCLを大きくすることにより、作動距離を長くして反射光の光路を確保し、一方、第2のコアレスファイバ部11bでは屈折率nCLを小さくして、透過光の損失を低減する等のように、第1のコアレスファイバ部11aと第2のコアレスファイバ部11bとが異なる屈折率nCLを有してもよい。
さらに、図4(a)に記載されているものと異なる比屈折率差Δおよびコア半径aを有する屈折率分布ファイバであっても図4(a)と同様に所望のコアレスファイバ部の屈折率nCLについて作動距離WDと屈折率分布ファイバの関係をガウシアンビーム法により得ることで、屈折率分布ファイバ2aおよび2bのそれぞれの好ましい長さZ1およびZ3を得ることができる。
なお、上述のように求めた好ましい屈折率分布ファイバの長さZ1およびZ3は、加工精度の問題から、複合モジュール10に適応する場合、誤差を生じる場合あるが、この誤差は概ね基準設定長さ±3%以内であれば好ましい特性を維持することが可能である。
次に、上述のように求めた屈折率分布ファイバの長さZ1およびZ3を用いて、第2の屈折率分布ファイバ2bの光学長さZ2の好ましい値を求める方法を以下に示す。なお、第2の屈折率分布ファイバ2bは、その比屈折率Δ2が、第1の屈折率分布ファイバ2aの比屈折率Δ1および第3の屈折率分布ファイバ2cの比屈折率Δ3と等しいものを選択するものとする。また同様に、第2の屈折率分布ファイバ2bのコア半径は、第1の屈折率分布ファイバ2aのコア半径および第3の屈折率分布ファイバ2cのコア半径と等しいaであるとする。
長さZ2の好ましい値は、以下の(7)式より求めることができる。
Figure 2009210623
上述したZ1=1000μm、Z3=830μmの場合、上記の(7)式および(8)式を用いて求めたZ2の値は、1830μmとなる。ただし、このようにして求めたZ2は、加工精度の問題から、複合モジュール10に適応する場合、誤差を生じる場合ある。この誤差は概ね基準設定長さ±3%以内であれば好ましい特性を維持することが可能である。すなわち、第2の屈折率分布ファイバ2bの光学長さは、上記(7)式で求めた長さZ2の0.97倍から1.03倍であれば、良好な目的とする特性を得ることができる。
次に、本実施形態の変形例として、屈折率分布ファイバ2aと、屈折率分布ファイバ2cとが、コア半径aは同じで、それぞれの比屈折率差Δ1とΔ3が異なる場合の、屈折率分布ファイバ2aの光学長さZ1、屈折率分布ファイバ2bの光学長さZ2および屈折率分布ファイバ2cの光学長さZ3の好ましい値の求め方を以下に示す。
まず、上述のΔ1=Δ3の場合と同様に、CL1>CL2の関係を満たす、すなわち反射光の光路を確保できる、コアレスファイバ部11aの光学長さCL1と、損失を低減できるコアレスファイバ部11bの光学長さCL2を設定する。
そして、Δ1=Δ3の場合と同様に、図4(a)、(b)または同様なグラフ、データベース等を用いる。そして、使用する屈折率分布ファイバ2a、2c、のコアレス半径aおよびそれぞれの比屈折率差Δ1、Δ3に対応した、ファイバの特性曲線(WDとGIファイバ長の関係を示す)を用いて、WD1(0.5×CL1)とWD2(0.5×CL2)に対応するGIファイバ長(屈折率分布ファイバの光学長さ)Z1とZ3を求める。
次に、屈折率分布ファイバ2bの光学長さZ2を求める。
本変形例では、屈折率分布ファイバ2bは、コアレスファイバ部11aと接続する側が長さLAの屈折率分布ファイバ(比屈折率差Δ1、コア半径aの屈折率分布ファイバ2aと同じファイバ)で、コアレスファイバ部11bと接続する側が長さLBの屈折率分布ファイバ(比屈折率差Δ3、コア半径aの屈折率分布ファイバ2cと同じファイバ)である、2種類の屈折率分布ファイバを融着して形成する。
光学長さLAとLBは以下の式により求めることができる。融着端面で平行光で接続する為、各ピッチ長Pi(i=1,3)から0.25ピッチを引く。
Figure 2009210623
ただし、このようにして求めたLAおよびL2は、加工精度の問題から、複合モジュール10に適応する場合、誤差を生じる場合ある。この誤差は概ね基準設定長さ±3%以内であれば好ましい特性を維持することが可能である。すなわち、本変形例においては、第2の屈折率分布ファイバ2bの光学長さは、上記(9)式で求めた長さLAの0.97倍から1.03倍の長さの部分と、上記(10)式で求めた長さLBの0.97倍から1.03倍の長さの部分とから成ることが好ましい。
次に、本発明の実施形態にかかる光複合モジュール10を製造する方法について以下に例示する。
基体5は、たとえば石英ガラスからなる平板状部材の一方の面に、ダイシング等の切削加工を施し、2本の溝を互いに中央部で、角度Θで交差するように形成することにより得ることができる。溝はV溝、U溝、矩形等の断面形状を有してよい。基体5として、成型加工による樹脂基板を用いてもよい。
シングルモードファイバ3a、第1の屈折率分布ファイバ2a(長さZ1)、長さCL1のコアレスファイバ、第2の屈折率分布ファイバ2b(長さZ2)、長さCL2のコアレスファイバ、第3の屈折率分布ファイバ2c(長さZ3)、第3のシングルモードファイバ3cを融着して、基体5の溝の一方に直線状に配置する。なお、ファイバは、通常のファイバカッターにより切断し、また通常の放電加熱式の融着接続器により融着接続してよい。
次に、シングルモードファイバ3e、第4の屈折率分布ファイバ2e、第5のコアレスファイバ1eを融着し、他方の溝に配置する。入射光の通る屈折率分布ファイバ2aと、反射光が通る屈折率分布ファイバ3eとは、透過ポート側(P1−P2)と反射ポート側(P3)の結合位置が異なり最適な結合特性が得られなくなることを防止するため、位置を正確に合わせておく。
なお、屈折率分布ファイバ2a、2b、2c、2eは、屈折率分布型のコアを有する光ファイバで、クラッド径が125μmの場合、コア径は、100〜120μm程度のものを用いるのが好ましい。また、屈折率分布ファイバ2a、2b、2c、2eは、応力により偏波依存性が変化する場合があり、屈折率分布ファイバ2a、2b、2c、2eの下の部分だけ、基体5の溝を深くする等により、屈折率分布ファイバ2a、2b、2c、2eの部分を浮かせた構造にしてもよい。
そして、シングルモードファイバ(SMファイバ)は、クラッド径125μmと同程度のものを用いると融着接続器により、容易に接続することができる。また、クラッド径が250μm等の異なる外径を有する屈折率分布ファイバを用いてもよい。コアレスファイバは、シングルモードファイバと同じ石英系材料、又はガラス系材料からなる光ファイバで、コアの無い光ファイバである。通常、屈折率分布ファイバと同じ外径のものを用いる。
次に、図2に示す、長さ(幅)T1の第1の光学素子4aを配置するための幅L1の凹部15aを、長さCL1のコアレスファイバの中間部分の下(基体に設けた2本の溝が交わる部分を中心に)に設ける。同様に、長さ(幅)T2の第2の光学素子4bを配置するための幅L1の凹部15bを、長さCL2のコアレスファイバの中間部分の下に設ける。加工はダイシング加工等により行ってもよく、併せて長さCL1のコアレスファイバおよび長さCL2のコアレスファイバを切断するよう、予め光ファイバを溝に接着剤等により固定してから行う方が効率的である。
長さCL1のコアレスファイバは、中間部を切断除去され、残った一方が第1コアレスファイバ1a、他方が第2コアレスファイバ1bとなり、除去された部分に光学素子4aが配置され、これによりコアレスファイバ部11aを形成する。
長さCL2のコアレスファイバは、中間部を切断除去され、残った一方が第3コアレスファイバ1c、他方が第4コアレスファイバ1dとなり、除去された部分に光学素子4bが配置され、これによりコアレスファイバ部11bを形成する。
なお、T1、T2、L1およびL2は、以下の関係を満足する必要がある。
Figure 2009210623
即ち、光学素子の長さT1、T2は、それぞれ加工する凹部15a、15bの幅L1、L2よりも小さくなくてはならず、また、L1およびL2は、それぞれのコアレスファイバ部11aの長さCL1および11bの長さCL2の範囲内でなければならない。
必要に応じ、光学素子4a、4bをそれぞれ凹部15a、15bに接着剤等で固定する。また、コアレスファイバ1a、1b、1eと光学素子4aとの間、およびコアレスファイバ1c、1dと光学素子4bとの間を接続するように適宜接着剤を用いてもよい。
以上により光複合モジュール10を得ることができる。
次に、本発明にかかる光複合モジュールを用いた光送受信機を以下に示す。
図6は、本発明の光複合モジュール10a、10bを用いた光ファイバ増幅器50の概略図である。前方励起用の複合モジュール10aに励起光源用のポンプモジュール58を接続してある。分岐用の複合モジュール10bにモニター用のPDモジュール51を接続してある。光複合モジュール10a、10bのそれぞれのP1ポートに希土類添加ファイバ59を接続して構成したものである。光複合モジュール10aの反射型の第1の光学素子4aとしては、励起光源の光波長を反射、信号光波長を透過するフィルタ素子、透過型の第2の光学素子4bとしてはインライン型光アイソレータ素子(ガーネット材料等のファラデー回転子の両側を複屈折結晶板で挟んだ構造の素子)を用いている。
信号光が、前方励起用の複合モジュール10aのP2ポートから光アイソレータ機能を有する第2の光学素子3に入射、入射光はそのまま透過、ASE光等の反射戻り光を遮断する。その後、入射信号光は、特定の波長光を合波する機能を有する第1の光学素子4aに入射、ポンプモジュール58からの励起光と合波する。
そして、第1の光学素子4aで合波された入射信号光と励起光が、P1ポートから出射され、一方の端末がP1ポートに融着接続された希土類添加ファイバ59に入射、励起光により希土類元素が高いエネルギー準位に励起され、低いエネルギー準位に遷移する際、入射した信号光が誘導放出により増幅される。
その際、希土類添加ファイバ59の内部の両方向に発生する広帯域なASE光成分などの光は、前記光アイソレータ機能を有する第2の光学素子4bで遮断される。希土類添加ファイバ59の他方の端末は、分岐用の光複合モジュール10bのP1ポートに融着接続され、増幅信号光とASE光が出射される。
また、P2ポートへ分岐光を出射、分岐機能を有する第1の光学素子2で信号光の一部を分岐、モニター用のPDモジュール51に入射する。増幅された信号光は分岐用複合モジュール7bの第1の光学素子4aを透過し、さらに光アイソレータ機能をもつ第2の光学素子4bに入射し、透過する。このように本発明による光複合モジュール7a、7bを用いる構成にすることにより、希土類添加光ファイバ59、励起光源用ポンプモジュール58、モニター用PDモジュール11を融着接続することで、容易に光ファイバ増幅器を構成することができる。
本発明の光複合モジュール10は、光ファイバ増幅器用の光複合モジュールのように、第1の光学素子として、合分波素子、分岐結合型の反射・透過型の光学素子、第2の光学素子として光アイソレータ素子に留まらず、バンドパスフィルタ等の透過型の機能素子を用いることができ、光回路の構成上、必要に応じて選択できる。
本発明の光複合モジュールは、これまで述べた分岐・透過機能を有する第1の光学素子4a透過機能を有する第2の光学素子4bを一つずつ基板5の上に設置するに留まらず、このような光学素子を複数箇所一つの基板5上に設置する事も可能であり、複数の機能を要する光回路部の小型・集積化構造にも適用可能なものである。
次に本発明の図1に示す構造を有するに光複合モジュールを製作し、その特性を評価した。光合分波器で、反射ポートP3から、広帯域波長の信号光を合分波、透過ポートP2から、狭帯域波長の信号光を取り出すものである。
基板4は、石英製の厚さ1mm、長さ20mm、幅2.5mmのものを用いた。基板上に角度Θ=12°でV溝を交差して構成した。P1−P2ポート間の一通の光ファイバは、図3(a)の構成のものを使用した。使用する屈折率分布ファイバ2a、2b、2c、2eは、クラッド径125μm、コア半径a=60μm、比屈折率差Δ=0.67%のものを使用した。
コアレスファイバ1a、1b、1c、1d、1eは、外径125μmの石英製ファイバを用いた。シングルモードファイバ3a、3c、3eはコア径7μmのものを用いた。コアレスファイバ部11aの光学長さCL1を2400μm、コアレスファイバ部11bの光学長さCL2を1200μmと設定し求めた、屈折率分布ファイバ2aの光学長さZ1は980μm、屈折率分布ファイバ2bの光学長さZ2は1830μm、屈折率分布ファイバ2cの光学長さZ3は850μmであった。このとき発散角γ1は3°であった。また、屈折率分布ファイバ2cの光学長さは、Z1と同じ980ミクロンであった。
所定の長さを有する光ファイバを順次融着接続器により融着接続した後、基板5の溝上にUV接着剤を用いて固定した。GIファイバ1b及び1cが結合する光学素子2は、誘電体多層膜をより多層化した狭帯域型フィルタで、通常、その透過特性を得るには発散角γ2=0.6°以下のコリメータ光でないと、適切なスペクトラム特性が得られない為、それが実現できるファイバ長が設定されている。
透過、反射機能を有する第1の光学素子4aには、長さ(幅)0.65mm、高さ、奥行き0.8mmの大きさを有し、波長1550nm±5nmの光を透過、波長1310±50nm帯及び1490±10nmの光を反射する石英基板製のフィルタ素子を用いた。
透過機能を有する第2の光学素子4bには、長さ(幅)0.8mm、高さ、奥行き0.9mmの大きさを有し、1558.98±0.3nmの光を透過する狭帯域フィルタを用いた。
凹部15aの長さL1は1.2mmであり、凹部15bの長さL2は1mmであり、凹部15a、15bの深さ0.6mmであった。ダイシング加工により形成した。
次に反射・透過機能を有する第1の光学素子4aである広帯域フィルタを、幅L1=1.2mmの溝壁に反射ポートP3側の光ファイバ出力をモニターしながら調芯により最適な位置に、UV接着剤により固定、更に隙間には屈折率1.5程度のUV硬化型の透光性のゲルを充填した。
さらに透過機能を有する第2の光学素子4bである狭帯域フィルタを幅L2=1mmの溝壁に固定、隙間に同様に透光性のゲルを充填した。そうして製作した光学素子実装基板を外径3.5mm、長さ35mmのステンレス製ケース内に固定、両側をシリコン系のゴム状の封止材により固定した。全部で10個製作した。
得られた光複合モジュール10により、(P1―P2)透過ポート挿入損失平均:0.48dB、(P1−P3)反射ポート挿入損失平均:0.3dB、PDL:0.2dB以下、アイソレーション:25dB以上、反射減衰量:40dB以上の光複合機能モジュールを実現することができた。
本発明にかかる光複合モジュール10の上面図である。 本発明にかかる光複合モジュール10の側面図である。 本発明にかかる光複合モジュール10の光路追跡結果であり(a)は、使用する屈折率分布ファイバ1aおよび1cのそれぞれの比屈折率差Δ1およびΔ3が等しい場合の光線追跡結果を示したものであり、(b)は、使用する屈折率分布ファイバ1aおよび1cのそれぞれの比屈折率差Δ1およびΔ3が異なる場合の光線追跡結果を示す。 屈折率分布ファイバの比屈折率差Δ、コア半径aにおける作動距離WDと屈折率分布ファイバの長さとの関係を示すグラフでああり、(a)は、コアレスファイバ部の屈折率nCL=1.45の場合、(b)はコアレスファイバ部の屈折率nCL=1.65の場合を示す。 異なる比屈折率差Δおよびコア半径を有する屈折率分布ファイバの長さと、ビーム発散角γとの関係を示し、(a)はコアレスファイバ部の屈折率nCLが1.45の場合、(b)はコアレスファイバ部の屈折率nCL=1.65の場合の関係を示す。 本発明の光複合モジュールを用いた光ファイバ増幅器の概略図である。 従来の光複合モジュールの上面図である。
符号の説明
1a,1b,1c,1d,1e コアレスファイバ、2a,2b,2c,2e 屈折率分布ファイバ、3a,3c,3e シングルモードファイバ、4a,4b 光学素子、5 基体、10 光複合モジュール、11a,11b コアレスファイバ部、12 V溝、15a、15b 凹部、50 送受信器、 51 PDモジュール、58 ポンプモジュール、59 希土類添加ファイバ

Claims (5)

  1. 第1および第2の光入出射面を有する、光を反射および透過する第1光学素子と、一方の端面が前記第1の光入出射面と対向して配置される第1コアレスファイバと、一方の端面が前記第2の光入出射面と対向して配置される第2コアレスファイバとから成る第1のコアレスファイバ部と、
    第3および第4の光入出射面を有する、光を透過する第2光学素子と、一方の端面が前記第3の光入出射面と対向して配置される第3コアレスファイバと、一方の端面が前記第4の光入出射面と対向して配置される第4コアレスファイバとから成る第2のコアレスファイバ部と、
    一方の端面が前記第1コアレスファイバの他方の端面と対向して配置される第1の屈折率分布ファイバと、
    一方の端面が前記第2コアレスファイバの他方の端面と対向し、他方の端面が前記第3コアレスファイバの他方の端面と対向して配置される第2の屈折率分布ファイバと、
    一方の端面が前記第4コアレスファイバの他方の端面と対向して配置される第3の屈折率分差ファイバと、
    を含み、
    前記第2のコアレスファイバ部の光学長さが、前記第1のコアレスファイバ部の光学長さより短いことを特徴とする光複合モジュール。
  2. 前記第1のコアレスファイバ部の屈折率が前記第2のコアレスファイバ部の屈折率と異なることを特徴とする請求項1に記載の光複合モジュール。
  3. 前記第1乃至第3の屈折率分布ファイバが、同じ比屈折率差と同じコア半径を有し、前記第2の屈折率分布ファイバの長さが以下の式で表される長さZ2の0.97倍〜1.03倍の範囲であることを特徴とする請求項1または2に記載の光複合モジュール。
    Figure 2009210623
  4. 前記第1乃至第3の屈折率分布ファイバ1が同じコア半径を有し、前記第1の屈折率分布ファイバの屈折率差Δ1が前記第3の屈折率分布ファイバの比屈折率差Δ3と異なり、
    前記第2の屈折率分布ファイバが、前記第2コアレスファイバの他方の端面と対向する、下記(2)式で表される長さLAの0.97倍〜1.03倍の長さの部分と、前記第3コアレスファイバの他方の端面と対向する、下記(3)式で表される長さLBの0.97倍〜1.03倍の長さの部分とから成ることを特徴とする請求項1または2に記載の光複合モジュール。
    Figure 2009210623
  5. 請求項1〜4のいずれかに記載の光モジュールと、該光モジュールに入射する光を送信する発光手段と、該発光手段から送信された光を、前記光モジュールを介して受信する受光手段と、を備えたことを特徴とする光送受信器。
JP2008050614A 2008-02-29 2008-02-29 光複合モジュールおよび光送受信器 Pending JP2009210623A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008050614A JP2009210623A (ja) 2008-02-29 2008-02-29 光複合モジュールおよび光送受信器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008050614A JP2009210623A (ja) 2008-02-29 2008-02-29 光複合モジュールおよび光送受信器

Publications (1)

Publication Number Publication Date
JP2009210623A true JP2009210623A (ja) 2009-09-17

Family

ID=41183879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008050614A Pending JP2009210623A (ja) 2008-02-29 2008-02-29 光複合モジュールおよび光送受信器

Country Status (1)

Country Link
JP (1) JP2009210623A (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004053547A1 (ja) * 2002-12-12 2004-06-24 Hoya Corp 光ファイバ端末とその製造方法並びに光結合器及び光部品
WO2006006197A1 (ja) * 2004-05-26 2006-01-19 Hoya Corporation 光モジュール及び光波長合分波装置
JP2008242450A (ja) * 2007-02-26 2008-10-09 Kyocera Corp 光合分波器およびそれを用いた光送受信器
JP2009086039A (ja) * 2007-09-27 2009-04-23 Kyocera Corp 光回路モジュール

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004053547A1 (ja) * 2002-12-12 2004-06-24 Hoya Corp 光ファイバ端末とその製造方法並びに光結合器及び光部品
WO2006006197A1 (ja) * 2004-05-26 2006-01-19 Hoya Corporation 光モジュール及び光波長合分波装置
JP2008242450A (ja) * 2007-02-26 2008-10-09 Kyocera Corp 光合分波器およびそれを用いた光送受信器
JP2009086039A (ja) * 2007-09-27 2009-04-23 Kyocera Corp 光回路モジュール

Similar Documents

Publication Publication Date Title
EP2321680B1 (en) Method and system for coupling radiation
JP2002006155A (ja) 光合分波器及び光導波路を有する光システム
JP2020534566A (ja) フォトニック集積回路の導波路への光ファイバの自己整合接続のための方法および装置
JP6788436B2 (ja) 光モジュール
JPWO2005116703A1 (ja) 光導波路を含む光システム
EP0758493B1 (en) Single polarization fiber and amplifier
EP1612588B1 (en) Optical isolator with tilted optical isolator element
CA2835327A1 (en) Excitation unit for a fibre laser
JP2021163814A (ja) 光ファイバ増幅器および光通信システム
JP2008209520A (ja) 光フィルタモジュール
US10495820B1 (en) Method and apparatus for low-profile fiber-coupling to photonic chips
JP2012209510A (ja) 光ファイバレーザ光源
US6868210B2 (en) Optical waveguide and their application of the optical communication system
US20040027705A1 (en) Optical filter module and manufacturing method thereof
JP2009210623A (ja) 光複合モジュールおよび光送受信器
WO2020203136A1 (ja) ファイバレーザ装置
JP2005049821A (ja) 光合分波器、光集積回路及びそれらを用いた光送受信器
JP4340210B2 (ja) 光学部品およびその製造方法
WO2014168040A1 (ja) 光結合構造
JP2009086039A (ja) 光回路モジュール
US7289702B2 (en) Optical waveguide apparatus
JP4764654B2 (ja) 光モジュール
JP5148506B2 (ja) 光デバイスおよびこれを用いた光送受信器
JP2006276507A (ja) ファラデー回転ミラー
JPH0749430A (ja) 光回路部品

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100915

A131 Notification of reasons for refusal

Effective date: 20130226

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20130702

Free format text: JAPANESE INTERMEDIATE CODE: A02