JP2009205864A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2009205864A
JP2009205864A JP2008044905A JP2008044905A JP2009205864A JP 2009205864 A JP2009205864 A JP 2009205864A JP 2008044905 A JP2008044905 A JP 2008044905A JP 2008044905 A JP2008044905 A JP 2008044905A JP 2009205864 A JP2009205864 A JP 2009205864A
Authority
JP
Japan
Prior art keywords
current collector
lead
negative electrode
purity
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008044905A
Other languages
Japanese (ja)
Other versions
JP5100441B2 (en
Inventor
Hidesato Saruwatari
秀郷 猿渡
Hideaki Morishima
秀明 森島
Hirotaka Inagaki
浩貴 稲垣
Norio Takami
則雄 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008044905A priority Critical patent/JP5100441B2/en
Publication of JP2009205864A publication Critical patent/JP2009205864A/en
Application granted granted Critical
Publication of JP5100441B2 publication Critical patent/JP5100441B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte battery in which welding connectivity between a lead extraction part and a lead is improved without causing short-circuit or resistance increase of the lead taking-out part caused by falling-off of a coating agent. <P>SOLUTION: This non-aqueous electrolyte battery is equipped with: an exterior material; electrode groups laminated via separators among a plurality of positive electrodes and a plurality of negative electrodes; positive electrode leads connected to a plurality of positive electrodes; negative electrode leads connected to a plurality of negative electrodes; and a non-aqueous electrolyte housed in the exterior material. Respective positive electrodes are equipped with current collectors having current collector main bodies and the lead extraction parts integrally protruded from these main bodies, and with positive electrode layers formed at the current collector main bodies. Respective negative electrodes are equipped with the current collectors having the current collector main bodies and the lead extraction parts integrally protruded from these main bodies, and with negative electrode layers formed in the current collector main bodies. As for the lead extraction parts of the positive electrodes and the negative electrodes, contact angle against water of 20°C is 45° or less, and as for the collector main bodies, the contact angle against water of 20°C is more than 45°. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、非水電解質電池に関する。   The present invention relates to a non-aqueous electrolyte battery.

従来のリチウムイオン二次電池に代表される非水電解質電池の集電体として用いられるアルミニウム箔には圧延時の圧延油が残留している。集電体であるアルミニウム箔が電極層形成領域と電極層未形成領域を有し、電極層未形成領域をリード取出し部に用いる構造において、圧延油がアルミニウム箔の電極層未形成領域に残留すると、濡れ性が低いために、リード取出し部にリードを溶接する際の溶接性を低下させる。溶接性の低下は、リードと集電体の接触抵抗を増大させて大電流特性の障害になる。   The rolling oil at the time of rolling remains in the aluminum foil used as a collector of the nonaqueous electrolyte battery represented by the conventional lithium ion secondary battery. When the aluminum foil as a current collector has an electrode layer formation region and an electrode layer non-formation region, and the rolling oil remains in the electrode layer non-formation region of the aluminum foil in a structure in which the electrode layer non-formation region is used for the lead extraction part Since the wettability is low, the weldability when the lead is welded to the lead take-out portion is lowered. The decrease in weldability increases the contact resistance between the lead and the current collector, and becomes an obstacle to large current characteristics.

特許文献1には、集電体であるアルミニウム箔の残留圧延油を除去し、電極塗工スラリーとアルミニウム箔の濡れ性を改善することが開示されている。
特開2005−50679号公報
Patent Document 1 discloses that residual rolling oil of an aluminum foil as a current collector is removed to improve the wettability of the electrode coating slurry and the aluminum foil.
Japanese Patent Laid-Open No. 2005-50679

しかしながら、集電体であるアルミニウム箔が前述したように電極層形成領域と電極層未形成領域を有し、電極層未形成領域をリード取出し部に用いる構造において、特許文献1のように電極塗工スラリーとアルミニウム箔との濡れ性を高めると、本来、電極層未形成領域となる部分にまで電極塗工スラリーが流れ込む。その結果、電極層未形成領域(リード取出し部)に流れ込んだ塗工剤の脱落に起因して短絡またはリード取出し部の抵抗増加を生じる虞がある。   However, in the structure in which the aluminum foil as the current collector has the electrode layer formation region and the electrode layer non-formation region as described above, and the electrode layer non-formation region is used for the lead extraction portion, the electrode coating as in Patent Document 1 is performed. When the wettability between the working slurry and the aluminum foil is increased, the electrode coating slurry flows into a portion that originally becomes an electrode layer unformed region. As a result, there is a possibility that a short circuit or an increase in the resistance of the lead extraction portion may occur due to the dropping of the coating agent flowing into the electrode layer non-formed region (lead extraction portion).

本発明は、塗工剤の脱落に起因する短絡またはリード取出し部の抵抗増大を招くことなく、リード取出し部とリードとの溶接接続性を向上した非水電解質電池を提供することを目的とする。   An object of the present invention is to provide a nonaqueous electrolyte battery having improved weld connectivity between a lead extraction part and a lead without causing a short circuit due to dropping of the coating agent or an increase in resistance of the lead extraction part. .

本発明の第1態様によると、外装材;
前記外装材内に収納され、複数の正極、複数の負極およびこれら正極、負極間に介在されるセパレータを積層した構造の電極群;
前記複数の正極に接続された正極リード;
前記複数の負極に接続された負極リード;
前記外装材に収容された非水電解質
を備え、
前記各正極は、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなり、集電体本体およびこの本体から一体的に突出したリード取出し部を有する集電体と、この集電体本体の片面もしくは両面に形成された正極活物質を含む正極層とを有し、各リード取出し部が溶接により互いに接合して束ねられ、
前記各正極のリード取出し部は、20℃の水に対する接触角が45°以下、前記集電体本体は20℃の水に対する接触角が45°を超え、
前記正極リードは、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなり、前記束ねられた複数の正極のリード取出し部に溶接により接続され、
前記各負極は、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなり、集電体本体およびこの本体から一体的に突出したリード取出し部を有する集電体と、この集電体本体の片面もしくは両面に形成された負極活物質を含む負極層とを有し、各リード取出し部が溶接により互いに接合して束ねられ、
前記各負極のリード取出し部は、20℃の水に対する接触角が45°以下、前記集電体本体は20℃の水に対する接触角が45°を超え、かつ
前記負極リードは、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなり、前記束ねられた複数の負極のリード取出し部に溶接により接続されることを特徴とする非水電解質電池が提供される。
According to a first aspect of the present invention, an exterior material;
An electrode group having a structure in which a plurality of positive electrodes, a plurality of negative electrodes, and separators interposed between the positive electrodes and the negative electrodes are stacked in the exterior material;
A positive electrode lead connected to the plurality of positive electrodes;
A negative electrode lead connected to the plurality of negative electrodes;
Comprising a non-aqueous electrolyte housed in the exterior material,
Each of the positive electrodes is made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more, and has a current collector body and a current collector having a lead extraction portion integrally projecting from the body, and the current collector body A positive electrode layer containing a positive electrode active material formed on one side or both sides, and each lead extraction part is joined and bundled by welding,
The lead extraction part of each positive electrode has a contact angle with water of 20 ° C. of 45 ° or less, the current collector body has a contact angle with water of 20 ° C. exceeding 45 °,
The positive electrode lead is made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more, and connected to the lead-out portions of the bundled positive electrodes by welding,
Each negative electrode is made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more, and has a current collector body and a current collector having a lead-out portion protruding integrally from the body, and the current collector body A negative electrode layer containing a negative electrode active material formed on one side or both sides of each, and each lead extraction part is joined and bundled together by welding,
The lead extraction part of each negative electrode has a contact angle with water of 20 ° C. of 45 ° or less, the current collector body has a contact angle with water of 20 ° C. of more than 45 °, and the negative electrode lead has a purity of 99% or more There is provided a non-aqueous electrolyte battery characterized in that it is made of aluminum or an aluminum alloy having a purity of 99% or more and is connected to the lead-out portions of the bundled negative electrodes by welding.

本発明の第2態様によると、外装材;
前記外装材内に収納され、正極、複数の負極およびこれら正極、負極間に介在されるセパレータを渦巻状に捲回した構造の電極群;
前記正極に接続された正極リード;
前記負極に接続された負極リード;
前記外装材に収容された非水電解質
を備え、
前記正極は、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなり、帯状の集電体本体およびこの集電体本体から一体的に突出した複数のリード取出し部を有する集電体と、この帯状の集電体本体の片面もしくは両面に形成された正極活物質を含む正極層とを備え、各リード取出し部が溶接により互いに接合して束ねられ、
前記正極の各リード取出し部は、20℃の水に対する接触角が45°以下、前記集電体本体は20℃の水に対する接触角が45°を超え、
前記正極リードは、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなり、前記正極の束ねられた複数のリード取出し部に溶接により接続され、
前記負極は、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなり、帯状の集電体本体およびこの集電体本体から一体的に突出した複数のリード取出し部を有する集電体と、この帯状の集電体本体の片面もしくは両面に形成された負極活物質を含む負極層とを備え、各リード取出し部が溶接により互いに接合して束ねられ、
前記負極の各リード取出し部は、20℃の水に対する接触角が45°以下、前記集電体本体は20℃の水に対する接触角が45°を超え、かつ
前記負極リードは、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなり、前記負極の束ねられた複数のリード取出し部に溶接により接続されることを特徴とする非水電解質電池が提供される。
According to a second aspect of the present invention, an exterior material;
An electrode group having a structure in which a positive electrode, a plurality of negative electrodes, and a separator interposed between the positive electrodes and the negative electrode are wound in a spiral shape;
A positive electrode lead connected to the positive electrode;
A negative electrode lead connected to the negative electrode;
Comprising a non-aqueous electrolyte housed in the exterior material,
The positive electrode is made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more, and has a strip-shaped current collector body and a current collector having a plurality of lead extraction portions integrally projecting from the current collector body; A positive electrode layer containing a positive electrode active material formed on one side or both sides of the belt-like current collector body, and each lead extraction part is joined and bundled together by welding,
Each lead extraction part of the positive electrode has a contact angle with respect to water at 20 ° C. of 45 ° or less, and the current collector body has a contact angle with respect to water at 20 ° C. exceeding 45 °,
The positive electrode lead is made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more, and connected by welding to a plurality of lead extraction portions bundled with the positive electrode,
The negative electrode is made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more, and has a strip-shaped current collector body and a current collector having a plurality of lead extraction portions integrally projecting from the current collector body; A negative electrode layer containing a negative electrode active material formed on one side or both sides of the strip-shaped current collector body, and each lead extraction part is joined and bundled together by welding,
Each lead take-out part of the negative electrode has a contact angle with water of 20 ° C. of 45 ° or less, the current collector body has a contact angle with water of 20 ° C. of more than 45 °, and the negative electrode lead has a purity of 99% or more There is provided a nonaqueous electrolyte battery characterized in that it is made of aluminum or an aluminum alloy having a purity of 99% or more and is connected to a plurality of lead-out portions bundled with the negative electrode by welding.

本発明の第3態様によると、外装材;
前記外装材内に収納され、正極、複数の負極およびこれら正極、負極間に介在されるセパレータを渦巻状に捲回した構造の電極群;
前記正極に接続された正極リード;
前記負極に接続された負極リード;
前記外装材に収容された非水電解質
を備え、
前記正極は、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなり、帯状の集電体本体およびこの集電体本体の長手方向に沿う側面に一体的に形成された帯状のリード取出し部を有する集電体と、この帯状の集電体本体の片面もしくは両面に形成された正極活物質を含む正極層とを備え、前記リード取り出し部が前記電極群の一方の渦巻状面に渦巻状に突出し、
前記正極のリード取出し部は、20℃の水に対する接触角が45°以下、前記集電体本体は20℃の水に対する接触角が45°を超え、
前記正極リードは、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなり、前記正極の渦巻状に突出したリード取出し部の複数個所に溶接により接続され、かつ溶接により互いに接合して束ねられた複数の中間リードと、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなり、束ねられた中間リードに溶接により接続された主リードとを備え、
前記負極は、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなり、帯状の集電体本体およびこの集電体本体の長手方向に沿い前記正極のリード取出し部と反対側の側面に一体的に形成された帯状のリード取出し部を有する集電体と、この帯状の集電体本体の片面もしくは両面に形成された負極活物質を含む負極層とを備え、前記リード取り出し部が前記電極群の他方の渦巻状面に渦巻状に突出し、
前記負極のリード取出し部は、20℃の水に対する接触角が45°以下、前記集電体本体は20℃の水に対する接触角が45°を超え、
前記負極リードは、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなり、前記負極の渦巻状に突出したリード取出し部の複数個所に溶接により接続され、かつ溶接により互いに接合して束ねられた複数の中間リードと、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなり、束ねられた中間リードに溶接により接続された主リードとを備えることを特徴とする非水電解質電池が提供される。
According to a third aspect of the present invention, an exterior material;
An electrode group having a structure in which a positive electrode, a plurality of negative electrodes, and a separator interposed between the positive electrodes and the negative electrode are wound in a spiral shape;
A positive electrode lead connected to the positive electrode;
A negative electrode lead connected to the negative electrode;
Comprising a non-aqueous electrolyte housed in the exterior material,
The positive electrode is made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more, and takes out a strip-shaped current collector body and a strip-shaped lead integrally formed on a side surface along the longitudinal direction of the current collector body. And a positive electrode layer containing a positive electrode active material formed on one side or both sides of the band-shaped current collector body, and the lead take-out part spirals on one spiral surface of the electrode group. Protruding into a shape,
The lead lead-out part of the positive electrode has a contact angle with respect to 20 ° C. water of 45 ° or less, and the current collector body has a contact angle with respect to water of 20 ° C. exceeding 45 °,
The positive electrode lead is made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more, and is connected to a plurality of lead-out portions protruding in a spiral shape of the positive electrode by welding, and is joined and bundled by welding. A plurality of intermediate leads, and a main lead made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more and connected to the bundled intermediate leads by welding,
The negative electrode is made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more, and is formed on a side surface opposite to the lead-out portion of the positive electrode along the longitudinal direction of the strip-shaped current collector body and the current collector body. A current collector having an integrally formed strip-shaped lead extraction portion; and a negative electrode layer containing a negative electrode active material formed on one or both surfaces of the strip-shaped current collector body, wherein the lead extraction portion is Projecting spirally on the other spiral surface of the electrode group,
The lead extraction part of the negative electrode has a contact angle with water of 20 ° C. of 45 ° or less, the current collector body has a contact angle with water of 20 ° C. exceeding 45 °,
The negative electrode lead is made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more, and is connected by welding to a plurality of lead extraction portions protruding in a spiral shape of the negative electrode, and is joined and bundled by welding. A non-aqueous electrolyte battery comprising a plurality of intermediate leads and a main lead made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more and connected to the bundled intermediate leads by welding. Is provided.

本発明によれば、塗工剤の脱落に起因する短絡またはリード取出し部の抵抗増大を招くことなく、リード取出し部とリードとの溶接接続性を向上した大電流特性の優れた非水電解質電池を提供できる。   According to the present invention, a non-aqueous electrolyte battery having excellent large current characteristics with improved weld connectivity between the lead extraction part and the lead without causing a short circuit due to dropping of the coating agent or an increase in resistance of the lead extraction part. Can provide.

以下、本発明の実施形態に係る非水電解液電池を図面を参照して詳細に説明する。なお、各図は発明の説明とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術を参酌して適宜、設計変更することができる。   Hereinafter, nonaqueous electrolyte batteries according to embodiments of the present invention will be described in detail with reference to the drawings. Each figure is a schematic diagram for promoting explanation and understanding of the invention, and its shape, dimensions, ratio, etc. are different from the actual apparatus, but these are considered in consideration of the following explanation and known techniques. The design can be changed as appropriate.

(第1実施形態)
図1は、第1実施形態に係る非水電解質電池の断面図、図2の(A)は図1の非水電解質電池に組み込まれる正極の正面図、図2の(B)は図1の非水電解質電池に組み込まれる負極の正面図、図3は図1の非水電解質電池に組み込まれる電極群の斜視図である。
(First embodiment)
1 is a cross-sectional view of the nonaqueous electrolyte battery according to the first embodiment, FIG. 2A is a front view of a positive electrode incorporated in the nonaqueous electrolyte battery of FIG. 1, and FIG. FIG. 3 is a perspective view of an electrode group incorporated in the nonaqueous electrolyte battery of FIG. 1. FIG. 3 is a front view of the negative electrode incorporated in the nonaqueous electrolyte battery.

矩形外装材1は、例えば正極端子を兼ねる矩形(角形)金属缶(例えばアルミニウム缶)2と、この金属缶2の開口部に溶接により気密に取り付けられた例えばアルミニウムからなる蓋体3とから構成されている。ガス抜き穴4は、蓋体3の中心に開口されている。図示しない金属薄膜(例えばアルミニウム薄膜)は、ガス抜き穴4およびその近傍の蓋体3裏面に溶接等により取付けられ、外装材1内のガス圧が一定の値を超えると、破断してガスを外装材1の外部に逃散させる。矩形正極端子5は、ガス抜き穴4から例えば左側に位置する蓋体3に一体的に突起されている。断面T形の負極端子6は、ガス抜き穴4から例えば右側に位置する蓋体3の矩形絶縁リング7に嵌入して気密に固定されている。   The rectangular exterior material 1 is composed of, for example, a rectangular (rectangular) metal can (for example, an aluminum can) 2 that also serves as a positive electrode terminal, and a lid 3 made of, for example, aluminum that is airtightly attached to the opening of the metal can 2 by welding. Has been. The gas vent hole 4 is opened at the center of the lid 3. A metal thin film (not shown) (for example, an aluminum thin film) is attached to the back surface of the gas vent hole 4 and the lid 3 in the vicinity thereof by welding or the like, and when the gas pressure in the exterior material 1 exceeds a certain value, it breaks and gas is released. Escape to the outside of the exterior material 1. The rectangular positive terminal 5 is integrally projected from the gas vent hole 4 to, for example, the lid 3 located on the left side. The negative electrode terminal 6 having a T-shaped cross section is fitted into the rectangular insulating ring 7 of the lid 3 located on the right side, for example, from the gas vent hole 4 and is airtightly fixed.

矩形積層電極群8は外装材1の金属缶2内に収納されている。矩形電極群8は、複数の図2の(A)に示す正極9および複数の図2の(B)に示す負極10を図3に示すように九十九状に折り込んだセパレータ11の折り曲げ部に交互に挿入して積層し、セパレータ11の端部を矩形柱状の積層物の外周側面を覆うように巻装した構造を有する。このような矩形積層電極群8は、九十九状に折り込んだセパレータ11の面が上下端面になるように前記金属缶2内に挿入して収納される。   The rectangular laminated electrode group 8 is accommodated in the metal can 2 of the exterior material 1. The rectangular electrode group 8 includes a plurality of positive electrodes 9 shown in FIG. 2A and a plurality of negative electrodes 10 shown in FIG. 2B folded in a ninety nine as shown in FIG. The separators 11 are alternately inserted and stacked, and the end portions of the separators 11 are wound so as to cover the outer peripheral side surfaces of the rectangular columnar laminate. Such a rectangular laminated electrode group 8 is inserted and accommodated in the metal can 2 so that the surface of the separator 11 folded into a ninety-nine shape becomes the upper and lower end surfaces.

正極9は、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金、(例えば純度99%以上のアルミニウム箔)、からなる集電体12を有する。集電体12は、矩形細長の集電体本体12aと、この集電体本体12aの例えば左上端の一部から一体的に突出したリード取出し部12bとから構成されている。正極活物質を含む正極層(図示せず)は集電体12の集電体本体12bの片面もしくは両面に形成されている。各正極9において、リード取出し部12bは20℃の水に対する接触角が45°以下、集電体本体12aは20℃の水に対する接触角が45°を超える性状を有する。各正極9は、九十九状に折り込んだセパレータ11の折り曲げ部に集電体12のリード取出し部12bが図3に示すように積層方向に配列されるように挿入されている。これらのリード取出し部12bは溶接により互いに接合して束ねられている。   The positive electrode 9 has a current collector 12 made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more (for example, an aluminum foil having a purity of 99% or more). The current collector 12 includes a rectangular elongated current collector main body 12a and a lead extraction portion 12b that protrudes integrally from, for example, a part of the upper left end of the current collector main body 12a. A positive electrode layer (not shown) containing the positive electrode active material is formed on one side or both sides of the current collector body 12 b of the current collector 12. In each positive electrode 9, the lead extraction portion 12 b has a property that the contact angle with respect to 20 ° C. water is 45 ° or less, and the current collector body 12 a has a property that the contact angle with respect to 20 ° C. water exceeds 45 °. Each positive electrode 9 is inserted into a bent portion of a separator 11 folded into a ninety-nine shape so that lead extraction portions 12b of the current collector 12 are arranged in the stacking direction as shown in FIG. These lead extraction portions 12b are joined and bundled together by welding.

負極10は、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金、(例えば純度99%以上のアルミニウム箔)、からなる集電体13を有する。集電体13は、矩形細長の集電体本体13aと、この集電体本体13aの例えば右上端の一部から一体的に突出したリード取出し部13bとから構成されている。負極活物質を含む負極層(図示せず)は集電体13の集電体本体13bの片面もしくは両面に形成されている。各負極10において、リード取出し部13bは20℃の水に対する接触角が45°以下、集電体本体13aは20℃の水に対する接触角が45°を超える性状を有する。各負極10は、九十九状に折り込んだセパレータ11の折り曲げ部に集電体13のリード取出し部13bが図3に示すように積層方向に配列されるように挿入されている。これらのリード取出し部13bは溶接により互いに接合して束ねられている。   The negative electrode 10 includes a current collector 13 made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more (for example, an aluminum foil having a purity of 99% or more). The current collector 13 includes a rectangular elongated current collector body 13a and a lead extraction portion 13b that integrally protrudes from, for example, a part of the upper right end of the current collector body 13a. A negative electrode layer (not shown) containing the negative electrode active material is formed on one side or both sides of the current collector body 13 b of the current collector 13. In each negative electrode 10, the lead extraction portion 13 b has a property that the contact angle with respect to 20 ° C. water is 45 ° or less, and the current collector body 13 a has a property that the contact angle with respect to 20 ° C. water exceeds 45 °. Each negative electrode 10 is inserted into the bent portion of the separator 11 folded into a ninety-nine shape so that the lead extraction portion 13b of the current collector 13 is arranged in the stacking direction as shown in FIG. These lead extraction portions 13b are joined and bundled together by welding.

純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなる正極リード14は、その下端が複数の正極9の束ねられたリード取出し部12bに溶接により接続され、他端が正極端子5直下の蓋体3下面に溶接により接続されている。   A positive electrode lead 14 made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more has a lower end connected to a bundled lead extraction portion 12b of a plurality of positive electrodes 9 and the other end directly below the positive electrode terminal 5. It is connected to the lower surface of the lid 3 by welding.

純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなる負極リード15は、その下端が複数の負極10の束ねられたリード取出し部13bに溶接により接続され、他端が蓋体3下面に露出した負極端子6の下端面に溶接により接続されている。   A negative electrode lead 15 made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more has a lower end connected to a bundled lead extraction portion 13b of a plurality of negative electrodes 10, and the other end connected to the lower surface of the lid 3. The exposed negative electrode terminal 6 is connected to the lower end surface by welding.

なお、第1実施形態でのリード取出し部相互の接続およびリード取出し部とリードの接続等に用いられる溶接は、例えばレーザー溶接、抵抗溶接、超音波溶接が挙げられる。   In addition, laser welding, resistance welding, ultrasonic welding, etc. are mentioned as welding used for the connection of the lead extraction parts in 1st Embodiment, the connection of a lead extraction part, and a lead etc., for example.

以下、非水電解質電池の各部材について詳細に説明する。   Hereinafter, each member of the nonaqueous electrolyte battery will be described in detail.

1)正極
正極は、前述したように純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金から作られる集電体の集電体本体の片面もしくは両面に正極活物質、導電剤および結着剤を含む正極層を形成した構造を有する。
1) Positive electrode As described above, the positive electrode has a positive electrode active material, a conductive agent and a binder on one or both sides of a current collector body made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more. The positive electrode layer containing the structure is formed.

正極活物質は、種々の酸化物、硫化物等を用いることができる。例えば、二酸化マンガン(MnO2)、酸化鉄、酸化銅、酸化ニッケル、リチウムマンガン複合酸化物(例えばLixMn24またはLixMnO2)、リチウムニッケル複合酸化物(例えばLixNiO2)、リチウムコバルト複合酸化物(LixCoO2)、リチウムニッケルコバルト複合酸化物{例えばLiNi1-y-zCoyz2(MはAl,CrおよびFeからなる群から選ばれる少なくとも1つの元素)、0≦y≦0.5、0≦z≦0.1}、リチウムマンガンコバルト複合酸化物{例えばLiMn1-y-zCoyz2(MはAl,CrおよびFeからなる群から選ばれる少なくとも1つの元素)、0≦y≦0.5、0≦z≦0.1}、リチウムマンガンニッケル複合化合物{例えばLiMnxNix1-2x2(MはCo,Cr,AlおよびFeからなる群から選ばれる少なくとも1つの元素、1/3≦x≦1/2;例えばLiMn1/3Ni1/3Co1/32、LiMn1/2Ni1/22}、スピネル型リチウムマンガンニッケル複合酸化物(LixMn2-yNiy4)、オリビン構造を有するリチウムリン酸化物(LixFePO4、LixFe1-yMnyPO4、LixCoPO4など)、硫酸鉄(Fe2(SO43)、バナジウム酸化物(例えばV25)などが挙げられる。また、ポリアニリンやポリピロールなどの導電性ポリマー材料、ジスルフィド系ポリマー材料、イオウ(S)、フッ化カーボンなどの有機材料および無機材料も用いることができる。なお、前記化学式においてx、y、zについて規定がない場合は、それぞれ0以上1以下の範囲であることが好ましい。 As the positive electrode active material, various oxides, sulfides, and the like can be used. For example, manganese dioxide (MnO 2 ), iron oxide, copper oxide, nickel oxide, lithium manganese composite oxide (eg, Li x Mn 2 O 4 or Li x MnO 2 ), lithium nickel composite oxide (eg, Li x NiO 2 ) , Lithium cobalt composite oxide (Li x CoO 2 ), lithium nickel cobalt composite oxide {for example, LiNi 1-yz Co y M z O 2 (M is at least one element selected from the group consisting of Al, Cr and Fe) , 0 ≦ y ≦ 0.5, 0 ≦ z ≦ 0.1}, lithium manganese cobalt composite oxide {for example, LiMn 1-yz Co y M z O 2 (M is a group consisting of Al, Cr and Fe) At least one element selected), 0 ≦ y ≦ 0.5, 0 ≦ z ≦ 0.1}, lithium manganese nickel composite compound {eg, LiMn x Ni x M 1-2x O 2 (M is Co, Cr, Al) And at least one element selected from the group consisting of Fe, 1/3 ≦ x ≦ 1/2; for example, LiMn 1/3 Ni 1/3 Co 1/3 O 2 , LiMn 1/2 Ni 1/2 O 2 } , spinel type lithium-manganese-nickel composite oxide (LixMn 2-y Ni y O 4), lithium phosphates having an olivine structure (Li x FePO 4, Li x Fe 1-y Mn y PO 4, Li x CoPO 4 etc. ), Iron sulfate (Fe 2 (SO 4 ) 3 ), vanadium oxide (for example, V 2 O 5 ), conductive polymer materials such as polyaniline and polypyrrole, disulfide-based polymer materials, sulfur (S) Organic materials such as carbon fluoride and inorganic materials can also be used, and when x, y, and z are not specified in the chemical formula, each is preferably in the range of 0 or more and 1 or less. Arbitrariness.

より好ましい活物質は、リチウムマンガン複合酸化物、リチウムニッケル複合酸化物、リチウムコバルト複合酸化物、リチウムニッケルコバルト複合酸化物、リチウムマンガンニッケル複合化合物、スピネル型リチウムマンガンニッケル複合酸化物、リチウムマンガンコバルト複合酸化物、リチウムリン酸鉄が挙げられる。これらの活物質を用いることによって、高電圧の非水電解質電池を得ることができる。   More preferable active materials are lithium manganese composite oxide, lithium nickel composite oxide, lithium cobalt composite oxide, lithium nickel cobalt composite oxide, lithium manganese nickel composite compound, spinel type lithium manganese nickel composite oxide, lithium manganese cobalt composite. Examples thereof include oxides and lithium iron phosphate. By using these active materials, a high-voltage nonaqueous electrolyte battery can be obtained.

導電剤は、例えばアセチレンブラック、ケッチェンブラック、黒鉛、コークス等を用いることができる。   As the conductive agent, for example, acetylene black, ketjen black, graphite, coke and the like can be used.

結着剤は、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム等を用いることができる。   As the binder, for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine rubber, or the like can be used.

活物質、導電剤および結着剤の配合割合は、活物質80〜95重量%、導電剤3〜20重量%、結着剤2〜7重量%の範囲にすることが好ましい。   The blending ratio of the active material, the conductive agent and the binder is preferably in the range of 80 to 95% by weight of the active material, 3 to 20% by weight of the conductive agent, and 2 to 7% by weight of the binder.

集電体は、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金の板(例えばアルミニウム箔またはアルミニウム合金箔)から形成される。集電体は、特にJIS H 0001のアルミニウム箔が好ましい。このようなアルミニウム箔は、硬質で加工時の変形が小さいために、例えば正極およびセパレータと共に捲回して渦巻状の電極群を製作する際の変形を抑制して短絡等の歩留まり低下を低減することが可能になる。   The current collector is formed from a plate of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more (for example, an aluminum foil or an aluminum alloy foil). The current collector is particularly preferably JIS H 0001 aluminum foil. Since such an aluminum foil is hard and has little deformation at the time of processing, for example, it can be wound together with a positive electrode and a separator to suppress deformation when manufacturing a spiral electrode group, thereby reducing yield reduction such as short circuit. Is possible.

アルミニウム箔およびアルミニウム合金箔の平均結晶粒径は50μm以下、より好ましくは30μm以下、更に好ましくは5μm以下であることが望ましい。平均結晶粒径を50μm以下にすることによって、アルミニウム箔またはアルミニウム合金箔の強度を飛躍的に増大させることができるため、正極を高いプレス圧で高密度化することが可能になり、電池容量を増大させることができる。   The average crystal grain size of the aluminum foil and the aluminum alloy foil is 50 μm or less, more preferably 30 μm or less, and further preferably 5 μm or less. By making the average crystal grain size 50 μm or less, the strength of the aluminum foil or aluminum alloy foil can be drastically increased, so that the positive electrode can be densified with a high press pressure, and the battery capacity can be increased. Can be increased.

平均結晶粒径は次のようにして求められる。集電体表面の組織を光学顕微鏡で組織観察し、1mm×1mm内に存在する結晶粒の数nを求める。このnを用いてS=1x106/n(μm2)から平均結晶粒子面積Sを求める。得られたSの値から下記(A)式により平均結晶粒子径d(μm)を算出する。   The average crystal grain size is determined as follows. The structure of the current collector surface is observed with an optical microscope, and the number n of crystal grains existing within 1 mm × 1 mm is determined. Using this n, the average crystal grain area S is determined from S = 1 × 10 6 / n (μm 2). The average crystal particle diameter d (μm) is calculated from the obtained S value by the following formula (A).

d=2(S/π)1/2 (A)
アルミニウム箔およびアルミニウム合金箔の平均結晶粒径は、材料組織、不純物、加工条件、熱処理履歴、ならびに焼鈍条件など複数の因子から複雑な影響を受けて変化する。結晶粒径は、集電体の製造工程の中で、前記諸因子を組合せて調整することが可能である。
d = 2 (S / π) 1/2 (A)
The average crystal grain size of the aluminum foil and aluminum alloy foil changes under complex influences from a plurality of factors such as material structure, impurities, processing conditions, heat treatment history, and annealing conditions. The crystal grain size can be adjusted by combining the above factors in the production process of the current collector.

アルミニウム箔およびアルミニウム合金箔の厚さは、20μm以下、より好ましくは15μm以下である。アルミニウム合金は、マグネシウム、亜鉛、ケイ素、などの元素を含む合金が好ましい。一方、前記合金中に鉄、銅、ニッケル、クロムなどの遷移金属を含む場合、その含有量は1重量%以下である。   The thickness of the aluminum foil and the aluminum alloy foil is 20 μm or less, more preferably 15 μm or less. The aluminum alloy is preferably an alloy containing elements such as magnesium, zinc, and silicon. On the other hand, when a transition metal such as iron, copper, nickel, or chromium is included in the alloy, its content is 1% by weight or less.

正極の集電体において、集電体本体(正極層形成領域)は20℃の水に対する接触角が45°以下、リード取出し部(正極層未形成領域)は20℃の水に対する接触角が45°を超える性状を示す。   In the current collector of the positive electrode, the current collector body (positive electrode layer forming region) has a contact angle with respect to 20 ° C. water of 45 ° or less, and the lead extraction part (positive electrode layer non-formed region) has a contact angle with respect to 20 ° C. water of 45 °. Shows properties exceeding °.

ここで、接触角は図12に示すように集電体であるアルミニウム箔(またはアルミニウム合金箔)61上に0.1mlの純水(温度20℃)を落とし、水滴62とアルミニウム箔61が接する接点P1と水滴62の頂点P2とを結んだ直線63を描き、この直線63とアルミニウム箔61面とのなす角度θBを測定し、この角度θBの2倍の角度をアルミニウム箔61面と水滴62の接線64とがなす角θA(接触角)を求めることができる。集電体のリード取出し部の接触角は、電池内から正極を取出し、正極から露出したリード取出し部を切り出して測定できる。一方、集電体の集電体本体の接触角は電池内から正極を取り出し、その正極層を除去した後の集電体本体から測定することができる。 Here, as shown in FIG. 12, 0.1 ml of pure water (temperature 20 ° C.) is dropped on an aluminum foil (or aluminum alloy foil) 61 as a current collector, and the water droplet 62 and the aluminum foil 61 are in contact with each other. A straight line 63 connecting the contact point P1 and the apex P2 of the water drop 62 is drawn, an angle θ B formed by the straight line 63 and the surface of the aluminum foil 61 is measured, and an angle twice this angle θ B is measured with the surface of the aluminum foil 61. An angle θ A (contact angle) formed by the tangent line 64 of the water droplet 62 can be obtained. The contact angle of the lead extraction part of the current collector can be measured by taking out the positive electrode from the battery and cutting out the lead extraction part exposed from the positive electrode. On the other hand, the contact angle of the current collector body of the current collector can be measured from the current collector body after the positive electrode is taken out from the battery and the positive electrode layer is removed.

集電体のリード取出し部の20℃の水に対する接触角は、30°以下、さらに好ましくは20°以下にすることが望ましい。集電体の集電体本体の20℃の水に対する接触角は60°以上、さらに好ましくは90°以上にすることが望ましい。   The contact angle of the lead extraction part of the current collector with respect to 20 ° C. water is preferably 30 ° or less, more preferably 20 ° or less. The contact angle of the current collector body with respect to 20 ° C. water is preferably 60 ° or more, more preferably 90 ° or more.

このような20℃の水に対する接触角が45°以下のリード取出し部および20℃の水に対する接触角が45°を超える集電体本体を有する集電体を備えた正極は、例えば次のような方法で作製することができる。   A positive electrode including a current collector having such a lead take-out portion having a contact angle with respect to 20 ° C. water of 45 ° or less and a current collector body having a contact angle with respect to 20 ° C. water exceeding 45 ° is, for example, as follows: Can be produced by a simple method.

まず、正極活物質、結着剤および導電剤を適当な溶媒に懸濁させて塗工スラリーを調製する。この塗工スラリーを純度99%以上のアルミニウム箔または純度99%以上のアルミニウム合金箔からなる集電体のうちの集電体本体、すなわちリード取出し部を除く集電体の片面または両面に塗布し、乾燥して正極層を形成する。つづいて、正極層が形成された集電体を大気圧プラズマ装置のチャンバ内の例えばホルダに設置した後、高周波電力の供給により大気圧雰囲気のチャンバ内にプラズマを発生させる。このとき、集電体の露出したリード取出し部がプラズマに曝されてその表面の圧延油が除去される。   First, a positive electrode active material, a binder and a conductive agent are suspended in an appropriate solvent to prepare a coating slurry. This coating slurry is applied to one or both sides of a current collector body, that is, a current collector excluding a lead extraction portion, of a current collector made of an aluminum foil having a purity of 99% or more or an aluminum alloy foil having a purity of 99% or more. And drying to form a positive electrode layer. Subsequently, after the current collector on which the positive electrode layer is formed is placed in, for example, a holder in the chamber of the atmospheric pressure plasma apparatus, plasma is generated in the chamber in the atmospheric pressure atmosphere by supplying high-frequency power. At this time, the exposed lead extraction portion of the current collector is exposed to plasma, and the rolling oil on the surface is removed.

このような方法で得られた正極において、集電体のリード取出し部は圧延油の除去によって20℃の水に対する接触角が45°以下の性状、集電体の集電体本体は圧延油が残ったままで、20℃の水に対する接触角が45°を超える性状を示す。   In the positive electrode obtained by such a method, the lead extraction part of the current collector has a property that the contact angle with water at 20 ° C. is 45 ° or less by removing the rolling oil, and the current collector body of the current collector is made of the rolling oil. The contact angle with respect to water at 20 ° C. exceeds 45 ° while remaining.

3)負極
負極は、既述したように純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金から作られる集電体の集電体本体の片面もしくは両面に負極活物質、結着剤および必要により導電剤を含む負極層を形成した構造を有する。
3) Negative electrode As described above, the negative electrode is made of an aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more. Thus, a negative electrode layer containing a conductive agent is formed.

負極活物質は、制限されないが、リチウムイオンを0.4V vs Li/Li+以上の電位で吸蔵放出するリチウム化合物が好ましい。   The negative electrode active material is not limited, but is preferably a lithium compound that occludes and releases lithium ions at a potential of 0.4 V vs Li / Li + or higher.

リチウム化合物は、例えばリチウム酸化物、リチウム硫化物、リチウム窒化物等を用いることができる。これらの中には、未充電状態ではリチウムを含まないが、充電によりリチウムを含むようになる化合物も含まれる。   As the lithium compound, for example, lithium oxide, lithium sulfide, lithium nitride, or the like can be used. These include compounds that do not contain lithium in an uncharged state, but that contain lithium upon charging.

リチウム酸化物は、例えばチタン含有金属複合酸化物、SnB0.40.63.1などのアモルファススズ酸化物、SnSiO3などのスズ珪素酸化物、SiOなどの酸化珪素、WO3などのタングステン酸化物等を用いることができる。中でも、チタン含有金属複合酸化物が好ましい。 Examples of the lithium oxide include titanium-containing metal composite oxides, amorphous tin oxides such as SnB 0.4 P 0.6 O 3.1 , tin silicon oxides such as SnSiO 3 , silicon oxides such as SiO, tungsten oxides such as WO 3 and the like. Can be used. Of these, titanium-containing metal composite oxides are preferable.

チタン含有金属複合酸化物は、例えばリチウムチタン酸化物、酸化物の合成時はリチウムを含まないチタン系酸化物等を用いることができる。リチウムチタン酸化物は、例えばスピネル構造を有するチタン酸リチウム、ラムスデライト構造を有するチタン酸リチウムなどが挙げられる。スピネル構造を有するチタン酸リチウムは、例えばLi4+xTi512(xは充放電反応により−1≦x≦3の範囲で変化する)などが挙げられる。ラムスデライト構造を有するチタン酸リチウムは、例えばLi2+yTi37(yは充放電反応により−1≦y≦3の範囲で変化する)などが挙げられる。チタン系酸化物は、例えばTiO2、TiとP、V、Sn、Cu、NiおよびFeからなる群から選ばれる少なくとも1つの元素を含有する金属複合酸化物などが挙げられる。TiO2は、アナターゼ型で熱処理温度が300〜500℃の低結晶性のものが好ましい。TiとP、V、Sn、Cu、NiおよびFeからなる群から選ばれる少なくとも1つの元素を含有する金属複合酸化物は、例えばTiO2−P25、TiO2−V25、TiO2−P25−SnO2、TiO2−P25−MeO(MeはCu、NiおよびFeからなる群から選ばれる少なくとも1つの元素)などを用いることができる。この金属複合酸化物は、結晶性が低く、結晶相とアモルファス相が共存、もしくはアモルファス相単独で存在したミクロ構造を有することが好ましい。このようなミクロ構造の金属複合酸化物は、サイクル性能を大幅に向上させることが可能になる。中でも、リチウムチタン酸化物、TiとP、V、Sn、Cu、NiおよびFeからなる群から選ばれる少なくとも1つの元素を含有する金属複合酸化物が好ましい。なお、このような金属複合酸化物において、酸素のモル比は酸素ノンストイキオメトリー等の影響によって値は変化しうる。 As the titanium-containing metal composite oxide, for example, lithium titanium oxide, titanium-based oxide not containing lithium, or the like can be used when the oxide is synthesized. Examples of the lithium titanium oxide include lithium titanate having a spinel structure and lithium titanate having a ramsdellite structure. Examples of the lithium titanate having a spinel structure include Li 4 + x Ti 5 O 12 (x varies within a range of −1 ≦ x ≦ 3 due to a charge / discharge reaction). Examples of the lithium titanate having a ramsdellite structure include Li 2 + y Ti 3 O 7 (y changes within a range of −1 ≦ y ≦ 3 due to a charge / discharge reaction). Examples of the titanium-based oxide include metal composite oxides containing at least one element selected from the group consisting of TiO 2 , Ti and P, V, Sn, Cu, Ni, and Fe. TiO 2 is preferably anatase type and low crystalline having a heat treatment temperature of 300 to 500 ° C. The metal composite oxide containing at least one element selected from the group consisting of Ti and P, V, Sn, Cu, Ni and Fe is, for example, TiO 2 —P 2 O 5 , TiO 2 —V 2 O 5 , TiO. 2- P 2 O 5 —SnO 2 , TiO 2 —P 2 O 5 —MeO (Me is at least one element selected from the group consisting of Cu, Ni and Fe) and the like can be used. The metal composite oxide preferably has a low crystallinity and has a microstructure in which a crystal phase and an amorphous phase coexist or exist alone. Such a microstructured metal composite oxide can greatly improve the cycle performance. Among these, lithium titanium oxide, metal composite oxide containing at least one element selected from the group consisting of Ti and P, V, Sn, Cu, Ni, and Fe are preferable. In such a metal composite oxide, the value of the molar ratio of oxygen can be changed by the influence of oxygen non-stoichiometry or the like.

硫化物は、例えばTiS2などの硫化チタン、MoS2などの硫化モリブデン、FeS、FeS2、LixFeS2などの硫化鉄などが挙げられる。 Examples of the sulfide include titanium sulfide such as TiS 2 , molybdenum sulfide such as MoS 2, and iron sulfide such as FeS, FeS 2 , and Li x FeS 2 .

窒化物は、例えばリチウムコバルト窒化物(例えば、LixCoyN、0<x<4,0<y<0.5)などが挙げられる。 Examples of the nitride include lithium cobalt nitride (for example, Li x Co y N, 0 <x <4, 0 <y <0.5).

このような活物質の中でも、特にLi4+xTi512のようなスピネル構造を有するチタン酸リチウム、FeS、FeS2から選ばれる1つを含むことが好ましく、最も好ましい活物質はスピネル構造を有するチタン酸リチウムである。 Among these active materials, it is preferable to include one selected from lithium titanate having a spinel structure such as Li 4 + x Ti 5 O 12 , FeS, and FeS 2 , and the most preferable active material is a spinel structure. Lithium titanate having

結着剤は、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、スチレンブタジエンゴムなどを用いることができる。   As the binder, for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine-based rubber, styrene-butadiene rubber, or the like can be used.

導電剤は、例えばアセチレンブラック、ケッチェンブラックのようなカーボンブラック、黒鉛、コークス、炭素繊維、金属粉末等を用いることができる。   Examples of the conductive agent include carbon black such as acetylene black and ketjen black, graphite, coke, carbon fiber, and metal powder.

活物質、結着剤および導電剤の配合割合は、活物質80〜98重量%、結着剤2〜7重量%、導電剤0〜20重量%の範囲にすることが好ましい。   The mixing ratio of the active material, the binder and the conductive agent is preferably in the range of 80 to 98% by weight of the active material, 2 to 7% by weight of the binder, and 0 to 20% by weight of the conductive agent.

集電体は、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金の板(例えばアルミニウム箔またはアルミニウム合金箔)から形成される。集電体は、特にJIS H 0001のアルミニウム箔が好ましい。このようなアルミニウム箔は、硬質で加工時の変形が小さいために、例えば正極およびセパレータと共に捲回して渦巻状の電極群を製作する際の変形を抑制して短絡等の歩留まり低下を低減することが可能になる。   The current collector is formed from a plate of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more (for example, an aluminum foil or an aluminum alloy foil). The current collector is particularly preferably JIS H 0001 aluminum foil. Since such an aluminum foil is hard and has little deformation at the time of processing, for example, it can be wound together with a positive electrode and a separator to suppress deformation when manufacturing a spiral electrode group, thereby reducing yield reduction such as short circuit. Is possible.

アルミニウム箔またはアルミニウム合金箔は、平均結晶粒径が50μm以下であることが好ましい。このような平均結晶粒径を持つアルミニウム箔またはアルミニウム合金箔は、強度を飛躍的に増大できるため、負極を高いプレス圧で高密度化することが可能となり、電池容量を増大させることができる。また、高温環境下(40℃以上)における過放電サイクルでの集電体の溶解・腐食劣化を防ぐことができるため、負極インピーダンスの上昇を抑制することができる。さらに、出力特性、急速充電、充放電サイクル特性も向上させることができる。より好ましい平均結晶粒径は30μm以下、更に好ましくは5μm以下である。平均結晶粒径は、前記正極で説明したのと同様な方法で求められる。   The aluminum foil or aluminum alloy foil preferably has an average crystal grain size of 50 μm or less. Since aluminum foil or aluminum alloy foil having such an average crystal grain size can dramatically increase the strength, it becomes possible to increase the density of the negative electrode with a high press pressure and increase the battery capacity. In addition, since the current collector can be prevented from melting and corroding in an overdischarge cycle under a high temperature environment (40 ° C. or higher), an increase in negative electrode impedance can be suppressed. Furthermore, output characteristics, quick charge, and charge / discharge cycle characteristics can also be improved. A more preferable average crystal grain size is 30 μm or less, and further preferably 5 μm or less. The average crystal grain size is determined by the same method as described for the positive electrode.

アルミニウム箔またはアルミニウム合金箔の厚さは、20μm以下、より好ましくは15μm以下にすることが望ましい。   The thickness of the aluminum foil or aluminum alloy foil is desirably 20 μm or less, more preferably 15 μm or less.

負極の集電体において、集電体本体(負極層形成領域)は20℃の水に対する接触角が45°以下、リード取出し部(負極層未形成領域)は20℃の水に対する接触角が45°を超える性状を示す。   In the negative electrode current collector, the current collector body (negative electrode layer forming region) has a contact angle with water of 20 ° C. of 45 ° or less, and the lead extraction part (negative electrode layer non-formed region) has a contact angle with water of 20 ° C. of 45 °. Shows properties exceeding °.

ここで、接触角は前記正極で説明したのと同様な方法で求めることができる。集電体のリード取出し部の接触角は、電池内から負極を取出し、負極から露出したリード取出し部を切り出して測定できる。一方、集電体の集電体本体の接触角は電池内から負極を取り出し、その負極層を除去した後の集電体本体から測定することができる。   Here, the contact angle can be obtained by the same method as described for the positive electrode. The contact angle of the lead extraction part of the current collector can be measured by taking out the negative electrode from the battery and cutting out the lead extraction part exposed from the negative electrode. On the other hand, the contact angle of the current collector body of the current collector can be measured from the current collector body after the negative electrode is taken out from the battery and the negative electrode layer is removed.

集電体のリード取出し部の20℃の水に対する接触角は、30°以下、さらに好ましくは20°以下にすることが望ましい。集電体の集電体本体の20℃の水に対する接触角は60°以上、さらに好ましくは90°以上にすることが望ましい。   The contact angle of the lead extraction part of the current collector with respect to 20 ° C. water is preferably 30 ° or less, more preferably 20 ° or less. The contact angle of the current collector body with respect to 20 ° C. water is preferably 60 ° or more, more preferably 90 ° or more.

このような20℃の水に対する接触角が45°以下のリード取出し部および20℃の水に対する接触角が45°を超える集電体本体を有する集電体を備えた負極は、例えば次のような方法で作製することができる。   The negative electrode provided with the current collector having such a lead take-out portion with a contact angle with respect to 20 ° C. water of 45 ° or less and a current collector body with a contact angle with respect to 20 ° C. water exceeding 45 ° is, for example, as follows: Can be produced by a simple method.

まず、負極活物質、結着剤および必要により導電剤を適当な溶媒に懸濁させて塗工スラリーを調製する。この塗工スラリーを純度99%以上のアルミニウム箔または純度99%以上のアルミニウム合金箔からなる集電体のうちの集電体本体、すなわちリード取出し部を除く集電体の片面または両面に塗布し、乾燥して負極層を形成する。つづいて、負極層が形成された集電体を大気圧プラズマ装置のチャンバ内の例えばホルダに設置した後、高周波電力の供給により大気圧雰囲気のチャンバ内にプラズマを発生させる。このとき、集電体の露出したリード取出し部がプラズマに曝されてその表面の圧延油が除去される。   First, a negative electrode active material, a binder and, if necessary, a conductive agent are suspended in a suitable solvent to prepare a coating slurry. This coating slurry is applied to one or both sides of a current collector body, that is, a current collector excluding a lead extraction portion, of a current collector made of an aluminum foil having a purity of 99% or more or an aluminum alloy foil having a purity of 99% or more. And dried to form a negative electrode layer. Subsequently, after the current collector on which the negative electrode layer is formed is placed in, for example, a holder in the chamber of the atmospheric pressure plasma apparatus, plasma is generated in the atmospheric pressure chamber by supplying high-frequency power. At this time, the exposed lead extraction portion of the current collector is exposed to plasma, and the rolling oil on the surface is removed.

このような方法で得られた負極において、集電体のリード取出し部は圧延油の除去によって20℃の水に対する接触角が45°以下の性状、集電体の集電体本体は圧延油が残ったままで、20℃の水に対する接触角が45°を超える性状を示す。   In the negative electrode obtained by such a method, the lead extraction part of the current collector has a property that the contact angle with water at 20 ° C. is 45 ° or less by removing the rolling oil, and the current collector body of the current collector is made of the rolling oil. The contact angle with respect to water at 20 ° C. exceeds 45 ° while remaining.

4)セパレータ
セパレータは、例えばポリオレフィン、セルロース、ポリエチレンテレフタレート、ビニロン等のポリマーから得られる多孔質フィルムまたは不織布が用いられる。ここでセパレータの材料は1種類もしくは2種類以上の組み合わせから選ばれる。特にポリオレフィン、セルロース、ポリエチレンテレフタレート、ビニロンのいずれかからなる不織布が好ましい。
4) Separator As the separator, for example, a porous film or a non-woven fabric obtained from a polymer such as polyolefin, cellulose, polyethylene terephthalate, or vinylon is used. Here, the material of the separator is selected from one type or a combination of two or more types. In particular, a nonwoven fabric made of any of polyolefin, cellulose, polyethylene terephthalate, and vinylon is preferable.

5)非水電解質
この非水電解質は、非水溶媒と、この非水溶媒に溶解される電解質塩を含む。また、非水溶媒中にはポリマーを含んでもよい。
5) Nonaqueous electrolyte This nonaqueous electrolyte contains a nonaqueous solvent and an electrolyte salt dissolved in the nonaqueous solvent. Further, the non-aqueous solvent may contain a polymer.

電解質塩は、例えばLiPF6、LiBF4、Li(CF3SO22N(ビストリフルオロメタンスルホニルアミドリチウム;通称LiTFSI)、LiCF3SO3(通称LiTFS)、Li(C25SO22N(ビスペンタフルオロエタンスルホニルアミドリチウム;通称LiBETI)、LiClO4、LiAsF6、LiSbF6、ビスオキサラトホウ酸リチウム(LiB(C242(通称LiBOB))、ジフルオロ(トリフルオロ−2−オキシド−2−トリフルオロ−メチルプロピオナト(2−)−0,0)ホウ酸リチウム(LiBF2(OCOOC(CF32)(通称LiBF2(HHIB)))等のリチウム塩が挙げられる。これらの電解質塩は一種類で使用してもよいし二種類以上を混合して用いてもよい。特にLiPF6、LiBF4が好ましい。 Examples of the electrolyte salt include LiPF 6 , LiBF 4 , Li (CF 3 SO 2 ) 2 N (bistrifluoromethanesulfonylamide lithium; commonly known as LiTFSI), LiCF 3 SO 3 (commonly known as LiTFS), and Li (C 2 F 5 SO 2 ). 2 N (bis pentafluoroethanesulfonyl amide lithium; called LiBETI), LiClO 4, LiAsF 6 , LiSbF 6, bisoxalato Lato lithium borate (LiB (C 2 O 4) 2 ( known as LiBOB)), difluoro (tri-fluoro-2 - oxide-2-trifluoromethyl - methylpropionate diisocyanatohexane (2 -) - 0,0) lithium borate (LiBF2 (OCOOC (CF 3) 2) ( aka LiBF 2 (HHIB))) include lithium salts and the like. These electrolyte salts may be used alone or in combination of two or more. Particularly preferred are LiPF 6 and LiBF 4 .

電解質塩濃度は、1.5M以上、3M以下にすることが好ましい。このような電解質濃度の規定によって、電解質塩濃度の上昇による粘度増加の影響を抑えつつ、高負荷電流を流した場合の性能をより向上することが可能になる。   The electrolyte salt concentration is preferably 1.5M or more and 3M or less. Such regulation of the electrolyte concentration makes it possible to further improve the performance when a high load current is passed while suppressing the influence of an increase in viscosity due to an increase in the electrolyte salt concentration.

非水溶媒は、特に限定されるものではないが、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、1,2−ジメトキシエタン(DME)、γ−ブチロラクトン(GBL)、テトラヒドロフラン(THF)、2−メチルテトラヒドロフラン(2−MeHF)、1,3−ジオキソラン、スルホラン、アセトニトリル(AN)、ジエチルカーボネート(DEC)、ジメチルカーボネイト(DMC)、メチルエチルカーボネイト(MEC)、ジプロピルカーボネート(DPC)等を用いることができる。これらの溶媒は一種類で使用してもよいし二種類以上を混合して用いてもよい。中でもγ−ブチロラクトンが好ましい。また、溶媒を二種類以上組み合わせる場合、すべての溶媒に誘電率が20以上のものの中から選ぶことが好ましい。   The non-aqueous solvent is not particularly limited, but propylene carbonate (PC), ethylene carbonate (EC), 1,2-dimethoxyethane (DME), γ-butyrolactone (GBL), tetrahydrofuran (THF), 2- Use methyltetrahydrofuran (2-MeHF), 1,3-dioxolane, sulfolane, acetonitrile (AN), diethyl carbonate (DEC), dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), dipropyl carbonate (DPC), etc. Can do. These solvents may be used alone or in combination of two or more. Of these, γ-butyrolactone is preferred. When two or more kinds of solvents are combined, it is preferable to select from all solvents having a dielectric constant of 20 or more.

非水電解質には、添加剤が加えられてもよい。添加剤は、特に限定されるものではないが、ビニレンカーボネイト(VC)、ビニレンアセテート(VA)、ビニレンブチレート、ビニレンヘキサネート、ビニレンクロトネート、カテコールカーボネート等が挙げられる。添加剤の濃度は、非水電解質に対して外率で0.1重量%以上、3重量%以下、さらに好ましくは0.5重量%以上、1重量%以下である。   An additive may be added to the non-aqueous electrolyte. Although an additive is not specifically limited, Vinylene carbonate (VC), vinylene acetate (VA), vinylene butyrate, vinylene hexanate, vinylene crotonate, catechol carbonate, etc. are mentioned. The concentration of the additive is 0.1% by weight or more and 3% by weight or less, more preferably 0.5% by weight or more and 1% by weight or less in terms of external ratio with respect to the nonaqueous electrolyte.

以上、第1実施形態によれば図1〜図3に示す積層電極群8に組み込まれる複数の正極9の純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなる集電体12において、複数のリード取出し部12bを20℃の水に対する接触角が45°以下の性状、つまり高い濡れ性を示す性状にすることによって、各正極9のリード取出し部12bを互いに接合して束ねるための溶接による接続性を向上できる。また、束ねられたリード取出し部12bと正極リード14との溶接による接続性も向上できる。   As described above, according to the first embodiment, in the current collector 12 made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more of the plurality of positive electrodes 9 incorporated in the stacked electrode group 8 shown in FIGS. Welding for joining the lead extraction portions 12b of the positive electrodes 9 together and bundling them by making the plurality of lead extraction portions 12b have a property that the contact angle with water at 20 ° C. is 45 ° or less, that is, a property showing high wettability. Can improve connectivity. Further, the connectivity of the bundled lead extraction portion 12b and the positive electrode lead 14 by welding can be improved.

同様に積層電極群8に組み込まれる複数の負極10の純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなる集電体13において、リード取出し部13bを20℃の水に対する接触角が45°以下の性状、つまり高い濡れ性を示す性状にすることによって、複数のリード取出し部13bを互いに接合して束ねるための溶接による接続性、束ねられたリード取出し部13bと負極リード15との溶接による接続性も向上できる。   Similarly, in the current collector 13 made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more of the plurality of negative electrodes 10 incorporated in the laminated electrode group 8, the contact angle of the lead extraction portion 13b with respect to water at 20 ° C. is 45. By making the following properties, that is, properties exhibiting high wettability, the connectivity by welding for joining and bundling a plurality of lead extraction portions 13b to each other, welding of the bundled lead extraction portions 13b and the negative electrode lead 15 Connectivity can be improved.

したがって、複数の正極9および負極10にリード14,15を接続する構造において、集電体12,13のリード取出し部12b、13bの20℃の水に対する接触角を45°以下の性状にすることによって、複数のリード取出し部相互の接続性を向上でき、かつ束ねられたリード取出し部とリード間の接続性を向上できるため、大電流特性の優れた非水電解電池を提供できる。   Therefore, in the structure in which the leads 14 and 15 are connected to the plurality of positive electrodes 9 and negative electrodes 10, the contact angle of the lead extraction portions 12b and 13b of the current collectors 12 and 13 with respect to 20 ° C. water is 45 ° or less. Therefore, the connectivity between the plurality of lead extraction portions can be improved, and the connectivity between the bundled lead extraction portions and the leads can be improved, so that it is possible to provide a nonaqueous electrolytic battery with excellent large current characteristics.

また、第1実施形態によれば積層電極群8に組み込まれる複数の正極9の純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなる集電体12において、正極層が形成される集電体本体12aを20℃の水に対する接触角が45°を超える性状、つまり濡れ性が劣る性状、にすることによって、正極活物質を含む塗工スラリーを集電体本体12aに塗布する際、塗工スラリーが集電体12の正極層未形成領域であるリード取出し部12bへの流れ込み(はみ出し)が抑制または防止できる。   In addition, according to the first embodiment, the current collector 12 made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more of the plurality of positive electrodes 9 incorporated in the laminated electrode group 8 is formed with a positive electrode layer. When applying the coating slurry containing the positive electrode active material to the current collector main body 12a by making the current main body 12a have a contact angle with water at 20 ° C. exceeding 45 °, that is, a property having poor wettability, The coating slurry can be suppressed or prevented from flowing into the lead extraction portion 12b, which is the positive electrode layer non-formation region of the current collector 12.

同様に複数の負極10の純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなる集電体13において、負極層が形成される集電体本体13aを20℃の水に対する接触角が45°を超える性状、つまり濡れ性が劣る性状、にすることによって、負極活物質を含む塗工スラリーを集電体本体13aに塗布する際、塗工スラリーが集電体13の負極層未形成領域であるリード取出し部13bへの流れ込み(はみ出し)が抑制または防止できる。   Similarly, in the current collector 13 made of aluminum having a purity of 99% or more of the plurality of negative electrodes 10 or an aluminum alloy having a purity of 99% or more, the current collector body 13a on which the negative electrode layer is formed has a contact angle of 45 ° C. with respect to water at 20 ° C. When the coating slurry containing the negative electrode active material is applied to the current collector main body 13a by setting the property to exceed °, that is, the property having poor wettability, the negative electrode layer unformed region of the current collector 13 is applied to the current collector body 13a. It is possible to suppress or prevent the flow (protruding) into the lead extraction portion 13b.

その結果、正極9、負極10のリード取出し部12b、13bに流れ込んだ塗工剤の脱落に起因する短絡またはリード取出し部の抵抗増加を防止できるため、非水電解質電池の歩留まり向上に大きく寄与できる。   As a result, it is possible to prevent a short circuit or an increase in the resistance of the lead extraction part due to the dropping of the coating agent flowing into the lead extraction parts 12b and 13b of the positive electrode 9 and the negative electrode 10, thereby greatly contributing to the improvement of the yield of the nonaqueous electrolyte battery. .

特に、リチウム吸蔵電位が0.4V vs Li/Li+以上の負極活物質を含む負極層を有する負極10において、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなる集電体13のリード取出し部13bをプラズマ雰囲気等に曝して、その表面の残留圧延油を除去して、20℃の水に対する接触角を45°以下の性状にすることによって、自己放電を低減した非水電解質電池を得ることができる。 In particular, in the negative electrode 10 having a negative electrode layer containing a negative electrode active material having a lithium occlusion potential of 0.4 V vs Li / Li + or higher, the current collector 13 made of aluminum having a purity of 99% or higher or an aluminum alloy having a purity of 99% or higher is used. A non-aqueous electrolyte battery with reduced self-discharge by exposing the lead extraction part 13b to a plasma atmosphere or the like, removing residual rolling oil on the surface thereof, and setting the contact angle to water at 20 ° C. to 45 ° or less. Can be obtained.

すなわち、従来の非水電解質電池の集電体として用いられるアルミニウム箔には圧延時の圧延油が残留している。この圧延油は、一般的なリチウムイオン二次電池の正極電位では充電時に分解されるが、リチウム吸蔵電位が0.4V vs Li/Li+以上の負極活物質を含む負極では圧延油の分解反応が起こらずそのまま残留する。この残留圧延油がアルミニウム箔の集電体の負極層未形成領域であるリード取出し部に存在すると、自己放電を促進する。このようなことから、集電体13のリード取出し部13bをプラズマ雰囲気等に曝して、その表面の残留圧延油を除去し、20℃の水に対する接触角を45°以下の性状にすることによって、自己放電を低減した高信頼性の非水電解質電池を提供できる。 That is, the rolling oil at the time of rolling remains in the aluminum foil used as the current collector of the conventional nonaqueous electrolyte battery. This rolling oil is decomposed at the time of charging at a positive electrode potential of a general lithium ion secondary battery, but in a negative electrode containing a negative electrode active material having a lithium occlusion potential of 0.4 V vs Li / Li + or more, the decomposition reaction of the rolling oil is performed. Does not occur and remains as it is. When this residual rolling oil is present in the lead extraction portion, which is the negative electrode layer-unformed region of the aluminum foil current collector, self-discharge is promoted. For this reason, the lead extraction part 13b of the current collector 13 is exposed to a plasma atmosphere or the like to remove residual rolling oil on the surface, and the contact angle with respect to 20 ° C. water is set to 45 ° or less. In addition, a highly reliable nonaqueous electrolyte battery with reduced self-discharge can be provided.

なお、前述した図1〜図3に示す第1実施形態に係る非水電解質電池において、積層電極群は九十九折りにしたセパレータを用いる形態に限らず、例えば複数枚の矩形形セパレータを複数枚の正極、負極に間に介在して積層してもよい。   In the nonaqueous electrolyte battery according to the first embodiment shown in FIG. 1 to FIG. 3 described above, the laminated electrode group is not limited to a form using a 99-fold separator, and a plurality of rectangular separators, for example, are provided. You may laminate | stack between the positive electrode of a sheet, and a negative electrode.

(第2実施形態)
図4は、第2実施形態に係る非水電解質電池を示す断面図、第5図の(A)は図4の非水電解質電池に組み込まれる正極の展開図、図5の(B)は図4の非水電解質電池に組み込まれる負極の展開図、図6は図4の非水電解質電池に組み込まれる電極群の上面図、図7は電極群の直線部に負極のリード取出し部が並んで配列させるための展開した負極の複数のリード取出し部の位置関係を説明する図である。
(Second Embodiment)
4 is a cross-sectional view showing a nonaqueous electrolyte battery according to the second embodiment, FIG. 5A is a development view of a positive electrode incorporated in the nonaqueous electrolyte battery of FIG. 4, and FIG. 4 is a developed view of the negative electrode incorporated in the nonaqueous electrolyte battery 4, FIG. 6 is a top view of the electrode group incorporated in the nonaqueous electrolyte battery of FIG. 4, and FIG. It is a figure explaining the positional relationship of the several lead extraction part of the expand | deployed negative electrode for arranging.

矩形外装材21は、例えば正極端子を兼ねる矩形(角形)金属缶(例えばアルミニウム缶)22と、この金属缶22の開口部に溶接により気密に取り付けられた例えばアルミニウムからなる蓋体23とから構成されている。ガス抜き穴24は、蓋体23の中心に開口されている。図示しない金属薄膜(例えばアルミニウム薄膜)は、ガス抜き穴24およびその近傍の蓋体23裏面に溶接等により取付けられ、外装材21内のガス圧が一定の値を超えると、破断してガスを外装材21の外部に逃散させる。矩形正極端子25は、ガス抜き穴24から例えば左側に位置する蓋体23に一体的に突起されている。断面T形の負極端子26は、ガス抜き穴24から例えば右側に位置する蓋体23の矩形絶縁リング27に嵌入して気密に固定されている。   The rectangular packaging material 21 includes, for example, a rectangular (rectangular) metal can (for example, an aluminum can) 22 that also serves as a positive electrode terminal, and a lid 23 made of, for example, aluminum that is airtightly attached to the opening of the metal can 22 by welding. Has been. The gas vent hole 24 is opened at the center of the lid body 23. A metal thin film (not shown) (for example, an aluminum thin film) is attached to the back surface of the gas vent hole 24 and the lid 23 in the vicinity thereof by welding or the like, and when the gas pressure in the exterior material 21 exceeds a certain value, it breaks and gas is released. Escape to the outside of the exterior material 21. The rectangular positive terminal 25 is integrally projected from the gas vent hole 24 to, for example, a lid body 23 located on the left side. The negative electrode terminal 26 having a T-shaped cross section is fitted into a rectangular insulating ring 27 of the lid body 23 located, for example, on the right side from the gas vent hole 24 and is airtightly fixed.

扁平渦巻状電極群28は外装材21の金属缶22内に収納されている。扁平渦巻状電極群28は、図5の(A)に示す帯状の正極29および図5の(B)に示す帯状の負極30を図6に示すように帯状のセパレータ31を介して渦巻状に捲回し、プレス成形して扁平にした構造を有する。このような扁平渦巻状電極群28は、渦巻状の面が上下端面になるように金属缶22内に挿入して収納される。   The flat spiral electrode group 28 is accommodated in a metal can 22 of the exterior material 21. The flat spiral electrode group 28 includes a belt-like positive electrode 29 shown in FIG. 5 (A) and a belt-like negative electrode 30 shown in FIG. 5 (B) spirally through a belt-like separator 31 as shown in FIG. It has a structure that is wound and press-molded to make it flat. Such a flat spiral electrode group 28 is inserted and accommodated in the metal can 22 so that the spiral surfaces are the upper and lower end surfaces.

正極29は、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金、(例えば純度99%以上のアルミニウム箔)、からなる集電体32を有する。集電体32は、帯状の集電体本体32aと、この集電体本体32aから一体的に突出した複数の短冊状リード取出し部32bとから構成されている。正極活物質を含む正極層(図示せず)は集電体32の集電体本体32bの片面もしくは両面に形成されている。正極29において、複数のリード取出し部32bは20℃の水に対する接触角が45°以下、好ましくは30°以下、さらに好ましくは20°以下の性状を有する。集電体本体32aは、20℃の水に対する接触角が45°を超え、好ましくは60°以上、さらに好ましくは90°以上の性状を有する。正極29の各リード取付け部32bは、展開した正極の複数のリード取出し部を後述の位置に設定することにより、図6に示すように扁平渦巻状電極群28の直線部方向に対して直角方向に並んで配列される。これらのリード取出し部32bは溶接により互いに接合して束ねられている。   The positive electrode 29 has a current collector 32 made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more (for example, an aluminum foil having a purity of 99% or more). The current collector 32 includes a strip-shaped current collector main body 32a and a plurality of strip-shaped lead extraction portions 32b that protrude integrally from the current collector main body 32a. A positive electrode layer (not shown) containing the positive electrode active material is formed on one side or both sides of the current collector body 32 b of the current collector 32. In the positive electrode 29, the plurality of lead extraction portions 32b have a property that the contact angle with respect to 20 ° C. water is 45 ° or less, preferably 30 ° or less, more preferably 20 ° or less. The current collector body 32a has a property that the contact angle with respect to 20 ° C. water exceeds 45 °, preferably 60 ° or more, more preferably 90 ° or more. Each lead mounting portion 32b of the positive electrode 29 is set in a direction perpendicular to the direction of the straight portion of the flat spiral electrode group 28 as shown in FIG. Arranged side by side. These lead extraction portions 32b are bundled together by welding.

負極30は、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金、(例えば純度99%以上のアルミニウム箔)、からなる集電体33を有する。集電体33は、帯状の集電体本体33aと、この集電体本体33aから一体的に突出した複数の短冊状リード取出し部33bとから構成されている。負極活物質を含む負極層(図示せず)は集電体33の集電体本体33bの片面もしくは両面に形成されている。負極30において、複数のリード取出し部33bは20℃の水に対する接触角が45°以下、好ましくは30°以下、さらに好ましくは20°以下の性状を有する。集電体本体33aは、20℃の水に対する接触角が45°を超え、好ましくは60°以上、さらに好ましくは90°以上の性状を有する。負極の各リード取付け部33bは、展開した負極の複数のリード取出し部を後述の位置に設定することにより、図6に示すように扁平渦巻状電極群28の直線部方向に対して直角方向に並んで配列される。これらのリード取出し部33bは溶接により互いに接合して束ねられている。   The negative electrode 30 includes a current collector 33 made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more (for example, an aluminum foil having a purity of 99% or more). The current collector 33 is composed of a strip-shaped current collector body 33a and a plurality of strip-shaped lead extraction portions 33b that protrude integrally from the current collector body 33a. A negative electrode layer (not shown) containing the negative electrode active material is formed on one side or both sides of the current collector body 33 b of the current collector 33. In the negative electrode 30, the plurality of lead extraction portions 33 b have a property that the contact angle with respect to 20 ° C. water is 45 ° or less, preferably 30 ° or less, more preferably 20 ° or less. The current collector body 33a has a property that the contact angle with respect to 20 ° C. water exceeds 45 °, preferably 60 ° or more, and more preferably 90 ° or more. Each negative electrode lead mounting portion 33b is set in a direction perpendicular to the direction of the straight portion of the flat spiral electrode group 28 as shown in FIG. Arranged side by side. These lead extraction portions 33b are joined and bundled together by welding.

複数のリード取出し部の位置設定について、次に詳述する。例えば扁平渦巻状電極群29の直線部方向に対して直角方向に並んで配列される負極30の複数のリード取出し部33bに着目し、それらの扁平渦巻状電極群29での巻始めから巻終わりに向かう位置をS1、S2,S3,S4,S5とすると、各リード取出し部33bの位置関係は展開した負極を示す図7から算出することができる。すなわち、複数のリード取出し部33bは扁平渦巻状電極群29の直線部(長さL)に位置させることにすると、直線部の任意の点(L1、L2間、ここでL1+L2=L、L1≠L2である)位置されることになる。 Next, the position setting of the plurality of lead extraction portions will be described in detail. For example, paying attention to a plurality of lead extraction portions 33b of the negative electrode 30 arranged side by side in a direction perpendicular to the direction of the straight portion of the flat spiral electrode group 29, the winding start and end of the winding in the flat spiral electrode group 29 are focused. Assuming that the positions toward S1 are S1, S2, S3, S4, and S5, the positional relationship of each lead extraction portion 33b can be calculated from FIG. 7 showing the developed negative electrode. In other words, when the plurality of lead extraction portions 33b are positioned at the straight line portion (length L) of the flat spiral electrode group 29, between the arbitrary points (between L 1 and L 2 , where L 1 + L 2). = L, L 1 ≠ L 2 ).

図7に示すように巻始め側のリード取出し部33bの位置S1とこれより巻終わり側に隣接するリード取出し部33bの位置S2との間隔は、L2+(Dnπ)/2+L2の式から算出できる。ここで、Dnは負極が巻始めから位置S2まで捲回したときの総厚さである。位置S2,S3の間隔は、L1+(Dn+1π)/2+L1の式、位置S3,S4の間隔はL2+(Dn+2π)/2+L2の式、S4,S5の間隔はL1+(Dn+3π)/2+L1の式から、それぞれ算出できる。ここで、Dn+1、Dn+2およびDn+3はそれぞれ負極が巻始めから位置S3、位置S4および位置S5まで捲回したときの総厚さである。 As shown in FIG. 7, the distance between the position S1 of the lead extraction portion 33b on the winding start side and the position S2 of the lead extraction portion 33b adjacent to the winding end side is L 2 + (D n π) / 2 + L 2 . It can be calculated from the formula. Here, D n is the total thickness when the negative electrode is wound from the beginning of winding to position S2. The distance between the positions S2 and S3 is an expression of L 1 + (D n + 1 π) / 2 + L 1 , and the distance between the positions S3 and S4 is an expression of L 2 + (D n + 2 π) / 2 + L 2 , S4 and S5 Can be calculated from the formula L 1 + (D n + 3 π) / 2 + L 1 , respectively. Here, D n + 1 , D n + 2 and D n + 3 are total thicknesses when the negative electrode is wound from the beginning of winding to position S3, position S4 and position S5, respectively.

このような式に基づいて帯状の集電体本体33aから一体的に突出する複数のリード取出し部33bの位置(それらリード取出し部33bの間隔)を決定することにより、複数のリード取出し部33bを図6に示すように扁平渦巻状電極群29に直線部方向に対して直角方向に並んで配列させることが可能になる。   By determining the positions (intervals of the lead extraction portions 33b) of the plurality of lead extraction portions 33b integrally projecting from the strip-shaped current collector main body 33a based on such a formula, the plurality of lead extraction portions 33b are determined. As shown in FIG. 6, the flat spiral electrode group 29 can be arranged side by side in a direction perpendicular to the direction of the straight portion.

なお、正極についても同様に帯状の集電体本体32aから一体的に突出する複数のリード取出し部32bの位置(それらリード取出し部32bの間隔)を決定することにより、複数のリード取出し部32bを図6に示すように扁平渦巻状電極群29に直線部方向に対して直角方向に並んで配列させることが可能になる。   Similarly, with respect to the positive electrode, by determining the positions of the plurality of lead extraction portions 32b that integrally project from the strip-shaped current collector body 32a (intervals between the lead extraction portions 32b), the plurality of lead extraction portions 32b are determined. As shown in FIG. 6, the flat spiral electrode group 29 can be arranged side by side in a direction perpendicular to the direction of the straight portion.

純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなる正極リード34は、その下端が正極29の束ねられた複数のリード取出し部32bに溶接により接続され、他端が正極端子25直下の蓋体23下面に溶接により接続されている。   The positive electrode lead 34 made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more has its lower end connected to a plurality of lead extraction portions 32b bundled with the positive electrode 29 by welding and the other end directly below the positive electrode terminal 25. The lid 23 is connected to the lower surface by welding.

純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなる負極リード35は、その下端が負極10の束ねられた複数のリード取出し部33bに溶接により接続され、他端が蓋体23下面に露出した負極端子26の下端面に溶接により接続されている。   A negative electrode lead 35 made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more has its lower end connected to a plurality of lead extraction portions 33b bundled with the negative electrode 10 by welding and the other end to the lower surface of the lid 23. The exposed negative electrode terminal 26 is connected to the lower end surface by welding.

なお、第2実施形態でのリード取出し部相互の接続およびリード取出し部とリードの接続等に用いられる溶接は、例えばレーザー溶接、抵抗溶接、超音波溶接が挙げられる。   In addition, laser welding, resistance welding, ultrasonic welding, etc. are mentioned as welding used for the connection of the lead extraction parts in 2nd Embodiment, the connection of a lead extraction part, and a lead etc., for example.

非水電解質電池の各部材の詳細は、第1実施形態で説明したのと同様である。   The details of each member of the nonaqueous electrolyte battery are the same as those described in the first embodiment.

20℃の水に対する接触角が45°以下の複数の短冊状リード取出し部および20℃の水に対する接触角が45°を超える帯状の集電体本体を有する集電体を備えた正極は、例えば次のような方法で作製することができる。   A positive electrode including a current collector having a plurality of strip-shaped lead extraction portions having a contact angle with respect to 20 ° C. water of 45 ° or less and a strip-shaped current collector body having a contact angle with respect to 20 ° C. water exceeding 45 ° is, for example, It can be produced by the following method.

まず、正極活物質、結着剤および導電剤を適当な溶媒に懸濁させて塗工スラリーを調製する。この塗工スラリーを純度99%以上のアルミニウム箔または純度99%以上のアルミニウム合金箔からなる集電体のうちの帯状の集電体本体、すなわち複数のリード取出し部を除く集電体の片面または両面に塗布し、乾燥して正極層を形成する。つづいて、正極層が形成された集電体を大気圧プラズマ装置のチャンバ内の例えばホルダに設置した後、高周波電力の供給により大気圧雰囲気のチャンバ内にプラズマを発生させる。このとき、集電体の露出した複数のリード取出し部がプラズマに曝されてその表面の圧延油が除去される。   First, a positive electrode active material, a binder and a conductive agent are suspended in an appropriate solvent to prepare a coating slurry. Of the current collector made of an aluminum foil having a purity of 99% or more or an aluminum alloy foil having a purity of 99% or more, this coating slurry is a strip-shaped current collector body, that is, one side of the current collector excluding a plurality of lead extraction portions or It is applied on both sides and dried to form a positive electrode layer. Subsequently, after the current collector on which the positive electrode layer is formed is placed in, for example, a holder in the chamber of the atmospheric pressure plasma apparatus, plasma is generated in the chamber in the atmospheric pressure atmosphere by supplying high-frequency power. At this time, the exposed plurality of lead extraction portions of the current collector are exposed to plasma, and the rolling oil on the surface is removed.

このような方法で得られた正極において、集電体の複数リード取出し部は圧延油の除去によって20℃の水に対する接触角が45°以下の性状、集電体の集電体本体は圧延油が残ったままで、20℃の水に対する接触角が45°を超える性状を示す。   In the positive electrode obtained by such a method, the multiple lead extraction part of the current collector has a property that the contact angle with water at 20 ° C. is 45 ° or less by removing the rolling oil, and the current collector main body of the current collector is the rolling oil The contact angle with respect to water at 20 ° C. exceeds 45 °.

また、20℃の水に対する接触角が45°以下の複数のリード取出し部および20℃の水に対する接触角が45°を超える集電体本体を有する集電体を備えた負極は、例えば次のような方法で作製することができる。   A negative electrode including a current collector having a plurality of lead take-out portions having a contact angle with respect to 20 ° C. water of 45 ° or less and a current collector body having a contact angle with respect to 20 ° C. water exceeding 45 ° is, for example, It can produce by such a method.

まず、負極活物質、結着剤および必要により導電剤を適当な溶媒に懸濁させて塗工スラリーを調製する。この塗工スラリーを純度99%以上のアルミニウム箔または純度99%以上のアルミニウム合金箔集電体のうちの帯状の集電体本体、すなわち複数のリード取出し部を除く集電体の片面または両面に塗布し、乾燥して負極層を形成する。つづいて、負極層が形成された集電体を大気圧プラズマ装置のチャンバ内の例えばホルダに設置した後、高周波電力の供給により大気圧雰囲気のチャンバ内にプラズマを発生させる。このとき、集電体の露出した複数のリード取出し部がプラズマに曝されてその表面の圧延油が除去される。   First, a negative electrode active material, a binder and, if necessary, a conductive agent are suspended in a suitable solvent to prepare a coating slurry. This coating slurry is applied to one or both sides of a strip-shaped current collector body of an aluminum foil having a purity of 99% or more or an aluminum alloy foil having a purity of 99% or more, that is, a current collector excluding a plurality of lead extraction portions. It is applied and dried to form a negative electrode layer. Subsequently, after the current collector on which the negative electrode layer is formed is placed in, for example, a holder in the chamber of the atmospheric pressure plasma apparatus, plasma is generated in the atmospheric pressure chamber by supplying high-frequency power. At this time, the exposed plurality of lead extraction portions of the current collector are exposed to plasma, and the rolling oil on the surface is removed.

このような方法で得られた負極において、集電体のリード取出し部は圧延油の除去によって20℃の水に対する接触角が45°以下の性状、集電体の集電体本体は圧延油が残ったままで、20℃の水に対する接触角が45°を超える性状を示す。   In the negative electrode obtained by such a method, the lead extraction part of the current collector has a property that the contact angle with water at 20 ° C. is 45 ° or less by removing the rolling oil, and the current collector body of the current collector is made of the rolling oil. The contact angle with respect to water at 20 ° C. exceeds 45 ° while remaining.

以上、第2実施形態によれば図4〜図6に示す扁平渦巻状電極群28に組み込まれる正極29の純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなる集電体32において複数のリード取出し部32bを20℃の水に対する接触角が45°以下の性状、つまり高い濡れ性を示す性状にすることによって、正極29の各リード取出し部12bを互いに接合して束ねるための溶接による接続性を向上できる。また、束ねられたリード取出し部32bと正極リード34との溶接による接続性も向上できる。   As described above, according to the second embodiment, a plurality of current collectors 32 made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more of the positive electrode 29 incorporated in the flat spiral electrode group 28 shown in FIGS. By making the lead lead-out portion 32b have a contact angle with water at 20 ° C. of 45 ° or less, that is, a property showing high wettability, the lead lead-out portions 12b of the positive electrode 29 are joined to each other by welding to bind them together. Connectivity can be improved. Further, the connectivity of the bundled lead extraction portion 32b and the positive electrode lead 34 by welding can be improved.

同様に扁平渦巻状電極群28に組み込まれる負極30の純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなる集電体33において、複数のリード取出し部33bを20℃の水に対する接触角が45°以下の性状、つまり高い濡れ性を示す性状にすることによって、複数のリード取出し部33bを互いに接合して束ねるための溶接による接続性、束ねられたリード取出し部33bと負極リード35との溶接による接続性も向上できる。   Similarly, in a current collector 33 made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more of the negative electrode 30 incorporated in the flat spiral electrode group 28, the contact angle of the plurality of lead extraction portions 33b with respect to water at 20 ° C. Of 45 ° or less, that is, a property exhibiting high wettability, so that a plurality of lead take-out portions 33b are joined by welding to bind them together, and the bundled lead take-out portions 33b and the negative electrode lead 35 Connectivity by welding can be improved.

したがって、正極29および負極30の集電体32,33において帯状の集電体本体32a,33aから複数の短冊状リード取り出し部32b、33bを一体的に突出させ、リード取出し部にリード34,35を接続する多点接続構造において、集電体32,33の複数のリード取出し部32b、33bの20℃の水に対する接触角を45°以下の性状にすることによって、複数のリード取出し部相互の接続性を向上でき、かつ束ねられたリード取出し部とリード間の接続性を向上できるため、大電流特性の優れた非水電解電池を提供できる。   Accordingly, in the current collectors 32 and 33 of the positive electrode 29 and the negative electrode 30, a plurality of strip-shaped lead extraction portions 32b and 33b are integrally projected from the strip-shaped current collector main bodies 32a and 33a, and the leads 34 and 35 are formed in the lead extraction portion. In the multi-point connection structure for connecting the plurality of lead extraction portions, the contact angle of the plurality of lead extraction portions 32b and 33b of the current collectors 32 and 33 with respect to 20 ° C. water is 45 ° or less. Since the connectivity can be improved and the connectivity between the bundled lead extraction portion and the leads can be improved, a non-aqueous electrolytic battery having excellent large current characteristics can be provided.

また、正極層が形成される集電体本体32aおよび負極層が形成される集電体本体33bを20℃の水に対する接触角が45°を超える性状にすることによって、第1実施形態で説明したのと同様に、塗工スラリーを塗工する工程での正極29、負極30のリード取出し部32b、33bへの塗工スラリーの流れ込み(はみ出し)を抑制または防止して塗工剤の脱落に起因する短絡またはリード取出し部の抵抗増加を防止できるため、非水電解質電池の歩留まり向上に大きく寄与できる。   Further, the current collector main body 32a on which the positive electrode layer is formed and the current collector main body 33b on which the negative electrode layer is formed are described in the first embodiment by making the contact angle with respect to water at 20 ° C. exceed 45 °. In the same manner as described above, it is possible to suppress or prevent the coating slurry from flowing into the lead take-out portions 32b and 33b of the positive electrode 29 and the negative electrode 30 in the step of applying the coating slurry, thereby preventing the coating agent from falling off. Since the resulting short circuit or increase in resistance of the lead extraction portion can be prevented, it can greatly contribute to the improvement of the yield of the nonaqueous electrolyte battery.

特に、リチウム吸蔵電位が0.4V vs Li/Li+以上の負極活物質を含む負極層を有する負極30において、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなる集電体33のリード取出し部33bをプラズマ雰囲気等に曝して、その表面の残留圧延油を除去して、20℃の水に対する接触角を45°以下の性状にすることによって、第1実施形態で説明したのと同様に、自己放電を低減した非水電解質電池を得ることができる。 In particular, in the negative electrode 30 having a negative electrode layer containing a negative electrode active material having a lithium occlusion potential of 0.4 V vs Li / Li + or higher, the current collector 33 made of aluminum having a purity of 99% or higher or an aluminum alloy having a purity of 99% or higher is used. As described in the first embodiment, the lead extraction part 33b is exposed to a plasma atmosphere or the like, and the residual rolling oil on the surface is removed so that the contact angle with respect to 20 ° C. water is 45 ° or less. Similarly, a nonaqueous electrolyte battery with reduced self-discharge can be obtained.

(第3実施形態)
図8は、第3実施形態に係る非水電解質電池を示す断面図、第9図の(A)は図8の非水電解質電池に組み込まれる負極の展開図、図9の(B)は図8の非水電解質電池に組み込まれる正極の展開図、図10は図8の非水電解質電池に組み込まれる扁平渦巻状電極群の斜視図である。
(Third embodiment)
8 is a cross-sectional view showing a nonaqueous electrolyte battery according to the third embodiment, FIG. 9A is a development view of a negative electrode incorporated in the nonaqueous electrolyte battery of FIG. 8, and FIG. 9B is a diagram. FIG. 10 is a developed view of the positive electrode incorporated in the nonaqueous electrolyte battery of FIG. 8, and FIG. 10 is a perspective view of the flat spiral electrode group incorporated in the nonaqueous electrolyte battery of FIG.

矩形外装材41は、例えば正極端子を兼ねる矩形(角形)金属缶(例えばアルミニウム缶)42と、この金属缶42の開口部に溶接により気密に取り付けられた例えばアルミニウムからなる蓋体43とから構成されている。ガス抜き穴44は、蓋体43の中心に開口されている。図示しない金属薄膜(例えばアルミニウム薄膜)は、ガス抜き穴44およびその近傍の蓋体43裏面に溶接等により取付けられ、外装材41内のガス圧が一定の値を超えると、破断してガスを外装材41の外部に逃散させる。矩形正極端子45は、ガス抜き穴44から例えば左側に位置する蓋体43に一体的に突起されている。断面T形の負極端子46は、ガス抜き穴44から例えば右側に位置する蓋体43の矩形絶縁リング47に嵌入して気密に固定されている。   The rectangular exterior member 41 includes, for example, a rectangular (square) metal can (for example, an aluminum can) 42 that also serves as a positive electrode terminal, and a lid 43 made of, for example, aluminum that is airtightly attached to the opening of the metal can 42 by welding. Has been. The gas vent hole 44 is opened at the center of the lid body 43. A metal thin film (not shown) (for example, an aluminum thin film) is attached to the back surface of the gas vent hole 44 and the lid 43 in the vicinity thereof by welding or the like, and when the gas pressure in the exterior material 41 exceeds a certain value, it breaks and gas is released. Escape to the outside of the exterior material 41. The rectangular positive terminal 45 is integrally projected from the gas vent hole 44 to, for example, a lid body 43 located on the left side. The negative electrode terminal 46 having a T-shaped cross section is fitted into a rectangular insulating ring 47 of the lid body 43 located on the right side from the gas vent hole 44 and fixed in an airtight manner.

扁平渦巻状電極群48は外装材41の金属缶42内に収納されている。扁平渦巻状電極群48は、図9の(B)に示す帯状の正極49および図9の(A)に示す帯状の負極50を帯状のセパレータ(図示せず)を介して渦巻状に捲回し、プレス成形して扁平にした構造を有する。このような扁平渦巻状電極群48は、渦巻状の面が上下端面になるように金属缶42内に挿入して収納される。   The flat spiral electrode group 48 is accommodated in a metal can 42 of the exterior material 41. The flat spiral electrode group 48 is formed by winding a belt-like positive electrode 49 shown in FIG. 9B and a belt-like negative electrode 50 shown in FIG. 9A in a spiral shape via a belt-like separator (not shown). , Has a flat structure by press molding. Such a flat spiral electrode group 48 is inserted and accommodated in the metal can 42 so that the spiral surfaces are the upper and lower end surfaces.

正極49は、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金、(例えば純度99%以上のアルミニウム箔)、からなる集電体51を有する。集電体51は、帯状の集電体本体51aと、この集電体本体51aの長手方向に沿う側面に一体的に形成された帯状のリード取出し部51bとから構成されている。正極活物質を含む正極層(図示せず)は集電体51の集電体本体51bの片面もしくは両面に形成されている。リード取出し部51bは、図10に示すように扁平渦巻状電極群48の一方の渦巻状の面(金属缶42に収納された状態で金属缶42の底側の面)から渦巻状に突出している。正極49において、渦巻状に突出したリード取出し部51bは20℃の水に対する接触角が45°以下、好ましくは30°以下、さらに好ましくは20°以下の性状を有する。集電体本体51aは、20℃の水に対する接触角が45°を超え、好ましくは60°以上、さらに好ましくは90°以上の性状を有する。   The positive electrode 49 includes a current collector 51 made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more (for example, an aluminum foil having a purity of 99% or more). The current collector 51 includes a belt-shaped current collector main body 51a and a belt-shaped lead extraction portion 51b formed integrally on a side surface along the longitudinal direction of the current collector main body 51a. A positive electrode layer (not shown) containing the positive electrode active material is formed on one side or both sides of the current collector body 51 b of the current collector 51. As shown in FIG. 10, the lead extraction portion 51 b protrudes spirally from one spiral surface of the flat spiral electrode group 48 (the surface on the bottom side of the metal can 42 in the state accommodated in the metal can 42). Yes. In the positive electrode 49, the lead extraction portion 51b protruding in a spiral shape has a property that the contact angle with respect to 20 ° C. water is 45 ° or less, preferably 30 ° or less, more preferably 20 ° or less. The current collector main body 51a has a property that the contact angle with respect to water at 20 ° C. exceeds 45 °, preferably 60 ° or more, more preferably 90 ° or more.

負極50は、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金、(例えば純度99%以上のアルミニウム箔)、からなる集電体52を有する。集電体52は、帯状の集電体本体52aと、この集電体本体52aの長手方向に沿い前記正極49のリード取出し部51bと反対側の側面に一体的に形成された帯状のリード取出し部52bとから構成されている。負極活物質を含む負極層(図示せず)は集電体52の集電体本体52bの片面もしくは両面に形成されている。リード取出し部52bは、図10に示すように扁平渦巻状電極群48の他方の渦巻状の面(金属缶42に収納された状態で蓋体43側の面)から渦巻状に突出している。負極50において、渦巻状に突出したリード取出し部52bは20℃の水に対する接触角が45°以下、好ましくは30°以下、さらに好ましくは20°以下の性状を有する。集電体本体52aは、20℃の水に対する接触角が45°を超え、好ましくは60°以上、さらに好ましくは90°以上の性状を有する。   The negative electrode 50 includes a current collector 52 made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more (for example, an aluminum foil having a purity of 99% or more). The current collector 52 includes a strip-shaped current collector main body 52a and a strip-shaped lead extraction integrally formed on the side surface opposite to the lead extraction portion 51b of the positive electrode 49 along the longitudinal direction of the current collector main body 52a. Part 52b. A negative electrode layer (not shown) containing the negative electrode active material is formed on one side or both sides of the current collector body 52 b of the current collector 52. As shown in FIG. 10, the lead extraction part 52 b spirally projects from the other spiral surface of the flat spiral electrode group 48 (the surface on the lid 43 side in the state accommodated in the metal can 42). In the negative electrode 50, the lead extraction portion 52b protruding in a spiral shape has a property that the contact angle with respect to water at 20 ° C. is 45 ° or less, preferably 30 ° or less, more preferably 20 ° or less. The current collector main body 52a has a property that the contact angle with respect to water at 20 ° C. exceeds 45 °, preferably 60 ° or more, more preferably 90 ° or more.

純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなる複数の正極中間リード53は、正極49の渦巻状に突出したリード取出し部51bの複数個所に溶接により接続されている。これらの正極中間リード53は、溶接により互いに接合して束ねられている。純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなる正極主リード54は、一端が束ねられた正極中間リード53に抵抗溶接により接続され、他端が金属缶42の底部内面に溶接により接続されている。このような複数の正極中間リード53および正極主リード54により正極リードを構成している。   A plurality of positive intermediate leads 53 made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more are connected to a plurality of portions of lead extraction portions 51b protruding in a spiral shape of the positive electrode 49 by welding. These positive intermediate leads 53 are bundled together by welding. The positive electrode main lead 54 made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more is connected to the positive electrode intermediate lead 53 having one end bundled by resistance welding, and the other end is welded to the bottom inner surface of the metal can 42 by welding. It is connected. The plurality of positive intermediate leads 53 and positive main leads 54 constitute a positive lead.

純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなる複数の負極中間リード55は、負極50の渦巻状に突出したリード取出し部52bの複数個所に溶接により接続されている。これらの負極中間リード55は、溶接により互いに接合して束ねられている。純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなる負極主リード56は、一端が束ねられた負極中間リード55に抵抗溶接により接続され、他端が蓋体43下面に露出した負極端子46の下端面に溶接により接続されている。このような複数の負極中間リード55および負極主リード56により負極リードを構成している。   A plurality of negative electrode intermediate leads 55 made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more are connected to a plurality of portions of lead extraction portions 52b protruding in a spiral shape of the negative electrode 50 by welding. These negative electrode intermediate leads 55 are joined and bundled together by welding. A negative electrode main lead 56 made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more is connected to a negative electrode intermediate lead 55 having one end bundled by resistance welding, and the other end is exposed to the lower surface of the lid 43 It is connected to the lower end surface of 46 by welding. The plurality of negative electrode intermediate leads 55 and the negative electrode main lead 56 constitute a negative electrode lead.

なお、第3実施形態でのリード取出し部と中間リードの接続および中間リードと主リードの接続等に用いられる溶接は、例えばレーザー溶接、抵抗溶接、超音波溶接が挙げられる。   In addition, laser welding, resistance welding, ultrasonic welding, etc. are mentioned for the welding used for the connection of a lead extraction part and intermediate | middle lead in 3rd Embodiment, and a connection of an intermediate | middle lead and a main lead, etc., for example.

非水電解質電池の各部材の詳細は、第1実施形態で説明したのと同様である。   The details of each member of the nonaqueous electrolyte battery are the same as those described in the first embodiment.

20℃の水に対する接触角が45°以下の渦巻状に突出したリード取出し部および20℃の水に対する接触角が45°を超える帯状の集電体本体を有する集電体を備えた正極は、例えば次のような方法で作製することができる。   A positive electrode including a current collector having a spiral lead extraction portion having a contact angle with respect to 20 ° C. water of 45 ° or less and a strip-shaped current collector body having a contact angle with respect to water of 20 ° C. exceeding 45 °, For example, it can be produced by the following method.

まず、正極活物質、結着剤および導電剤を適当な溶媒に懸濁させて塗工スラリーを調製する。この塗工スラリーを純度99%以上のアルミニウム箔または純度99%以上のアルミニウム合金箔からなる集電体のうちの集電体本体、すなわちリード取出し部を除く集電体の片面または両面に塗布し、乾燥して正極層を形成する。つづいて、正極層が形成された集電体を大気圧プラズマ装置のチャンバ内の例えばホルダに設置した後、高周波電力の供給により大気圧雰囲気のチャンバ内にプラズマを発生させる。このとき、集電体の露出したリード取出し部がプラズマに曝されてその表面の圧延油が除去される。   First, a positive electrode active material, a binder and a conductive agent are suspended in an appropriate solvent to prepare a coating slurry. This coating slurry is applied to one or both sides of a current collector body, that is, a current collector excluding a lead extraction portion, of a current collector made of an aluminum foil having a purity of 99% or more or an aluminum alloy foil having a purity of 99% or more. And drying to form a positive electrode layer. Subsequently, after the current collector on which the positive electrode layer is formed is placed in, for example, a holder in the chamber of the atmospheric pressure plasma apparatus, plasma is generated in the chamber in the atmospheric pressure atmosphere by supplying high-frequency power. At this time, the exposed lead extraction portion of the current collector is exposed to plasma, and the rolling oil on the surface is removed.

このような方法で得られた正極において、集電体の渦巻状に突出したリード取出し部は圧延油の除去によって20℃の水に対する接触角が45°以下の性状、集電体の集電体本体は圧延油が残ったままで、20℃の水に対する接触角が45°を超える性状を示す。   In the positive electrode obtained by such a method, the lead-out portion protruding in a spiral shape of the current collector has a property that the contact angle with water at 20 ° C. is 45 ° or less by removing the rolling oil, and the current collector of the current collector The main body shows the property that the contact angle with water at 20 ° C. exceeds 45 ° while the rolling oil remains.

また、20℃の水に対する接触角が45°以下の渦巻状に突出したリード取出し部および20℃の水に対する接触角が45°を超える集電体本体を有する集電体を備えた負極は、例えば次のような方法で作製することができる。   Further, a negative electrode including a current collector having a lead extraction portion protruding in a spiral shape with a contact angle with respect to 20 ° C. water of 45 ° or less and a current collector body with a contact angle with respect to 20 ° C. water exceeding 45 °, For example, it can be produced by the following method.

まず、負極活物質、結着剤および必要により導電剤を適当な溶媒に懸濁させて塗工スラリーを調製する。この塗工スラリーを純度99%以上のアルミニウム箔または純度99%以上のアルミニウム合金箔集電体のうちの集電体本体、すなわち渦巻状に突出したリード取出し部を除く集電体の片面または両面に塗布し、乾燥して負極層を形成する。つづいて、負極層が形成された集電体を大気圧プラズマ装置のチャンバ内の例えばホルダに設置した後、高周波電力の供給により大気圧雰囲気のチャンバ内にプラズマを発生させる。このとき、集電体の露出したリード取出し部がプラズマに曝されてその表面の圧延油が除去される。   First, a negative electrode active material, a binder and, if necessary, a conductive agent are suspended in a suitable solvent to prepare a coating slurry. One side or both sides of the current collector, excluding the lead-out portion protruding in a spiral shape, from the coated slurry of the aluminum foil having a purity of 99% or more or the aluminum alloy foil having a purity of 99% or more. And dried to form a negative electrode layer. Subsequently, after the current collector on which the negative electrode layer is formed is placed in, for example, a holder in the chamber of the atmospheric pressure plasma apparatus, plasma is generated in the atmospheric pressure chamber by supplying high-frequency power. At this time, the exposed lead extraction portion of the current collector is exposed to plasma, and the rolling oil on the surface is removed.

このような方法で得られた負極において、集電体の渦巻状に突出したリード取出し部は圧延油の除去によって20℃の水に対する接触角が45°以下の性状、集電体の集電体本体は圧延油が残ったままで、20℃の水に対する接触角が45°を超える性状を示す。   In the negative electrode obtained by such a method, the lead-out portion protruding in a spiral shape of the current collector has a property that the contact angle with water at 20 ° C. is 45 ° or less by removing the rolling oil, and the current collector of the current collector The main body shows the property that the contact angle with water at 20 ° C. exceeds 45 ° while the rolling oil remains.

以上、第3実施形態によれば図8〜図10に示す扁平渦巻状電極群48に組み込まれる正極49の純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなる集電体51において渦巻状に突出したリード取出し部51bを20℃の水に対する接触角が45°以下の性状、つまり高い濡れ性を示す性状にすることによって、正極49の渦巻状に突出したリード取出し部51bに複数の正極中間リード53を溶接する際、高い接続信頼性を達成できる。   As described above, according to the third embodiment, the current collector 51 made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more of the positive electrode 49 incorporated in the flat spiral electrode group 48 shown in FIGS. By making the lead extraction part 51b protruding in a shape of a contact angle with water at 20 ° C. 45 ° or less, that is, a property showing high wettability, a plurality of lead extraction parts 51b protruding in a spiral shape of the positive electrode 49 are formed. When welding the positive intermediate lead 53, high connection reliability can be achieved.

同様に扁平渦巻状電極群48に組み込まれる負極50の純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなる集電体52において、渦巻状に突出したリード取出し部52bを20℃の水に対する接触角が45°以下の性状、つまり高い濡れ性を示す性状にすることによって、負極50の渦巻状に突出したリード取出し部52bに負極中間リード55を溶接する際、高い接続信頼性を達成できる。   Similarly, in the current collector 52 made of aluminum having a purity of 99% or more or aluminum alloy having a purity of 99% or more of the negative electrode 50 incorporated in the flat spiral electrode group 48, the lead-out portion 52b protruding in a spiral shape is placed at 20 ° C. with water. High contact reliability is achieved when the negative electrode intermediate lead 55 is welded to the lead-out portion 52b protruding in a spiral shape of the negative electrode 50 by making the contact angle with respect to the electrode 45 ° or less, that is, exhibiting high wettability. it can.

したがって、正極49および負極50における集電体51,52の渦巻状に突出したリード取り出し部51b、52bに複数の正極中間リード53、複数の負極中間リード55をそれぞれ接続する多点接続構造において、集電体51,52の渦巻状に突出したリード取出し部51b、52bを20℃の水に対する接触角を45°以下の性状にすることによって、渦巻状に突出したリード取り出し部51b、52bと複数の中間リード53,55間の高い接続信頼性を確保できるため、大電流特性の優れた非水電解電池を提供できる。   Therefore, in the multipoint connection structure in which the plurality of positive intermediate leads 53 and the plurality of negative intermediate leads 55 are connected to the lead extraction portions 51b and 52b protruding in a spiral shape of the current collectors 51 and 52 in the positive electrode 49 and the negative electrode 50, respectively. The lead extraction portions 51b and 52b protruding in a spiral shape of the current collectors 51 and 52 have a contact angle with respect to water at 20 ° C. of 45 ° or less, so that the lead extraction portions 51b and 52b protruding in a spiral shape and a plurality Since the high connection reliability between the intermediate leads 53 and 55 can be ensured, it is possible to provide a non-aqueous electrolytic battery with excellent large current characteristics.

また、正極層が形成される集電体本体51aおよび負極層が形成される集電体本体52bを20℃の水に対する接触角が45°を超える性状にすることによって、第1実施形態で説明したのと同様に、塗工スラリーを塗工する工程での正極49、負極50のリード取出し部51b、52bへの塗工スラリーの流れ込み(せり出し)を抑制または防止して塗工剤の脱落に起因する短絡またはリード取出し部の抵抗増加を防止できるため、非水電解質電池の歩留まり向上に大きく寄与できる。   Further, the current collector main body 51a on which the positive electrode layer is formed and the current collector main body 52b on which the negative electrode layer is formed are described in the first embodiment by making the contact angle with water at 20 ° C. exceed 45 °. In the same manner as described above, the flow of coating slurry to the lead extraction portions 51b and 52b of the positive electrode 49 and the negative electrode 50 in the step of applying the coating slurry is suppressed or prevented, and the coating agent falls off. Since the resulting short circuit or increase in resistance of the lead extraction portion can be prevented, it can greatly contribute to the improvement of the yield of the nonaqueous electrolyte battery.

特に、リチウム吸蔵電位が0.4V vs Li/Li+以上の負極活物質を含む負極層を有する負極50において、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなる集電体52のリード取出し部52bをプラズマ雰囲気等に曝して、その表面の残留圧延油を除去して、20℃の水に対する接触角を45°以下の性状にすることによって、第1実施形態で説明したのと同様に、自己放電を低減した非水電解質電池を得ることができる。 In particular, in the negative electrode 50 having a negative electrode layer containing a negative electrode active material having a lithium occlusion potential of 0.4 V vs Li / Li + or higher, the current collector 52 made of aluminum having a purity of 99% or higher or an aluminum alloy having a purity of 99% or higher is used. As described in the first embodiment, the lead extraction part 52b is exposed to a plasma atmosphere or the like, the residual rolling oil on the surface is removed, and the contact angle with respect to 20 ° C. water is 45 ° or less. Similarly, a nonaqueous electrolyte battery with reduced self-discharge can be obtained.

(第4実施形態)
図11は、第4実施形態に係る非水電解質電池を示す断面図である。なお。図11において第3実施形態の説明で用いた図8〜図10と同様な部材は同符号を付して説明を省略する。
(Fourth embodiment)
FIG. 11 is a cross-sectional view showing a nonaqueous electrolyte battery according to the fourth embodiment. Note that. In FIG. 11, the same members as those in FIGS. 8 to 10 used in the description of the third embodiment are denoted by the same reference numerals, and the description thereof is omitted.

第4実施形態に係る非水電解質電池は、図11に示すように外装材41の金属缶42内面に有底矩形筒状の絶縁部材57が設けられている。この絶縁部材は、例えばポリテトラフルオロエチレン(PTFE)のような合成樹脂から作られ、例えばコーティング等により金属缶42内面に形成されている。第3実施形態と同様な構成および構造の扁平渦巻状電極群48は、外装材41の金属缶42内に横置きに収納されている。すなわち、金属缶42は横長形状を有し、扁平渦巻状電極群48はその対向する2つの渦巻状の面が金属缶42の側面側に位置するように金属缶42内に横置きに収納されている。   In the nonaqueous electrolyte battery according to the fourth embodiment, a bottomed rectangular cylindrical insulating member 57 is provided on the inner surface of the metal can 42 of the exterior material 41 as shown in FIG. The insulating member is made of a synthetic resin such as polytetrafluoroethylene (PTFE), and is formed on the inner surface of the metal can 42 by, for example, coating. The flat spiral electrode group 48 having the same configuration and structure as in the third embodiment is housed horizontally in the metal can 42 of the exterior member 41. That is, the metal can 42 has a horizontally long shape, and the flat spiral electrode group 48 is stored horizontally in the metal can 42 so that two opposing spiral surfaces are located on the side of the metal can 42. ing.

純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなる複数の正極中間リード53および同材質の複数の負極中間リード55は、扁平渦巻状電極群48の一方(例えば左側)の渦巻状の面に正極の渦巻状に突出したリード取出し部51bおよび他方(例えば右側)渦巻状の面に負極の渦巻状に突出したリード取出し部52bに扁平渦巻状電極群48の蓋体43側(上部側)において軸方向に並ぶように溶接により接続されている。これらの正極、負極の中間リード53、55は、溶接により互いに接合して束ねられている。   A plurality of positive electrode intermediate leads 53 and a plurality of negative electrode intermediate leads 55 made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more and a plurality of negative electrode intermediate leads 55 of the same material are formed in a spiral shape on one side (for example, the left side) of the flat spiral electrode group 48. The lead extraction portion 51b protruding in a spiral shape of the positive electrode on the surface and the lead extraction portion 52b protruding in a spiral shape of the negative electrode on the other (for example, the right side) spiral surface on the lid 43 side (upper side) of the flat spiral electrode group 48 ) Are connected by welding so as to be aligned in the axial direction. The intermediate leads 53 and 55 of the positive electrode and the negative electrode are bundled together by welding.

純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなる正極主リード54は、一端が束ねられた正極中間リード53にその側部側から抵抗溶接により接続され、他端が正極端子45直下の蓋体43下面に溶接により接続されている。純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなる負極主リード56は、一端が束ねられた負極中間リード55にその側部側から抵抗溶接により接続され、他端が蓋体43下面に露出した負極端子46の下端面に溶接により接続されている。   A positive electrode main lead 54 made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more is connected to a positive intermediate lead 53 having one end bundled by resistance welding from the side thereof, and the other end is directly below the positive terminal 45. Is connected to the lower surface of the lid 43 by welding. The negative electrode main lead 56 made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more is connected to the negative electrode intermediate lead 55 having one end bundled by resistance welding from the side thereof, and the other end is the bottom surface of the lid 43 It is connected to the lower end surface of the negative electrode terminal 46 exposed by welding.

なお、第4実施形態でのリード取出し部と中間リードの接続および中間リードと主リードの接続等に用いられる溶接は、例えばレーザー溶接、抵抗溶接、超音波溶接が挙げられる。   In addition, laser welding, resistance welding, ultrasonic welding, etc. are mentioned as welding used for the connection of the lead extraction part and intermediate | middle lead in 4th Embodiment, the connection of an intermediate | middle lead, and a main lead, etc., for example.

以上、第4実施形態によれば前述した第3実施形態と同様に大電流特性の優れた非水電解電池を提供でき、かつ非水電解質電池の歩留まり向上に大きく寄与できる。また、リチウム吸蔵電位が0.4V vs Li/Li+以上の負極活物質を含む負極層を有する負極を備えた非水電解質電池において、自己放電を低減することができる。 As described above, according to the fourth embodiment, it is possible to provide a non-aqueous electrolytic battery excellent in large current characteristics as in the third embodiment described above, and can greatly contribute to the improvement of the yield of the non-aqueous electrolyte battery. In addition, self-discharge can be reduced in a nonaqueous electrolyte battery including a negative electrode having a negative electrode layer containing a negative electrode active material having a lithium occlusion potential of 0.4 V vs Li / Li + or higher.

さらに、扁平渦巻状電極群48を外装材41の金属缶42内に横置きに収納し、かつ複数の正極中間リード53および複数の負極中間リード55を扁平渦巻状電極群48の正極、負極の渦巻状に突出したリード取出し部51b、52bにそれぞれ扁平渦巻状電極群48の蓋体43側(上部側)において軸方向に並ぶように溶接により接続することによって、負極の主リード56の他端のみならず正極の主リード54の他端も比較的肉厚の蓋体43側に引き出して接続できるため、第3実施形態のように正極の主リード54を肉薄の金属缶42底部に接続する場合に比べて組立てが容易になると共に、接続信頼性を向上できる。   Further, the flat spiral electrode group 48 is accommodated horizontally in the metal can 42 of the exterior member 41, and the plurality of positive electrode intermediate leads 53 and the plurality of negative electrode intermediate leads 55 are connected to the positive and negative electrodes of the flat spiral electrode group 48. The other end of the main lead 56 of the negative electrode is connected by welding so as to be aligned in the axial direction on the lid 43 side (upper side) of the flat spiral electrode group 48 respectively to the lead extraction portions 51b and 52b protruding in a spiral shape. In addition, since the other end of the positive main lead 54 can be pulled out and connected to the relatively thick lid 43 side, the positive main lead 54 is connected to the bottom of the thin metal can 42 as in the third embodiment. As compared with the case, the assembly becomes easier and the connection reliability can be improved.

以下、本発明の実施例を前述した図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings described above.

(実施例1)
<正極の作製>
正極活物質であるLiCoO289重量%と、導電剤である黒鉛粉末3重量%およびアセチレンブラック3重量%と、結着剤であるポリフッ化ビニリデン(PVdF)5重量%とをn−メチル−2−ピロリドン(NMP)溶媒に分散して正極用途工スラリーを調製した。このスラリーを厚さ15μmの純度99%以上のアルミニウム箔に塗布、乾燥、プレスを行って密度3.3g/cm3の正極層を形成して正極素材を作製した。
Example 1
<Preparation of positive electrode>
N-methyl-2 containing 89% by weight of LiCoO 2 as a positive electrode active material, 3% by weight of graphite powder and 3% by weight of acetylene black as a conductive agent, and 5% by weight of polyvinylidene fluoride (PVdF) as a binder. -Dispersed in a pyrrolidone (NMP) solvent to prepare a positive electrode working slurry. The slurry was applied to an aluminum foil having a thickness of 99% or more with a thickness of 15 μm, dried, and pressed to form a positive electrode layer having a density of 3.3 g / cm 3 to produce a positive electrode material.

<負極の作製>
負極活物質であるLi4Ti51291重量%と、導電剤であるグラファイト7重量%と、結着剤であるPVdF2重量%とをN−メチル−2−ピロリドン(NMP)溶液中で混合することにより負極用塗工スラリーを調製した。このスラリーを厚さ15μmの純度99%以上のアルミニウム箔からなる集電体に塗布し、乾燥し、プレスを行って密度2.1g/cm3の負極層を形成した負極素材を作製した。
<Production of negative electrode>
91% by weight of Li 4 Ti 5 O 12 as a negative electrode active material, 7% by weight of graphite as a conductive agent, and 2% by weight of PVdF as a binder were mixed in an N-methyl-2-pyrrolidone (NMP) solution. Thus, a negative electrode coating slurry was prepared. This slurry was applied to a current collector made of an aluminum foil having a thickness of 15% or more and having a purity of 99% or more, dried, and pressed to produce a negative electrode material having a negative electrode layer having a density of 2.1 g / cm 3 .

<非水電解質の調製>
エチレンカーボネート(EC):プロピレンカーボネート(PC):γーブチロラクトン(GBL)を体積比で1:1:4の割合で混合した混合溶媒に2MのLiBF4を混合して非水電解質を調製した。
<Preparation of non-aqueous electrolyte>
A nonaqueous electrolyte was prepared by mixing 2M LiBF 4 in a mixed solvent in which ethylene carbonate (EC): propylene carbonate (PC): γ-butyrolactone (GBL) was mixed at a volume ratio of 1: 1: 4.

<電池の組み立て>
前記正極素材を打ち抜いて正極を作製した。この打ち抜き片(正極)は、前述した図2の(A)に示すようにアルミニウム箔の集電体が矩形形状の集電体本体と、この集電体本体から一体的に突出された短冊状リード取出し部とを有し、集電体本体に正極層が形成された構造を有する。この正極を大気圧プラズマ装置のチャンバ内のホルダに設置し、高周波電力の供給により大気圧雰囲気のチャンバ内にプラズマを発生させて集電体の露出したリード取出し部をプラズマに曝した。リード取出し部は、この処理により20℃の水に対する接触角が20°の性状になった。
<Battery assembly>
The positive electrode material was punched out to produce a positive electrode. As shown in FIG. 2A, the punched piece (positive electrode) has a rectangular current collector body in which an aluminum foil current collector and a strip shape integrally projecting from the current collector body. And a lead extraction part, and a structure in which a positive electrode layer is formed on the current collector body. This positive electrode was placed on a holder in a chamber of an atmospheric pressure plasma apparatus, and plasma was generated in the atmospheric pressure atmosphere chamber by supplying high frequency power to expose the exposed lead extraction portion of the current collector to the plasma. As a result of this treatment, the lead takeout part has a contact angle with water of 20 ° C. of 20 °.

同様に、前記負極素材を打ち抜いて正極を作製した。この打ち抜き片(負極)は、前述した図2の(B)に示すようにアルミニウム箔の集電体が矩形形状の集電体本体と、この集電体本体から一体的に突出された短冊状リード取出し部とを有し、集電体本体に負極層が形成された構造を有する。負極を大気圧プラズマ装置のチャンバ内のホルダに設置し、高周波電力の供給により大気圧雰囲気のチャンバ内にプラズマを発生させて集電体の露出したリード取出し部をプラズマに曝した。リード取出し部は、この処理により20℃の水に対する接触角が20°の性状になった。   Similarly, the negative electrode material was punched out to produce a positive electrode. As shown in FIG. 2B, the punched piece (negative electrode) has a rectangular current collector body and a strip shape in which the aluminum foil current collector protrudes integrally from the current collector body. And a lead extraction portion, and a structure in which a negative electrode layer is formed on the current collector body. The negative electrode was placed in a holder in the chamber of the atmospheric pressure plasma apparatus, and plasma was generated in the atmospheric pressure atmosphere chamber by supplying high-frequency power to expose the exposed lead extraction portion of the current collector to the plasma. As a result of this treatment, the lead takeout part has a contact angle with water of 20 ° C. of 20 °.

なお、正極の正極層で覆われた集電体本体および負極の負極層で覆われた集電体本体は、20℃の水に対する接触角が105°であった。   Note that the current collector body covered with the positive electrode layer of the positive electrode and the current collector body covered with the negative electrode layer of the negative electrode had a contact angle of 105 ° with water at 20 ° C.

次いで、矩形形状の正極および負極をそれぞれ九十九状に折り込んだセルロースの不織布からなるセパレータの折り曲げ部に交互に挿入して積層し、セパレータの端部を矩形柱状の積層物の外周側面を覆うように巻装し、プレス成形して前述した図3に示す矩形積層電極群を作製した。つづいて、電極群の複数の正極および複数の負極のリード取出し部をそれぞれレーザー溶接により接合して束ねた後、束ねられた各リード取出し部にアルミニウムからなる正極、負極のリードをそれぞれレーザー溶接により接合して接続した。ひきつづき、前述した図1に示すガス抜き穴、正極端子および負極端子を有するアルミニウムからなる蓋体を用意し、電極群から延びる正極リードを正極端子直下の蓋体下面にレーザー溶接により接合して接続し、負極リードを蓋体下面に露出した負極端子の下端面にレーザー溶接により接合して接続した。蓋体が接続された電極群を厚さ0.5mmの矩形アルミニウム缶に挿入し、電解液を注液した後、蓋体をアルミニウム缶の開口部に嵌合させ、レーザー溶接により蓋体を缶に接合して気密に封止することにより電池容量が1Ahの前述した図1に示す構造の角形非水電解質電池を組み立てた。   Next, a rectangular positive electrode and a negative electrode are alternately inserted into a folded portion of a separator made of a cellulose nonwoven fabric folded in a ninety-nine shape and stacked, and the end of the separator covers the outer peripheral side surface of the rectangular columnar laminate. Thus, the rectangular laminated electrode group shown in FIG. Next, after joining and bundling the lead extraction portions of the plurality of positive electrodes and the plurality of negative electrodes of the electrode group by laser welding, respectively, the positive electrode and negative electrode leads made of aluminum are respectively laser-welded to the bundled lead extraction portions. Joined and connected. Next, prepare a lid made of aluminum having the vent hole, positive electrode terminal and negative electrode terminal shown in FIG. 1, and connect the positive lead extending from the electrode group by laser welding to the lower surface of the lid directly below the positive electrode terminal. Then, the negative electrode lead was joined and connected to the lower end surface of the negative electrode terminal exposed on the lower surface of the lid by laser welding. After inserting the electrode group to which the lid was connected into a 0.5 mm thick rectangular aluminum can and injecting electrolyte, the lid was fitted into the opening of the aluminum can and the lid was canned by laser welding. The prismatic non-aqueous electrolyte battery having the structure shown in FIG. 1 and having the battery capacity of 1 Ah was assembled.

(実施例2)
実施例1の正極素材を打ち抜いて正極を作製した。この打ち抜き片(正極)は、前述した図5の(A)に示すようにアルミニウム箔の集電体が帯状の集電体本体と、この集電体本体から一体的に突出された複数の短冊状リード取出し部とを有し、帯状の集電体本体に正極層が形成された構造を有する。この正極を大気圧プラズマ装置のチャンバ内のホルダに設置し、高周波電力の供給により大気圧雰囲気のチャンバ内にプラズマを発生させて集電体の露出した複数のリード取出し部をプラズマに曝した。複数のリード取出し部は、この処理により20℃の水に対する接触角が20°の性状になった。
(Example 2)
The positive electrode material of Example 1 was punched out to produce a positive electrode. As shown in FIG. 5A, the punched piece (positive electrode) includes a strip-shaped current collector body having an aluminum foil current collector and a plurality of strips integrally projecting from the current collector body. And has a structure in which a positive electrode layer is formed on a band-shaped current collector body. The positive electrode was placed in a holder in a chamber of an atmospheric pressure plasma apparatus, and plasma was generated in the atmospheric pressure chamber by supplying high-frequency power to expose a plurality of lead extraction portions exposed to the current collector to the plasma. The plurality of lead take-out portions have the property that the contact angle with respect to 20 ° C. water is 20 ° by this treatment.

同様に、実施例1の負極素材を打ち抜いて負極を作製した。この打ち抜き片(負極)は、前述した図5の(B)に示すようにアルミニウム箔の集電体が帯状の集電体本体と、この集電体本体から一体的に突出された複数の短冊状リード取出し部とを有し、帯状の集電体本体に負極層が形成された構造を有する。この負極を大気圧プラズマ装置のチャンバ内のホルダに設置し、高周波電力の供給により大気圧雰囲気のチャンバ内にプラズマを発生させて集電体の露出した複数のリード取出し部をプラズマに曝した。複数のリード取出し部は、この処理により20℃の水に対する接触角が20°の性状になった。   Similarly, the negative electrode material of Example 1 was punched out to produce a negative electrode. As shown in FIG. 5B, the punched piece (negative electrode) includes a strip-shaped current collector main body and a plurality of strips integrally protruding from the current collector main body. And a negative electrode layer formed on the band-shaped current collector body. This negative electrode was placed in a holder in a chamber of an atmospheric pressure plasma apparatus, and plasma was generated in the atmospheric pressure chamber by supplying high-frequency power to expose a plurality of lead extraction portions exposed to the current collector to the plasma. The plurality of lead take-out portions have the property that the contact angle with respect to 20 ° C. water is 20 ° by this treatment.

なお、正極層で覆われた集電体本体および負極層で覆われた集電体本体は、20℃の水に対する接触角が105°であった。   Note that the current collector body covered with the positive electrode layer and the current collector body covered with the negative electrode layer had a contact angle with water of 20 ° C. of 105 °.

また、正極および負極の複数のリード取出し部の位置(間隔)は前述した第2実施形態および図6、図7に従い、セパレータと共に渦巻状に捲回し、プレス成形して得られた扁平渦巻状電極群の直線部にその直線部に対して直角方向に正極、負極の複数のリード取出し部がそれぞれ配列するように設定した。   Further, the positions (intervals) of the plurality of lead extraction portions of the positive electrode and the negative electrode are flat spiral electrodes obtained by spirally winding together with the separator and press-molding according to the second embodiment and FIGS. It was set so that a plurality of lead extraction portions of the positive electrode and the negative electrode were arranged in a direction perpendicular to the straight portion of the group.

次いで、得られた正極および負極の間にセルロース不織布からなる帯状のセパレータを介して捲回し、プレス成形して図6に示すように正極、負極の複数のリード取出し部が直線部に対して直角方向にそれぞれ配列された扁平渦巻状電極群を作製した。つづいて、電極群の正極および負極の複数のリード取出し部をそれぞれレーザー溶接により接合して束ねた後、束ねられた各リード取出し部にアルミニウムからなる正極、負極のリードをそれぞれレーザー溶接により接合して接続した。ひきつづき、前述した図4に示すガス抜き穴、正極端子および負極端子を有するアルミニウムからなる蓋体を用意し、電極群から延びる正極リードを正極端子直下の蓋体下面にレーザー溶接により接合して接続し、負極リードを蓋体下面に露出した負極端子の下端面にレーザー溶接により接合して接続した。蓋体が接続された電極群を厚さ0.5mmの矩形アルミニウム缶に挿入し、実施例1と同様な電解液を注液した後、蓋体をアルミニウム缶の開口部に嵌合させ、レーザー溶接により蓋体を缶に接合して気密に封止することにより電池容量が1Ahの前述した図4に示す構造の角形非水電解質電池を組み立てた。   Next, the obtained positive electrode and negative electrode are wound through a band-shaped separator made of a cellulose nonwoven fabric, press-molded, and a plurality of lead extraction portions of the positive electrode and the negative electrode are perpendicular to the straight portion as shown in FIG. A flat spiral electrode group arranged in each direction was prepared. Next, after joining and bundling multiple lead extraction parts of the positive electrode and negative electrode of the electrode group by laser welding, respectively, the positive electrode and negative electrode lead made of aluminum are joined to each bundled lead extraction part by laser welding. Connected. Subsequently, a lid made of aluminum having the vent hole, the positive terminal and the negative terminal shown in FIG. 4 is prepared, and the positive lead extending from the electrode group is joined by laser welding to the lower surface of the lid directly below the positive terminal. Then, the negative electrode lead was joined and connected to the lower end surface of the negative electrode terminal exposed on the lower surface of the lid by laser welding. The electrode group to which the lid was connected was inserted into a rectangular aluminum can having a thickness of 0.5 mm, and an electrolyte solution similar to that in Example 1 was injected, and then the lid was fitted into the opening of the aluminum can. The prismatic nonaqueous electrolyte battery having the structure shown in FIG. 4 and having the battery capacity of 1 Ah was assembled by joining the lid to the can by welding and sealing hermetically.

(実施例3)
実施例1の正極素材を打ち抜いて正極を作製した。この打ち抜き片(正極)は、前述した図9の(B)に示すようにアルミニウム箔の集電体が帯状の集電体本体と、この集電体本体の長手方向に沿う側面に一体的に形成された帯状のリード取出し部とを有し、帯状の集電体本体に正極層が形成された構造を有する。この正極を大気圧プラズマ装置のチャンバ内のホルダに設置し、高周波電力の供給により大気圧雰囲気のチャンバ内にプラズマを発生させて集電体の露出した帯状のリード取出し部をプラズマに曝した。帯状のリード取出し部は、この処理により20℃の水に対する接触角が20°の性状になった。
(Example 3)
The positive electrode material of Example 1 was punched out to produce a positive electrode. As shown in FIG. 9B, the punched piece (positive electrode) is integrally formed with a current collector body made of a strip of aluminum foil and a side surface along the longitudinal direction of the current collector body. And a strip-shaped lead extraction portion formed, and a structure in which a positive electrode layer is formed on the strip-shaped current collector main body. This positive electrode was placed in a holder in a chamber of an atmospheric pressure plasma apparatus, and plasma was generated in the atmospheric pressure atmosphere chamber by supplying high-frequency power to expose the strip-shaped lead extraction portion where the current collector was exposed to the plasma. The strip-shaped lead-out portion became a property having a contact angle of 20 ° with respect to water at 20 ° C. by this treatment.

同様に、実施例1の負極素材を打ち抜いて正極を作製した。この打ち抜き片(負極)は、前述した図9の(A)に示すようにアルミニウム箔の集電体が帯状の集電体本体とこの集電体本体の長手方向に沿う側面に一体的に形成された帯状のリード取出し部とを有し、帯状の集電体本体に負極層が形成された構造を有する。この負極を大気圧プラズマ装置のチャンバ内のホルダに設置し、高周波電力の供給により大気圧雰囲気のチャンバ内にプラズマを発生させて集電体の露出した帯状のリード取出し部をプラズマに曝した。帯状のリード取出し部は、この処理により20℃の水に対する接触角が20°の性状になった。   Similarly, the negative electrode material of Example 1 was punched out to produce a positive electrode. As shown in FIG. 9A, the punched piece (negative electrode) is formed integrally with a current collector body made of aluminum foil on a strip-shaped current collector body and a side surface along the longitudinal direction of the current collector body. And has a structure in which a negative electrode layer is formed on the band-shaped current collector main body. This negative electrode was placed in a holder in a chamber of an atmospheric pressure plasma apparatus, and plasma was generated in the chamber in an atmospheric pressure atmosphere by supplying high-frequency power to expose the strip-shaped lead extraction portion where the current collector was exposed to the plasma. The strip-shaped lead-out portion became a property having a contact angle of 20 ° with respect to water at 20 ° C. by this treatment.

なお、正極層で覆われた集電体本体および負極層で覆われた集電体本体は、20℃の水に対する接触角が105°であった。   Note that the current collector body covered with the positive electrode layer and the current collector body covered with the negative electrode layer had a contact angle with water of 20 ° C. of 105 °.

次いで、得られた正極および負極の間にセルロース不織布からなる帯状のセパレータを介して捲回し、プレス成形して扁平渦巻状電極群を作製した。負極のリード取出し部は、前述した図10に示すように電極群上側の渦巻面から渦巻状に突出している。正極のリード取出し部は、図10に示すように電極群下側の渦巻面から渦巻状に突出している。つづいて、前述した図10に示すように電極群の正極および負極の渦巻状に突出したリード取出し部の複数個所にアルミニウムからなる複数の中間リードをそれぞれレーザー溶接により接続した後、それら正極、負極の複数の中間リードをレーザー溶接により接合して束ねた。束ねられた各中間リードにアルミニウムからなる主リードをそれぞれレーザー溶接により接合して接続した。ひきつづき、前述した図8に示すガス抜き穴、正極端子および負極端子を有するアルミニウムからなる蓋体を用意し、電極群から延びる負極の主リードを蓋体下面に露出した負極端子の下端面にレーザー溶接により接合して接続した。蓋体が接続された電極群を厚さ0.5mmの矩形アルミニウム缶に挿入し、電極群の正極から延びる主リードをアルミニウム缶の底部内面にレーザー溶接により接合して接続し、実施例1と同様な電解液を注液した後、蓋体をアルミニウム缶の開口部に嵌合させ、レーザー溶接により蓋体を缶に接合して気密に封止することにより電池容量が1Ahの前述した図4に示す構造の角形非水電解質電池を組み立てた。   Subsequently, it wound around through the strip-shaped separator which consists of a cellulose nonwoven fabric between the obtained positive electrode and negative electrode, and was press-molded, and the flat spiral electrode group was produced. As shown in FIG. 10 described above, the lead lead-out portion of the negative electrode protrudes spirally from the spiral surface on the upper side of the electrode group. As shown in FIG. 10, the lead lead-out portion of the positive electrode protrudes spirally from the spiral surface below the electrode group. Subsequently, as shown in FIG. 10 described above, after a plurality of intermediate leads made of aluminum are connected by laser welding to a plurality of lead extraction portions protruding in a spiral shape of the positive electrode and the negative electrode of the electrode group, respectively, the positive electrode and the negative electrode A plurality of intermediate leads were joined and bundled by laser welding. Main leads made of aluminum were joined and connected to the bundled intermediate leads by laser welding. Subsequently, a lid made of aluminum having the vent hole, the positive electrode terminal and the negative electrode terminal shown in FIG. 8 is prepared, and the main lead of the negative electrode extending from the electrode group is exposed to the lower end surface of the negative electrode terminal exposed on the lower surface of the lid. They were joined and connected by welding. The electrode group to which the lid was connected was inserted into a rectangular aluminum can having a thickness of 0.5 mm, and the main lead extending from the positive electrode of the electrode group was joined and connected to the inner surface of the bottom of the aluminum can by laser welding. After injecting the same electrolytic solution, the lid is fitted into the opening of the aluminum can, and the lid is joined to the can by laser welding and hermetically sealed to thereby have a battery capacity of 1 Ah as shown in FIG. A rectangular non-aqueous electrolyte battery having the structure shown in FIG.

(実施例4)
実施例3と同様な正極および負極の中間リードを接続した扁平渦巻状電極群を厚さ0.5mmの角形アルミニウム缶にその渦巻面が缶の内側面に対向するように横置きに収納した以外、実施例3と同様な方法で電池容量が1Ahの前述した図11に示す構造の角形非水電解質電池を組み立てた。
Example 4
A flat spiral electrode group having the same positive and negative intermediate leads as in Example 3 connected to a 0.5 mm-thick square aluminum can in a horizontal manner with its spiral surface facing the inner surface of the can A prismatic nonaqueous electrolyte battery having the structure shown in FIG. 11 and having a battery capacity of 1 Ah was assembled in the same manner as in Example 3.

(比較例1)
正極および負極の集電体の短冊状リード取出し部へのプラズマ照射を行わない以外、実施例1と同様の非水電解質電池を組み立てた。なお、これらのリード取出し部は20℃の水に対する接触角が105°であった。
(Comparative Example 1)
A nonaqueous electrolyte battery similar to that of Example 1 was assembled, except that plasma irradiation was not performed on the strip-shaped lead extraction portion of the positive and negative electrode current collectors. In addition, these lead extraction parts had a contact angle of 105 ° with respect to 20 ° C. water.

(比較例2)
正極および負極の集電体の複数の短冊状リード取出し部へのプラズマ照射を行わない以外、実施例2と同様の非水電解質電池を組み立てた。なお、これらのリード取出し部は20℃の水に対する接触角が105°であった。
(Comparative Example 2)
A nonaqueous electrolyte battery similar to that of Example 2 was assembled, except that plasma irradiation was not performed on the plurality of strip-shaped lead extraction portions of the positive and negative electrode current collectors. In addition, these lead extraction parts had a contact angle of 105 ° with respect to 20 ° C. water.

(比較例3)
正極および負極の集電体の帯状のリード取出し部へのプラズマ照射を行わない以外、実施例3と同様の非水電解質電池を組み立てた。なお、これらのリード取出し部は20℃の水に対する接触角が105°であった。
(Comparative Example 3)
A non-aqueous electrolyte battery similar to that of Example 3 was assembled, except that plasma irradiation was not performed on the strip-shaped lead extraction portion of the positive and negative electrode current collectors. In addition, these lead extraction parts had a contact angle of 105 ° with respect to 20 ° C. water.

(比較例4)
正極および負極の集電体の帯状のリード取出し部へのプラズマ照射を行わない以外、実施例4と同様の非水電解質電池を組み立てた。なお、これらのリード取出し部は20℃の水に対する接触角が105°であった。
(Comparative Example 4)
A non-aqueous electrolyte battery similar to that of Example 4 was assembled, except that plasma irradiation was not performed on the strip-shaped lead extraction portion of the positive and negative electrode current collectors. In addition, these lead extraction parts had a contact angle of 105 ° with respect to 20 ° C. water.

得られた実施例1〜4および比較例1〜4の非水電解質電池について、下記方法により電池抵抗および大電流放電特性を評価した。   About the obtained non-aqueous electrolyte battery of Examples 1-4 and Comparative Examples 1-4, battery resistance and a large current discharge characteristic were evaluated with the following method.

<電池抵抗の評価>
得られた電池を満充電の状態まで充電した後、0.5Ah分の放電を行い放電深度50%の状態とした。放電深度50%の電池の開回路電圧(V1)を測定した。この電池を40Aの電流値で放電を行ったときの5秒後の電圧値(V2)を測定した。これらの測定結果から40A、5秒放電時の電池抵抗を次式(1)により求めた。
<Evaluation of battery resistance>
After the obtained battery was charged to a fully charged state, discharging was performed for 0.5 Ah to obtain a discharge depth of 50%. The open circuit voltage (V1) of a battery having a discharge depth of 50% was measured. When this battery was discharged at a current value of 40 A, the voltage value (V2) after 5 seconds was measured. From these measurement results, the battery resistance at the time of discharging at 40 A for 5 seconds was obtained by the following formula (1).

電池抵抗(Ω)=(V1−V2)/40 …(1)
例えば、実施例1ではV1が2.368V、V2が2.121Vであり、これらの電圧値を前記式(1)に代入することにより電池抵抗が約0.00618Ω(約6.18mΩ)であることが求められる。
Battery resistance (Ω) = (V1−V2) / 40 (1)
For example, in Example 1, V1 is 2.368V and V2 is 2.121V, and by substituting these voltage values into the formula (1), the battery resistance is about 0.00618Ω (about 6.18mΩ). Is required.

<大電流放電特性の評価>
電池抵抗を測定した後の電池を満充電の状態まで充電した後、1Cの放電電流で電池電圧が2Vに達するまで放電を行ったときの放電容量(C1)を測定した。さらに、再び電池を満充電の状態まで充電した後、20Cの放電電流で電池電圧が2Vに達するまでの放電を行ったときの放電容量(C20)を測定した。これらの測定結果から1C放電容量に対する20C放電容量の維持率を次式(2)により求めた。
<Evaluation of large current discharge characteristics>
After charging the battery after measuring the battery resistance to a fully charged state, the discharge capacity (C1) when discharging until the battery voltage reached 2 V with a discharge current of 1 C was measured. Furthermore, after the battery was charged to a fully charged state again, the discharge capacity (C20) when discharging until the battery voltage reached 2 V with a discharge current of 20 C was measured. From these measurement results, the maintenance ratio of the 20 C discharge capacity with respect to the 1 C discharge capacity was obtained by the following equation (2).

放電容量維持率=(C20/C1)×100 …(2)
例えば実施例1ではC1が1003mAh、C20が804mAhであり、これらの放電容量を前記式(2)に代入することにより放電容量維持率が約80.16%であることが求められる。
Discharge capacity maintenance rate = (C20 / C1) × 100 (2)
For example, in Example 1, C1 is 1003 mAh and C20 is 804 mAh, and by substituting these discharge capacities into the above equation (2), it is required that the discharge capacity retention rate is about 80.16%.

このような実施例1〜4および比較例1〜4の電池の電池抵抗および大電流放電特性を下記表1に示す。

Figure 2009205864
The battery resistance and large current discharge characteristics of the batteries of Examples 1 to 4 and Comparative Examples 1 to 4 are shown in Table 1 below.
Figure 2009205864

前記表1から明らかなように実施例1〜4の電池は、これら実施例1に対応する比較例1〜4の電池に比べて電池抵抗および大電流放電特性がいずれも優れていることがわかる。   As apparent from Table 1, the batteries of Examples 1 to 4 are superior in battery resistance and large current discharge characteristics as compared with the batteries of Comparative Examples 1 to 4 corresponding to Example 1. .

(比較例5)
アルミニウム箔からなる負極集電体を大気圧プラズマ装置のチャンバ内のホルダに設置し、高周波電力の供給により大気圧雰囲気のチャンバ内にプラズマを発生させて集電体全面をプラズマに曝した。この処理により集電体は20℃の水に対する接触角が20°の性状になった。得られた負極集電体を用いて実施例1と同様な方法により負極素材を作製し、打ち抜き加工により前述した図2の(B)に示す形状の負極を作製した。この負極を用いた以外、実施例1と同様な電池容量が1Ahの前述した図1に示す構造の角形非水電解質電池を組み立てた。
(Comparative Example 5)
A negative electrode current collector made of aluminum foil was placed in a holder in a chamber of an atmospheric pressure plasma apparatus, and plasma was generated in the chamber in an atmospheric pressure atmosphere by supplying high-frequency power to expose the entire surface of the current collector to the plasma. By this treatment, the current collector was changed to a 20 ° contact angle with water at 20 ° C. Using the obtained negative electrode current collector, a negative electrode material was prepared in the same manner as in Example 1, and the negative electrode having the shape shown in FIG. A rectangular nonaqueous electrolyte battery having the structure shown in FIG. 1 and having the battery capacity of 1 Ah similar to that of Example 1 except that this negative electrode was used was assembled.

得られた比較例5および前記実施例1の500個の非水電解質電池について、下記方法により歩留まり(不良電池個数)を調べた。   With respect to the 500 nonaqueous electrolyte batteries of Comparative Example 5 and Example 1 obtained above, the yield (number of defective batteries) was examined by the following method.

<歩留りの評価>
比較例5および実施例1の方法で500個の電池を組立て、これらの電池を満充電の状態で25℃環境下30日間放置した後、再び満充電状態になるように追充電を実施し、その際の充電容量が電池容量の10%以上であれば電池内部に短絡部分が存在すると判断し不良判定した。
<Evaluation of yield>
After assembling 500 batteries by the method of Comparative Example 5 and Example 1, these batteries were left in a fully charged state for 30 days in an environment of 25 ° C., and then subjected to additional charging so as to be in a fully charged state again. If the charge capacity at that time was 10% or more of the battery capacity, it was judged that there was a short-circuited portion inside the battery, and a failure was determined.

その結果、実施例1では不良電池が500個中1個であるのに対し、比較例5では不良電池が500個中6個と歩留まりが低いことが確認された。   As a result, it was confirmed that in Example 1, the number of defective batteries was 1 out of 500, whereas in Comparative Example 5, the number of defective batteries was 6 out of 500, and the yield was low.

本発明の第1実施形態に係る非水電解質電池を示す断面図。1 is a cross-sectional view showing a nonaqueous electrolyte battery according to a first embodiment of the present invention. 図1の非水電解質電池に組み込まれる正極、負極を示す正面図。The front view which shows the positive electrode and negative electrode which are integrated in the nonaqueous electrolyte battery of FIG. 図1の非水電解質電池に組み込まれる電極群の斜視図。The perspective view of the electrode group integrated in the nonaqueous electrolyte battery of FIG. 本発明の第2実施形態に係る非水電解質電池を示す断面図。Sectional drawing which shows the nonaqueous electrolyte battery which concerns on 2nd Embodiment of this invention. 図4の非水電解質電池に組み込まれる正極、負極の展開図。FIG. 5 is a development view of a positive electrode and a negative electrode incorporated in the nonaqueous electrolyte battery of FIG. 4. 図4の非水電解質電池に組み込まれる電極群の上面図。The top view of the electrode group integrated in the nonaqueous electrolyte battery of FIG. 電極群の直線部に負極のリード取出し部が並んで配列させるための展開した負極の複数のリード取出し部の位置関係を説明する図。The figure explaining the positional relationship of the some lead extraction part of the expand | deployed negative electrode for arranging the lead extraction part of a negative electrode along with the linear part of an electrode group. 本発明の第3実施形態に係る非水電解質電池を示す断面図。Sectional drawing which shows the nonaqueous electrolyte battery which concerns on 3rd Embodiment of this invention. 図8の非水電解質電池に組み込まれる負極、正極の展開図。FIG. 9 is a development view of a negative electrode and a positive electrode incorporated in the nonaqueous electrolyte battery of FIG. 8. 図8の非水電解質電池に組み込まれる扁平渦巻状電極群の斜視図。The perspective view of the flat spiral electrode group integrated in the nonaqueous electrolyte battery of FIG. 本発明の第4実施形態に係る非水電解質電池を示す断面図。Sectional drawing which shows the nonaqueous electrolyte battery which concerns on 4th Embodiment of this invention. 20℃の水に対する接触角を説明するための図。The figure for demonstrating the contact angle with respect to 20 degreeC water.

符号の説明Explanation of symbols

1,21,41…外装材、2,22,42…金属缶(アルミニウム缶)、3,23,43…蓋体、6,26,46…負極端子、8,28,48…電極群、9,29,49…正極、10,30,50…負極、11,31…セパレータ、12,32,51…正極の集電体、12a,32a,51a…集電体本体、12b,32b,51b…リード取出し部、13,33,52…負極の集電体、13a,33a,52a…集電体本体、13b,33b,52b…リード取出し部、14,34…正極リード、15,35…負極リード、53…正極中間リード、54…正極主リード、55…負極中間リード、56…負極主リード。   1, 2, 41 ... exterior material, 2, 22, 42 ... metal can (aluminum can), 3, 23, 43 ... lid, 6, 26, 46 ... negative electrode terminal, 8, 28, 48 ... electrode group, 9 , 29, 49 ... positive electrode, 10, 30, 50 ... negative electrode, 11, 31 ... separator, 12, 32, 51 ... positive electrode current collector, 12a, 32a, 51a ... current collector body, 12b, 32b, 51b ... Lead extraction part, 13, 33, 52 ... negative electrode current collector, 13a, 33a, 52a ... current collector body, 13b, 33b, 52b ... lead extraction part, 14, 34 ... positive electrode lead, 15, 35 ... negative electrode lead 53 ... Positive electrode intermediate lead, 54 ... Positive electrode main lead, 55 ... Negative electrode intermediate lead, 56 ... Negative electrode main lead.

Claims (4)

外装材;
前記外装材内に収納され、複数の正極、複数の負極およびこれら正極、負極間に介在されるセパレータを積層した構造の電極群;
前記複数の正極に接続された正極リード;
前記複数の負極に接続された負極リード;
前記外装材に収容された非水電解質
を備え、
前記各正極は、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなり、集電体本体およびこの本体から一体的に突出したリード取出し部を有する集電体と、この集電体本体の片面もしくは両面に形成された正極活物質を含む正極層とを備え、各リード取出し部が溶接により互いに接合して束ねられ、
前記各正極のリード取出し部は、20℃の水に対する接触角が45°以下、前記集電体本体は20℃の水に対する接触角が45°を超え、
前記正極リードは、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなり、前記束ねられた複数の正極のリード取出し部に溶接により接続され、
前記各負極は、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなり、集電体本体およびこの本体から一体的に突出したリード取出し部を有する集電体と、この集電体本体の片面もしくは両面に形成された負極活物質を含む負極層とを有し、各リード取出し部が溶接により互いに接合して束ねられ、
前記各負極のリード取出し部は、20℃の水に対する接触角が45°以下、前記集電体本体は20℃の水に対する接触角が45°を超え、かつ
前記負極リードは、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなり、前記束ねられた複数の負極のリード取出し部に溶接により接続されることを特徴とする非水電解質電池。
Exterior material;
An electrode group having a structure in which a plurality of positive electrodes, a plurality of negative electrodes, and separators interposed between the positive electrodes and the negative electrodes are stacked in the exterior material;
A positive electrode lead connected to the plurality of positive electrodes;
A negative electrode lead connected to the plurality of negative electrodes;
Comprising a non-aqueous electrolyte housed in the exterior material,
Each of the positive electrodes is made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more, and has a current collector body and a current collector having a lead extraction portion integrally projecting from the body, and the current collector body A positive electrode layer containing a positive electrode active material formed on one side or both sides of each, and each lead extraction part is bonded and bundled together by welding,
The lead extraction part of each positive electrode has a contact angle with water of 20 ° C. of 45 ° or less, the current collector body has a contact angle with water of 20 ° C. exceeding 45 °,
The positive electrode lead is made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more, and connected to the lead-out portions of the bundled positive electrodes by welding,
Each negative electrode is made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more, and has a current collector body and a current collector having a lead-out portion protruding integrally from the body, and the current collector body A negative electrode layer containing a negative electrode active material formed on one side or both sides of each, and each lead extraction part is joined and bundled together by welding,
The lead extraction part of each negative electrode has a contact angle with water of 20 ° C. of 45 ° or less, the current collector body has a contact angle with water of 20 ° C. of more than 45 °, and the negative electrode lead has a purity of 99% or more A non-aqueous electrolyte battery comprising: an aluminum alloy having a purity of 99% or more and connected to the lead-out portions of the bundled negative electrodes by welding.
外装材;
前記外装材内に収納され、正極、負極およびこれら正極、負極間に介在されるセパレータを渦巻状に捲回した構造の電極群;
前記正極に接続された正極リード;
前記負極に接続された負極リード;
前記外装材に収容された非水電解質
を備え、
前記正極は、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなり、帯状の集電体本体およびこの集電体本体から一体的に突出した複数のリード取出し部を有する集電体と、この帯状の集電体本体の片面もしくは両面に形成された正極活物質を含む正極層とを備え、各リード取出し部が溶接により互いに接合して束ねられ、
前記正極の各リード取出し部は、20℃の水に対する接触角が45°以下、前記集電体本体は20℃の水に対する接触角が45°を超え、
前記正極リードは、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなり、前記正極の束ねられた複数のリード取出し部に溶接により接続され、
前記負極は、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなり、帯状の集電体本体およびこの集電体本体から一体的に突出した複数のリード取出し部を有する集電体と、この帯状の集電体本体の片面もしくは両面に形成された負極活物質を含む負極層とを備え、各リード取出し部が溶接により互いに接合して束ねられ、
前記負極の各リード取出し部は、20℃の水に対する接触角が45°以下、前記集電体本体は20℃の水に対する接触角が45°を超え、かつ
前記負極リードは、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなり、前記負極の束ねられた複数のリード取出し部に溶接により接続されることを特徴とする非水電解質電池。
Exterior material;
An electrode group having a structure in which a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode are wound in a spiral shape, housed in the exterior material;
A positive electrode lead connected to the positive electrode;
A negative electrode lead connected to the negative electrode;
Comprising a non-aqueous electrolyte housed in the exterior material,
The positive electrode is made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more, and has a strip-shaped current collector body and a current collector having a plurality of lead extraction portions integrally projecting from the current collector body; A positive electrode layer containing a positive electrode active material formed on one side or both sides of the belt-like current collector body, and each lead extraction part is joined and bundled together by welding,
Each lead extraction part of the positive electrode has a contact angle with respect to water at 20 ° C. of 45 ° or less, and the current collector body has a contact angle with respect to water at 20 ° C. exceeding 45 °,
The positive electrode lead is made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more, and connected by welding to a plurality of lead extraction portions bundled with the positive electrode,
The negative electrode is made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more, and has a strip-shaped current collector body and a current collector having a plurality of lead extraction portions integrally projecting from the current collector body; A negative electrode layer containing a negative electrode active material formed on one side or both sides of the strip-shaped current collector body, and each lead extraction part is joined and bundled together by welding,
Each lead take-out part of the negative electrode has a contact angle with water of 20 ° C. of 45 ° or less, the current collector body has a contact angle with water of 20 ° C. of more than 45 °, and the negative electrode lead has a purity of 99% or more A non-aqueous electrolyte battery comprising: an aluminum alloy having a purity of 99% or more and connected to a plurality of lead-out portions bundled with the negative electrode by welding.
外装材;
前記外装材内に収納され、正極、負極およびこれら正極、負極間に介在されるセパレータを渦巻状に捲回した構造の電極群;
前記正極に接続された正極リード;
前記負極に接続された負極リード;
前記外装材に収容された非水電解質
を備え、
前記正極は、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなり、帯状の集電体本体およびこの集電体本体の長手方向に沿う側面に一体的に形成された帯状のリード取出し部を有する集電体と、この帯状の集電体本体の片面もしくは両面に形成された正極活物質を含む正極層とを備え、前記リード取り出し部が前記電極群の一方の渦巻状面に渦巻状に突出し、
前記正極のリード取出し部は、20℃の水に対する接触角が45°以下、前記集電体本体は20℃の水に対する接触角が45°を超え、
前記正極リードは、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなり、前記正極の渦巻状に突出したリード取出し部の複数個所に溶接により接続され、かつ溶接により互いに接合して束ねられた複数の中間リードと、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなり、束ねられた中間リードに溶接により接続された主リードとを備え、
前記負極は、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなり、帯状の集電体本体およびこの集電体本体の長手方向に沿い前記正極のリード取出し部と反対側の側面に一体的に形成された帯状のリード取出し部を有する集電体と、この帯状の集電体本体の片面もしくは両面に形成された負極活物質を含む負極層とを備え、前記リード取り出し部が前記電極群の他方の渦巻状面に渦巻状に突出し、
前記負極のリード取出し部は、20℃の水に対する接触角が45°以下、前記集電体本体は20℃の水に対する接触角が45°を超え、
前記負極リードは、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなり、前記負極の渦巻状に突出したリード取出し部の複数個所に溶接により接続され、かつ溶接により互いに接合して束ねられた複数の中間リードと、純度99%以上のアルミニウムまたは純度99%以上のアルミニウム合金からなり、束ねられた中間リードに溶接により接続された主リードとを備えることを特徴とする非水電解質電池。
Exterior material;
An electrode group having a structure in which a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode are wound in a spiral shape, housed in the exterior material;
A positive electrode lead connected to the positive electrode;
A negative electrode lead connected to the negative electrode;
Comprising a non-aqueous electrolyte housed in the exterior material,
The positive electrode is made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more, and takes out a strip-shaped current collector body and a strip-shaped lead integrally formed on a side surface along the longitudinal direction of the current collector body. And a positive electrode layer containing a positive electrode active material formed on one side or both sides of the band-shaped current collector body, and the lead take-out part spirals on one spiral surface of the electrode group. Protruding into a shape,
The lead lead-out part of the positive electrode has a contact angle with respect to 20 ° C. water of 45 ° or less, and the current collector body has a contact angle with respect to water of 20 ° C. exceeding 45 °,
The positive electrode lead is made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more, and is connected to a plurality of lead-out portions protruding in a spiral shape of the positive electrode by welding, and is joined and bundled by welding. A plurality of intermediate leads, and a main lead made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more and connected to the bundled intermediate leads by welding,
The negative electrode is made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more, and is formed on a side surface opposite to the lead-out portion of the positive electrode along the longitudinal direction of the strip-shaped current collector body and the current collector body. A current collector having an integrally formed strip-shaped lead extraction portion; and a negative electrode layer containing a negative electrode active material formed on one or both surfaces of the strip-shaped current collector body, wherein the lead extraction portion is Projecting spirally on the other spiral surface of the electrode group,
The lead extraction part of the negative electrode has a contact angle with water of 20 ° C. of 45 ° or less, the current collector body has a contact angle with water of 20 ° C. exceeding 45 °,
The negative electrode lead is made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more, and is connected by welding to a plurality of lead extraction portions protruding in a spiral shape of the negative electrode, and is joined and bundled by welding. A non-aqueous electrolyte battery comprising a plurality of intermediate leads and a main lead made of aluminum having a purity of 99% or more or an aluminum alloy having a purity of 99% or more and connected to the bundled intermediate leads by welding. .
前記正極および負極の集電体は、JIS H 0001のアルミニウム箔であることを特徴とする請求項1ないし3いずれか記載の非水電解質電池。   4. The nonaqueous electrolyte battery according to claim 1, wherein the current collectors of the positive electrode and the negative electrode are JIS H 0001 aluminum foil. 5.
JP2008044905A 2008-02-26 2008-02-26 Non-aqueous electrolyte battery Active JP5100441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008044905A JP5100441B2 (en) 2008-02-26 2008-02-26 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008044905A JP5100441B2 (en) 2008-02-26 2008-02-26 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2009205864A true JP2009205864A (en) 2009-09-10
JP5100441B2 JP5100441B2 (en) 2012-12-19

Family

ID=41147946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008044905A Active JP5100441B2 (en) 2008-02-26 2008-02-26 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP5100441B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120288737A1 (en) * 2010-02-05 2012-11-15 Tomohiro Nakano Non-aqueous electrolyte secondary battery
WO2014122847A1 (en) * 2013-02-08 2014-08-14 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery, method for manufacturing positive electrode sheet of non-aqueous electrolyte secondary battery, and method for manufacturing non-aqueous electrolyte secondary battery
US9281511B2 (en) 2010-04-19 2016-03-08 Gs Yuasa International Ltd. Battery cell and device provided with the battery cell
JPWO2014188501A1 (en) * 2013-05-21 2017-02-23 日立オートモティブシステムズ株式会社 Non-aqueous electrolyte secondary battery
CN111293268A (en) * 2018-12-10 2020-06-16 丰田自动车株式会社 Battery with a battery cell
JP2021518636A (en) * 2018-03-20 2021-08-02 インディアン・スペース・リサーチ・オーガニゼイションIndian Space Research Organisation Sealed lithium-ion battery and its manufacturing method
JP2022105101A (en) * 2017-12-01 2022-07-12 寧徳新能源科技有限公司 Revolving battery cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10249561A (en) * 1997-03-06 1998-09-22 Matsushita Electric Ind Co Ltd Welding method between same kind of metal, and li battery having positive electrode sealing plate with positive reed welded by such method
JP2001084993A (en) * 1999-09-17 2001-03-30 At Battery:Kk Battery
JP2002025535A (en) * 2000-07-07 2002-01-25 At Battery:Kk Battery
JP2004362872A (en) * 2003-06-03 2004-12-24 Toyota Motor Corp Electrolyte for storage elements and storage element
JP2005063953A (en) * 2003-07-29 2005-03-10 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, its manufacturing method, and electrode material for electrolyte secondary battery
JP2005222936A (en) * 2004-01-09 2005-08-18 Showa Denko Kk Degreasing method of aluminum hard foil, aluminum hard foil, aluminum hard foil electrode material, and lithium ion secondary battery using it
JP2007328952A (en) * 2006-06-06 2007-12-20 Toshiba Corp Non-aqueous electrolyte battery, battery pack, and automobile

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10249561A (en) * 1997-03-06 1998-09-22 Matsushita Electric Ind Co Ltd Welding method between same kind of metal, and li battery having positive electrode sealing plate with positive reed welded by such method
JP2001084993A (en) * 1999-09-17 2001-03-30 At Battery:Kk Battery
JP2002025535A (en) * 2000-07-07 2002-01-25 At Battery:Kk Battery
JP2004362872A (en) * 2003-06-03 2004-12-24 Toyota Motor Corp Electrolyte for storage elements and storage element
JP2005063953A (en) * 2003-07-29 2005-03-10 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, its manufacturing method, and electrode material for electrolyte secondary battery
JP2005222936A (en) * 2004-01-09 2005-08-18 Showa Denko Kk Degreasing method of aluminum hard foil, aluminum hard foil, aluminum hard foil electrode material, and lithium ion secondary battery using it
JP2007328952A (en) * 2006-06-06 2007-12-20 Toshiba Corp Non-aqueous electrolyte battery, battery pack, and automobile

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120288737A1 (en) * 2010-02-05 2012-11-15 Tomohiro Nakano Non-aqueous electrolyte secondary battery
US9287590B2 (en) * 2010-02-05 2016-03-15 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery
DE112010005229B4 (en) * 2010-02-05 2016-10-06 Toyota Jidosha Kabushiki Kaisha Secondary battery with nonaqueous electrolyte
US9281511B2 (en) 2010-04-19 2016-03-08 Gs Yuasa International Ltd. Battery cell and device provided with the battery cell
WO2014122847A1 (en) * 2013-02-08 2014-08-14 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery, method for manufacturing positive electrode sheet of non-aqueous electrolyte secondary battery, and method for manufacturing non-aqueous electrolyte secondary battery
CN104981935A (en) * 2013-02-08 2015-10-14 丰田自动车株式会社 Non-aqueous electrolyte secondary battery, method for manufacturing positive electrode sheet of non-aqueous electrolyte secondary battery, and method for manufacturing non-aqueous electrolyte secondary battery
JPWO2014188501A1 (en) * 2013-05-21 2017-02-23 日立オートモティブシステムズ株式会社 Non-aqueous electrolyte secondary battery
JP2022105101A (en) * 2017-12-01 2022-07-12 寧徳新能源科技有限公司 Revolving battery cell
JP2021518636A (en) * 2018-03-20 2021-08-02 インディアン・スペース・リサーチ・オーガニゼイションIndian Space Research Organisation Sealed lithium-ion battery and its manufacturing method
CN111293268A (en) * 2018-12-10 2020-06-16 丰田自动车株式会社 Battery with a battery cell
CN111293268B (en) * 2018-12-10 2022-03-15 丰田自动车株式会社 Battery with a battery cell

Also Published As

Publication number Publication date
JP5100441B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
US7601463B2 (en) Nonaqueous electrolyte secondary battery
JP5049680B2 (en) Nonaqueous electrolyte battery and battery pack
JP5225002B2 (en) Secondary battery
JP5430849B2 (en) Non-aqueous electrolyte battery
JP6441125B2 (en) Nonaqueous electrolyte battery and battery pack
EP2779280B1 (en) Battery
EP3024084B1 (en) Method for manufacturing rectangular battery cell using metal plates
EP3214689A1 (en) Nonaqueous electrolyte battery and battery pack
JP6479984B2 (en) Non-aqueous electrolyte battery and battery pack
JP5100441B2 (en) Non-aqueous electrolyte battery
WO2015137138A1 (en) Nonaqueous electrolyte battery and battery pack
US9979020B2 (en) Nonaqueous electrolyte battery and battery pack
JP2009054480A (en) Nonaqueous electrolyte battery and battery pack
JP5897271B2 (en) Nonaqueous electrolyte secondary battery
JP5865951B2 (en) Nonaqueous electrolyte battery and battery pack
JP4836612B2 (en) Nonaqueous electrolyte battery and battery pack
WO2019069356A1 (en) Electrode group, secondary battery, battery module, electricity storage device, vehicle and flying body
JP6125719B1 (en) Charging system and method for charging non-aqueous electrolyte battery
JP6419433B2 (en) Electrode group, secondary battery, and manufacturing method of electrode group
JP5558498B2 (en) Nonaqueous electrolyte battery and battery pack
JP5361940B2 (en) Nonaqueous electrolyte battery and battery pack
JP2011210731A (en) Nonaqueous electrolyte battery, and battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5100441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3