JP2009206461A - Nitride semiconductor light emitting element, and manufacturing method thereof - Google Patents

Nitride semiconductor light emitting element, and manufacturing method thereof Download PDF

Info

Publication number
JP2009206461A
JP2009206461A JP2008050191A JP2008050191A JP2009206461A JP 2009206461 A JP2009206461 A JP 2009206461A JP 2008050191 A JP2008050191 A JP 2008050191A JP 2008050191 A JP2008050191 A JP 2008050191A JP 2009206461 A JP2009206461 A JP 2009206461A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
layer
light emitting
emitting device
semiconductor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008050191A
Other languages
Japanese (ja)
Inventor
Atsushi Ogawa
淳 小河
Masahiro Araki
正浩 荒木
Satoshi Komada
聡 駒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2008050191A priority Critical patent/JP2009206461A/en
Publication of JP2009206461A publication Critical patent/JP2009206461A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Landscapes

  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nitride semiconductor light emitting element that maintains excellent light emission efficiency (external quantum efficiency) even under a large current density condition. <P>SOLUTION: The nitride semiconductor light emitting element includes a plurality of nitride semiconductor layers parallel to a nonpolar A plane. The nitride semiconductor light emitting element includes one or more n-type nitride semiconductor layers, a nitride semiconductor active layer (113), one or more p-type nitride semiconductor layers (112, 111, 110a), and metal layers (107, 106) which are laminated in order, and the active layer includes one or more quantum well layers, the distance between the metal layer (107) and the quantum well layer closest thereto being 10 to 50 nm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、窒化物系半導体(InxAlyGa1-x-yN:0≦x、0≦y、x+y≦1)を用いた発光ダイオード(LED)やレーザダイオード(LD)などの発光素子とその製造方法に関するものである。 The present invention, nitride semiconductor (In x Al y Ga 1- xy N: 0 ≦ x, 0 ≦ y, x + y ≦ 1) light emitting elements such as light emitting diodes using (LED) and laser diodes (LD) and It relates to the manufacturing method.

近年では、窒化物半導体発光ダイオードや窒化物半導体レーザダイオードなどが実現されている。現在において実用化されている窒化物発光ダイオードのほとんどは、いわゆるC面窒化物発光ダイオードであって、六方晶系であるサファイアのC面すなわち(0001)面またはそれに直交するA面すなわち(11−20)面上に平行に成長するC面を有する窒化物半導体層を利用して作製されている。しかし、今後に要望されている大電流密度条件に対応し得る発光素子を実現させるためには、窒化物半導体層の結晶成長面に関する再検討が必要であると考えられる。   In recent years, nitride semiconductor light emitting diodes and nitride semiconductor laser diodes have been realized. Most of the nitride light-emitting diodes in practical use at present are so-called C-plane nitride light-emitting diodes, which are hexagonal sapphire C-plane, ie, (0001) plane, or A-plane orthogonal to (11-). 20) It is fabricated using a nitride semiconductor layer having a C plane that grows in parallel on the plane. However, in order to realize a light emitting device that can meet the demanded high current density condition in the future, it is considered that the crystal growth surface of the nitride semiconductor layer needs to be reexamined.

図8と図9の模式的斜視図は、六方晶系のサファイア結晶とGaN結晶における主要な結晶学的方位を示している。GaN結晶のC面に平行な原子面においては、Ga原子面とN原子面が交互に重なっている。そして、これらの異種原子間の電気陰性度の相違に起因して結晶内のc軸方向すなわち[0001]軸方向に自発分極が発生し、さらに、歪がかかった場合には圧電(ピエゾ)分極が重畳される。発光層として作用する(C面に平行な)量子井戸層内において、このように分極による電場が生じれば、電子と正孔が井戸層の両界面側に分離し、発光効率の低下を招く。特に、大電流密度条件下においては、電子と正孔の分離が顕著になって、発光効率の低下がより顕著なものとなる。   The schematic perspective views of FIGS. 8 and 9 show the main crystallographic orientations in hexagonal sapphire crystals and GaN crystals. In the atomic plane parallel to the C plane of the GaN crystal, the Ga atomic plane and the N atomic plane are alternately overlapped. Then, due to the difference in electronegativity between these different atoms, spontaneous polarization occurs in the c-axis direction in the crystal, that is, the [0001] axis direction. Further, when strain is applied, piezoelectric (piezoelectric) polarization occurs. Are superimposed. In the quantum well layer acting as the light emitting layer (parallel to the C-plane), if an electric field due to polarization is generated in this way, electrons and holes are separated on both interface sides of the well layer, leading to a decrease in light emission efficiency. . In particular, under a large current density condition, separation of electrons and holes becomes remarkable, and the decrease in luminous efficiency becomes more remarkable.

この対策として、サファイアR面すなわち(01−12)面上に無極性のA面に平行な活性層(発光層)を含む窒化物発光ダイオードを試作した例がある(たとえば、特許文献1の特開2006−196490号公報および特許文献2の特開2007−157766号公報など参照)。この場合、活性層における自発分極は抑制され、量子井戸内の電子と正孔の分離が少なく、発光効率が低下しにくい発光素子を得ることが可能となる。
特開2006−196490号公報 特開2007−157766号公報
As a countermeasure, there is an example in which a nitride light-emitting diode including an active layer (light-emitting layer) parallel to a nonpolar A-plane on a sapphire R-plane, that is, a (01-12) plane, has been prototyped (for example, see Patent Document 1 No. 2006-196490 and Japanese Patent Application Laid-Open No. 2007-157766 of Patent Document 2). In this case, spontaneous polarization in the active layer is suppressed, and it is possible to obtain a light emitting element in which the separation of electrons and holes in the quantum well is small and the light emission efficiency is hardly lowered.
JP 2006-196490 A JP 2007-157766 A

しかしながら、特許文献1や特許文献2に開示された技術であっても、150A/cm2以上の大電流密度条件下においては、電流−光出力の相関が線形であるような発光素子を実現させるためには充分ではない。 However, even the techniques disclosed in Patent Document 1 and Patent Document 2 can realize a light-emitting element in which the current-light output correlation is linear under a large current density condition of 150 A / cm 2 or more. Not enough for that.

物理的構造モデルとしては、そのような大電流密度条件下において、A面に平行な無極性の窒化物半導体層の量子井戸内では電子と正孔の分離は抑制され得るが、発光再結合寿命(キャリアである電子と正孔が再結合して発光するまでのキャリア寿命)が充分に短くないので、井戸層内で発光再結合する前にキャリアがその井戸層からオーバーフローしてしまう状況になっていると推測される。   As a physical structure model, separation of electrons and holes can be suppressed in the quantum well of the nonpolar nitride semiconductor layer parallel to the A plane under such a large current density condition, but the light emission recombination lifetime. (Carrier lifetime until electrons and holes as carriers recombine and emit light) is not short enough, so that carriers overflow from the well layer before recombination in the well layer. I guess that.

このような先行技術における状況に鑑み、本発明の目的は、大電流密度条件下においても良好な発光効率(外部量子効率)を維持し得る窒化物半導体発光素子を提供することである。   In view of such a situation in the prior art, an object of the present invention is to provide a nitride semiconductor light emitting device capable of maintaining good light emission efficiency (external quantum efficiency) even under a large current density condition.

本発明による窒化物半導体発光素子は無極性のA面に平行な複数の窒化物半導体層を含み、この発光素子は順次積層された1以上のn型窒化物半導体層と窒化物半導体活性層と1以上のp型窒化物半導体層と金属層とを含み、活性層は1以上の量子井戸層を含み、金属層とこれに最も近い量子井戸層との距離が10nm以上50nm以下の範囲内にあることを特徴としている。このことによって、表面プラズモン共鳴効果で発光再結合寿命が短くなり、井戸層内で発光再結合する前にキャリアがオーバーフローしてしまう状況を抑制できる。その結果、大電流密度条件下においても発光効率(外部量子効率)の良好な窒化物半導体発光素子が得られると考えられる。   The nitride semiconductor light emitting device according to the present invention includes a plurality of nitride semiconductor layers parallel to the nonpolar A-plane, and the light emitting device includes one or more n-type nitride semiconductor layers and a nitride semiconductor active layer sequentially stacked. The active layer includes one or more quantum well layers, and the distance between the metal layer and the nearest quantum well layer is in the range of 10 nm to 50 nm. It is characterized by being. As a result, the luminescence recombination lifetime is shortened by the surface plasmon resonance effect, and the situation where carriers overflow before being recombined in the well layer can be suppressed. As a result, it is considered that a nitride semiconductor light emitting device having a good luminous efficiency (external quantum efficiency) can be obtained even under a large current density condition.

なお、井戸層の厚さは、2.5nm以上5.0nm以下の範囲内にあることが好ましい。この場合に、井戸層の厚さが十分になって、キャリアのオーバーフローをより抑制することが可能となり、内部量子効率を大きく向上させることができると推測される。   In addition, it is preferable that the thickness of a well layer exists in the range of 2.5 nm or more and 5.0 nm or less. In this case, it is presumed that the thickness of the well layer becomes sufficient, and carrier overflow can be further suppressed, and the internal quantum efficiency can be greatly improved.

本発明は、窒化物半導体活性層が390nm以上510nm以下の波長範囲内の光を生じる場合に特に効果的である。このような波長範囲の光を生じる井戸層は原子半径が大きなInを比較的大きな組成比で含み、本発明を適用しない場合には、極性による自発分極だけでなく、井戸層に歪がかかった場合には顕著な圧電(ピエゾ)分極が重畳され、量子井戸層内の電子と正孔が井戸層の両界面側に分離し、発光効率の低下を招く。すなわち、本発明を適用することによって、自発分極だけでなくて圧電分極による影響をも抑制することが可能となり、大電流密度条件下においても、内部量子効率を大きく向上させることができると推測される。   The present invention is particularly effective when the nitride semiconductor active layer generates light in the wavelength range of 390 nm to 510 nm. A well layer that generates light in such a wavelength range contains In having a large atomic radius in a relatively large composition ratio. When the present invention is not applied, not only the spontaneous polarization due to the polarity but also the well layer is distorted. In some cases, significant piezoelectric polarization is superimposed, and electrons and holes in the quantum well layer are separated on both interface sides of the well layer, leading to a decrease in luminous efficiency. That is, by applying the present invention, it is possible to suppress not only the spontaneous polarization but also the influence of piezoelectric polarization, and it is estimated that the internal quantum efficiency can be greatly improved even under a large current density condition. The

上述のような窒化物半導体発光素子を製造する場合、その発光素子に含まれる複数の窒化物半導体層はサファイア基板のR面上またはGaN基板のA面上に気相成長させることが好ましい。これらの基板を用いることによって、A面に平行な窒化物半導体層を成長させることが容易になる。複数の窒化物半導体層の成長後には基板を剥離し、それら複数の窒化物半導体層がp型用電極とn型用電極によって挟まれることが好ましい。   When manufacturing the nitride semiconductor light emitting device as described above, it is preferable that the plurality of nitride semiconductor layers included in the light emitting device are vapor-phase grown on the R surface of the sapphire substrate or the A surface of the GaN substrate. By using these substrates, it becomes easy to grow a nitride semiconductor layer parallel to the A plane. After the growth of the plurality of nitride semiconductor layers, the substrate is preferably peeled off, and the plurality of nitride semiconductor layers are preferably sandwiched between the p-type electrode and the n-type electrode.

なお、プラズモン、表面プラズモン、表面プラズモン共鳴などの用語に関して、金属内の自由電子は一種のプラズマ状態と見なすことができ、この自由電子の集団運動(振動)をプラズマ振動といい、この振動は縦波(電荷密度波)の性質をもつ。そして、このプラズマ振動を量子力学的に粒子とみなし、プラズモンと称する。   In terms of terms such as plasmon, surface plasmon, and surface plasmon resonance, free electrons in a metal can be regarded as a kind of plasma state, and the collective motion (vibration) of free electrons is called plasma oscillation. It has the property of wave (charge density wave). This plasma vibration is regarded as particles in terms of quantum mechanics and is called plasmon.

表面プラズモンは、金属表面に局在する電子の集団的な振動波(縦波の性質をもつ)であり、表面プラズマ振動はその振幅が表面からの深さとともに指数関数的に減衰する減衰波(近接場光)である。   A surface plasmon is a collective oscillation wave (having a longitudinal wave property) of electrons localized on a metal surface, and a surface plasma oscillation is a decay wave whose amplitude decays exponentially with the depth from the surface ( Near-field light).

バルク中では、プラズマ振動は縦波であるので、横波である電磁波とは相互作用しない。しかし、表面プラズモンの減衰深さよりも小さい薄膜では、電磁波と表面プラズモンの相互作用が起こり、この共鳴が起きている表面近傍の領域では、数桁倍に及ぶ電場の増強が生じ得る。   In the bulk, since the plasma oscillation is a longitudinal wave, it does not interact with an electromagnetic wave that is a transverse wave. However, in a thin film smaller than the attenuation depth of the surface plasmon, the interaction between the electromagnetic wave and the surface plasmon occurs, and in the region near the surface where this resonance occurs, the electric field can be enhanced by several orders of magnitude.

また、本発明に関して、窒化物系半導体とは前述のようにInxAlyGa1-x-yN(0≦x、0≦y、x+y≦1)を意味するが、窒素元素の約20原子%以下がAs、PおよびSbのいずれかの元素に置換されてもよい。さらに、窒化物半導体がSi、O、Cl、S、C、Ge、Zn、Cd、Mg、およびBeのいずれかでドーピングされていてもよいことは言うまでもない。 Further, with the present invention, as described above the nitride-based semiconductor In x Al y Ga 1-xy N (0 ≦ x, 0 ≦ y, x + y ≦ 1) refers to, but about 20 atomic percent of nitrogen element The following may be substituted with any element of As, P and Sb. Furthermore, it goes without saying that the nitride semiconductor may be doped with any of Si, O, Cl, S, C, Ge, Zn, Cd, Mg, and Be.

本発明によれば、窒化物半導体発光素子において、金属層とこれに最も近い活性層中の量子井戸層との距離が10nm以上50nm以下の範囲内にあることによって、表面プラズモン共鳴効果で発光再結合寿命が短くなり、井戸層内で発光再結合する前にキャリアがオーバーフローしてしまう状況を抑制できる。その結果、大電流密度条件下においても発光効率(外部量子効率)の良好な窒化物半導体発光素子が得られる。   According to the present invention, in the nitride semiconductor light emitting device, the distance between the metal layer and the quantum well layer in the active layer closest thereto is within the range of 10 nm or more and 50 nm or less. The coupling lifetime is shortened, and the situation where carriers overflow before the light emission recombination in the well layer can be suppressed. As a result, a nitride semiconductor light emitting device having a good luminous efficiency (external quantum efficiency) even under a large current density condition can be obtained.

<実施例1>
図1は、本発明の実施例1による窒化物系半導体発光ダイオードを模式的断面図で示している。この発光ダイオードにおいては、正電極(Ti/Au)101、導電性Si支持基板102、Si支持基板上の金属層(Ti/Au)103、Au−Sn接合金属層104、バリア金属層(Au/Ni−Ti)105、反射金属層(Ag)106、p型GaN用オーミック層(Pd)107、p型GaN凹凸領域110a、p型GaN層111、p型AlGaN蒸発防止層(p型Al0.15Ga0.85N)112、InGaN活性層113、n型GaN層114、n型GaN凹凸領域115、透明導電体層120、および負極パッド電極(Ti/Al/Ti/Au)121がこの順に積層されている。以下においては、この窒化物半導体発光ダイオードの作製方法が説明される。
<Example 1>
FIG. 1 is a schematic cross-sectional view showing a nitride-based semiconductor light-emitting diode according to Example 1 of the present invention. In this light emitting diode, a positive electrode (Ti / Au) 101, a conductive Si support substrate 102, a metal layer (Ti / Au) 103 on the Si support substrate, an Au-Sn junction metal layer 104, a barrier metal layer (Au / Ni-Ti) 105, reflective metal layer (Ag) 106, ohmic layer for p-type GaN (Pd) 107, p-type GaN uneven region 110a, p-type GaN layer 111, p-type AlGaN evaporation prevention layer (p-type Al 0.15 Ga) 0.85 N) 112, InGaN active layer 113, n-type GaN layer 114, n-type GaN uneven region 115, transparent conductor layer 120, and negative electrode pad electrode (Ti / Al / Ti / Au) 121 are laminated in this order. . In the following, a method for manufacturing the nitride semiconductor light emitting diode will be described.

(結晶成長)
図2はサファイア基板を加工する際のフォトリソグラフィ工程を図解する模式的断面図であり、図3は加工されたサファイア基板上に結晶成長によって形成された窒化物半導体積層構造を含むウエハの模式的断面図である。
(Crystal growth)
FIG. 2 is a schematic cross-sectional view illustrating a photolithography process when processing a sapphire substrate, and FIG. 3 is a schematic view of a wafer including a nitride semiconductor multilayer structure formed by crystal growth on the processed sapphire substrate. It is sectional drawing.

図2において、R面の主面を有するサファイア基板201の上面を覆うように、SiO2またはSiNのマスク層が100〜500nmの範囲内の厚さで堆積される。このマスク層はフォトリソグラフィとフッ酸エッチャントを用いて加工され、幅3μm程度のストライプ状のマスク領域202と幅2μm程度の窓領域203とが形成される。この開口部(窓領域203)の形状や大きさは、作製される窒化物半導体発光素子の所望の特性に応じて調整することができる。 In FIG. 2, a mask layer of SiO 2 or SiN is deposited with a thickness in the range of 100 to 500 nm so as to cover the upper surface of the sapphire substrate 201 having the R-plane main surface. This mask layer is processed using photolithography and hydrofluoric acid etchant to form a stripe-shaped mask region 202 having a width of about 3 μm and a window region 203 having a width of about 2 μm. The shape and size of the opening (window region 203) can be adjusted according to desired characteristics of the nitride semiconductor light emitting device to be manufactured.

次に、RIE(反応性イオンエッチング)を利用して、サファイア基板に深さ0.5μm程度の凹部(溝)301aが形成され、それに伴って凸部301bが形成される(図3参照)。その後、マスク領域202が、フッ酸エッチャントによって除去される。このようにして、図3に示されているように、凹凸が形成されたサファイア基板(凹凸サファイア基板とも称す)301を得ることができる。   Next, by using RIE (reactive ion etching), a concave portion (groove) 301a having a depth of about 0.5 μm is formed on the sapphire substrate, and a convex portion 301b is formed accordingly (see FIG. 3). Thereafter, the mask region 202 is removed with a hydrofluoric acid etchant. In this manner, as shown in FIG. 3, a sapphire substrate (also referred to as a concavo-convex sapphire substrate) 301 on which irregularities are formed can be obtained.

凹凸サファイア基板301は、MOCVD(有機金属気相成長)装置内に設置され、基板温度1100℃にて基板表面の清浄化が行なわれる。次に、TMA(トリメチルアルミニウム)、TMG(トリメチルガリウム)、NH3=5.0slm、キャリアガスとしてのH2=5.0slm、およびN2=2.5slm(水素分圧40%)を用いて、成長温度1000℃にて厚さ150nmのAl0.02Ga0.98Nバッファ層(AlGaNのバッファ層とも称す)302を成長させる。このとき、サファイア基板301のR面上において、この窒化物半導体のバッファ層302はそれ自身のA面に平行に成長する。 The concavo-convex sapphire substrate 301 is installed in an MOCVD (metal organic chemical vapor deposition) apparatus, and the substrate surface is cleaned at a substrate temperature of 1100 ° C. Next, using TMA (trimethylaluminum), TMG (trimethylgallium), NH 3 = 5.0 slm, H 2 = 5.0 slm as a carrier gas, and N 2 = 2.5 slm (hydrogen partial pressure 40%) Then, an Al 0.02 Ga 0.98 N buffer layer (also referred to as an AlGaN buffer layer) 302 having a thickness of 150 nm is grown at a growth temperature of 1000 ° C. At this time, on the R-plane of the sapphire substrate 301, the nitride semiconductor buffer layer 302 grows parallel to its own A-plane.

AlGaNのバッファ層302上には、TMG(トリメチルガリウム)、NH3=5.0slm、キャリアガスとしてのH2=12.0slm、およびN2=3.0slm(水素分圧60%)を用い、さらにn型ドーパントとしてのSiH4を用いて、n型GaN層114を結晶成長させる。このとき、サファイア基板の溝301aに沿って、n型GaN凹凸領域115も成長する。しかし、n型GaN凹凸領域115は、サファイア基板の溝301aを埋め尽くすまでは成長し得ない。 On the AlGaN buffer layer 302, TMG (trimethylgallium), NH 3 = 5.0 slm, H 2 = 12.0 slm as a carrier gas, and N 2 = 3.0 slm (hydrogen partial pressure 60%) are used. Furthermore, the crystal of the n-type GaN layer 114 is grown using SiH 4 as the n-type dopant. At this time, the n-type GaN uneven region 115 also grows along the groove 301a of the sapphire substrate. However, the n-type GaN uneven region 115 cannot grow until the groove 301a of the sapphire substrate is filled.

n型GaN層114の成長後には、基板温度を低減させ、TMI(トリメチルインジウム)、TMG、およびNH3を用いて、メインピーク波長450nmの発光を生じ得るInGaN活性層113を0.5nmから3nm程度の厚さに成長させる。なお、活性層は、(Al)GaN障壁層/InGaN量子井戸層を含む多重量子井戸構造に形成されてもよく、ガイド層として機能するGaN層またはInGaN層によって挟まれてもよい。 After the growth of the n-type GaN layer 114, the InGaN active layer 113 capable of generating light having a main peak wavelength of 450 nm is reduced from 0.5 nm to 3 nm using TMI (trimethylindium), TMG, and NH 3 by reducing the substrate temperature. Grow to a thickness of about. The active layer may be formed in a multiple quantum well structure including an (Al) GaN barrier layer / InGaN quantum well layer, or may be sandwiched between GaN layers or InGaN layers that function as guide layers.

活性層113の成長後には、基板温度を再び上昇させ、Cp2Mg(ビスシクロペンタジエニルマグネシウム)、TMA、TMG、およびNH3を用いて厚さ15nmのp型AlGaN蒸発防止層(p型Al0.15Ga0.85N)112を形成し、さらにCp2Mg、TMG、およびNH3を用いて厚さ20nmのp型GaN層111および厚さ30nmのp型GaN層110を成長させる。なお、p型AlGaN蒸発防止層112は、省略することも可能である。 After the growth of the active layer 113, the substrate temperature is increased again, and a p-type AlGaN evaporation prevention layer (p-type) having a thickness of 15 nm is formed using Cp 2 Mg (biscyclopentadienyl magnesium), TMA, TMG, and NH 3. Al 0.15 Ga 0.85 N) 112 is formed, and a p-type GaN layer 111 having a thickness of 20 nm and a p-type GaN layer 110 having a thickness of 30 nm are grown using Cp 2 Mg, TMG, and NH 3 . Note that the p-type AlGaN evaporation prevention layer 112 may be omitted.

図4は、本実施例における窒化物半導体積層構造中の活性層113の近傍をより詳細に示す模式的断面図である。この図において、活性層113は、バリア層113c、p側に最も近い量子井戸層113b、およびp側に最近接のバリア層113aを含んでいる。活性層113上には、厚さ15nmのp型Al0.15Ga0.85N蒸発防止層112、厚さ20nmのp型GaN層111、および厚さ30nmのp型GaN層(凹凸加工される層)110が形成されている。すなわち、この段階において、p側に最も近い量子井戸層113bの上面401とp型GaN層110の上面(金属反射膜で覆われる面)402との距離は65nmである。 FIG. 4 is a schematic cross-sectional view showing in more detail the vicinity of the active layer 113 in the nitride semiconductor multilayer structure in this example. In this figure, the active layer 113 includes a barrier layer 113c, a quantum well layer 113b closest to the p side, and a nearest barrier layer 113a on the p side. On the active layer 113, a p-type Al 0.15 Ga 0.85 N evaporation preventing layer 112 having a thickness of 15 nm, a p-type GaN layer 111 having a thickness of 20 nm, and a p-type GaN layer (layer to be processed with unevenness) 110 having a thickness of 30 nm. Is formed. That is, at this stage, the distance between the upper surface 401 of the quantum well layer 113b closest to the p side and the upper surface (surface covered with the metal reflection film) 402 of the p-type GaN layer 110 is 65 nm.

以上のようにしてサファイアR面基板上に成長させた複数の窒化物半導体層を含むウエハにおいて、設計上の各発光素子チップの外形寸法は一辺350μmの正方形に設定された。   In the wafer including a plurality of nitride semiconductor layers grown on the sapphire R-plane substrate as described above, the designed external dimensions of each light emitting element chip were set to a square having a side of 350 μm.

(p型GaN凹凸領域の形成)
模式的断面図5を参照して、p型GaN凹凸領域110aを形成するために、フォトリソグラフィ技術、RIE、またはウエットエッチングなどによってp型GaN層110を加工する。本実施例においては、一辺0.1μmで高さ0.1μm程度の四角錘状のp型GaN凹凸領域110aが形成されるが、この凹凸の形状やサイズは適宜に変更可能である。この段階において、p側に最も近い量子井戸層113bの上面401とp型GaN凹凸領域110aの底面(金属反射膜で覆われる面)111aとの距離は35nmである。
(Formation of p-type GaN uneven region)
Referring to schematic cross-sectional view 5, p-type GaN layer 110 is processed by photolithography, RIE, wet etching or the like to form p-type GaN uneven region 110 a. In this embodiment, a square pyramid-shaped p-type GaN uneven region 110a having a side of 0.1 μm and a height of about 0.1 μm is formed. The shape and size of the unevenness can be appropriately changed. At this stage, the distance between the top surface 401 of the quantum well layer 113b closest to the p-side and the bottom surface (surface covered with the metal reflective film) 111a of the p-type GaN uneven region 110a is 35 nm.

(支持基板貼付け工程)
図6は、サファイア基板上に成長させた窒化物半導体積層構造上に支持基板を貼り付ける工程を図解する模式的断面図である。この図に示されているように、p型GaN凹凸領域110a上には、厚さ3.5nmのp型用Pdオーミック層107、厚さ200nmのAg反射金属層106、厚さ500nmのAu層と厚さ100nmのNi−Ti層との積層を含むバリア金属層105、および厚さ3μmのAu−Sn接合金属層104を順次蒸着する。これらの蒸着には、EB(電子ビーム)蒸着法や抵抗加熱蒸着法を利用することができる。なお、AuSn合金の組成としては、たとえば20wt%Snを含み得る。
(Support substrate pasting process)
FIG. 6 is a schematic cross-sectional view illustrating a process of attaching a support substrate on a nitride semiconductor multilayer structure grown on a sapphire substrate. As shown in this figure, a p-type Pd ohmic layer 107 having a thickness of 3.5 nm, an Ag reflecting metal layer 106 having a thickness of 200 nm, and an Au layer having a thickness of 500 nm are formed on the p-type GaN uneven region 110a. And a barrier metal layer 105 including a stack of a Ni—Ti layer having a thickness of 100 nm and an Au—Sn junction metal layer 104 having a thickness of 3 μm are sequentially deposited. For these vapor depositions, an EB (electron beam) vapor deposition method or a resistance heating vapor deposition method can be used. The composition of the AuSn alloy can include 20 wt% Sn, for example.

他方、市販の研削/研磨機を用いて厚さが200μmに調整されたp型Si支持基板102の上面上には、厚さ50nmのTi層と厚さ1μmのAu層を含む正電極(Ti/Au)101がEB蒸着法にて形成される。また、Si支持基板102の下面上には、金属層(Ti/Au)103がEB蒸着法にて形成される。   On the other hand, on the upper surface of the p-type Si support substrate 102 whose thickness is adjusted to 200 μm using a commercially available grinding / polishing machine, a positive electrode (Ti / Au) 101 is formed by EB vapor deposition. Further, a metal layer (Ti / Au) 103 is formed on the lower surface of the Si support substrate 102 by EB vapor deposition.

その後、金属層(Ti/Au)103とAu−Sn接合金属層104とを対向接触させ、温度310℃で圧力300N/cm2による共晶接合法を用いて相互に接合させる。 Thereafter, the metal layer (Ti / Au) 103 and the Au—Sn bonding metal layer 104 are brought into contact with each other and bonded together using a eutectic bonding method at a temperature of 310 ° C. and a pressure of 300 N / cm 2 .

(サファイア基板剥離工程)
凹凸サファイア基板301の鏡面研磨された裏面側からYAG−THG(イットリウムアルミニウムガーネット3次高調波:波長355nm)レーザ光を照射し、凹凸サファイア基板301と接しているAlGaNバッファ層302とn型GaN層114の下面の一部とを熱分解させることによって、凹凸サファイア基板301が除去される。このとき、凹凸サファイア基板301の溝301aに対応して、n型GaN層114の露出表面にn型GaN凹凸領域115が残存することになる。
(Sapphire substrate peeling process)
YAG-THG (yttrium aluminum garnet third harmonic: wavelength 355 nm) laser light is irradiated from the mirror-polished back side of the concavo-convex sapphire substrate 301, and the AlGaN buffer layer 302 and the n-type GaN layer in contact with the concavo-convex sapphire substrate 301 The uneven sapphire substrate 301 is removed by thermally decomposing a part of the lower surface of 114. At this time, the n-type GaN uneven region 115 remains on the exposed surface of the n-type GaN layer 114 corresponding to the groove 301 a of the uneven sapphire substrate 301.

n型GaN凹凸領域115の露出面はRIEまたはウエットエッチングなどで清浄化され、その上に厚さ150nmの透明導電層120(ITO)を堆積し、さらにその上にn側のボンディング用パッド電極(Ti/Al/Ti/Au)121を形成する。その後、レーザ、ダイサー、またはRIEなどを利用してチップ分割することによって、図1に示されているようなLEDチップが得られる。   The exposed surface of the n-type GaN concavo-convex region 115 is cleaned by RIE or wet etching, and a transparent conductive layer 120 (ITO) having a thickness of 150 nm is deposited thereon, and an n-side bonding pad electrode (IT) ( Ti / Al / Ti / Au) 121 is formed. Thereafter, the chip is divided using a laser, a dicer, RIE, or the like to obtain an LED chip as shown in FIG.

(LEDチップのマウント)
図7は、上述のようにして得られた窒化物半導体LEDチップを搭載した発光装置の一例を示す模式透視図である。この図に示された発光装置710においては、p側電極101を下向きにしたLEDチップ720が、Agペーストを用いてステム701a上にマウントされる。そして、ボンディング用のn側パッド電極(Ti/Al/Ti/Au)121とリード701bとの間は、ボールボンディング装置を用いて、Auワイヤ702によって接続される。
(LED chip mounting)
FIG. 7 is a schematic perspective view showing an example of a light-emitting device on which the nitride semiconductor LED chip obtained as described above is mounted. In the light emitting device 710 shown in this figure, the LED chip 720 with the p-side electrode 101 facing downward is mounted on the stem 701a using Ag paste. The n-side pad electrode (Ti / Al / Ti / Au) 121 for bonding and the lead 701b are connected by an Au wire 702 using a ball bonding apparatus.

(内部量子効率、全光束光出力)
図7に示されているような発光装置の外部量子効率において、電流密度が10A/cm2のときの値を100%として、150A/cm2のときの値は75%となった。すなわち、本実施例の発光装置は、大電流密度条件下においても外部量子効率の低下率が小さくて良好な発光特性を示すことが分かる。ここで、外部量子効率は、注入電流(キャリアの個数)に関して全光束出力から換算した光子の個数の比率に対応する。
(Internal quantum efficiency, total luminous flux light output)
In the external quantum efficiency of the light emitting device as shown in FIG. 7, the value when the current density is 10 A / cm 2 is 100%, and the value when the current density is 150 A / cm 2 is 75%. That is, it can be seen that the light emitting device of this example shows good light emission characteristics with a small reduction rate of external quantum efficiency even under a large current density condition. Here, the external quantum efficiency corresponds to the ratio of the number of photons converted from the total luminous flux output with respect to the injection current (number of carriers).

<比較例1>
比較例1において作製されたLEDチップは、実施例1に比べて、p側に最も近い量子井戸層113bの上面401とp型GaN層110の上面(金属反射膜で覆われる面)402との距離が125nmに設定され、その上面402とp型GaN凹凸領域110aの底面(金属反射膜で覆われる面)111aとの距離が100nmであったことのみにおいて異なっていた。
<Comparative Example 1>
Compared with Example 1, the LED chip manufactured in Comparative Example 1 has an upper surface 401 of the quantum well layer 113b closest to the p side and an upper surface (surface covered with a metal reflective film) 402 of the p-type GaN layer 110. The only difference was that the distance was set to 125 nm, and the distance between the upper surface 402 and the bottom surface (surface covered with the metal reflective film) 111a of the p-type GaN uneven region 110a was 100 nm.

本比較例による窒化物半導体発光装置の外部量子効率において、電流密度が10A/cm2のときの値を100%として、150A/cm2のときの値は51%であった。すなわち、本比較例による発光装置は、実施例1に比べて、高電流密度条件下において外部量子効率が顕著に低下することが分かる。 In the external quantum efficiency of the nitride semiconductor light emitting device according to this comparative example, the value when the current density was 10 A / cm 2 was 100%, and the value when the current density was 150 A / cm 2 was 51%. That is, it can be seen that the external quantum efficiency of the light emitting device according to this comparative example is significantly reduced under the high current density condition as compared with Example 1.

<実施例2>
本発明の実施例2において作製されたLEDチップは、実施例1に比べて、p型GaN層111と110の合計厚さが25nmに設定され、p型GaN層110がエッチング処理去れずに平坦なままであったことのみにおいて異なっていた。すなわち、この場合には、厚さ15nmのp型蒸発防止層112が存在しているので、p側に最も近い量子井戸層113bの上面401とp型GaN層110の上面(金属反射膜で覆われる面)402との距離が40nmとなっている(図4参照)。
<Example 2>
The LED chip manufactured in Example 2 of the present invention has a total thickness of the p-type GaN layers 111 and 110 set to 25 nm as compared with Example 1, and the p-type GaN layer 110 is flat without being etched away. It was different only in what was left. That is, in this case, since the p-type evaporation prevention layer 112 having a thickness of 15 nm is present, the upper surface 401 of the quantum well layer 113b closest to the p side and the upper surface of the p-type GaN layer 110 (covered with a metal reflective film). The distance to the surface 402 is 40 nm (see FIG. 4).

本実施例2による窒化物半導体発光装置の外部量子効率において、電流密度が10A/cm2のときの値を100%として、150A/cm2のときの値は72%と良好な値であった。 In the external quantum efficiency of the nitride semiconductor light emitting device according to Example 2, the value when the current density was 10 A / cm 2 was 100%, and the value when the current density was 150 A / cm 2 was a favorable value of 72%. .

本実施例におけるようにp側に最も近い量子井戸層113bの上面401とp型GaN層110の上面(金属反射膜で覆われる面)402との距離の影響を調べたところ、その距離が10nm以上50nm以下の範囲内である場合に、高電流密度条件下における発光装置の外部量子効率の低下の抑制に効果があることが分かった。   As in this example, when the influence of the distance between the upper surface 401 of the quantum well layer 113b closest to the p side and the upper surface (surface covered with the metal reflective film) 402 of the p-type GaN layer 110 was examined, the distance was 10 nm. It has been found that when the thickness is in the range of 50 nm or less, it is effective in suppressing a decrease in external quantum efficiency of the light emitting device under a high current density condition.

なお、以上の実施例においてはサファイア基板のR面上に成長させられたA面に平行な複数の窒化物半導体層を含む発光素子が例示されたが、GaN基板のA面上に成長させられたA面に平行な複数の窒化物半導体層を含む発光素子にも本発明が適用され得ることは言うまでもない。   In the above embodiment, the light emitting device including a plurality of nitride semiconductor layers parallel to the A plane grown on the R plane of the sapphire substrate is illustrated. However, the light emitting element is grown on the A plane of the GaN substrate. Needless to say, the present invention can also be applied to a light emitting device including a plurality of nitride semiconductor layers parallel to the A-plane.

また、以上の実施例においては基板の一方側に正電極が配置されて他方側に負電極が配置された窒化物半導体発光素子が例示されたが、基板の一方側に正電極と負電極の両方が配置される窒化物半導体発光素子にも本発明が適用され得ることも言うまでもない。   In the above embodiment, the nitride semiconductor light emitting device in which the positive electrode is disposed on one side of the substrate and the negative electrode is disposed on the other side is illustrated. However, the positive electrode and the negative electrode are disposed on one side of the substrate. It goes without saying that the present invention can also be applied to a nitride semiconductor light emitting device in which both are arranged.

以上のように、本発明によれば、大電流密度条件下においても良好な発光効率(外部量子効率)を維持し得る窒化物半導体発光素子を提供することができる。   As described above, according to the present invention, it is possible to provide a nitride semiconductor light emitting element capable of maintaining good light emission efficiency (external quantum efficiency) even under a large current density condition.

本発明の一実施例による窒化物半導体発光ダイオードを示す模式的断面図である。1 is a schematic cross-sectional view showing a nitride semiconductor light emitting diode according to an embodiment of the present invention. 本発明の一実施例におけるサファイア基板の加工工程を図解する模式的断面図である。It is typical sectional drawing illustrating the processing process of the sapphire substrate in one Example of this invention. 本発明の一実施例における複数の窒化物半導体層の結晶成長工程を図解する模式的断面図である。It is typical sectional drawing illustrating the crystal growth process of the some nitride semiconductor layer in one Example of this invention. 本発明の一実施例による窒化物半導体発光素子の活性層近傍をより詳細に示す模式的断面図である。1 is a schematic cross-sectional view showing in more detail the vicinity of an active layer of a nitride semiconductor light emitting device according to an embodiment of the present invention. 図4中の最上層をエッチング加工した後の状態を示す模式的断面図である。It is typical sectional drawing which shows the state after etching the uppermost layer in FIG. 本発明の一実施例において支持基板を貼り付ける工程を図解する模式的断面図である。It is typical sectional drawing illustrating the process of affixing a support substrate in one Example of this invention. 本発明の一実施例における窒化物系半導体のLEDチップをステムに搭載した発光装置の模式的透視図である。1 is a schematic perspective view of a light emitting device in which a nitride semiconductor LED chip is mounted on a stem in one embodiment of the present invention. FIG. 六方晶系ユニットセルの結晶学的方位を示す模式的斜視図である。It is a typical perspective view which shows the crystallographic orientation of a hexagonal unit cell. 六方晶系ユニットセルにおいてR面を明示する模式的斜視図である。FIG. 3 is a schematic perspective view clearly showing an R plane in a hexagonal unit cell.

符号の説明Explanation of symbols

101 正電極(Ti/Au)、102 Si支持基板、103 Si支持基板側の金属層(Ti/Au)、104 Au−Sn接合金属層、105 バリア金属層(Au/Ni−Ti)、106 反射金属層(Ag)、107 p型用オーミック層(Pd)、110 p型GaN層、110a p型GaN凹凸領域、111 p型GaN層、111a p型GaN凹凸領域110aの底面(金属反射膜で覆われる面)、112 p型AlGaN蒸発防止層、113 InGaN活性層、113a バリヤ層、113b 量子井戸層、113c バリヤ層、114 n型GaN層、115 n型GaN凹凸領域、120 透明導電体(ITO)、121 負電極(Ti/Al/Ti/Au)、201 サファイア基板、202 マスク層、203 窓領域、301 凹凸が形成されたサファイア基板(凹凸サファイア基板)、301a サファイア基板の凹部、301b サファイア基板の凸部、302 AlGaNバッファ層(Al0.02Ga0.98N)、113 活性層、113a p側に最近接のバリア層、113b p側に最も近い量子井戸層、113c バリア層、401 井戸層113bの上面、402 p型GaN層402の上面(金属反射膜で覆われる面)、701 リード、702 Auワイヤ、710 ステム、720 窒化物系半導体LEDチップ。 101 Positive electrode (Ti / Au), 102 Si support substrate, 103 Si support substrate side metal layer (Ti / Au), 104 Au—Sn junction metal layer, 105 Barrier metal layer (Au / Ni—Ti), 106 Reflection Metal layer (Ag), 107 p-type ohmic layer (Pd), 110 p-type GaN layer, 110a p-type GaN uneven region, 111 p-type GaN layer, bottom surface of 111a p-type GaN uneven region 110a (covered with metal reflective film) 112 p-type AlGaN evaporation prevention layer, 113 InGaN active layer, 113a barrier layer, 113b quantum well layer, 113c barrier layer, 114 n-type GaN layer, 115 n-type GaN uneven region, 120 transparent conductor (ITO) 121 Negative electrode (Ti / Al / Ti / Au), 201 Sapphire substrate, 202 Mask layer, 203 Window region, 301 Concavity and convexity formed Sapphire substrates (unevenness sapphire substrate), recesses 301a sapphire substrate, convex portions of 301b sapphire substrate 302 AlGaN buffer layer (Al 0.02 Ga 0.98 N), 113 active layer, the barrier layer closest to 113a p side, 113b Quantum well layer closest to p side, 113c barrier layer, 401 upper surface of well layer 113b, 402 upper surface of p-type GaN layer 402 (surface covered with metal reflection film), 701 lead, 702 Au wire, 710 stem, 720 nitride Physical semiconductor LED chip.

Claims (5)

無極性のA面に平行な複数の窒化物半導体層を含む窒化物半導体発光素子であって、
前記発光素子は、順次積層された1以上のn型窒化物半導体層と、窒化物半導体活性層と、1以上のp型窒化物半導体層と、金属層とを含み、
前記活性層は1以上の量子井戸層を含み、
前記金属層とこれに最も近い前記量子井戸層との距離が10nm以上50nm以下の範囲内にあることを特徴とする窒化物半導体発光素子。
A nitride semiconductor light emitting device including a plurality of nitride semiconductor layers parallel to a nonpolar A-plane,
The light emitting device includes one or more n-type nitride semiconductor layers, a nitride semiconductor active layer, one or more p-type nitride semiconductor layers, and a metal layer, which are sequentially stacked.
The active layer includes one or more quantum well layers;
A nitride semiconductor light emitting device, wherein a distance between the metal layer and the quantum well layer closest thereto is in a range of 10 nm to 50 nm.
前記井戸層の厚さが2.5nm以上5.0nm以下の範囲内にあることを特徴とする請求項1に記載の窒化物半導体発光素子。   2. The nitride semiconductor light emitting device according to claim 1, wherein a thickness of the well layer is in a range of 2.5 nm to 5.0 nm. 前記活性層は390nm以上510nm以下の波長範囲内の光を生じることを特徴とする請求項1または2に記載の窒化物半導体発光素子。   The nitride semiconductor light emitting device according to claim 1, wherein the active layer generates light in a wavelength range of 390 nm to 510 nm. 請求項1から3のいずれかの窒化物半導体発光素子を製造するための方法であって、前記複数の窒化物半導体層はサファイア基板のR面上またはGaN基板のA面上に気相成長させられることを特徴とする製造方法。   4. The method for manufacturing the nitride semiconductor light emitting device according to claim 1, wherein the plurality of nitride semiconductor layers are vapor-phase grown on an R surface of a sapphire substrate or an A surface of a GaN substrate. The manufacturing method characterized by the above-mentioned. 前記複数の窒化物半導体層の成長後に前記基板を剥離し、前記複数の窒化物半導体層がp型用電極とn型用電極によって挟まれることを特徴とする請求項4に記載の製造方法。   The manufacturing method according to claim 4, wherein the substrate is peeled after the growth of the plurality of nitride semiconductor layers, and the plurality of nitride semiconductor layers are sandwiched between the p-type electrode and the n-type electrode.
JP2008050191A 2008-02-29 2008-02-29 Nitride semiconductor light emitting element, and manufacturing method thereof Pending JP2009206461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008050191A JP2009206461A (en) 2008-02-29 2008-02-29 Nitride semiconductor light emitting element, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008050191A JP2009206461A (en) 2008-02-29 2008-02-29 Nitride semiconductor light emitting element, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2009206461A true JP2009206461A (en) 2009-09-10

Family

ID=41148396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008050191A Pending JP2009206461A (en) 2008-02-29 2008-02-29 Nitride semiconductor light emitting element, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2009206461A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040784A (en) * 2010-10-21 2011-02-24 Sharp Corp Nitride semiconductor light emitting device
JP2013183067A (en) * 2012-03-02 2013-09-12 Hitachi Cable Ltd Semiconductor light emitting device, manufacturing method of semiconductor light emitting device, lead frame, and manufacturing method of lead frame
US8686398B2 (en) 2012-03-02 2014-04-01 Kabushiki Kaisha Toshiba Semiconductor light emitting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007201019A (en) * 2006-01-24 2007-08-09 Sharp Corp Nitride semiconductor light-emitting element and manufacturing method thereof
JP2007214260A (en) * 2006-02-08 2007-08-23 Matsushita Electric Ind Co Ltd Semiconductor light emitting element and its process for fabrication

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007201019A (en) * 2006-01-24 2007-08-09 Sharp Corp Nitride semiconductor light-emitting element and manufacturing method thereof
JP2007214260A (en) * 2006-02-08 2007-08-23 Matsushita Electric Ind Co Ltd Semiconductor light emitting element and its process for fabrication

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040784A (en) * 2010-10-21 2011-02-24 Sharp Corp Nitride semiconductor light emitting device
JP2013183067A (en) * 2012-03-02 2013-09-12 Hitachi Cable Ltd Semiconductor light emitting device, manufacturing method of semiconductor light emitting device, lead frame, and manufacturing method of lead frame
US8686398B2 (en) 2012-03-02 2014-04-01 Kabushiki Kaisha Toshiba Semiconductor light emitting device

Similar Documents

Publication Publication Date Title
JP4854566B2 (en) Nitride semiconductor light emitting device manufacturing method and nitride semiconductor light emitting device
KR100634340B1 (en) Nitride semiconductor device and its manufacturino method
US7554122B2 (en) Nitride semiconductor light emitting device, and method of fabricating nitride semiconductor light emitting device
JP4924185B2 (en) Nitride semiconductor light emitting device
WO2010100844A1 (en) Nitride semiconductor element and method for manufacturing same
JP4676577B2 (en) Nitride-based semiconductor device and manufacturing method thereof
JP5340712B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP4558846B1 (en) Nitride-based semiconductor device and manufacturing method thereof
TW200805711A (en) GaN type semiconductor light emitting element and lamp
WO2008041521A1 (en) Light-emitting device
JP2012169481A (en) Semiconductor device and manufacturing method of the same
WO2015146069A1 (en) Light emitting diode element
JP2008021986A (en) Nitride semiconductor light emitting element, and manufacturing method thereof
JP5047508B2 (en) Manufacturing method of nitride semiconductor light emitting device
JPWO2016002419A1 (en) Nitride semiconductor light emitting device
JP4827706B2 (en) Nitride semiconductor light emitting device
JP5474292B2 (en) Nitride semiconductor light emitting diode device
JP2009289983A (en) Nitride semiconductor light-emitting diode
JP2009206461A (en) Nitride semiconductor light emitting element, and manufacturing method thereof
JP2011211097A (en) Method for manufacturing semiconductor device
JP6648685B2 (en) Method for manufacturing group III nitride semiconductor light emitting device
JP4341623B2 (en) Light emitting device and manufacturing method thereof
JP2011258843A (en) Nitride semiconductor light-emitting element and method of manufacturing the same
JP2008118048A (en) GaN-BASED SEMICONDUCTOR LIGHT EMITTING DEVICE
TWI545798B (en) Nitride semiconductor light emitting device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703