WO2019069356A1 - Electrode group, secondary battery, battery module, electricity storage device, vehicle and flying body - Google Patents

Electrode group, secondary battery, battery module, electricity storage device, vehicle and flying body Download PDF

Info

Publication number
WO2019069356A1
WO2019069356A1 PCT/JP2017/035886 JP2017035886W WO2019069356A1 WO 2019069356 A1 WO2019069356 A1 WO 2019069356A1 JP 2017035886 W JP2017035886 W JP 2017035886W WO 2019069356 A1 WO2019069356 A1 WO 2019069356A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
positive electrode
electrode group
negative electrode
electrode
Prior art date
Application number
PCT/JP2017/035886
Other languages
French (fr)
Japanese (ja)
Inventor
政典 田中
Original Assignee
株式会社 東芝
東芝インフラシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝インフラシステムズ株式会社 filed Critical 株式会社 東芝
Priority to PCT/JP2017/035886 priority Critical patent/WO2019069356A1/en
Publication of WO2019069356A1 publication Critical patent/WO2019069356A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Embodiments relate to an electrode group, a secondary battery, a battery module, a power storage device, a vehicle, and a projectile.
  • chargeable and dischargeable non-aqueous electrolyte batteries such as lithium ion secondary batteries are mainly used as power sources of electric vehicles such as hybrid electric vehicles and plug-in electric vehicles which are rapidly spreading.
  • the lithium ion secondary battery is manufactured, for example, by the following method. After producing an electrode group in which the positive electrode and the negative electrode are wound via a separator, the electrode group is housed in a metal case such as aluminum or an aluminum alloy. Next, a lid is welded to the opening of the case, and a non-aqueous electrolyte is poured into the case from the liquid inlet provided in the lid, and then a sealing member is welded to the liquid inlet to produce a battery unit. . Thereafter, the battery unit is subjected to an initial charge and an aging treatment to obtain a lithium ion secondary battery.
  • the non-aqueous electrolyte battery is required to have a high input / output and a long life.
  • it is effective to thin the separator.
  • the use of a thin separator deteriorates the life characteristics, and therefore, there is a demand for measures for suppressing the deterioration.
  • An embodiment provides an electrode group, a secondary battery, a battery module, a storage battery, a vehicle, and a projectile, which are excellent in long life or manageability.
  • the electrode group according to the embodiment includes an electrode group including a positive electrode, a negative electrode, a central portion around which a first separator disposed between the positive electrode and the negative electrode is wound, and an outer peripheral portion around the outer periphery of the central portion of the second separator.
  • the total number of turns of the second separator is three or more.
  • the perspective view of the electrode group of embodiment. The perspective expanded view of the electrode group of embodiment.
  • the perspective view of the electrode group of embodiment. Sectional drawing of the electrode group of embodiment.
  • Sectional drawing of the electrode group of embodiment. Sectional drawing of the electrode group of embodiment.
  • the perspective view of the electrode group of embodiment. The perspective view of the rechargeable battery of an embodiment.
  • the perspective view of the lid of the rechargeable battery of an embodiment. The side view showing the inside of the rechargeable battery of an embodiment.
  • the expanded view of the battery module of embodiment. Sectional drawing of the battery module of embodiment.
  • the schematic diagram of the storage battery of embodiment. BRIEF DESCRIPTION OF THE DRAWINGS The schematic diagram of the vehicle of embodiment.
  • the first embodiment relates to an electrode group.
  • the electrode group of the embodiment is a wound electrode group.
  • the electrode group according to the embodiment includes an electrode including a positive electrode, a negative electrode, a central portion around which the first separator disposed between the positive electrode and the negative electrode is wound, and an outer peripheral portion around the outer periphery of the central portion of the second separator.
  • the total number of turns of the second separator from the end on the outermost side of the central portion is three or more.
  • the cross-sectional schematic diagram of the electrode group 100 is shown in FIG.
  • the electrode group 100 includes a positive electrode 10, a negative electrode 20, two first separators (first A separator 30, first B separator 40), and one second separator 50.
  • the inner region surrounded by the broken line is the central portion A of the electrode assembly 100.
  • a region from the outer side to the outermost periphery of the central portion A of the electrode group 100 is referred to as an outer peripheral portion B.
  • the number of turns of the central portion A is three for simplification of the illustration, but for the purpose of increasing the capacity of the electrode group 100, the central portion A is wound several tens of times or more. Is preferred.
  • the first separator (30, 40) is disposed between the positive electrode 10 and the negative electrode 20. More specifically, the two first separators (30, 40) are included, and in the center portion A of the electrode group 100, the positive electrode 10, the first A separator 30A, the negative electrode 20 and the first B separator 40 in this order, the negative electrode 20
  • the structure laminated in order of is wound and comprised.
  • FIG. 4 is a schematic perspective view of the electrode assembly 100 of FIG. 3 partially unwound.
  • the number of the first separators 30 may be one.
  • the positive electrode 10 is one of the electrodes of the electrode group 100.
  • the positive electrode 10 includes a positive electrode current collector 11 and a positive electrode active material layer 12.
  • the positive electrode active material layer 12 is disposed on one side or both sides of the positive electrode current collector 11, and the positive electrode active material layer 12 sandwiches the positive electrode current collector 11.
  • the positive electrode active material layer 12 is provided on both sides of the positive electrode current collector 11.
  • the area of the non-coated portion where the positive electrode active material layer 12 is not provided on the positive electrode current collector 11 at the end of the positive electrode 10 is the positive electrode current collection tab 13.
  • the positive electrode current collector 11 is a conductive thin film in contact with the positive electrode active material layer 12.
  • the positive electrode current collector it is preferable to use a foil, a porous body or a mesh made of a metal such as stainless steel, Al or Ti.
  • the surface of the current collector may be coated with different elements.
  • the thickness of the positive electrode current collector 11 is preferably 5 ⁇ m to 20 ⁇ m.
  • the positive electrode active material layer 12 is a composite material layer containing a positive electrode active material, a binder and a conductive material.
  • the compounding ratio of the positive electrode active material, the conductive agent and the binder in the positive electrode layer is 70% by mass to 96% by mass of the positive electrode active material, 3% by mass to 17% by mass of the conductive material, and 1 the positive electrode binder It is desirable that the content be in the range of mass% to 13 mass%.
  • the positive electrode active material those capable of inserting and extracting lithium can be used.
  • the positive electrode may include one type of positive electrode active material, or may include two or more types of positive electrode active material.
  • positive electrode active materials include lithium cobalt oxide, lithium manganese composite oxide, lithium nickel composite oxide, lithium cobalt aluminum composite oxide, lithium nickel cobalt manganese composite oxide, spinel lithium manganese nickel composite oxide, lithium Manganese-cobalt composite oxide, lithium iron oxide, lithium fluorinated sulfate, phosphoric acid compound having an olivine crystal structure (for example, Li x FePO 4 (0 ⁇ x ⁇ 1), Li x MnPO 4 (0 ⁇ x ⁇ 1) 2.) Vanadium oxides containing lithium, chalcogen compounds such as titanium disulfide, molybdenum disulfide, iron sulfide and the like are included. Phosphoric acid compounds having an olivine crystal structure are excellent in thermal stability.
  • lithium manganese complex oxides such as Li x Mn 2 O 4 (0 ⁇ x ⁇ 1) and Li x MnO 2 (0 ⁇ x ⁇ 1) of spinel structure, for example Li x Ni 1 -y Al y O 2 (0 Lithium nickel aluminum complex oxide such as ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), for example lithium cobalt complex oxide such as Li x CoO 2 (0 ⁇ x ⁇ 1), such as Li x Ni 1 -y-z Co Lithium nickel cobalt composite oxides such as y Mn z O 2 (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1), for example, Li x Mn y Co 1 -yO 2 (0 ⁇ x ⁇ 1) , Lithium manganese cobalt composite oxide such as 0 ⁇ y ⁇ 1), spinel type lithium manganese nickel composite oxide such as Li x
  • the particles of the positive electrode active material may include a single primary particle, a secondary particle which is an aggregate of primary particles, or both a single primary particle and a secondary particle.
  • the average particle diameter (diameter) of the primary particles of the positive electrode active material is preferably 10 ⁇ m or less, and more preferably 0.1 ⁇ m to 5 ⁇ m.
  • the average particle diameter (diameter) of the secondary particles of the positive electrode active material is preferably 100 ⁇ m or less, and more preferably 10 ⁇ m to 50 ⁇ m.
  • At least a part of the particle surface of the positive electrode active material may be coated with a carbon material.
  • the carbon material can take the form of a layer structure, a particle structure, or an assembly of particles.
  • the binder for binding the active material and the conductive agent is, for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine-based rubber, ethylene-butadiene rubber (SBR), polypropylene (PP) , Polyvinylidene fluoride, which is a modified PVdF in which at least one of hydrogen and fluorine of polyethylene (PE), carboxymethylcellulose (CMC), polyimide (PI) and polyacrylimide (PAI) PVdF is substituted with another substituent It includes copolymers of propylene fluoride, terpolymers of polyvinylidene fluoride-tetrafluoroethylene-6 propylene propylene, and acrylic resins.
  • the type of binder can be one or two or more.
  • Examples of the conductive agent for enhancing the electron conductivity of the positive electrode active material layer 12 and suppressing the contact resistance with the current collector include acetylene black, carbon black, graphite, carbon fibers having an average fiber diameter of 1 ⁇ m or less, and the like. Can.
  • the type of conductive agent can be one or two or more.
  • the positive electrode 10 can be produced, for example, as follows. First, a positive electrode active material, a conductive agent and a binder are dispersed in an appropriate solvent to prepare a slurry. The slurry is applied to the positive electrode current collector 11, and the coating is dried to form the positive electrode active material layer 12 on the positive electrode current collector 11. At this time, a non-coated portion is provided in the longitudinal direction at the end of the positive electrode current collector 11 for the positive electrode current collection tab 13.
  • the slurry may be applied to one surface on the positive electrode current collector 11, or the slurry may be applied to both the one surface on the current collector and the back surface thereof.
  • the positive electrode 10 can be manufactured by applying a press such as a heating press to the positive electrode current collector 11 and the positive electrode active material layer 12, for example.
  • the negative electrode 20 is one of the electrodes of the electrode group 100.
  • the negative electrode 20 includes a negative electrode current collector 21 and a negative electrode active material layer 22.
  • the negative electrode active material layer 22 is disposed on one side or both sides of the negative electrode current collector 21, and the negative electrode active material layer 22 sandwiches the negative electrode current collector 21.
  • the negative electrode active material layer 22 is provided on both sides of the negative electrode current collector 21.
  • the region of the non-coated portion where the negative electrode active material layer 22 is not provided on the negative electrode current collector 21 at the end of the negative electrode 20 is the negative electrode current collection tab 23. At one end in the second direction, there is a positive current collecting tab 13, and at the other end in the second direction, there is a negative current collecting tab 23.
  • the negative electrode current collector 11 is made of, for example, a metal such as Al, Ti, or Cu, or an alloy containing the metal as a main component and one or more elements selected from the group consisting of Zn, Mn, Fe, Cu, and Si. It can be used. In particular, an aluminum alloy foil containing Al as a main component is preferable because it is flexible and has excellent formability. A negative electrode current collector containing a zinc element is also preferable.
  • the form of the zinc element contained in the negative electrode current collector 11 includes elemental zinc (metallic zinc), a compound containing zinc, and a zinc alloy.
  • the thickness of the negative electrode current collector 11 is preferably 5 ⁇ m or more and 20 ⁇ m or less.
  • the negative electrode active material layer 12 is a composite material layer containing a negative electrode active material, a binder and a conductive material.
  • the compounding ratio of the negative electrode active material, the conductive agent, and the binder in the negative electrode active material layer 12 is 70% by mass to 96% by mass of the negative electrode active material, 2% by mass to 20% by mass of the conductive material, and negative electrode binding It is desirable for the agent to be 2% by mass or more and 10% by mass or less. By setting the amount of the conductive material to 2% by mass or more, the current collection performance of the negative electrode mixture layer can be improved.
  • the amount of the negative electrode binder is 2% by mass or more, the binding property between the negative electrode mixture layer and the negative electrode current collector can be enhanced, and excellent cycle characteristics can be expected.
  • the conductive material and the binder be 28 mass% or less, respectively, in order to achieve high capacity.
  • the negative electrode active material is not particularly limited.
  • a graphite material or a carbonaceous material eg, graphite, coke, carbon fiber, spherical carbon, pyrolytic gas-phase carbonaceous material, resin fired body, etc.
  • chalcogen compound eg, titanium disulfide, Molybdenum disulfide, niobium selenide, etc., light metal (eg, aluminum, aluminum alloy, magnesium alloy, lithium, lithium alloy etc.), Li 4 + x Ti 5 O 12 (x is a range of ⁇ 1 ⁇ x ⁇ 3 by charge and discharge reaction
  • Spinel type lithium titanate represented by the formula lamsteride type Li 2 + x Ti 3 O 7 (x changes in the range of ⁇ 1 ⁇ x ⁇ 3 by charge and discharge reaction), Ti and P, V, Sn And metal complex oxides containing at least one element selected from the group consisting of Cu, Ni and Fe.
  • metal complex oxide containing at least one element selected from the group consisting of Ti and P, V, Sn, Cu, Ni and Fe for example, TiO 2 -P 2 O 5 , TiO 2 -V 2 Mention may be made of O 5 , TiO 2 —P 2 O 5 —SnO 2 , TiO 2 —P 2 O 5 —MO (where M is at least one element selected from the group consisting of Cu, Ni and Fe).
  • These metal complex oxides are converted to lithium titanium complex oxides by the insertion of lithium upon charging. It is preferred to include one or more materials in the group consisting of lithium titanium oxide (eg, lithium titanate of spinel type), silicon, tin and the like.
  • the binder of the negative electrode active material layer 22 is common to the binder of the positive electrode active material layer 12.
  • the conductive material of the negative electrode active material layer 22 is common to the conductive material of the positive electrode active material layer 12.
  • the first separators (30, 40) are porous films disposed between the positive electrode 10 and the negative electrode 20 of the electrode assembly 100.
  • the first separators (30, 40) according to the first embodiment have two layers, ie, the first A separator 30A and the first B separator 30B.
  • the first B separator 40 is continuously connected to the second separator 50, but is not limited thereto.
  • the second separator 50 may be continuously connected to the first A separator 30.
  • the first A separator 30A, the positive electrode 10A, the first B separator 30B, and the negative electrode 20 are repeatedly stacked in this order.
  • the first separator (30, 40) separates the positive electrode 10 and the negative electrode 20 from each other.
  • the first separator 30 is preferably a thin film. By thinning the first separator 30, the ratio of the electrode active material layer in the electrode group 100 can be increased, which contributes to the improvement of the battery capacity.
  • the secondary battery is required to have a high capacity.
  • the thickness of the separator of the electrode group 100 By reducing the thickness of the separator of the electrode group 100 to increase the capacity, the volume ratio of the electrodes in the electrode group 100 can be increased to increase the battery capacity.
  • the separator between the electrodes is a thin material of, for example, about 12 ⁇ m or less, the outer peripheral region where the electrodes are wound is likely to be deteriorated by a large current.
  • the electrode group is degraded, the resistance between the electrodes increases and the battery characteristics are degraded. Therefore, when a thin separator is used, the initial stage has a high capacity and good characteristics, but in particular, when charge and discharge are repeated under a large current condition, the capacity and output characteristics are likely to be degraded.
  • deterioration is suppressed by further winding the central portion A of the electrode assembly 100 with the second separator 50.
  • the second separator 50 is made of a thin material, the reduction of the capacity per volume of the electrode assembly 100 is suppressed, and the life at the time of a large current cycle is improved.
  • the first separators (30, 40) are porous thin insulating layers.
  • the first A separator 30 is in contact with the second separator 50.
  • the first separators (30, 40) include non-woven fabric, film, paper and the like.
  • the constituent material of the separator include polyolefins such as polyethylene and polypropylene, cellulose, polyester, polyvinyl alcohol, polyimide, polyamide, polyamide imide, polytetrafluoroethylene and vinylon.
  • Examples of preferred separators in terms of thinness and mechanical strength include nonwoven fabrics containing cellulose fibers.
  • the thickness of the first separator (30, 40) is preferably 4 ⁇ m or more and 20 ⁇ m or less. Within this range, it is possible to balance the mechanical strength and the reduction of the battery resistance while suppressing the ratio of the separator to the electrode group 100, and to provide a secondary battery with high output and suppressed internal short circuit. Can. Although a separator larger than 20 ⁇ m is also usually used, in the embodiment, since the second separator 50 is used, a thinner separator than the usually used separator is preferable. A more preferable thickness of the first separator (30, 40) is 6 ⁇ m or more and 12 ⁇ m or less.
  • the porosity of the first separator (30, 40) is 40% or more and 90% or less.
  • the cellulose fiber-containing nonwoven fabric having a porosity of 40% or more has good electrolyte impregnation, and can provide high output performance from low temperature to high temperature.
  • the porosity of the first separator (30, 40) is preferably 60% to 80% or 50% to 75% from the viewpoint of productivity.
  • the second separator 50 is not present between the positive electrode 10 and the negative electrode 20, and is wound multiple times on the first separator (the first A separator 30 or the first B separator 40).
  • the second separator 50 is included in the outer peripheral portion B outside the central portion A of the electrode group 100.
  • the second separator 50 is wound around the center A.
  • the first A separator 30A or the first B separator 40 and the second separator 50 are one continuous sheet.
  • the first B separator 40 and the second separator 50 are connected at the boundary between the central portion A and the outer peripheral portion B, which are coating ends on the outer peripheral side of the electrode group 100.
  • the boundary between the central portion A and the outer peripheral portion B starts to be wound among the coated end of the positive electrode active material layer 12 and the coated end of the negative electrode active material layer 22 in the first direction on the outer peripheral side when the electrode assembly 100 is unwound. It is a coated end closer to the side.
  • the second separator 50 is a sheet connected to the first separators (30, 40), physical properties such as thickness, material, porosity, etc. can be obtained by combining the first separators (30, 40) with the first separator (30, 40).
  • the two separators 50 are the same.
  • the second separator 50 is a porous thin insulating layer.
  • the second separator 50 includes non-woven fabric, film, paper and the like. Examples of the constituent material of the separator include polyolefins such as polyethylene and polypropylene, and cellulose. Examples of preferred separators in terms of thinness and mechanical strength include nonwoven fabrics containing cellulose fibers.
  • the second separator 50 preferably has a thickness of 4 ⁇ m to 20 ⁇ m. It is possible to provide a secondary battery with little deterioration by sufficiently impregnating the electrolyte while suppressing the ratio of the separator to the electrode group 100 within this range. Although a separator larger than 20 ⁇ m is also generally used, in the embodiment, since the outer peripheral portion B is wound, a separator thinner than the separator generally used is preferable. The more preferable thickness of the second separator 50 is 6 ⁇ m or more and 12 ⁇ m or less.
  • the porosity of the second separator 50 is 40% or more and 90% or less.
  • the cellulose fiber-containing non-woven fabric having a porosity of 40% or more has good electrolyte impregnation. If the porosity of the second separator 50 is too high, handling becomes difficult. Therefore, the porosity of the second separator 50 is preferably 60% or more and 80% or less, or 50% or more and 75% or less from the viewpoint of productivity.
  • the total number of turns of the second separator 50 is preferably 3 or more. By winding three or more turns, the liquid retaining property at the outermost periphery of the central portion A of the electrode group 100 is improved, and deterioration of the electrode at the end of winding of the central portion A of the electrode group 100 can be prevented.
  • the second separator 50 preferably has the central portion A wound continuously from the outermost periphery of the electrode assembly 100. The electrolyte that has permeated from the second separator 50 is accumulated in the space between the end on the outer peripheral side of the central portion A and the second separator 50, and the electrolyte in the space is easily held by the second separator 50. Deterioration can be prevented.
  • the effect of suppressing the deterioration of the active material layer is not very high. If the total number of turns is less than three, the liquid retaining property at the outermost periphery of the central portion A of the electrode group 100 is not improved so much, and the effect of suppressing the deterioration of the active material layer on the outer peripheral side of the central portion A is not sufficient. Absent. It is preferable from the viewpoint of protection of the active material layer as the total number of turns of the second separator 50 increases. However, as the total number of turns of the second separator 50 increases, the amount of submembers in the battery increases, and the energy density decreases.
  • the total number of turns of the second separator 50 is more preferably 4 or more, 5 or more, and 10 or more.
  • the total number of turns of the second separator 50 is preferably 40 or less and 30 or less, and more preferably 20 or less from the viewpoint of the initial capacity and the capacity after cycling (high load).
  • the number of times is preferably 20 or less. It is preferable from the viewpoint of preventing deterioration of the secondary battery to wind the thin second separator 50 three or more times rather than winding the thick second separator 50 only once or twice.
  • the total number of turns is the number of turns from where the boundary between the central portion A and the outer peripheral portion B is crossed.
  • the second separator 50 is also thin in the same manner as the first separators (30, 40), and is therefore preferable in that the volume occupied in the electrode group 100 is small.
  • the end of the second separator 50 is preferably fixed by an adhesive tape (not shown).
  • an identification code 60 be printed on the surface (uppermost surface) of the second separator 50 at the outermost periphery of the electrode group 101 of the first embodiment. Since the outermost periphery of the electrode group 101 is the second separator 50, even if the identification code is printed here, the battery characteristics are not adversely affected. For example, when the identification code is printed directly on the electrode active material layer, it is difficult to print and it is not preferable to perform unnecessary treatment on the electrode active material layer at the time of preparation.
  • the outer peripheral portion of the electrode group 101 is a separator wound a plurality of times, so that a clear identification code 60 can be easily printed.
  • the total number of turns of the second separator 50 is preferably 5 or more.
  • the identification code 60 preferably includes one of a one-dimensional code and a two-dimensional code. Since the two-dimensional code 60 has a complicated shape, the electrode group 101 capable of printing the clear identification code 60 is preferable.
  • the identification code 60 includes, for example, information related to the production of the electrode group 101.
  • the form of the electrode group can be examined, for example, by removing the electrolyte of the electrode group taken out of the battery case and observing the cross section.
  • the porosity may be measured by cutting the separator from the unrolled electrode group.
  • the composition of the separator and the electrode may be obtained by cutting or scraping the respective layers and performing elemental analysis or structural analysis. For observation, it is preferable to carry out magnified observation using an optical microscope.
  • the second embodiment is a modification of the first embodiment.
  • the cross-sectional schematic diagram of the electrode group 101 of 2nd Embodiment is shown in FIG.
  • the electrode group 102 shown in FIG. 6 includes a positive electrode 10, a negative electrode 20, two first separators 30 (first A separator 30, first B separator 40) and two second separators (second A separator 50, second B separator 70). ). It differs from the electrode assembly 100 of the first embodiment in that two first separators (30, 40) are both connected continuously with the second separator (50, 70). Except this point, the first embodiment and the second embodiment are common.
  • the total number of turns of the second separator (50, 70) is the sum of the number of turns of the second A separator 50 and the number of turns of the second B separator 70.
  • the electrode assembly 101 according to the first embodiment has the same number of turns. This is suitable for increasing the total number of turns since the number of turns in the manufacturing process is halved compared to the above.
  • the electrode group 102 of the second embodiment is excellent in capacity characteristics and cycle characteristics (high current) even when a thin separator is used.
  • the identification code 60 be printed on the electrode group 102 of the second embodiment.
  • the third embodiment is a modification of the first embodiment.
  • the cross-sectional schematic diagram of the electrode group 103 of 3rd Embodiment is shown in FIG.
  • the electrode group 103 shown in FIG. 7 has a positive electrode 10, a negative electrode 20, two first separators 30 (first A separator 30, first B separator 40) and one second separator 80.
  • the electrode group 100 is different from the electrode group 100 of the first embodiment in that a second separator 80 which is not connected to the first separators (30, 40) is wound around the outer periphery of the central portion A.
  • the total number of turns of the second separator 80 is the number of turns of the second separator 80.
  • the central portion A of the electrode group 103 is wound by a separator other than the first separators (30, 40).
  • the second separator 80 is common to the first separators (30, 40) and the second separator 50 of the first embodiment.
  • the first separator (30, 40) of the third embodiment may be an inorganic particle layer in addition to the nonwoven fabric, the film, the paper and the like.
  • the thickness of the inorganic particle layer is preferably 4 ⁇ m or more and 20 ⁇ m or less as in the case of the organic separator.
  • the inorganic particle layer contains oxide particles, a thickener, and a binder.
  • oxide particles metal oxides such as aluminum oxide, titanium oxide, magnesium oxide, zinc oxide and barium sulfate can be used.
  • Carboxymethylcellulose can be used as a thickener.
  • methyl acrylate, an acrylic copolymer containing it, styrene butadiene rubber (SBR), etc. can be used. Except for these points, the first embodiment and the third embodiment are common.
  • the number of turns of the second separator 80 is the number of times the second separator 80 winds the central portion A regardless of the position of the end of the central portion A of the electrode group 103.
  • the number of windings of the second separator 80 is three.
  • different separator materials can be selected for the central portion A and the outer peripheral portion B.
  • the second separator 80 thinner than the first separators (30, 40) of the central portion A the number of turns of the outer peripheral portion B is reduced while reducing the influence on the cycle characteristics due to the thinning of the central portion A separator. Can be increased.
  • the options of the separator material also expand, so the electrode group 103 can be designed more freely.
  • the identification code 60 be printed on the outermost second separator 80.
  • the identification code 60 may be printed on the second separator 80 in advance, and the central portion A of the electrode group 103 may be wound with the second separator 80 having the identification code 60 printed thereon.
  • the fourth embodiment is a modification of the third embodiment.
  • the cross-sectional schematic diagram of the electrode group 104 of 4th Embodiment is shown in FIG.
  • the electrode group 104 shown in FIG. 8 has the stacked positive electrode 10, negative electrode 20, two first separators 30 (first A separator 30, first B separator 40) and one second separator 80.
  • the central part of the electrode group 104 is different from the electrode group 100 of the third embodiment in that the center part of the electrode group 104 is not a wound type but a laminated type in which a positive electrode 10, a 1B separator 40, a negative electrode 20, and a 1A separator 30 are sequentially laminated.
  • the total number of turns of the second separator 80 is the number of turns of the second separator 80.
  • the stacked electrode group 104 has many ends of the positive electrode 10 and the negative electrode 20 as compared with the wound type, and therefore the effect of preventing deterioration of the active material layer by the second separator 80 in the outer peripheral portion B is large.
  • FIG. 8 shows an electrode group of a modification of the third embodiment, the present invention is not limited to this, and one or both of the first separator and the first separator as in the first and second embodiments. The second separator may be connected.
  • the electrode group of the fifth embodiment is a modification of the first embodiment.
  • a perspective view of the electrode group 105 of the fifth embodiment is shown in FIG.
  • the electrode group 105 includes a second separator 90 in which a central portion A in which a laminate having a first separator is wound between the positive electrode 10 and the negative electrode 20 and an outer peripheral portion B of the central portion A is wound.
  • An identification code 60 is printed on the outermost periphery of the image.
  • the non-coated portion of the positive electrode is the positive electrode current collecting tab 13
  • the non-coated portion of the negative electrode 20 is the negative electrode current collecting tab 23.
  • the number of turns of the second separator 90 is at least one.
  • the outermost periphery of the electrode group 105 of the fifth embodiment is wound with the second separator 90, so printing of the identification code 60 is possible. Since the identification code 60 is printed on the electrode group 105 of the fifth embodiment, it is preferable in terms of excellent controllability.
  • the laminated electrode group may be used as the center of the electrode group, and the outer periphery thereof may be wound with the second separator 90 and the identification code 60 may be attached.
  • the sixth embodiment relates to a secondary battery.
  • the secondary battery of the sixth embodiment uses any of the electrode groups of the first, second, third, fourth and fifth embodiments.
  • the use of the electrode group according to any one of the first, second, third and fourth embodiments provides excellent capacity characteristics and cycle characteristics, and the use of the electrode group according to the fifth embodiment provides excellent manageability. preferable.
  • the secondary battery 200 includes the packaging material 201, the electrode group 202 (100, 101, 102, 103, 105), the positive electrode lead 203, the negative electrode lead 204, the lid 205, the positive electrode terminal 206, the negative electrode terminal 207, the positive electrode backup lead 208, the negative electrode
  • the back-up lead 209, the positive electrode insulating cover 210, the negative electrode insulating cover 211, the positive electrode gasket 212, the negative electrode gasket 213, the safety valve 214, the electrolyte injection port 215, and an electrolyte (not shown) are provided.
  • the electrolytic solution is preferably present in the outer package 201 and filled in the outer package 201.
  • the secondary battery of embodiment is a secondary battery which can be charged / discharged, for example.
  • FIG. 10 is a perspective view of the secondary battery of the embodiment.
  • FIG. 11 is an exploded perspective view of the secondary battery of the embodiment.
  • Figure 12 It is a perspective view of a lid of a rechargeable battery of an embodiment.
  • FIG. 13 is a side view showing the inside of the secondary battery of the embodiment.
  • FIG. 10 shows a square secondary battery, it is not limited to the square.
  • the wound electrode group is accommodated, but a stacked electrode group as in the fourth embodiment may be accommodated.
  • the packaging material 201 may, for example, be a laminate film or a metal container.
  • the shape may, for example, be flat, square, cylindrical, coin, button, sheet or laminate.
  • the laminate film a multilayer film in which a metal layer is interposed between resin films can be used.
  • the metal layer is preferably aluminum foil or aluminum alloy foil in order to reduce the weight.
  • the resin film can use polymeric materials, such as polypropylene (PP), polyethylene (PE), nylon, polyethylene terephthalate (PET), for example.
  • the laminated film can be sealed by heat fusion and can be formed into the shape of the exterior material.
  • the thickness of the laminate film is preferably, for example, 0.2 mm or less.
  • the metal container aluminum, aluminum alloy, iron, stainless steel and the like can be used.
  • the lid may be made of aluminum, aluminum alloy, iron, stainless steel or the like.
  • the lid and the sheathing material are preferably formed of the same type of metal.
  • the thickness of the metallic container is preferably, for example, 0.5 mm or less.
  • the positive electrode current collecting tab 216 is bundled by the positive electrode backup lead 208 and electrically connected to the positive electrode terminal 206 through the positive electrode lead 203.
  • the negative electrode current collection tab 217 is bundled by the negative electrode backup lead 209 and electrically connected to the negative electrode terminal 207 via the negative electrode lead 204.
  • the electrolyte is a gel electrolyte in which a polymer material is complexed with a solution containing an electrolyte salt and a non-aqueous solvent present in the packaging material 201, a solution containing an electrolyte salt and water, or a solution containing water.
  • the electrolyte salt contained in the non-aqueous solution is, for example, LiPF 6 , LiBF 4 , Li (CF 3 SO 2 ) 2 N (bistrifluoromethanesulfonylamide lithium; commonly called LiTFSI), LiCF 3 SO 3 (commonly called LiTFS), Li (C) 2 F 5 SO 2) 2 N ( bis pentafluoroethanesulfonyl amide lithium; called LiBETI), LiClO 4, LiAsF 6 , LiSbF 6, LiB (C 2 O 4) 2 ( bis oxa Lato lithium borate; called LiBOB), difluoro Lithiums such as (trifluoro-2-oxide-2-trifluoro-methylpropionato (2-)-0,0), LiBF 2 OCOOC (CF 3 ) 2 (lithium borate; commonly called LiBF 2 (HHIB)) Salt can be used.
  • LiPF 6 , LiBF 4 , Li (CF 3 SO 2 ) 2 N bistri
  • electrolyte salts may be used alone or in combination of two or more.
  • LiPF 6 and LiBF 4 are preferred.
  • supporting salts that conduct ions can be used.
  • lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate, an imide based support salt and the like can be mentioned.
  • the lithium salt may contain one or more kinds.
  • the non-aqueous electrolyte salt concentration is preferably in the range of 0.5 mol / L to 3 mol / L, and more preferably in the range of 0.7 mol / L to 2 mol / L.
  • Such regulation of the electrolyte concentration makes it possible to further improve the performance when a high load current is applied while suppressing the influence of the viscosity increase due to the increase of the electrolyte salt concentration.
  • the non-aqueous solvent is not particularly limited.
  • cyclic carbonate such as propylene carbonate (PC) or ethylene carbonate (EC), diethyl carbonate (DEC) or dimethyl carbonate (DMC) or methyl ethyl carbonate (MEC)
  • linear carbonates such as dipropyl carbonate (DPC), 1,2-dimethoxyethane (DME), ⁇ -butyrolactone (GBL), tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-MeHF), 1,3-dioxolane , Sulfolane, acetonitrile (AN) can be used.
  • These solvents may be used alone or in combination of two or more.
  • Nonaqueous solvents comprising cyclic carbonates and / or linear carbonates are preferred.
  • the electrolyte salt contained in the aqueous solution is LiCl, LiBr, LiOH, Li 2 SO 4 , LiNO 3 , LiN (SO 2 CF 3 ) 2 (lithium trifluoromethanesulfonylamide; commonly called LiTFSA), LiN (SO 2 C 2 F 5) ) 2 (lithium bis pentafluoroethanesulfonyl amide; called LiBETA), LiN (SO 2 F ) 2 ( lithium bis fluorosulfonyl amide; called LiFSA), and the like LiB [(OCO) 2] 2.
  • the type of lithium salt to be used can be one or two or more.
  • the polymer material contained in the aqueous gel electrolyte include polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyethylene oxide (PEO) and the like.
  • the electrolyte salt concentration of the aqueous system is preferably 1 mol / L or more and 12 mol / L or less, more preferably 112 mol / L or more and 10 mol / L or less.
  • LiOH or Li 2 SO 4 can be added to adjust the pH.
  • the pH value is preferably 3 or more and 13 or less, more preferably pH 4 or more and 12 or less.
  • the positive electrode lead 203 is a conductive member which physically connects the positive electrode terminal 206 and the positive electrode backup lead 820 as shown in FIGS.
  • the positive electrode lead 203 is a conductive member such as aluminum or an aluminum alloy.
  • the positive electrode lead 203 and the positive electrode backup lead 208 are preferably joined by, for example, laser welding.
  • the negative electrode lead 204 is a conductive member which physically connects the negative electrode terminal 207 and the negative electrode backup lead 209 as shown in FIGS.
  • the negative electrode lead 204 is a conductive member such as aluminum or an aluminum alloy.
  • the negative electrode lead 204 and the negative electrode backup lead 209 are preferably joined by, for example, laser welding.
  • the lid 205 is a lid of the packaging material 201 accommodating the electrode group 202 as shown in FIGS. 10 to 13, and has a positive electrode terminal 206 and a negative electrode terminal 207.
  • the lid 205 includes a positive electrode terminal 206, a negative electrode terminal 207, a negative electrode insulating cover 211, a positive electrode gasket 212, a negative electrode gasket 213, a safety valve 214, and an electrolyte injection port 215.
  • the lid 205 is a molded member made of metal such as aluminum, aluminum alloy, iron or stainless steel, or an alloy. It is preferable that the lid 205 and the package 201 be laser-welded or be bonded by a sealing material such as an adhesive resin.
  • the positive electrode terminal 206 is an electrode terminal for the positive electrode of the secondary battery provided on the lid 205 as shown in FIGS. 10 to 13.
  • the positive electrode terminal 206 is formed of a conductive member such as aluminum or an aluminum alloy.
  • the positive electrode terminal 206 is fixed to the lid 205 via the insulating positive electrode gasket 212.
  • the positive electrode terminal 206 is electrically connected to the positive electrode current collection tab 216 via the positive electrode lead 203 and the positive electrode backup lead 208.
  • the negative electrode terminal 207 is an electrode terminal for the negative electrode of the secondary battery provided on the lid 205 as shown in FIGS. 10 to 13.
  • the negative electrode terminal 207 is formed of a conductive member such as aluminum or an aluminum alloy.
  • the negative electrode terminal 207 is fixed to the lid 205 via the insulating negative electrode gasket 213.
  • the negative electrode terminal 207 is electrically connected to the negative electrode current collection tab 217 via the negative electrode lead 204 and the negative electrode backup lead 209.
  • the positive electrode backup lead 208 is a conductive member which bundles the positive electrode current collection tab 216 and is fixed to the positive electrode lead 203 as shown in FIGS.
  • the positive electrode backup lead 208 and the positive electrode current collection tab 216 are preferably joined by ultrasonic bonding.
  • the negative electrode backup lead 209 is a conductive member which bundles the negative electrode current collection tab 217 and is fixed to the negative electrode lead 204 as shown in FIGS.
  • the negative electrode backup lead 209 and the negative electrode current collection tab 217 are preferably joined by ultrasonic bonding.
  • the positive electrode insulating cover 210 is an insulating member which covers the positive electrode lead 203 and the positive electrode backup lead 208 as shown in FIG.
  • the positive electrode insulating cover 210 is joined at one end including the positive electrode current collecting tab 216 of the electrode group 202.
  • the positive electrode insulating cover 210 is preferably an insulating and heat resistant member.
  • the positive electrode insulating cover 210 is preferably a resin molded body, a molded body of a material mainly made of paper, or a member obtained by coating a molded body of a material mainly made of paper with a resin. It is preferable to use a polyethylene resin or a fluorine resin as the resin.
  • the shape of the positive electrode insulating cover 210 is such that the positive electrode lead 203 and the positive electrode backup lead 208 are in contact with the packaging material 201.
  • the positive electrode insulating cover 210 By using the positive electrode insulating cover 210, the positive electrode and the exterior material 201 are insulated, and the current collection tab area (the current collection tab, the lead, the backup lead) can be protected from the external impact.
  • the negative electrode insulating cover 211 is an insulating member which covers the negative electrode lead 204 and the negative electrode backup lead 209 as shown in FIG.
  • the negative electrode insulating cover 211 is bonded to one end portion of the electrode group 202 including the negative electrode current collecting tab 217.
  • the material, shape, and the like of the negative electrode insulating cover 211 are the same as those of the positive electrode insulating cover 210.
  • the description common to the positive electrode insulating cover 210 and the negative electrode insulating cover 211 is omitted.
  • the positive electrode gasket 212 is a member which insulates the positive electrode terminal 206 and the exterior material 201 as shown in FIGS.
  • the positive electrode gasket 212 is preferably a solvent-resistant, flame-retardant resin molded body.
  • a polyethylene resin or a fluorine resin is used for the positive electrode gasket 212.
  • the negative electrode gasket 213 is a member which insulates the negative electrode terminal 207 and the packaging material 201 as shown in FIGS.
  • the negative electrode gasket 213 is preferably a solvent-resistant, flame-retardant resin molded body.
  • a polyethylene resin or a fluorine resin is used for the negative electrode gasket 213.
  • the safety valve 214 is a member that is provided on the lid as shown in FIGS. 10 to 13 and that functions as a pressure reducing valve that reduces the pressure in the exterior material 201 when the internal pressure in the exterior material 201 rises.
  • the safety valve 214 is preferably provided, but can be omitted in consideration of conditions such as a battery protection mechanism and an electrode material.
  • the electrolyte injection port 215 is a hole for injecting the electrolyte as shown in FIGS. 10 to 12. After the injection of the electrolytic solution, it is preferable to be sealed with a resin or the like. Although not shown in the drawings, it is preferable that each member be fixed or connected using an insulating adhesive tape.
  • the seventh embodiment relates to a battery module.
  • the secondary battery of the sixth embodiment using the electrode group of any of the first, second, third, fourth and fifth embodiments is a unit cell (cell). Use as one or more.
  • the use of the electrode group according to any one of the first, second, third and fourth embodiments provides excellent capacity characteristics and cycle characteristics, and the use of the electrode group according to the fifth embodiment provides excellent manageability. preferable.
  • the battery module includes a plurality of single cells, the single cells are electrically connected in series, in parallel, or in series and in parallel.
  • the battery module 300 will be specifically described with reference to the perspective development view of FIG. 14 and the cross-sectional view of FIG. In the battery module 300 shown in FIG. 14, the secondary battery 200 shown in FIG. 10 is used as the single battery 301.
  • the cross-sectional view of FIG. 15 is a cross-section including the positive electrode terminal 303B and the negative electrode terminal 306B in the perspective development view of FIG.
  • the plurality of unit cells 301 are provided outside the battery case, with the positive electrode terminals 303 (303A and 303B) provided on the positive electrode gasket 302, the safety valve 304, and the negative electrode terminals 306 (306A and 306B) provided on the negative electrode gasket 305.
  • the single cells 301 shown in FIG. 14 are arranged to be alternately arranged.
  • the unit cells 301 shown in FIG. 14 are connected in series, but may be connected in parallel by changing the arrangement method or the like.
  • the unit cell 301 is accommodated in the lower case 307 and the upper case 308.
  • the upper case 308 is provided with power source input / output terminals 309 and 310 (positive electrode terminal 309 and negative electrode terminal 310) of the battery module.
  • An opening 311 is provided in the upper case 308 in accordance with the positions of the positive electrode terminal 303 and the negative electrode terminal 306 of the unit cell 301, and the positive electrode terminal 303 and the negative electrode terminal 306 are exposed from the opening 311.
  • the exposed positive electrode terminal 303A is connected to the negative electrode terminal 306A of the adjacent single cell 301 by the bus bar 312, and the exposed negative electrode terminal 306A is connected to the positive electrode terminal 303A of the adjacent single cell 301 and the bus bar 312 Connected by.
  • the positive terminal 303 B not connected by the bus bar 312 is connected to the positive terminal 314 A provided on the substrate 313, and the positive terminal 314 A is connected to the positive power input / output terminal 309 via the circuit on the substrate 313.
  • the negative terminal 306B not connected by the bus bar 312 is connected to the negative terminal 314B provided on the substrate 313, and the negative terminal 314B is connected to the negative power input / output terminal 310 via the circuit on the substrate 313. doing.
  • the power input / output terminals 309 and 310 are connected to a charging power source and a load (not shown) to charge and use the battery module 300.
  • the upper case 308 is sealed by a lid 315. It is preferable that the substrate 313 be provided with a charge and discharge protection circuit.
  • a configuration may be appropriately added such as a configuration in which information such as deterioration of the single battery 301 can be output from a terminal (not shown).
  • the eighth embodiment relates to a power storage device.
  • the battery module 300 of the seventh embodiment can be mounted on the power storage device 400.
  • a power storage device 400 shown in the conceptual view of FIG. 16 includes a battery module 300, an inverter 402, and a converter 401.
  • the external AC power supply 403 is DC converted by the converter 401, the battery module 300 is charged, AC converted by the inverter 402 of the DC power supply from the battery module 300, and electricity is supplied to the load 404 connected to the storage device 400. ing.
  • a power storage device having excellent battery characteristics is provided.
  • a power storage device having excellent battery characteristics and manageability is provided.
  • the ninth embodiment relates to a vehicle.
  • the vehicle of the ninth embodiment uses the battery module 300 of the seventh embodiment.
  • the configuration of the vehicle according to the present embodiment will be briefly described using a schematic view of the vehicle 500 in FIG.
  • the vehicle 500 includes a battery module 300, a vehicle body 501, a motor 502, wheels 503, and a control unit 504.
  • the battery module 300, the motor 502, the wheels 503, and the control unit 504 are disposed in the vehicle body 501.
  • the control unit 504 converts the power output from the battery module 300 or adjusts the output.
  • the motor 502 rotates the wheels 503 using the power output from the battery module 300.
  • Vehicle 500 also includes an electric vehicle such as a train and a hybrid vehicle having another drive source such as an engine.
  • the battery module 400 may be charged by the regenerative energy from the motor 502. What is driven by the electrical energy from the battery module 300 is not limited to the motor, and may be used as a power source for operating the electric device included in the vehicle 500. In addition, it is preferable to obtain regenerative energy at the time of deceleration of the vehicle 500 and charge the battery module 300 using the obtained regenerative energy.
  • the tenth embodiment relates to a projectile (for example, a multicopter).
  • the projectile of the tenth embodiment uses the battery module 300 of the seventh embodiment.
  • the configuration of the projectile according to this embodiment will be briefly described using a schematic view of a project (quadcopter) 600 of FIG.
  • the projectile 600 has a battery module 300, an airframe skeleton 601, a motor 602, a rotary wing 603 and a control unit 604.
  • the battery module 300, the motor 602, the rotary wings 603 and the control unit 604 are disposed on the airframe skeleton 601.
  • the control unit 604 converts the power output from the battery module 300 and adjusts the output.
  • the motor 602 rotates the rotor 603 using the power output from the battery module 300.
  • Example 1 [Production of positive electrode] Lithium nickel cobalt manganese complex oxide LiNi 1/3 Co 1/3 Mn 1/3 O 2 and lithium cobalt complex oxide LiCoO 2 were prepared as positive electrode active materials. These were mixed so that LiNi 1/3 Co 1/3 Mn 1/3 O 2 and LiCoO 2 were 2: 1, to obtain an active material mixture.
  • the active material mixture, carbon black as a conductive agent, and polyvinylidene fluoride as a binder were mixed at a mass ratio of 100: 5: 3. The mixture thus obtained was added to N-methyl-2-pyrrolidone as a solvent, and this was kneaded and stirred by a planetary mixer to prepare a positive electrode slurry.
  • the positive electrode slurry was applied and dried so as to form a partially uncoated part on the front and back of a 12 ⁇ m thick aluminum foil. Slitting was performed so as to have a coated width of 90 mm and an uncoated width of 25 mm, and then compression was performed by a roll press to produce a positive electrode.
  • Lithium titanate Li 4 Ti 5 O 12 was prepared as a negative electrode active material.
  • the active material, carbon black as a conductive agent, and polyvinylidene fluoride as a binder were mixed at a mass ratio of 100: 5: 5.
  • the mixture thus obtained was added to N-methyl-2-pyrrolidone as a solvent, and this was kneaded and stirred by a planetary mixer to prepare a negative electrode slurry.
  • the negative electrode slurry was applied and dried so as to form a partially uncoated part on the front and back of a 12 ⁇ m thick aluminum foil. Slitting was performed so as to have a coated width of 95 mm and an uncoated width of 20 mm, and then compression was performed by a roll press to produce a negative electrode.
  • a sealing body provided with a positive electrode lead connected to the positive electrode terminal and a negative electrode lead connected to the negative electrode terminal was prepared.
  • the positive electrode uncoated portion disposed at one end of the wound electrode group and the positive electrode lead were ultrasonically bonded.
  • positioned at the other end of a winding-type electrode group and the negative electrode lead were ultrasonically bonded. This was inserted into and fitted into the outer can, and the sealing body and the outer can were welded in this manner to obtain a battery unit.
  • the resistance between the positive electrode and the negative electrode in the initial stage and after 1000 cycles was determined, and the rate of change in resistance was determined.
  • the secondary battery was charged and discharged at a charge and discharge rate of 2C.
  • Tables 1 and 2 show the first separator (center portion), the second separator (peripheral portion), the total number of turns of the separator in the peripheral portion, the thickness of the separator, the porosity of the separator, the positive electrode active material, The negative electrode active material, the capacity retention rate after the cycle test, the resistance change rate and the initial capacity are collectively shown.
  • Example 2 A secondary battery was produced in the same manner as in Example 1 except that the separator in the outer peripheral portion was not connected to the electrode group in the central portion. In addition, the separator of a center part and an outer peripheral part is the same separator.
  • Example 3 A secondary battery was produced in the same manner as in Example 1 except that the number of separator windings in the outer peripheral portion was 4 turns.
  • Example 4 A secondary battery was produced in the same manner as in Example 1 except that the number of separator windings in the outer peripheral portion was set to 20.
  • Example 5 A secondary battery was produced in the same manner as in Example 1 except that the film thickness of the separator was 12 ⁇ m.
  • Example 6 A secondary battery was produced in the same manner as in Example 1 except that the film thickness of the separator was 6 ⁇ m.
  • Example 7 A secondary battery was produced in the same manner as in Example 1 except that the porosity of the separator was 40%.
  • Example 8 A secondary battery was produced in the same manner as in Example 1 except that the porosity of the separator was 80%.
  • Example 9 A secondary battery was produced in the same manner as in Example 1 except that the number of turns of the separator in the outer peripheral portion was set to 30.
  • Example 10 A secondary battery was produced in the same manner as in Example 1 except that the number of turns of the separator in the outer peripheral portion was set to 30.
  • Example 11 A secondary battery was produced in the same manner as in Example 1 except that the number of turns of the separator in the outer peripheral portion was changed to 40.
  • Example 12 A secondary battery was produced in the same manner as in Example 1 except that a polyolefin porous separator having a porosity of 50% and a thickness of 6 ⁇ m made of polyethylene was used as the separator.
  • Example 13 A secondary battery was prepared in the same manner as in Example 1, except that TiO 2 (B) was used as the negative electrode active material and a polyolefin porous separator having a porosity of 60% and a thickness of 10 ⁇ m made of polyethylene was used as the separator. Made.
  • Example 14 Except that TiO 2 (B) is used as the negative electrode active material, a polyolefin porous separator with a porosity of 60% and a thickness of 10 ⁇ m made of polyethylene is used as the separator, and the number of turns of the separator on the outer peripheral portion is 20 times.
  • a secondary battery was produced in the same manner as in Example 1.
  • Example 15 A secondary battery was produced in the same manner as in Example 1, except that graphite was used as the negative electrode active material and a polyolefin porous separator having a porosity of 60% and a thickness of 10 ⁇ m made of polyethylene was used as the separator.
  • Example 16 The same as Example 1 except that graphite is used as the negative electrode active material, a polyolefin porous separator having a porosity of 60% and a thickness of 10 ⁇ m made of polyethylene is used as the separator and the number of turns of the separator on the outer peripheral portion is 20 times A secondary battery was produced by the method of
  • Example 17 A secondary battery was produced in the same manner as in Example 1 except that LiMn 2 O 4 was used as the negative electrode active material.
  • Example 18 A secondary battery was produced in the same manner as in Example 1 except that LiMn 2 O 4 was used as the negative electrode active material, and the number of turns of the separator in the outer peripheral portion was set to 20.
  • Example 19 A secondary battery was produced in the same manner as in Example 1 except that the number of turns of the separator in the outer peripheral portion was set to 3 turns.
  • Example 20 A secondary battery was produced in the same manner as in Example 1 except that the electrode group was changed to a laminated electrode group.
  • Example 21 A secondary battery was produced in the same manner as in Example 20, except that the number of turns of the separator in the outer peripheral portion was set to 3 turns.
  • Example 22 A secondary battery was produced in the same manner as in Example 20 except that the number of turns of the separator in the outer peripheral portion was changed to 20.
  • Example 23 A secondary battery was produced in the same manner as in Example 20 except that the separator in the outer peripheral portion was not connected to the separator in the central portion. In addition, the separator of a center part and an outer peripheral part is the same.
  • Example 24 Using a porous polyolefin separator with a porosity of 50% and a thickness of 6 ⁇ m made of polyethylene in the central part, using a cellulose with a porosity of 60% and a thickness of 10 ⁇ m in the outer peripheral part, the separator in the outer peripheral part is connected to the separator in the central part A secondary battery was manufactured in the same manner as in Example 1 except that the number of turns of the separator in the outer peripheral portion was 10 times.
  • Example 25 A secondary battery is fabricated in the same manner as in Example 23, except that a mixture of aluminum oxide and methyl acrylate (porosity 40%) having a thickness of 6 ⁇ m and an average particle diameter of 1 ⁇ m is used for the central separator. did.
  • the separator at the outer peripheral portion is the same as that of the first embodiment.
  • Example 1 A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the number of turns of the separator in the outer peripheral portion was changed to 2 turns.
  • Example 2 A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the number of turns of the separator in the outer peripheral portion was set to 50.
  • Example 3 A secondary battery was produced in the same manner as in Example 1 except that the film thickness of the separator was 2 ⁇ m.
  • Example 4 A secondary battery was produced in the same manner as in Example 1 except that the thickness of the separator was 25 ⁇ m.
  • Example 5 A secondary battery was produced in the same manner as in Example 1 except that the porosity of the separator was 30%.
  • Example 6 A secondary battery was produced in the same manner as in Example 1 except that the porosity of the separator was 95%, but the porosity of the separator was too high to be wound.
  • Example 7 A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the number of turns of the separator in the outer peripheral portion was 0.
  • Example 9 A secondary battery was produced in the same manner as in Example 13 except that the number of turns of the separator in the outer peripheral portion was changed to 2 turns.
  • Example 10 A secondary battery was produced in the same manner as in Example 15, except that the number of turns of the separator in the outer peripheral portion was changed to 2 turns.
  • the example As compared with Comparative Example 1 in which the outermost separator is reduced, the example is shown to be superior in terms of the capacity retention rate after the cycle test and the resistance change rate. In addition, it is shown that the example is significantly superior in terms of volume energy density as compared with Comparative Example 2 in which a large number of separators are wound around the outermost periphery. In the specification, some elements are represented only by elemental symbols.
  • Electrode group 10: positive electrode, 11: positive electrode current collector, 12: positive electrode active material layer, 13: positive electrode current collection tab, 20: negative electrode, 21: negative electrode current collector , 22: negative electrode active material layer, 23: negative electrode current collecting tab, 30: first A separator, 40: first B separator, 50: second separator (second A separator), 60: identification code, 70: second B separator, 80 ... second separator, 90 ...
  • second separator, 200 secondary battery 201 packaging material 202 electrode group 202 (100, 101, 102, 103) 203 positive electrode lead 204 negative electrode lead 205 lid 206 positive electrode terminal 207 negative electrode terminal 208: positive electrode backup lead 209: negative electrode backup lead 210: positive electrode insulating cover 211: negative electrode insulating cover 212: positive electrode gasket 213: negative electrode gasket 214: safety valve 215: electrolyte solution inlet 216: positive electrode current collector Tab 217, negative electrode current collecting tab and electrolyte 300 (not shown) battery module 301, cells 301, 302 positive electrode gasket 303 (303A, 303B) positive electrode terminal 304 safety valve 305 negative electrode gasket 306 (306) 306A, 306B) ...
  • negative electrode terminal 307 ... lower case, 308 ... upper case, 30 ... power output terminal (positive terminal), 310 ... power input terminal (negative terminal), 311 ... opening, 312 ... bus bar, 313 ... substrate, 314A ... positive terminal, 314B ... negative terminal, 315 ... lid, 400 ... storage device, 401 ... converter, 402 ... inverter, 403 ... external AC power supply, 404 ... load, 500 ... vehicle, 501 ... vehicle body, 502 ... motor, 503 ... wheel, 504 ... control unit, 600 ... projectile body, 601 ... body frame, 602 ... motor, 603 ... rotary wing, 604 ... control unit

Abstract

Embodiments of the present invention provide: an electrode group which has a long service life or excellent manageability; a secondary battery; a battery module; a storage battery; a vehicle; and a flying body. An electrode group 100 according to one embodiment of the present invention comprises: a center part A which is obtained by rolling up a positive electrode 10, a negative electrode 20 and first separators (30, 40) which are arranged between the positive electrode 10 and the negative electrode 20; and an outer peripheral part B which is obtained by winding a second separator 50 around the outer circumference of the center part A. With respect to this electrode group 100, the total number of turns of the second separator 50 is 3 or more.

Description

電極群、二次電池、電池モジュール、蓄電装置、車両及び飛翔体Electrode group, secondary battery, battery module, power storage device, vehicle and aircraft
 実施形態は、電極群、二次電池、電池モジュール、蓄電装置、車両及び飛翔体に関する。 Embodiments relate to an electrode group, a secondary battery, a battery module, a power storage device, a vehicle, and a projectile.
 近年、急速に普及しているハイブリッド電気自動車及びプラグイン電気自動車等の電気自動車の電源には、充放電可能な非水電解質電池、例えばリチウムイオン二次電池が主として用いられている。リチウムイオン二次電池は、例えば、以下の方法で製造される。正極及び負極がセパレータを介して巻回された電極群を作製した後、この電極群をアルミニウムやアルミニウム合金のような金属製ケースに収納する。次いで、ケースの開口部に蓋を溶接し、蓋に設けられた注液口から非水電解液をケース内に注液した後、注液口に封止部材を溶接して電池ユニットを作製する。その後、この電池ユニットに対して初充電やエージング処理を施すことにより、リチウムイオン二次電池が得られる。 In recent years, chargeable and dischargeable non-aqueous electrolyte batteries such as lithium ion secondary batteries are mainly used as power sources of electric vehicles such as hybrid electric vehicles and plug-in electric vehicles which are rapidly spreading. The lithium ion secondary battery is manufactured, for example, by the following method. After producing an electrode group in which the positive electrode and the negative electrode are wound via a separator, the electrode group is housed in a metal case such as aluminum or an aluminum alloy. Next, a lid is welded to the opening of the case, and a non-aqueous electrolyte is poured into the case from the liquid inlet provided in the lid, and then a sealing member is welded to the liquid inlet to produce a battery unit. . Thereafter, the battery unit is subjected to an initial charge and an aging treatment to obtain a lithium ion secondary battery.
 この非水電解質電池では、高入出力化、長寿命化といったことが求められる。高入出力化のためには、セパレータの薄膜化が有効である。しかし、薄いセパレータを使用すると、寿命特性が悪化することがわかり、そのため、劣化を抑制する対策が要望されている。 The non-aqueous electrolyte battery is required to have a high input / output and a long life. In order to achieve high input / output, it is effective to thin the separator. However, it has been found that the use of a thin separator deteriorates the life characteristics, and therefore, there is a demand for measures for suppressing the deterioration.
特開2013-80698号公報JP, 2013-80698, A
 実施形態は、長寿命又は管理性に優れたな電極群、二次電池、電池モジュール、蓄電池、車両及び飛翔体を提供する。 An embodiment provides an electrode group, a secondary battery, a battery module, a storage battery, a vehicle, and a projectile, which are excellent in long life or manageability.
 実施形態の電極群は、正極、負極と、正極と負極の間に配置された第1セパレータが巻回した中心部と、第2セパレータが中心部の外周を巻いている外周部を含む電極群において、第2セパレータの総巻回数が3以上である。 The electrode group according to the embodiment includes an electrode group including a positive electrode, a negative electrode, a central portion around which a first separator disposed between the positive electrode and the negative electrode is wound, and an outer peripheral portion around the outer periphery of the central portion of the second separator. In the above, the total number of turns of the second separator is three or more.
実施形態の電極群の断面図。Sectional drawing of the electrode group of embodiment. 実施形態の電極群の断面図。Sectional drawing of the electrode group of embodiment. 実施形態の電極群の斜視図。The perspective view of the electrode group of embodiment. 実施形態の電極群の斜視展開図。The perspective expanded view of the electrode group of embodiment. 実施形態の電極群の斜視図。The perspective view of the electrode group of embodiment. 実施形態の電極群の断面図。Sectional drawing of the electrode group of embodiment. 実施形態の電極群の断面図。Sectional drawing of the electrode group of embodiment. 実施形態の電極群の断面図。Sectional drawing of the electrode group of embodiment. 実施形態の電極群の斜視図。The perspective view of the electrode group of embodiment. 実施形態の二次電池の斜視図。The perspective view of the rechargeable battery of an embodiment. 実施形態の二次電池の展開斜視図。The expansion | deployment perspective view of the secondary battery of embodiment. 実施形態の二次電池の蓋の斜視図。The perspective view of the lid of the rechargeable battery of an embodiment. 実施形態の二次電池の内部を示す側面図。The side view showing the inside of the rechargeable battery of an embodiment. 実施形態の電池モジュールの展開図。The expanded view of the battery module of embodiment. 実施形態の電池モジュールの断面図。Sectional drawing of the battery module of embodiment. 実施形態の蓄電池の模式図。The schematic diagram of the storage battery of embodiment. 実施形態の車両の模式図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic diagram of the vehicle of embodiment. 実施形態の飛翔体の模式図。The schematic diagram of the flying object of embodiment.
(第1の実施形態)
 第1の実施形態は、電極群に関する。実施形態の電極群は巻回型電極群である。実施形態の電極群は、正極、負極と、前記正極と負極の間に配置された第1セパレータが巻回した中心部と、第2セパレータが中心部の外周を巻いている外周部を含む電極群において、中心部の最外周側の端部からの第2セパレータの総巻回数が3以上である。図1に電極群100の断面模式図を示す。電極群100は、正極10、負極20、2枚の第1セパレータ(第1Aセパレータ30,第1Bセパレータ40)と1枚の第2セパレータ50を有する。破線で囲った内側の領域は、電極群100の中心部Aである。電極群100の中心部Aより外側から最外周にかけての領域を外周部Bとする。図1では、図示を簡略化するために中心部Aの巻回数が3回であるが、電極群100の高容量化のためには、中心部Aは、数十回以上巻かれていることが好ましい。
First Embodiment
The first embodiment relates to an electrode group. The electrode group of the embodiment is a wound electrode group. The electrode group according to the embodiment includes an electrode including a positive electrode, a negative electrode, a central portion around which the first separator disposed between the positive electrode and the negative electrode is wound, and an outer peripheral portion around the outer periphery of the central portion of the second separator. In the group, the total number of turns of the second separator from the end on the outermost side of the central portion is three or more. The cross-sectional schematic diagram of the electrode group 100 is shown in FIG. The electrode group 100 includes a positive electrode 10, a negative electrode 20, two first separators (first A separator 30, first B separator 40), and one second separator 50. The inner region surrounded by the broken line is the central portion A of the electrode assembly 100. A region from the outer side to the outermost periphery of the central portion A of the electrode group 100 is referred to as an outer peripheral portion B. In FIG. 1, the number of turns of the central portion A is three for simplification of the illustration, but for the purpose of increasing the capacity of the electrode group 100, the central portion A is wound several tens of times or more. Is preferred.
 中心部Aにおいて、正極10と負極20の間には、第1セパレータ(30、40)が配置されている。より具体的には、第1セパレータ(30、40)は、2つ含まれ、電極群100の中心部Aでは、正極10、第1Aセパレータ30A、負極20と第1Bセパレータ40の順、負極20、第1Aセパレータ30、正極10と第1Bセパレータ40の順、第1Aセパレータ30、正極10、第1Bセパレータ40、負極の順、又は、第1Aセパレータ30、負極20、第1Bセパレータ40、正極10の順に積層した構造体が巻回されて構成されている。図1では、外周部Bでは、第2セパレータ50が電極群100の中心部Aの外周を3回巻いている。図2に電極群100の部分拡大断面図を示す。図2の電極群100の拡大断面図には、正極10と負極20のより詳細な構造が示される。図3には電極群100の斜視図を示す。また、図4には、図3の電極群100を一部巻きほどいた斜視模式図を示す。積層した構造体同士が接しないように巻回する場合は、第1セパレータ30は1枚でもよい。 In the central portion A, the first separator (30, 40) is disposed between the positive electrode 10 and the negative electrode 20. More specifically, the two first separators (30, 40) are included, and in the center portion A of the electrode group 100, the positive electrode 10, the first A separator 30A, the negative electrode 20 and the first B separator 40 in this order, the negative electrode 20 The first A separator 30, the positive electrode 10 and the first B separator 40, the first A separator 30, the positive electrode 10, the first B separator 40, the negative electrode or the first A separator 30, the negative electrode 20, the first B separator 40, the positive electrode 10 The structure laminated in order of is wound and comprised. In FIG. 1, in the outer peripheral portion B, the second separator 50 is wound around the outer periphery of the central portion A of the electrode group 100 three times. A partially enlarged cross-sectional view of the electrode assembly 100 is shown in FIG. A more detailed structure of the positive electrode 10 and the negative electrode 20 is shown in the enlarged cross-sectional view of the electrode group 100 in FIG. The perspective view of the electrode group 100 is shown in FIG. FIG. 4 is a schematic perspective view of the electrode assembly 100 of FIG. 3 partially unwound. When winding is performed so that the stacked structures do not contact each other, the number of the first separators 30 may be one.
 正極10は、電極群100の一方の電極である。正極10は、正極集電体11と正極活物質層12を含む。正極活物質層12は、正極集電体11上の片面又は両面に配置され、正極活物質層12が正極集電体11を挟んでいる。図2、3では、正極集電体11の両面に正極活物質層12が設けられている。正極10の端部の正極集電体11上に正極活物質層12が設けられていない非塗工部の領域は、正極集電タブ13となる。 The positive electrode 10 is one of the electrodes of the electrode group 100. The positive electrode 10 includes a positive electrode current collector 11 and a positive electrode active material layer 12. The positive electrode active material layer 12 is disposed on one side or both sides of the positive electrode current collector 11, and the positive electrode active material layer 12 sandwiches the positive electrode current collector 11. In FIGS. 2 and 3, the positive electrode active material layer 12 is provided on both sides of the positive electrode current collector 11. The area of the non-coated portion where the positive electrode active material layer 12 is not provided on the positive electrode current collector 11 at the end of the positive electrode 10 is the positive electrode current collection tab 13.
 正極集電体11は、正極活物質層12と接した導電性の薄膜である。正極集電体としてはステンレス、Al、Tiなどの金属からなる箔、多孔体、メッシュを用いることが好ましい。集電体と電解液との反応による集電体の腐食を防止するため、集電体表面を異種元素で被覆してもよい。正極集電体11の厚さは、典型的には、5μm以上20μm以下のものが好適である。 The positive electrode current collector 11 is a conductive thin film in contact with the positive electrode active material layer 12. As the positive electrode current collector, it is preferable to use a foil, a porous body or a mesh made of a metal such as stainless steel, Al or Ti. In order to prevent corrosion of the current collector due to the reaction between the current collector and the electrolytic solution, the surface of the current collector may be coated with different elements. Typically, the thickness of the positive electrode current collector 11 is preferably 5 μm to 20 μm.
 正極活物質層12は、正極活物質、結着剤と導電材を含む合材層である。正極活物質、導電剤及び結着剤の正極層における配合比については、正極活物質を70質量%以上96質量%以下、導電材を3質量%以上17質量%以下、正極結着剤を1質量%以上13質量%以下にすることが望ましい。 The positive electrode active material layer 12 is a composite material layer containing a positive electrode active material, a binder and a conductive material. The compounding ratio of the positive electrode active material, the conductive agent and the binder in the positive electrode layer is 70% by mass to 96% by mass of the positive electrode active material, 3% by mass to 17% by mass of the conductive material, and 1 the positive electrode binder It is desirable that the content be in the range of mass% to 13 mass%.
 正極活物質には、リチウムを吸蔵放出可能なものが使用され得る。正極は、1種類の正極活物質を含んでも良く、或いは2種類以上の正極活物質を含むことができる。正極活物質の例には、リチウムコバルト酸化物、リチウムマンガン複合酸化物、リチウムニッケル複合酸化物、リチウムコバルトアルミニウム複合酸化物、リチウムニッケルコバルトマンガン複合酸化物、スピネル型リチウムマンガンニッケル複合酸化物、リチウムマンガンコバルト複合酸化物、リチウム鉄酸化物、リチウムフッ素化硫酸鉄、オリビン結晶構造のリン酸化合物(例えば、LiFePO(0≦x≦1)、LiMnPO(0≦x≦1))リチウムを含むバナジウム酸化物や、二硫化チタン、二硫化モリブデン、硫化鉄などのカルコゲン化合物等などが含まれる。オリビン結晶構造のリン酸化合物は、熱安定性に優れている。 As the positive electrode active material, those capable of inserting and extracting lithium can be used. The positive electrode may include one type of positive electrode active material, or may include two or more types of positive electrode active material. Examples of positive electrode active materials include lithium cobalt oxide, lithium manganese composite oxide, lithium nickel composite oxide, lithium cobalt aluminum composite oxide, lithium nickel cobalt manganese composite oxide, spinel lithium manganese nickel composite oxide, lithium Manganese-cobalt composite oxide, lithium iron oxide, lithium fluorinated sulfate, phosphoric acid compound having an olivine crystal structure (for example, Li x FePO 4 (0 ≦ x ≦ 1), Li x MnPO 4 (0 ≦ x ≦ 1) 2.) Vanadium oxides containing lithium, chalcogen compounds such as titanium disulfide, molybdenum disulfide, iron sulfide and the like are included. Phosphoric acid compounds having an olivine crystal structure are excellent in thermal stability.
 高い正極電位の得られる正極活物質の例を以下に記載する。例えばスピネル構造のLiMn(0<x≦1)、LiMnO(0<x≦1)などのリチウムマンガン複合酸化物、例えばLiNi1-yAl(0<x≦1、0<y≦1)などのリチウムニッケルアルミニウム複合酸化物、例えばLiCoO(0<x≦1)などのリチウムコバルト複合酸化物、例えばLiNi1-y-zCoMn(0<x≦1、0<y≦1、0≦z≦1)などのリチウムニッケルコバルト複合酸化物、例えばLiMnCo1-y(0<x≦1、0<y≦1)などのリチウムマンガンコバルト複合酸化物、例えばLiMn2-yNi(0<x≦1、0<y<2)などのスピネル型リチウムマンガンニッケル複合酸化物、例えばLiFePO(0<x≦1)、LiFe1-yMnPO(0<x≦1、0≦y≦1)、LiCoPO(0<x≦1)などのオリビン構造を有するリチウムリン酸化物、フッ素化硫酸鉄(例えばLixFeSOF(0<x≦1))が挙げられる。 An example of the positive electrode active material from which a high positive electrode potential can be obtained is described below. For example, lithium manganese complex oxides such as Li x Mn 2 O 4 (0 <x ≦ 1) and Li x MnO 2 (0 <x ≦ 1) of spinel structure, for example Li x Ni 1 -y Al y O 2 (0 Lithium nickel aluminum complex oxide such as <x ≦ 1, 0 <y ≦ 1), for example lithium cobalt complex oxide such as Li x CoO 2 (0 <x ≦ 1), such as Li x Ni 1 -y-z Co Lithium nickel cobalt composite oxides such as y Mn z O 2 (0 <x ≦ 1, 0 <y ≦ 1, 0 ≦ z ≦ 1), for example, Li x Mn y Co 1 -yO 2 (0 <x ≦ 1) , Lithium manganese cobalt composite oxide such as 0 <y ≦ 1), spinel type lithium manganese nickel composite oxide such as Li x Mn 2-y Ni y O 4 (0 <x ≦ 1, 0 <y <2) , for example, Li x F PO 4 (0 <x ≦ 1 ), the Li x Fe 1-y Mn y PO 4 (0 <x ≦ 1,0 ≦ y ≦ 1), Li x CoPO 4 (0 <x ≦ 1) olivine structure such as And lithium phosphate oxides and fluorinated iron sulfates (for example, LixFeSO 4 F (0 <x ≦ 1)).
 正極活物質の粒子は、単独の一次粒子、一次粒子の凝集体である二次粒子、または単独の一次粒子と二次粒子の双方を含むものであり得る。正極活物質の一次粒子の平均粒子径(直径)は10μm以下であることが好ましく、より好ましくは0.1μm以上5μm以下である。正極活物質の二次粒子の平均粒子径(直径)は100μm以下であることが好ましく、より好ましくは10μm以上50μm以下である。 The particles of the positive electrode active material may include a single primary particle, a secondary particle which is an aggregate of primary particles, or both a single primary particle and a secondary particle. The average particle diameter (diameter) of the primary particles of the positive electrode active material is preferably 10 μm or less, and more preferably 0.1 μm to 5 μm. The average particle diameter (diameter) of the secondary particles of the positive electrode active material is preferably 100 μm or less, and more preferably 10 μm to 50 μm.
 正極活物質の粒子表面の少なくとも一部が炭素材料で被覆されていてもよい。炭素材料は、層構造、粒子構造、あるいは粒子の集合体の形態をとり得る。 At least a part of the particle surface of the positive electrode active material may be coated with a carbon material. The carbon material can take the form of a layer structure, a particle structure, or an assembly of particles.
 活物質と導電剤とを結着させるための結着剤は、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、エチレン-ブタジエンゴム(SBR)、ポリプロピレン(PP)、ポリエチレン(PE)、カルボキシメチルセルロース(CMC)、ポリイミド(PI)、ポリアクリルイミド(PAI)PVdFの水素もしくはフッ素のうち、少なくとも1つを他の置換基で置換した変性PVdF、フッ化ビニリデン-6フッ化プロピレンの共重合体、ポリフッ化ビニリデン-テトラフルオロエチレン-6フッ化プロピレンの3元共重合体やアクリル系樹脂を含む。結着剤の種類は1種類又は2種類以上にすることができる。 The binder for binding the active material and the conductive agent is, for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine-based rubber, ethylene-butadiene rubber (SBR), polypropylene (PP) , Polyvinylidene fluoride, which is a modified PVdF in which at least one of hydrogen and fluorine of polyethylene (PE), carboxymethylcellulose (CMC), polyimide (PI) and polyacrylimide (PAI) PVdF is substituted with another substituent It includes copolymers of propylene fluoride, terpolymers of polyvinylidene fluoride-tetrafluoroethylene-6 propylene propylene, and acrylic resins. The type of binder can be one or two or more.
 正極活物質層12の電子伝導性を高め、集電体との接触抵抗を抑えるための導電剤としては、例えば、アセチレンブラック、カーボンブラック、黒鉛、平均繊維径1μm以下の炭素繊維等を挙げることができる。導電剤の種類は1種類又は2種類以上にすることができる。 Examples of the conductive agent for enhancing the electron conductivity of the positive electrode active material layer 12 and suppressing the contact resistance with the current collector include acetylene black, carbon black, graphite, carbon fibers having an average fiber diameter of 1 μm or less, and the like. Can. The type of conductive agent can be one or two or more.
 正極10は、例えば次のようにして作製することができる。先ず、正極活物質、導電剤及び結着剤を適切な溶媒に分散させてスラリーを調製する。このスラリーを正極集電体11に塗布し、塗膜を乾燥させることで正極集電体11上に正極活物質層12を形成する。このとき、正極集電タブ13のために正極集電体11の端部に長手方向に非塗工部を設ける。ここで、例えばスラリーを正極集電体11上の1つの面に塗布してもよく、またはスラリーを集電体上の1つの面とその裏面の両方に塗布してもよい。次いで、正極集電体11と正極活物質層12とに対し、例えば加熱プレスなどのプレスを施すことにより正極10を作製することができる。 The positive electrode 10 can be produced, for example, as follows. First, a positive electrode active material, a conductive agent and a binder are dispersed in an appropriate solvent to prepare a slurry. The slurry is applied to the positive electrode current collector 11, and the coating is dried to form the positive electrode active material layer 12 on the positive electrode current collector 11. At this time, a non-coated portion is provided in the longitudinal direction at the end of the positive electrode current collector 11 for the positive electrode current collection tab 13. Here, for example, the slurry may be applied to one surface on the positive electrode current collector 11, or the slurry may be applied to both the one surface on the current collector and the back surface thereof. Next, the positive electrode 10 can be manufactured by applying a press such as a heating press to the positive electrode current collector 11 and the positive electrode active material layer 12, for example.
 負極20は、電極群100の一方の電極である。負極20は、負極集電体21と負極活物質層22を含む。負極活物質層22は、負極集電体21上の片面又は両面に配置され、負極活物質層22が負極集電体21を挟んでいる。図2、3では、負極集電体21の両面に負極活物質層22が設けられている。負極20の端部の負極集電体21上に負極活物質層22が設けられていない非塗工部の領域は、負極集電タブ23となる。第2方向の一方の端部に正極集電タブ13があり、第2方向の他方の端部に負極集電タブ23がある。 The negative electrode 20 is one of the electrodes of the electrode group 100. The negative electrode 20 includes a negative electrode current collector 21 and a negative electrode active material layer 22. The negative electrode active material layer 22 is disposed on one side or both sides of the negative electrode current collector 21, and the negative electrode active material layer 22 sandwiches the negative electrode current collector 21. In FIGS. 2 and 3, the negative electrode active material layer 22 is provided on both sides of the negative electrode current collector 21. The region of the non-coated portion where the negative electrode active material layer 22 is not provided on the negative electrode current collector 21 at the end of the negative electrode 20 is the negative electrode current collection tab 23. At one end in the second direction, there is a positive current collecting tab 13, and at the other end in the second direction, there is a negative current collecting tab 23.
 負極集電体11は、例えば、Al、Ti、Cuなどの金属や、前記金属を主成分として、Zn、Mn、Fe、Cu、Siから成る群のうちの一以上の元素を添加した合金を用いることができる。特に、Alを主成分とするアルミニウム合金箔は、柔軟で成形性に優れているために好ましい。亜鉛元素を含んだ負極集電体も好ましい。ここで、負極集電体11に含まれる亜鉛元素の形態は、単体の亜鉛(金属亜鉛)、亜鉛を含有する化合物、及び亜鉛合金を含む。負極集電体11の厚さは、典型的には、5μm以上20μm以下のものが好適である。 The negative electrode current collector 11 is made of, for example, a metal such as Al, Ti, or Cu, or an alloy containing the metal as a main component and one or more elements selected from the group consisting of Zn, Mn, Fe, Cu, and Si. It can be used. In particular, an aluminum alloy foil containing Al as a main component is preferable because it is flexible and has excellent formability. A negative electrode current collector containing a zinc element is also preferable. Here, the form of the zinc element contained in the negative electrode current collector 11 includes elemental zinc (metallic zinc), a compound containing zinc, and a zinc alloy. Typically, the thickness of the negative electrode current collector 11 is preferably 5 μm or more and 20 μm or less.
 負極活物質層12は、負極活物質、結着剤と導電材を含む合材層である。負極活物質、導電剤及び結着剤の負極活物質層12における配合比については、負極活物質が70質量%以上96質量%以下、導電材が2質量%以上20質量%以下、負極結着剤が2質量%以上10質量%以下になるようにすることが望ましい。導電材の量を2質量%以上とすることにより、負極合剤層の集電性能を向上させることができる。また、負極結着剤の量を2質量%以上とすることにより、負極合剤層と負極集電体との結着性を高めることができ、優れたサイクル特性を期待できる。一方、導電材及び結着剤はそれぞれ28質量%以下にすることが高容量化を図る上で好ましい。 The negative electrode active material layer 12 is a composite material layer containing a negative electrode active material, a binder and a conductive material. The compounding ratio of the negative electrode active material, the conductive agent, and the binder in the negative electrode active material layer 12 is 70% by mass to 96% by mass of the negative electrode active material, 2% by mass to 20% by mass of the conductive material, and negative electrode binding It is desirable for the agent to be 2% by mass or more and 10% by mass or less. By setting the amount of the conductive material to 2% by mass or more, the current collection performance of the negative electrode mixture layer can be improved. Further, by setting the amount of the negative electrode binder to 2% by mass or more, the binding property between the negative electrode mixture layer and the negative electrode current collector can be enhanced, and excellent cycle characteristics can be expected. On the other hand, it is preferable that the conductive material and the binder be 28 mass% or less, respectively, in order to achieve high capacity.
 負極活物質は、特に限定されるものではない。負極活物質としては、例えば、黒鉛質材料もしくは炭素質材料(例えば、黒鉛、コークス、炭素繊維、球状炭素、熱分解気相炭素質物、樹脂焼成体など)、カルコゲン化合物(例えば、二硫化チタン、二硫化モリブデン、セレン化ニオブなど)、軽金属(例えば、アルミニウム、アルミニウム合金、マグネシウム合金、リチウム、リチウム合金など)、Li4+xTi12(xは充放電反応により-1≦x≦3の範囲で変化する)で表されるスピネル型チタン酸リチウム、ラムステライド型Li2+xTi(xは充放電反応により-1≦x≦3の範囲で変化する)、TiとP、V、Sn、Cu、NiおよびFeからなる群より選択される少なくとも1種類の元素を含有する金属複合酸化物などが挙げられる。TiとP、V、Sn、Cu、NiおよびFeからなる群より選択される少なくとも1種類の元素を含有する金属複合酸化物としては、例えば、TiO-P、TiO-V、TiO-P-SnO、TiO-P-MO(MはCu、Ni及びFeからなる群より選択される少なくとも1つの元素)を挙げることができる。これらの金属複合酸化物は、充電によりリチウムが挿入されることでリチウムチタン複合酸化物に変化する。リチウムチタン酸化物(例えば、スピネル型のチタン酸リチウム)、ケイ素とスズ等から成る群のうちの1以上の物質を含むことが好ましい。負極活物質層22の結着剤は、正極活物質層12の結着剤と共通する。負極活物質層22の導電材は、正極活物質層12の導電材と共通する。 The negative electrode active material is not particularly limited. As the negative electrode active material, for example, a graphite material or a carbonaceous material (eg, graphite, coke, carbon fiber, spherical carbon, pyrolytic gas-phase carbonaceous material, resin fired body, etc.), chalcogen compound (eg, titanium disulfide, Molybdenum disulfide, niobium selenide, etc., light metal (eg, aluminum, aluminum alloy, magnesium alloy, lithium, lithium alloy etc.), Li 4 + x Ti 5 O 12 (x is a range of −1 ≦ x ≦ 3 by charge and discharge reaction Spinel type lithium titanate represented by the formula, lamsteride type Li 2 + x Ti 3 O 7 (x changes in the range of −1 ≦ x ≦ 3 by charge and discharge reaction), Ti and P, V, Sn And metal complex oxides containing at least one element selected from the group consisting of Cu, Ni and Fe. As a metal complex oxide containing at least one element selected from the group consisting of Ti and P, V, Sn, Cu, Ni and Fe, for example, TiO 2 -P 2 O 5 , TiO 2 -V 2 Mention may be made of O 5 , TiO 2 —P 2 O 5 —SnO 2 , TiO 2 —P 2 O 5 —MO (where M is at least one element selected from the group consisting of Cu, Ni and Fe). These metal complex oxides are converted to lithium titanium complex oxides by the insertion of lithium upon charging. It is preferred to include one or more materials in the group consisting of lithium titanium oxide (eg, lithium titanate of spinel type), silicon, tin and the like. The binder of the negative electrode active material layer 22 is common to the binder of the positive electrode active material layer 12. The conductive material of the negative electrode active material layer 22 is common to the conductive material of the positive electrode active material layer 12.
 第1セパレータ(30、40)は、電極群100の正極10と負極20の間に配置された多孔質膜である。第1の実施形態の第1セパレータ(30、40)は、2層あり、それぞれ第1Aセパレータ30Aと第1Bセパレータ30Bである。図1、3、4と5では、第1Bセパレータ40は、第2セパレータ50と連続してつながっているが、これに限定されるものではない。第1の実施形態において、例えば、第2セパレータ50は、第1Aセパレータ30と連続してつながっていてもよい。 The first separators (30, 40) are porous films disposed between the positive electrode 10 and the negative electrode 20 of the electrode assembly 100. The first separators (30, 40) according to the first embodiment have two layers, ie, the first A separator 30A and the first B separator 30B. In FIGS. 1, 3, 4 and 5, the first B separator 40 is continuously connected to the second separator 50, but is not limited thereto. In the first embodiment, for example, the second separator 50 may be continuously connected to the first A separator 30.
 電極群100中では、第1Aセパレータ30A、正極10A、第1Bセパレータ30B、負極20の順に繰り返し積層している。第1セパレータ(30,40)は、正極10と負極20を離間させている。第1セパレータ30は、薄膜であることが好ましい。第1セパレータ30を薄くすることで、電極群100中の電極活物質層の比率を高めることができ、電池容量の向上に寄与する。 In the electrode group 100, the first A separator 30A, the positive electrode 10A, the first B separator 30B, and the negative electrode 20 are repeatedly stacked in this order. The first separator (30, 40) separates the positive electrode 10 and the negative electrode 20 from each other. The first separator 30 is preferably a thin film. By thinning the first separator 30, the ratio of the electrode active material layer in the electrode group 100 can be increased, which contributes to the improvement of the battery capacity.
 二次電池は高容量であることが求められる。高容量にするため電極群100のセパレータを薄くすることで、電極群100に占める電極の体積比率を高めて電池容量を増やすことができる。しかし、電極の間にあるセパレータが例えば12μm程度以下の薄い材料を用いると電極が巻かれた外周領域が大電流で劣化しやすいことが新たに分かった。電極群が劣化すると電極間の抵抗が増え、電池特性が低下してしまう。従って、薄いセパレータを用いると、初期は高容量で特性が良いが、特に、大電流条件下で充放電を繰り返すと、容量及び出力特性が低下してしまいやすかった。そこで、実施形態では、第2セパレータ50で電極体100の中心部Aをさらに巻くことで劣化を抑制する。第2セパレータ50も第1セパレータ(30,40)と同様に薄い材料を用いると電極群100の体積当たりの容量への低下を抑えつつ、大電流サイクル時の寿命が向上する。 The secondary battery is required to have a high capacity. By reducing the thickness of the separator of the electrode group 100 to increase the capacity, the volume ratio of the electrodes in the electrode group 100 can be increased to increase the battery capacity. However, it has been newly found that when the separator between the electrodes is a thin material of, for example, about 12 μm or less, the outer peripheral region where the electrodes are wound is likely to be deteriorated by a large current. When the electrode group is degraded, the resistance between the electrodes increases and the battery characteristics are degraded. Therefore, when a thin separator is used, the initial stage has a high capacity and good characteristics, but in particular, when charge and discharge are repeated under a large current condition, the capacity and output characteristics are likely to be degraded. Therefore, in the embodiment, deterioration is suppressed by further winding the central portion A of the electrode assembly 100 with the second separator 50. Similarly to the first separators (30, 40), when the second separator 50 is made of a thin material, the reduction of the capacity per volume of the electrode assembly 100 is suppressed, and the life at the time of a large current cycle is improved.
 第1セパレータ(30、40)は、多孔質で薄い絶縁層である。第1Aセパレータ30は、第2セパレータ50と接している。第1セパレータ(30、40)としては、不織布、フィルム、紙などが含まれる。セパレータの構成材料の例に、ポリエチレンやポリプロピレンなどのポリオレフィン、セルロース、ポリエステル、ポリビニルアルコール、ポリイミド、ポリアミド、ポリアミドイミド、ポリテトラフルオロエチレン及びビニロンが含まれる。薄さと機械的強度の観点から好ましいセパレータの例に、セルロース繊維を含む不織布を挙げることができる。 The first separators (30, 40) are porous thin insulating layers. The first A separator 30 is in contact with the second separator 50. The first separators (30, 40) include non-woven fabric, film, paper and the like. Examples of the constituent material of the separator include polyolefins such as polyethylene and polypropylene, cellulose, polyester, polyvinyl alcohol, polyimide, polyamide, polyamide imide, polytetrafluoroethylene and vinylon. Examples of preferred separators in terms of thinness and mechanical strength include nonwoven fabrics containing cellulose fibers.
 第1セパレータ(30、40)は、厚さが4μm以上20μm以下であることが好ましい。この範囲であると、電極群100に占めるセパレータの比率を抑えつつ、機械的強度と電池抵抗の軽減のバランスを取ることができ、高出力で内部短絡が抑制された二次電池を提供することができる。20μmを超えるセパレータも通常用いられているが、実施形態では、第2セパレータ50を用いていることから、通常用いられているセパレータよりも薄いセパレータが好適である。より好ましい第1セパレータ(30、40)の厚さは、6μm以上12μm以下である。 The thickness of the first separator (30, 40) is preferably 4 μm or more and 20 μm or less. Within this range, it is possible to balance the mechanical strength and the reduction of the battery resistance while suppressing the ratio of the separator to the electrode group 100, and to provide a secondary battery with high output and suppressed internal short circuit. Can. Although a separator larger than 20 μm is also usually used, in the embodiment, since the second separator 50 is used, a thinner separator than the usually used separator is preferable. A more preferable thickness of the first separator (30, 40) is 6 μm or more and 12 μm or less.
 第1セパレータ(30、40)の空隙率は40%以上90%以下である。空隙率が40%以上のセルロース繊維含有不織布は、電解質の含浸性が良く、低温から高温まで高い出力性能を出すことができる。第1セパレータ(30、40)の空隙率が高すぎると取り扱いが難しくなり、また、正極10と負極20が短絡しやすくなる。そこで、第1セパレータ(30、40)の空隙率は、60%以上80%以下、又は、生産性の観点から50%以上75%以下であることが好ましい。 The porosity of the first separator (30, 40) is 40% or more and 90% or less. The cellulose fiber-containing nonwoven fabric having a porosity of 40% or more has good electrolyte impregnation, and can provide high output performance from low temperature to high temperature. When the porosity of the first separator (30, 40) is too high, handling becomes difficult, and the positive electrode 10 and the negative electrode 20 tend to be short-circuited. Therefore, the porosity of the first separator (30, 40) is preferably 60% to 80% or 50% to 75% from the viewpoint of productivity.
 第2セパレータ50は、正極10と負極20の間に存在せず、第1セパレータ(第1Aセパレータ30又は第1Bセパレータ40)上に、複数回巻かれている。第2セパレータ50は、電極群100の中心部Aの外側の外周部Bに含まれる。第2セパレータ50は、中心部Aの外側を巻いている。第1の実施形態では、第1Aセパレータ30A又は第1Bセパレータ40と第2セパレータ50が連続した1条のシートである。図1では、電極群100の外周側の塗工端である中心部Aと外周部Bの境界で第1Bセパレータ40と第2セパレータ50が接続している。中心部Aと外周部Bの境界は、電極群100を巻きほどいたときの外周側の第1方向の正極活物質層12の塗工端と負極活物質層22の塗工端のうち巻き始め側に近い方の塗工端である。 The second separator 50 is not present between the positive electrode 10 and the negative electrode 20, and is wound multiple times on the first separator (the first A separator 30 or the first B separator 40). The second separator 50 is included in the outer peripheral portion B outside the central portion A of the electrode group 100. The second separator 50 is wound around the center A. In the first embodiment, the first A separator 30A or the first B separator 40 and the second separator 50 are one continuous sheet. In FIG. 1, the first B separator 40 and the second separator 50 are connected at the boundary between the central portion A and the outer peripheral portion B, which are coating ends on the outer peripheral side of the electrode group 100. The boundary between the central portion A and the outer peripheral portion B starts to be wound among the coated end of the positive electrode active material layer 12 and the coated end of the negative electrode active material layer 22 in the first direction on the outer peripheral side when the electrode assembly 100 is unwound. It is a coated end closer to the side.
 第1の実施形態では、第2セパレータ50は第1セパレータ(30、40)とつながったシートであるため、厚さ、素材、空隙率などの物性は、第1セパレータ(30、40)と第2セパレータ50は同じである。第2セパレータ50は、多孔質で薄い絶縁層である。第2セパレータ50としては、不織布、フィルム、紙などが含まれる。セパレータの構成材料の例に、ポリエチレンやポリプロピレンなどのポリオレフィン、セルロースが含まれる。薄さと機械的強度の観点から好ましいセパレータの例に、セルロース繊維を含む不織布を挙げることができる。 In the first embodiment, since the second separator 50 is a sheet connected to the first separators (30, 40), physical properties such as thickness, material, porosity, etc. can be obtained by combining the first separators (30, 40) with the first separator (30, 40). The two separators 50 are the same. The second separator 50 is a porous thin insulating layer. The second separator 50 includes non-woven fabric, film, paper and the like. Examples of the constituent material of the separator include polyolefins such as polyethylene and polypropylene, and cellulose. Examples of preferred separators in terms of thinness and mechanical strength include nonwoven fabrics containing cellulose fibers.
 第2セパレータ50は、厚さが4μm以上20μm以下であることが好ましい。この範囲であると、電極群100に占めるセパレータの比率を抑えつつ、電解質を十分に含侵することで劣化の少ない二次電池を提供することができる。20μmを超えるセパレータも通常用いられているが、実施形態では、外周部Bを巻いていることから、通常用いられているセパレータよりも薄いセパレータが好適である。より好ましい第2セパレータ50の厚さは、6μm以上12μm以下である。 The second separator 50 preferably has a thickness of 4 μm to 20 μm. It is possible to provide a secondary battery with little deterioration by sufficiently impregnating the electrolyte while suppressing the ratio of the separator to the electrode group 100 within this range. Although a separator larger than 20 μm is also generally used, in the embodiment, since the outer peripheral portion B is wound, a separator thinner than the separator generally used is preferable. The more preferable thickness of the second separator 50 is 6 μm or more and 12 μm or less.
 第2セパレータ50の空隙率は40%以上90%以下である。空隙率が40%以上のセルロース繊維含有不織布は、電解質の含浸性が良い。第2セパレータ50の空隙率が高すぎると取り扱いが難しくなる。そこで、第2セパレータ50の空隙率は、60%以上80%以下、又は、生産性の観点から50%以上75%以下であることが好ましい。 The porosity of the second separator 50 is 40% or more and 90% or less. The cellulose fiber-containing non-woven fabric having a porosity of 40% or more has good electrolyte impregnation. If the porosity of the second separator 50 is too high, handling becomes difficult. Therefore, the porosity of the second separator 50 is preferably 60% or more and 80% or less, or 50% or more and 75% or less from the viewpoint of productivity.
 第2セパレータ50の総巻回数は、3以上であることが好ましい。3周以上巻くことで、電極群100中心部Aの最外周における保液性が向上し、電極群100の中心部Aの巻き終わりの電極の劣化を防ぐことができる。第2セパレータ50は、電極群100の最外周から連続して中心部Aを巻回していることが好ましい。中心部Aの外周側の端部と第2セパレータ50との間の空間に第2セパレータ50から浸透してきた電解質が溜まり、そして、第2セパレータ50によって空間の電解質が保持されやすくなり、電極の劣化を防ぐことができる。 The total number of turns of the second separator 50 is preferably 3 or more. By winding three or more turns, the liquid retaining property at the outermost periphery of the central portion A of the electrode group 100 is improved, and deterioration of the electrode at the end of winding of the central portion A of the electrode group 100 can be prevented. The second separator 50 preferably has the central portion A wound continuously from the outermost periphery of the electrode assembly 100. The electrolyte that has permeated from the second separator 50 is accumulated in the space between the end on the outer peripheral side of the central portion A and the second separator 50, and the electrolyte in the space is easily held by the second separator 50. Deterioration can be prevented.
 中心部Aの外側に1周や2周セパレータを巻いただけでは、活物質層の劣化を抑える効果はあまりない。総巻回数が3回に満たないと、電極群100中心部Aの最外周における保液性があまり向上しないため中心部Aの外周側の活物質層の劣化を抑える効果が十分ではなくて好ましくない。第2セパレータ50の総巻回数が多いほど活物質層の保護の観点から好ましい。しかし、第2セパレータ50の総巻回数が多いほど電池内の副部材量が増え、エネルギー密度が低下する。電池容量の観点からは総巻回数が多すぎるのは、好ましくない。そこで、第2セパレータ50の総巻回数は、4以上、5以上、10以上がより好ましい。初期容量及びサイクル後(高負荷)の容量の観点から、第2セパレータ50の総巻回数は、40以下、30以下が好ましく、20以下がより好ましい。第2セパレータ50の巻数が増えると、電池内の空隙が少なくなるため、ガス発生時に電池が膨れやすくなり、寿命試験時の容量低下、抵抗上昇に繋がってしまうため、第2セパレータ50の総巻回数は、20以下がより好ましい。厚い第2セパレータ50を1周、2周だけ巻くよりも薄い第2セパレータ50を3回以上巻く方が二次電池の劣化を防ぐ観点から好ましい。 If the one- or two-round separator is wound on the outside of the central portion A, the effect of suppressing the deterioration of the active material layer is not very high. If the total number of turns is less than three, the liquid retaining property at the outermost periphery of the central portion A of the electrode group 100 is not improved so much, and the effect of suppressing the deterioration of the active material layer on the outer peripheral side of the central portion A is not sufficient. Absent. It is preferable from the viewpoint of protection of the active material layer as the total number of turns of the second separator 50 increases. However, as the total number of turns of the second separator 50 increases, the amount of submembers in the battery increases, and the energy density decreases. From the viewpoint of battery capacity, it is not preferable that the total number of turns is too large. Therefore, the total number of turns of the second separator 50 is more preferably 4 or more, 5 or more, and 10 or more. The total number of turns of the second separator 50 is preferably 40 or less and 30 or less, and more preferably 20 or less from the viewpoint of the initial capacity and the capacity after cycling (high load). When the number of turns of the second separator 50 increases, the number of air gaps in the battery decreases, so the battery is easily expanded at the time of gas generation, leading to a decrease in capacity and an increase in resistance at the life test. The number of times is preferably 20 or less. It is preferable from the viewpoint of preventing deterioration of the secondary battery to wind the thin second separator 50 three or more times rather than winding the thick second separator 50 only once or twice.
 総巻回数は、中心部Aと外周部Bの境界を越えたところからの巻数である。第2セパレータ50の巻きが1周を超えない部分、例えば半周しか中心部Aを巻回していない部分は、巻数に加えない。つまり、巻回数は、小数点以下が切り捨てられている。第2セパレータ50も第1セパレータ(30、40)と同様に薄いため、電極群100に占める体積が少ない点で好ましい。なお、第2セパレータ50の端部は、図示しない粘着テープで固定されていることが好ましい。 The total number of turns is the number of turns from where the boundary between the central portion A and the outer peripheral portion B is crossed. The portion where the number of turns of the second separator 50 does not exceed one turn, for example, the portion where the center portion A is only half a turn, is not added to the number of turns. That is, the number of turns is rounded off after the decimal point. The second separator 50 is also thin in the same manner as the first separators (30, 40), and is therefore preferable in that the volume occupied in the electrode group 100 is small. The end of the second separator 50 is preferably fixed by an adhesive tape (not shown).
 また、図5に示すように第1の実施形態の電極群101の最外周の第2セパレータ50の表面(最表面)には識別コード60が印刷されていることが好ましい。電極群101の最外周は第2のセパレータ50であるため、ここに識別コードが印刷されていても電池特性に悪影響を及ぼさない。例えば、電極活物質層に直接、識別コードを印刷すると、印刷がしにくくかつ、作製時に電極活物質層に不要な処理を行うことは好ましくない。電極群101の外周部は、複数回巻かれたセパレータであるため明瞭な識別コード60を印刷しやすい。識別コード60を明瞭に印刷する観点から第2セパレータ50の総巻数は、5以上であることが好ましい。識別コード60は、一次元コードと二次元コードのいずれかを含むことが好ましい。二次元コード60は、複雑な形状であるため、明瞭な識別コード60を印刷できる電極群101は好ましい。識別コード60は、例えば電極群101の製造に関係する情報等が含まれる。 Further, as shown in FIG. 5, it is preferable that an identification code 60 be printed on the surface (uppermost surface) of the second separator 50 at the outermost periphery of the electrode group 101 of the first embodiment. Since the outermost periphery of the electrode group 101 is the second separator 50, even if the identification code is printed here, the battery characteristics are not adversely affected. For example, when the identification code is printed directly on the electrode active material layer, it is difficult to print and it is not preferable to perform unnecessary treatment on the electrode active material layer at the time of preparation. The outer peripheral portion of the electrode group 101 is a separator wound a plurality of times, so that a clear identification code 60 can be easily printed. From the viewpoint of clearly printing the identification code 60, the total number of turns of the second separator 50 is preferably 5 or more. The identification code 60 preferably includes one of a one-dimensional code and a two-dimensional code. Since the two-dimensional code 60 has a complicated shape, the electrode group 101 capable of printing the clear identification code 60 is preferable. The identification code 60 includes, for example, information related to the production of the electrode group 101.
 上記電極群の形態は、例えば、電池の外装缶から取り出した電極群の電解質を取り除き、断面を観察することで調べられる。空隙率は、巻きほどいた電極群からセパレータを切り取り、測定すればよい。また、セパレータ、電極の組成は、それぞれの層を切り出し、又は、削りとり、元素分析又は構造分析をすればよい。観察には、光学顕微鏡を用いて拡大観察をすることが好ましい。 The form of the electrode group can be examined, for example, by removing the electrolyte of the electrode group taken out of the battery case and observing the cross section. The porosity may be measured by cutting the separator from the unrolled electrode group. In addition, the composition of the separator and the electrode may be obtained by cutting or scraping the respective layers and performing elemental analysis or structural analysis. For observation, it is preferable to carry out magnified observation using an optical microscope.
(第2の実施形態)
 第2の実施形態は、第1の実施形態の変形例である。第2の実施形態の電極群101の断面模式図を図6に示す。図6に示す電極群102は、正極10、負極20、2枚の第1セパレータ30(第1Aセパレータ30,第1Bセパレータ40)と2枚の第2セパレータ(第2Aセパレータ50、第2Bセパレータ70)を有する。2枚の第1セパレータ(30、40)が両方とも連続して第2セパレータ(50、70)とつながっている点で第1の実施形態の電極群100と異なる。この点以外は、第1の実施形態と第2の実施形態は共通する。第2セパレータ(50、70)の総巻回数は、第2Aセパレータ50の巻回数と第2Bセパレータ70の巻回数の和である。
Second Embodiment
The second embodiment is a modification of the first embodiment. The cross-sectional schematic diagram of the electrode group 101 of 2nd Embodiment is shown in FIG. The electrode group 102 shown in FIG. 6 includes a positive electrode 10, a negative electrode 20, two first separators 30 (first A separator 30, first B separator 40) and two second separators (second A separator 50, second B separator 70). ). It differs from the electrode assembly 100 of the first embodiment in that two first separators (30, 40) are both connected continuously with the second separator (50, 70). Except this point, the first embodiment and the second embodiment are common. The total number of turns of the second separator (50, 70) is the sum of the number of turns of the second A separator 50 and the number of turns of the second B separator 70.
 外周部Bの第2セパレータ(50、70)の総巻回数を多くする際に、第2セパレータ(50、70)が2層であると、同じ巻き数の第1の実施形態の電極群101と比べて作製工程における巻回数が半分となるため、総巻回数を多くする際に好適である。第2の実施形態の電極群102も第1の実施形態の電極群100と同様に、薄いセパレータを用いても、容量特性とサイクル特性(高電流)に優れる。第2の実施形態の電極群102も第1の実施形態の電極群101と同様に識別コード60が印刷されていることが好ましい。 When increasing the total number of turns of the second separator (50, 70) in the outer peripheral portion B, if the second separator (50, 70) has two layers, the electrode assembly 101 according to the first embodiment has the same number of turns. This is suitable for increasing the total number of turns since the number of turns in the manufacturing process is halved compared to the above. Similarly to the electrode group 100 of the first embodiment, the electrode group 102 of the second embodiment is excellent in capacity characteristics and cycle characteristics (high current) even when a thin separator is used. Similarly to the electrode group 101 of the first embodiment, it is preferable that the identification code 60 be printed on the electrode group 102 of the second embodiment.
(第3の実施形態)
 第3の実施形態は、第1の実施形態の変形例である。第3の実施形態の電極群103の断面模式図を図7に示す。図7に示す電極群103は、正極10、負極20、2枚の第1セパレータ30(第1Aセパレータ30,第1Bセパレータ40)と1枚の第2セパレータ80を有する。第1セパレータ(30、40)とはつながっていない第2セパレータ80が中心部Aの外周を巻回している点で第1の実施形態の電極群100と異なる。第2セパレータ80の総巻回数は、第2セパレータ80の巻回数である。
Third Embodiment
The third embodiment is a modification of the first embodiment. The cross-sectional schematic diagram of the electrode group 103 of 3rd Embodiment is shown in FIG. The electrode group 103 shown in FIG. 7 has a positive electrode 10, a negative electrode 20, two first separators 30 (first A separator 30, first B separator 40) and one second separator 80. The electrode group 100 is different from the electrode group 100 of the first embodiment in that a second separator 80 which is not connected to the first separators (30, 40) is wound around the outer periphery of the central portion A. The total number of turns of the second separator 80 is the number of turns of the second separator 80.
 第3の実施形態の電極群103は、第1セパレータ(30、40)とは別のセパレータで電極群103の中心部Aが巻回されている。第2セパレータ80は、第1実施形態の第1セパレータ(30、40)及び第2セパレータ50と共通する。第3の実施形態の第1セパレータ(30、40)は、不織布、フィルム、紙などの他に無機粒子層としてもよい。無機粒子層の厚さは、有機系のセパレータと同様に4μm以上20μm以下であることが好ましい。無機粒子層は、酸化物粒子、増粘剤、結着剤を含む。酸化物粒子には、酸化アルミ、酸化チタン、酸化マグネシウム、酸化亜鉛、硫酸バリウムなどの金属酸化物が使用できる。増粘剤にはカルボキシメチルセルロースが使用できる。結着剤には、アクリル酸メチルやそれを含むアクリル系共重合体、スチレンブタジエンゴム(SBR)などが使用できる。これらの点以外は、第1の実施形態と第3の実施形態は共通する。 In the electrode group 103 of the third embodiment, the central portion A of the electrode group 103 is wound by a separator other than the first separators (30, 40). The second separator 80 is common to the first separators (30, 40) and the second separator 50 of the first embodiment. The first separator (30, 40) of the third embodiment may be an inorganic particle layer in addition to the nonwoven fabric, the film, the paper and the like. The thickness of the inorganic particle layer is preferably 4 μm or more and 20 μm or less as in the case of the organic separator. The inorganic particle layer contains oxide particles, a thickener, and a binder. As the oxide particles, metal oxides such as aluminum oxide, titanium oxide, magnesium oxide, zinc oxide and barium sulfate can be used. Carboxymethylcellulose can be used as a thickener. As the binder, methyl acrylate, an acrylic copolymer containing it, styrene butadiene rubber (SBR), etc. can be used. Except for these points, the first embodiment and the third embodiment are common.
 また、第2セパレータ80の巻回数の数え方は、第1の実施形態とは異なる。第2セパレータ80の巻数は、電極群103の中心部Aの端部の位置に関係なく、第2セパレータ80が中心部Aを巻く回数である。図7の断面模式図では、第2セパレータ80が電極群103の中心部Aの外周を3回強巻いているため、第2セパレータ80の巻回数は3回である。 Further, how to count the number of turns of the second separator 80 is different from that of the first embodiment. The number of turns of the second separator 80 is the number of times the second separator 80 winds the central portion A regardless of the position of the end of the central portion A of the electrode group 103. In the schematic sectional view of FIG. 7, since the second separator 80 is strongly wound three times on the outer periphery of the central portion A of the electrode group 103, the number of windings of the second separator 80 is three.
 第3の実施形態の電極群103では、中心部Aと外周部Bとで別のセパレータ材料を選択することができる。例えば、中心部Aの第1セパレータ(30、40)よりも第2セパレータ80を薄くすることで、中心部Aのセパレータの薄膜化によるサイクル特性への影響を減らしつつ、外周部Bの巻回数を増やすことができる。第3の実施形態の電極群103は、セパレータ材料の選択肢も広がるため、より自由に電極群103の設計をすることができる。また、第1の実施形態と同様に、最外周の第2セパレータ80に識別コード60が印刷されていることが好ましい。なお、あらかじめ、第2セパレータ80に識別コード60を印刷し、識別コード60が印刷された第2セパレータ80で電極群103の中心部Aを巻いてもよい。 In the electrode group 103 of the third embodiment, different separator materials can be selected for the central portion A and the outer peripheral portion B. For example, by making the second separator 80 thinner than the first separators (30, 40) of the central portion A, the number of turns of the outer peripheral portion B is reduced while reducing the influence on the cycle characteristics due to the thinning of the central portion A separator. Can be increased. In the electrode group 103 of the third embodiment, the options of the separator material also expand, so the electrode group 103 can be designed more freely. Further, as in the first embodiment, it is preferable that the identification code 60 be printed on the outermost second separator 80. Alternatively, the identification code 60 may be printed on the second separator 80 in advance, and the central portion A of the electrode group 103 may be wound with the second separator 80 having the identification code 60 printed thereon.
(第4の実施形態)
 第4の実施形態は、第3の実施形態の変形例である。第4の実施形態の電極群104の断面模式図を図8に示す。図8に示す電極群104は、積層した正極10、負極20、2枚の第1セパレータ30(第1Aセパレータ30,第1Bセパレータ40)と1枚の第2セパレータ80を有する。電極群104の中心部は、巻回型ではなく正極10、第1Bセパレータ40、負極20、第1Aセパレータ30の順に積層した積層型である点で第3の実施形態の電極群100と異なる。第2セパレータ80の総巻回数は、第2セパレータ80の巻回数である。
Fourth Embodiment
The fourth embodiment is a modification of the third embodiment. The cross-sectional schematic diagram of the electrode group 104 of 4th Embodiment is shown in FIG. The electrode group 104 shown in FIG. 8 has the stacked positive electrode 10, negative electrode 20, two first separators 30 (first A separator 30, first B separator 40) and one second separator 80. The central part of the electrode group 104 is different from the electrode group 100 of the third embodiment in that the center part of the electrode group 104 is not a wound type but a laminated type in which a positive electrode 10, a 1B separator 40, a negative electrode 20, and a 1A separator 30 are sequentially laminated. The total number of turns of the second separator 80 is the number of turns of the second separator 80.
 積層型の電極群104は、巻回型に比べて正極10と負極20の端部が多いため、外周部Bの第2セパレータ80による活物質層の劣化の防止効果が大きい。図8では、第3の実施形態の変形例の電極群について示しているが、これに限定されず、第1の実施形態及び第2の実施形態のように一方又は両方の第1のセパレータと第2のセパレータがつながっていてもよい。 The stacked electrode group 104 has many ends of the positive electrode 10 and the negative electrode 20 as compared with the wound type, and therefore the effect of preventing deterioration of the active material layer by the second separator 80 in the outer peripheral portion B is large. Although FIG. 8 shows an electrode group of a modification of the third embodiment, the present invention is not limited to this, and one or both of the first separator and the first separator as in the first and second embodiments. The second separator may be connected.
(第5の実施形態)
 第5の実施形態の電極群は、第1の実施形態の変形例である。第5の実施形態の電極群105の斜視図を図9に示す。電極群105は、正極10と負極20の間に第1セパレータを有した積層体が巻回した中心部Aと中心部Aの外周部Bを巻回した第2セパレータ90と、第2セパレータ90の最外周に識別コード60が印刷されている。正極の非塗工部が正極集電タブ13であり、負極20の非塗工部が負極集電タブ23である。第2セパレータ90の巻回数は、少なくとも1回である。第5の実施形態の電極群105の最外周は、第2セパレータ90で巻回されているため、識別コード60の印刷が可能である。第5の実施形態の電極群105は識別コード60が印刷されているため、管理性に優れる点で好ましい。なお、積層型の電極群を電極群の中心部とし、その外周を第2セパレータ90で巻回し、識別コード60を付してもよい。
Fifth Embodiment
The electrode group of the fifth embodiment is a modification of the first embodiment. A perspective view of the electrode group 105 of the fifth embodiment is shown in FIG. The electrode group 105 includes a second separator 90 in which a central portion A in which a laminate having a first separator is wound between the positive electrode 10 and the negative electrode 20 and an outer peripheral portion B of the central portion A is wound. An identification code 60 is printed on the outermost periphery of the image. The non-coated portion of the positive electrode is the positive electrode current collecting tab 13, and the non-coated portion of the negative electrode 20 is the negative electrode current collecting tab 23. The number of turns of the second separator 90 is at least one. The outermost periphery of the electrode group 105 of the fifth embodiment is wound with the second separator 90, so printing of the identification code 60 is possible. Since the identification code 60 is printed on the electrode group 105 of the fifth embodiment, it is preferable in terms of excellent controllability. The laminated electrode group may be used as the center of the electrode group, and the outer periphery thereof may be wound with the second separator 90 and the identification code 60 may be attached.
(第6の実施形態)
 第6の実施形態は、二次電池に関する。第6の実施形態の二次電池には、第1、第2、第3、第4と第5の実施形態のうちのいずれかの電極群を用いる。第1、第2、第3と第4の実施形態のうちのいずれかの電極群を用いると容量特性およびサイクル特性に優れ、第5の実施形態の電極群を用いると管理性に優れる点で好ましい。
Sixth Embodiment
The sixth embodiment relates to a secondary battery. The secondary battery of the sixth embodiment uses any of the electrode groups of the first, second, third, fourth and fifth embodiments. The use of the electrode group according to any one of the first, second, third and fourth embodiments provides excellent capacity characteristics and cycle characteristics, and the use of the electrode group according to the fifth embodiment provides excellent manageability. preferable.
 図10から12に第6の実施形態の二次電池200を示す。二次電池200は、外装材201、電極群202(100、101、102、103、105)、正極リード203、負極リード204、蓋205、正極端子206、負極端子207、正極バックアップリード208、負極バックアップリード209、正極絶縁カバー210、負極絶縁カバー211、正極ガスケット212、負極ガスケット213、安全弁214、電解液注入口215と図示しない電解液を備える。電解液は、外装材201内に存在し、外装材201内に充填されていることが好ましい。なお、実施形態の二次電池は、例えば、充放電が可能な二次電池である。図10は、実施形態の二次電池の斜視図である。図11は、実施形態の二次電池の展開斜視図である。図12は。実施形態の二次電池の蓋の斜視図である。図13は、実施形態の二次電池の内部を示す側面図である。図10では、角型の二次電池を示しているが、角型に限定されるものではない。また、第6の実施形態では、巻回型電極群を収容しているが、第4実施形態のような積層型の電極群を収容してもよい。 10 to 12 show a secondary battery 200 of the sixth embodiment. The secondary battery 200 includes the packaging material 201, the electrode group 202 (100, 101, 102, 103, 105), the positive electrode lead 203, the negative electrode lead 204, the lid 205, the positive electrode terminal 206, the negative electrode terminal 207, the positive electrode backup lead 208, the negative electrode The back-up lead 209, the positive electrode insulating cover 210, the negative electrode insulating cover 211, the positive electrode gasket 212, the negative electrode gasket 213, the safety valve 214, the electrolyte injection port 215, and an electrolyte (not shown) are provided. The electrolytic solution is preferably present in the outer package 201 and filled in the outer package 201. In addition, the secondary battery of embodiment is a secondary battery which can be charged / discharged, for example. FIG. 10 is a perspective view of the secondary battery of the embodiment. FIG. 11 is an exploded perspective view of the secondary battery of the embodiment. Figure 12 It is a perspective view of a lid of a rechargeable battery of an embodiment. FIG. 13 is a side view showing the inside of the secondary battery of the embodiment. Although FIG. 10 shows a square secondary battery, it is not limited to the square. Further, in the sixth embodiment, the wound electrode group is accommodated, but a stacked electrode group as in the fourth embodiment may be accommodated.
 外装材201は、ラミネートフィルムや、金属製容器などが挙げられる。形状としては、扁平型、角型、円筒型、コイン型、ボタン型、シート型、積層型等が挙げられる。 The packaging material 201 may, for example, be a laminate film or a metal container. The shape may, for example, be flat, square, cylindrical, coin, button, sheet or laminate.
 ラミネートフィルムは、樹脂フィルム間に金属層を介在した多層フィルムを使用することができる。金属層は、軽量化のためにアルミニウム箔もしくはアルミニウム合金箔が好ましい。樹脂フィルムは、例えばポリプロピレン(PP)、ポリエチレン(PE)、ナイロン、ポリエチレンテレフタレート(PET)等の高分子材料を用いることができる。ラミネートフィルムは、熱融着によりシールを行い、外装材の形状に成形することができる。ラミネートフィルムの厚さは、例えば、0.2mm以下が好ましい。 As the laminate film, a multilayer film in which a metal layer is interposed between resin films can be used. The metal layer is preferably aluminum foil or aluminum alloy foil in order to reduce the weight. The resin film can use polymeric materials, such as polypropylene (PP), polyethylene (PE), nylon, polyethylene terephthalate (PET), for example. The laminated film can be sealed by heat fusion and can be formed into the shape of the exterior material. The thickness of the laminate film is preferably, for example, 0.2 mm or less.
 金属製容器は、アルミニウム、アルミニウム合金、鉄、ステンレスなどを使用することができる。蓋は、アルミニウム、アルミニウム合金、鉄、ステンレスなどを使用することができる。蓋と外装材は、同じ種類の金属から形成されることが望ましい。金属性容器の厚さは、例えば、0.5mm以下が好ましい。 As the metal container, aluminum, aluminum alloy, iron, stainless steel and the like can be used. The lid may be made of aluminum, aluminum alloy, iron, stainless steel or the like. The lid and the sheathing material are preferably formed of the same type of metal. The thickness of the metallic container is preferably, for example, 0.5 mm or less.
 正極集電タブ216は、正極バックアップリード208で束ねられ、正極リード203を介して正極端子206と電気的に接続する。また、負極集電タブ217は、負極バックアップリード209で束ねられ、負極リード204を介して負極端子207と電気的に接続する。 The positive electrode current collecting tab 216 is bundled by the positive electrode backup lead 208 and electrically connected to the positive electrode terminal 206 through the positive electrode lead 203. In addition, the negative electrode current collection tab 217 is bundled by the negative electrode backup lead 209 and electrically connected to the negative electrode terminal 207 via the negative electrode lead 204.
 電解質は、外装材201内に存在する電解質塩と非水溶媒を含む溶液、電解質塩と水を含む溶液又は水を含む溶液に高分子材料を複合化したゲル状電解質である。 The electrolyte is a gel electrolyte in which a polymer material is complexed with a solution containing an electrolyte salt and a non-aqueous solvent present in the packaging material 201, a solution containing an electrolyte salt and water, or a solution containing water.
 非水系溶液に含まれる電解質塩は、例えばLiPF、LiBF、Li(CFSON(ビストリフルオロメタンスルホニルアミドリチウム;通称LiTFSI)、LiCFSO(通称LiTFS)、Li(CSON(ビスペンタフルオロエタンスルホニルアミドリチウム;通称LiBETI)、LiClO、LiAsF、LiSbF、LiB(C(ビスオキサラトホウ酸リチウム;通称LiBOB)、ジフルオロ(トリフルオロ-2-オキシド-2-トリフルオロ-メチルプロピオナト(2-)-0,0)、LiBFOCOOC(CF(ホウ酸リチウム;通称LiBF(HHIB))のようなリチウム塩を用いることができる。これらの電解質塩は一種類で使用してもよいし二種類以上を混合して用いてもよい。特にLiPF、LiBFが好ましい。リチウム塩には、イオンを導電する支持塩を使用することができる。例えば、六フッ化リン酸リチウム(LiPF)や四フッ化ホウ酸リチウム、イミド系支持塩などが挙げられる。リチウム塩は1種類、または2種類以上を含んでいても良い。 The electrolyte salt contained in the non-aqueous solution is, for example, LiPF 6 , LiBF 4 , Li (CF 3 SO 2 ) 2 N (bistrifluoromethanesulfonylamide lithium; commonly called LiTFSI), LiCF 3 SO 3 (commonly called LiTFS), Li (C) 2 F 5 SO 2) 2 N ( bis pentafluoroethanesulfonyl amide lithium; called LiBETI), LiClO 4, LiAsF 6 , LiSbF 6, LiB (C 2 O 4) 2 ( bis oxa Lato lithium borate; called LiBOB), difluoro Lithiums such as (trifluoro-2-oxide-2-trifluoro-methylpropionato (2-)-0,0), LiBF 2 OCOOC (CF 3 ) 2 (lithium borate; commonly called LiBF 2 (HHIB)) Salt can be used. These electrolyte salts may be used alone or in combination of two or more. In particular, LiPF 6 and LiBF 4 are preferred. For lithium salts, supporting salts that conduct ions can be used. For example, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate, an imide based support salt and the like can be mentioned. The lithium salt may contain one or more kinds.
 非水系の電解質塩濃度は、0.5mol/L以上3mol/L以下の範囲内にすることが好ましく、0.7mol/L以上2mol/L以下の範囲内にすることがより好ましい。このような電解質濃度の規定によって、電解質塩濃度の上昇による粘度増加の影響を抑えつつ、高負荷電流を流した場合の性能をより向上することが可能になる。 The non-aqueous electrolyte salt concentration is preferably in the range of 0.5 mol / L to 3 mol / L, and more preferably in the range of 0.7 mol / L to 2 mol / L. Such regulation of the electrolyte concentration makes it possible to further improve the performance when a high load current is applied while suppressing the influence of the viscosity increase due to the increase of the electrolyte salt concentration.
 非水溶媒は、特に限定されるものではないが、例えば、プロピレンカーボネート(PC)やエチレンカーボネート(EC)などの環状カーボネート、ジエチルカーボネート(DEC)やジメチルカーボネート(DMC)あるいはメチルエチルカーボネート(MEC)もしくはジプロピルカーボネート(DPC)などの鎖状カーボネート、1,2-ジメトキシエタン(DME)、γ-ブチロラクトン(GBL)、テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン(2-MeHF)、1,3-ジオキソラン、スルホラン、アセトニトリル(AN)を用いることができる。これらの溶媒は一種類で使用してもよいし二種類以上を混合して用いてもよい。環状カーボネート及び/または鎖状カーボネートを含む非水溶媒が好ましい。 The non-aqueous solvent is not particularly limited. For example, cyclic carbonate such as propylene carbonate (PC) or ethylene carbonate (EC), diethyl carbonate (DEC) or dimethyl carbonate (DMC) or methyl ethyl carbonate (MEC) Or linear carbonates such as dipropyl carbonate (DPC), 1,2-dimethoxyethane (DME), γ-butyrolactone (GBL), tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-MeHF), 1,3-dioxolane , Sulfolane, acetonitrile (AN) can be used. These solvents may be used alone or in combination of two or more. Nonaqueous solvents comprising cyclic carbonates and / or linear carbonates are preferred.
 水系溶液に含まれる電解質塩は、LiCl、LiBr、LiOH、LiSO、LiNO、LiN(SOCF)(リチウムトリフルオロメタンスルホニルアミド;通称LiTFSA)、LiN(SO)(リチウムビスペンタフルオロエタンスルホニルアミド;通称LiBETA)、LiN(SOF)(リチウムビスフルオロスルホニルアミド;通称LiFSA)、LiB[(OCO)]などが挙げられる。使用するリチウム塩の種類は、1種類または2種類以上にすることができる。水系のゲル状電解質に含まれる高分子材料としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリアクリロニトリル(PAN)、ポリエチレンオキサイド(PEO)等を挙げることができる。 The electrolyte salt contained in the aqueous solution is LiCl, LiBr, LiOH, Li 2 SO 4 , LiNO 3 , LiN (SO 2 CF 3 ) 2 (lithium trifluoromethanesulfonylamide; commonly called LiTFSA), LiN (SO 2 C 2 F 5) ) 2 (lithium bis pentafluoroethanesulfonyl amide; called LiBETA), LiN (SO 2 F ) 2 ( lithium bis fluorosulfonyl amide; called LiFSA), and the like LiB [(OCO) 2] 2. The type of lithium salt to be used can be one or two or more. Examples of the polymer material contained in the aqueous gel electrolyte include polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyethylene oxide (PEO) and the like.
 水系の電解質塩濃度は、1mol/L以上12mol/L以下が好ましく、より好ましく112mol/L以上10mol/L以下である。電解液の電気分解を抑制させるために、LiOHやLiSOを添加し、pHを調整することができる。pH値は3以上13以下が好ましく、さらに好ましくはpH4以上12以下の範囲である。 The electrolyte salt concentration of the aqueous system is preferably 1 mol / L or more and 12 mol / L or less, more preferably 112 mol / L or more and 10 mol / L or less. In order to suppress the electrolysis of the electrolytic solution, LiOH or Li 2 SO 4 can be added to adjust the pH. The pH value is preferably 3 or more and 13 or less, more preferably pH 4 or more and 12 or less.
 正極リード203は、図12、13に示すように正極端子206と正極バックアップリード820を物理的に接続する導電性部材である。正極リード203は、アルミニウムやアルミニウム合金などの導電性部材である。正極リード203と正極バックアップリード208は、例えば、レーザー溶接などによって接合されることが好ましい。 The positive electrode lead 203 is a conductive member which physically connects the positive electrode terminal 206 and the positive electrode backup lead 820 as shown in FIGS. The positive electrode lead 203 is a conductive member such as aluminum or an aluminum alloy. The positive electrode lead 203 and the positive electrode backup lead 208 are preferably joined by, for example, laser welding.
 負極リード204は、図12、13に示すように負極端子207と負極バックアップリード209を物理的に接続する導電性部材である。負極リード204は、アルミニウムやアルミニウム合金などの導電性部材である。負極リード204と負極バックアップリード209は、例えば、レーザー溶接などによって接合されることが好ましい。 The negative electrode lead 204 is a conductive member which physically connects the negative electrode terminal 207 and the negative electrode backup lead 209 as shown in FIGS. The negative electrode lead 204 is a conductive member such as aluminum or an aluminum alloy. The negative electrode lead 204 and the negative electrode backup lead 209 are preferably joined by, for example, laser welding.
 蓋205は、図10から13に示すように電極群202を収容した外装材201の蓋であり、正極端子206と負極端子207を有する。蓋205は、正極端子206、負極端子207、負極絶縁カバー211、正極ガスケット212、負極ガスケット213、安全弁214、電解液注入口215を備える。蓋205は、アルミニウム、アルミニウム合金、鉄あるいはステンレスなどの金属又は合金製の成型部材である。蓋205と外装材201は、レーザー溶接されているか、接着性樹脂等のシール材によって接着されていることが好ましい。 The lid 205 is a lid of the packaging material 201 accommodating the electrode group 202 as shown in FIGS. 10 to 13, and has a positive electrode terminal 206 and a negative electrode terminal 207. The lid 205 includes a positive electrode terminal 206, a negative electrode terminal 207, a negative electrode insulating cover 211, a positive electrode gasket 212, a negative electrode gasket 213, a safety valve 214, and an electrolyte injection port 215. The lid 205 is a molded member made of metal such as aluminum, aluminum alloy, iron or stainless steel, or an alloy. It is preferable that the lid 205 and the package 201 be laser-welded or be bonded by a sealing material such as an adhesive resin.
 正極端子206は、図10から13に示すように蓋205に設けられた二次電池の正極用の電極端子である。正極端子206は、アルミニウムやアルミニウム合金等の導電性部材で構成される。正極端子206は、絶縁性の正極ガスケット212を介して、蓋205に固定されている。正極端子206は、正極リード203、正極バックアップリード208を介して、正極集電タブ216と電気的に接続している。 The positive electrode terminal 206 is an electrode terminal for the positive electrode of the secondary battery provided on the lid 205 as shown in FIGS. 10 to 13. The positive electrode terminal 206 is formed of a conductive member such as aluminum or an aluminum alloy. The positive electrode terminal 206 is fixed to the lid 205 via the insulating positive electrode gasket 212. The positive electrode terminal 206 is electrically connected to the positive electrode current collection tab 216 via the positive electrode lead 203 and the positive electrode backup lead 208.
 負極端子207は、図10から13に示すように蓋205に設けられた二次電池の負極用の電極端子である。負極端子207は、アルミニウムやアルミニウム合金等の導電性部材で構成される。負極端子207は、絶縁性の負極ガスケット213を介して、蓋205に固定されている。負極端子207は、負極リード204、負極バックアップリード209を介して、負極集電タブ217と電気的に接続している。 The negative electrode terminal 207 is an electrode terminal for the negative electrode of the secondary battery provided on the lid 205 as shown in FIGS. 10 to 13. The negative electrode terminal 207 is formed of a conductive member such as aluminum or an aluminum alloy. The negative electrode terminal 207 is fixed to the lid 205 via the insulating negative electrode gasket 213. The negative electrode terminal 207 is electrically connected to the negative electrode current collection tab 217 via the negative electrode lead 204 and the negative electrode backup lead 209.
 正極バックアップリード208は、図10から13に示すように正極集電タブ216を束ね、正極リード203に固定された導電性部材である。正極バックアップリード208と正極集電タブ216は、超音波接合によって接合されていることが好ましい。 The positive electrode backup lead 208 is a conductive member which bundles the positive electrode current collection tab 216 and is fixed to the positive electrode lead 203 as shown in FIGS. The positive electrode backup lead 208 and the positive electrode current collection tab 216 are preferably joined by ultrasonic bonding.
 負極バックアップリード209は、図10から13に示すように負極集電タブ217を束ね、負極リード204に固定された導電性部材である。負極バックアップリード209と負極集電タブ217は、超音波接合によって接合されていることが好ましい。 The negative electrode backup lead 209 is a conductive member which bundles the negative electrode current collection tab 217 and is fixed to the negative electrode lead 204 as shown in FIGS. The negative electrode backup lead 209 and the negative electrode current collection tab 217 are preferably joined by ultrasonic bonding.
 正極絶縁カバー210は、図11に示すように正極リード203と正極バックアップリード208を覆う絶縁性の部材である。正極絶縁カバー210は、電極群202の正極集電タブ216を含む一端部を篏合している。正極絶縁カバー210は、絶縁性で耐熱性の部材であることが好ましい。正極絶縁カバー210としては、樹脂成型体、紙を主体とする材料の成型体や紙を主体とする材料の成型体を樹脂で被覆した部材などが好ましい。樹脂としては、ポリエチレン樹脂やフッ素樹脂を用いることが好ましい。正極絶縁カバー210の形状は、正極リード203と正極バックアップリード208とが外装材201と接触する形である。正極絶縁カバー210を用いることによって、正極と外装材201が絶縁され、また、外部衝撃から集電タブ領域(集電タブ、リード、バックアップリード)を保護することができる。 The positive electrode insulating cover 210 is an insulating member which covers the positive electrode lead 203 and the positive electrode backup lead 208 as shown in FIG. The positive electrode insulating cover 210 is joined at one end including the positive electrode current collecting tab 216 of the electrode group 202. The positive electrode insulating cover 210 is preferably an insulating and heat resistant member. The positive electrode insulating cover 210 is preferably a resin molded body, a molded body of a material mainly made of paper, or a member obtained by coating a molded body of a material mainly made of paper with a resin. It is preferable to use a polyethylene resin or a fluorine resin as the resin. The shape of the positive electrode insulating cover 210 is such that the positive electrode lead 203 and the positive electrode backup lead 208 are in contact with the packaging material 201. By using the positive electrode insulating cover 210, the positive electrode and the exterior material 201 are insulated, and the current collection tab area (the current collection tab, the lead, the backup lead) can be protected from the external impact.
 負極絶縁カバー211は、図11に示すように負極リード204と負極バックアップリード209を覆う絶縁性の部材である。負極絶縁カバー211は、電極群202の負極集電タブ217を含む一端部を篏合している。負極絶縁カバー211の材質や形状等は、正極絶縁カバー210と共通する。正極絶縁カバー210と負極絶縁カバー211の共通する説明は、省略する。 The negative electrode insulating cover 211 is an insulating member which covers the negative electrode lead 204 and the negative electrode backup lead 209 as shown in FIG. The negative electrode insulating cover 211 is bonded to one end portion of the electrode group 202 including the negative electrode current collecting tab 217. The material, shape, and the like of the negative electrode insulating cover 211 are the same as those of the positive electrode insulating cover 210. The description common to the positive electrode insulating cover 210 and the negative electrode insulating cover 211 is omitted.
 正極ガスケット212は、図10から12に示すように正極端子206と外装材201を絶縁する部材である。正極ガスケット212は、耐溶剤性で難燃性の樹脂成型体が好ましい。正極ガスケット212には、例えば、ポリエチレン樹脂やフッ素樹脂などが用いられる。 The positive electrode gasket 212 is a member which insulates the positive electrode terminal 206 and the exterior material 201 as shown in FIGS. The positive electrode gasket 212 is preferably a solvent-resistant, flame-retardant resin molded body. For example, a polyethylene resin or a fluorine resin is used for the positive electrode gasket 212.
 負極ガスケット213は、図10から12に示すように負極端子207と外装材201を絶縁する部材である。負極ガスケット213は、耐溶剤性で難燃性の樹脂成型体が好ましい。負極ガスケット213には、例えば、ポリエチレン樹脂やフッ素樹脂などが用いられる。 The negative electrode gasket 213 is a member which insulates the negative electrode terminal 207 and the packaging material 201 as shown in FIGS. The negative electrode gasket 213 is preferably a solvent-resistant, flame-retardant resin molded body. For the negative electrode gasket 213, for example, a polyethylene resin or a fluorine resin is used.
 安全弁214は、図10から13に示すように蓋に設けられ、外装材201内の内圧が上昇した際に、外装材201内の圧力を低下させる減圧弁として機能する部材である。安全弁214は、設けられることが好ましいが、電池の保護機構や電極材料等の条件を考慮して省略することができる。 The safety valve 214 is a member that is provided on the lid as shown in FIGS. 10 to 13 and that functions as a pressure reducing valve that reduces the pressure in the exterior material 201 when the internal pressure in the exterior material 201 rises. The safety valve 214 is preferably provided, but can be omitted in consideration of conditions such as a battery protection mechanism and an electrode material.
 電解液注入口215は、図10から12に示すように電解液を注入するための孔である。電解液の注入後には、樹脂等によって封止されていることが好ましい。
 図中では、省略しているが、絶縁性の接着テープを用いて各部材が固定乃至接続されていることが好ましい。
The electrolyte injection port 215 is a hole for injecting the electrolyte as shown in FIGS. 10 to 12. After the injection of the electrolytic solution, it is preferable to be sealed with a resin or the like.
Although not shown in the drawings, it is preferable that each member be fixed or connected using an insulating adhesive tape.
(第7の実施形態)
 第7の実施形態は、電池モジュールに関する。第7の実施形態では、第1、第2、第3、第4と第5の実施形態のうちのいずれかの電極群を用いた第6の実施形態の二次電池を単電池(セル)として1以上用いる。第1、第2、第3と第4の実施形態のうちのいずれかの電極群を用いると容量特性およびサイクル特性に優れ、第5の実施形態の電極群を用いると管理性に優れる点で好ましい。電池モジュールに複数の単電池が含まれる場合、各単電池は、電気的に直列、並列、或いは、直列と並列に接続して配置される。
Seventh Embodiment
The seventh embodiment relates to a battery module. In the seventh embodiment, the secondary battery of the sixth embodiment using the electrode group of any of the first, second, third, fourth and fifth embodiments is a unit cell (cell). Use as one or more. The use of the electrode group according to any one of the first, second, third and fourth embodiments provides excellent capacity characteristics and cycle characteristics, and the use of the electrode group according to the fifth embodiment provides excellent manageability. preferable. When the battery module includes a plurality of single cells, the single cells are electrically connected in series, in parallel, or in series and in parallel.
 図14の斜視展開図及び図15の断面図を参照して電池モジュール300を具体的に説明する。図14に示す電池モジュール300では、単電池301として図10に示す二次電池200を使用している。図15の断面図は、図14の斜視展開図の正極端子303Bと負極端子306Bが含まれる断面である。 The battery module 300 will be specifically described with reference to the perspective development view of FIG. 14 and the cross-sectional view of FIG. In the battery module 300 shown in FIG. 14, the secondary battery 200 shown in FIG. 10 is used as the single battery 301. The cross-sectional view of FIG. 15 is a cross-section including the positive electrode terminal 303B and the negative electrode terminal 306B in the perspective development view of FIG.
 複数の単電池301は、電池の外装缶の外部に、正極ガスケット302に設けられた正極端子303(303A、303B)、安全弁304、負極ガスケット305に設けられた負極端子306(306A、306B)を有している。図14に示す単電池301は、互い違いにそろえられるように配置されている。図14に示す単電池301は、直列に接続されているが、配置方法を変えるなどして並列接続にしてもよい。 The plurality of unit cells 301 are provided outside the battery case, with the positive electrode terminals 303 (303A and 303B) provided on the positive electrode gasket 302, the safety valve 304, and the negative electrode terminals 306 (306A and 306B) provided on the negative electrode gasket 305. Have. The single cells 301 shown in FIG. 14 are arranged to be alternately arranged. The unit cells 301 shown in FIG. 14 are connected in series, but may be connected in parallel by changing the arrangement method or the like.
 単電池301は、下ケース307と上ケース308内に収容されている。上ケース308には、電池モジュールの電源入出力用端子309及び310(正極端子309、負極端子310)が設けられている。上ケース308には、単電池301の正極端子303及び負極端子306の位置に合わせて開口部311が設けられ、開口部311から正極端子303及び負極端子306が露出している。露出した正極端子303Aは、隣の単電池301の負極端子306Aとバスバー312によって接続され、露出した負極端子306Aは、前記の隣とは反対側の隣の単電池301の正極端子303Aとバスバー312によって接続されている。バスバー312によって接続されていない正極端子303Bは、基板313に設けられた正極端子314Aと接続し、正極端子314Aは、基板313上の回路を介して正極の電源入出力用端子309と接続している。また、バスバー312によって接続されていない負極端子306Bは、基板313に設けられた負極端子314Bと接続し、負極端子314Bは、基板313上の回路を介して負極の電源入出力用端子310と接続している。電源入出力用端子309及び310は、図示しない充電電源や負荷と接続し、電池モジュール300の充電や利用がなされる。上ケース308は、蓋315で封止されている。基板313には、充放電の保護回路が設けられていることが好ましい。また、単電池301の劣化等の情報を図示しない端子より出力可能な構成とするなどの構成の追加等を適宜行ってもよい。 The unit cell 301 is accommodated in the lower case 307 and the upper case 308. The upper case 308 is provided with power source input / output terminals 309 and 310 (positive electrode terminal 309 and negative electrode terminal 310) of the battery module. An opening 311 is provided in the upper case 308 in accordance with the positions of the positive electrode terminal 303 and the negative electrode terminal 306 of the unit cell 301, and the positive electrode terminal 303 and the negative electrode terminal 306 are exposed from the opening 311. The exposed positive electrode terminal 303A is connected to the negative electrode terminal 306A of the adjacent single cell 301 by the bus bar 312, and the exposed negative electrode terminal 306A is connected to the positive electrode terminal 303A of the adjacent single cell 301 and the bus bar 312 Connected by. The positive terminal 303 B not connected by the bus bar 312 is connected to the positive terminal 314 A provided on the substrate 313, and the positive terminal 314 A is connected to the positive power input / output terminal 309 via the circuit on the substrate 313. There is. In addition, the negative terminal 306B not connected by the bus bar 312 is connected to the negative terminal 314B provided on the substrate 313, and the negative terminal 314B is connected to the negative power input / output terminal 310 via the circuit on the substrate 313. doing. The power input / output terminals 309 and 310 are connected to a charging power source and a load (not shown) to charge and use the battery module 300. The upper case 308 is sealed by a lid 315. It is preferable that the substrate 313 be provided with a charge and discharge protection circuit. In addition, a configuration may be appropriately added such as a configuration in which information such as deterioration of the single battery 301 can be output from a terminal (not shown).
(第8の実施形態)
 第8の実施形態は蓄電装置に関する。第7の実施形態の電池モジュール300を蓄電装置400に搭載することができる。図16の概念図に示す蓄電装置400は、電池モジュール300と、インバーター402と、コンバーター401とを備える。外部交流電源403をコンバーター401で直流変換し、電池モジュール300を充電し、電池モジュール300からの直流電源のインバーター402で交流変換し、蓄電装置400に接続した負荷404に電気を供給する構成となっている。実施形態の電池モジュール300を有する本構成の蓄電装置400とすることで、電池特性に優れた蓄電装置が提供される。実施形態の電池モジュール300を有する本構成の蓄電装置400とすることで、電池特性や管理性に優れた蓄電装置が提供される。
Eighth Embodiment
The eighth embodiment relates to a power storage device. The battery module 300 of the seventh embodiment can be mounted on the power storage device 400. A power storage device 400 shown in the conceptual view of FIG. 16 includes a battery module 300, an inverter 402, and a converter 401. The external AC power supply 403 is DC converted by the converter 401, the battery module 300 is charged, AC converted by the inverter 402 of the DC power supply from the battery module 300, and electricity is supplied to the load 404 connected to the storage device 400. ing. By using the power storage device 400 of the present configuration having the battery module 300 of the embodiment, a power storage device having excellent battery characteristics is provided. By using the power storage device 400 of the present configuration having the battery module 300 of the embodiment, a power storage device having excellent battery characteristics and manageability is provided.
(第9の実施形態)
 第9の実施形態は車両に関する。第9の実施形態の車両は、第7の実施形態の電池モジュール300を用いている。本実施形態にかかる車両の構成を、図17の車両500の模式図を用いて簡単に説明する。車両500は、電池モジュール300、車体501、モーター502、車輪503と、制御ユニット504を有する。電池モジュール300、モーター502、車輪503と、制御ユニット504は、車体501に配置されている。制御ユニット504は、電池モジュール300から出力した電力を変換したり、出力調整したりする。モーター502は電池モジュール300から出力された電力を用いて、車輪503を回転させる。なお、車両500は、電車などの電動車両やエンジンなどの他の駆動源を有するハイブリッド車も含まれる。モーター502からの回生エネルギーによって、電池モジュール400を充電してもよい。電池モジュール300からの電気エネルギーによって駆動されるものはモーターに限られず、車両500に含まれる電気機器を動作させるための動力源に用いても良い。また車両500の減速時に回生エネルギーを得て、得られた回生エネルギーを用いて電池モジュール300を充電することが好ましい。実施形態の電池モジュール300を有する本構成の車両500とすることで、電池特性や管理性に優れた車両が提供される。
Ninth Embodiment
The ninth embodiment relates to a vehicle. The vehicle of the ninth embodiment uses the battery module 300 of the seventh embodiment. The configuration of the vehicle according to the present embodiment will be briefly described using a schematic view of the vehicle 500 in FIG. The vehicle 500 includes a battery module 300, a vehicle body 501, a motor 502, wheels 503, and a control unit 504. The battery module 300, the motor 502, the wheels 503, and the control unit 504 are disposed in the vehicle body 501. The control unit 504 converts the power output from the battery module 300 or adjusts the output. The motor 502 rotates the wheels 503 using the power output from the battery module 300. Vehicle 500 also includes an electric vehicle such as a train and a hybrid vehicle having another drive source such as an engine. The battery module 400 may be charged by the regenerative energy from the motor 502. What is driven by the electrical energy from the battery module 300 is not limited to the motor, and may be used as a power source for operating the electric device included in the vehicle 500. In addition, it is preferable to obtain regenerative energy at the time of deceleration of the vehicle 500 and charge the battery module 300 using the obtained regenerative energy. By adopting the vehicle 500 of the present configuration having the battery module 300 of the embodiment, a vehicle excellent in battery characteristics and manageability is provided.
(第10の実施形態)
 第10の実施形態は飛翔体(例えば、マルチコプター)に関する。第10の実施形態の飛翔体は、第7の実施形態の電池モジュール300を用いている。本実施形態にかかる飛翔体の構成を、図18の飛翔体(クアッドコプター)600の模式図を用いて簡単に説明する。飛翔体600は、電池モジュール300、機体骨格601、モーター602、回転翼603と制御ユニット604を有する。電池モジュール300、モーター602、回転翼603と制御ユニット604は、機体骨格601に配置している。制御ユニット604は、電池モジュール300から出力した電力を変換したり、出力調整したりする。モーター602は電池モジュール300から出力された電力を用いて、回転翼603を回転させる。実施形態の電池モジュール300を有する本構成の飛翔体600とすることで、電池特性や管理性に優れた飛翔体が提供される。
Tenth Embodiment
The tenth embodiment relates to a projectile (for example, a multicopter). The projectile of the tenth embodiment uses the battery module 300 of the seventh embodiment. The configuration of the projectile according to this embodiment will be briefly described using a schematic view of a project (quadcopter) 600 of FIG. The projectile 600 has a battery module 300, an airframe skeleton 601, a motor 602, a rotary wing 603 and a control unit 604. The battery module 300, the motor 602, the rotary wings 603 and the control unit 604 are disposed on the airframe skeleton 601. The control unit 604 converts the power output from the battery module 300 and adjusts the output. The motor 602 rotates the rotor 603 using the power output from the battery module 300. By using the projectile 600 of the present configuration having the battery module 300 of the embodiment, a projectile excellent in battery characteristics and manageability is provided.
 以下に、具体的な実施例により、本発明の実施形態の電極群及び二次電池の製造方法を説明する。なお、後述する実施例は本発明の有数の実施形態の実施例であり、本発明は以下の実施例のみに限定されるものではない。 Hereinafter, a method of manufacturing an electrode group and a secondary battery according to an embodiment of the present invention will be described by way of specific examples. In addition, the Example mentioned later is an example of the leading embodiment of this invention, and this invention is not limited only to a following example.
(実施例1)
[正極の作製]
正極活物質として、リチウムニッケルコバルトマンガン複合酸化物LiNi1/3Co1/3Mn1/3とリチウムコバルト複合酸化物LiCoOとを用意した。これらを、LiNi1/3Co1/3Mn1/3とLiCoOとが2:1となるように混合して、活物質混合物を得た。この活物質混合物と、導電剤としてのカーボンブラックと、結着剤としてのポリフッ化ビニリデンとを、質量比100:5:3の割合で混合した。かくして得られた混合物を溶媒としてのN-メチル-2-ピロリドンに投入し、これをプラネタリミキサで混練及び攪拌し、正極スラリーを作製した。この正極スラリーを厚み12μmのアルミ箔の表裏に一部未塗工部分ができるよう塗布、乾燥した。塗工幅90mm、未塗工幅25mmになるようスリットを行い、その後ロールプレスで圧縮を行い、正極を作製した。
Example 1
[Production of positive electrode]
Lithium nickel cobalt manganese complex oxide LiNi 1/3 Co 1/3 Mn 1/3 O 2 and lithium cobalt complex oxide LiCoO 2 were prepared as positive electrode active materials. These were mixed so that LiNi 1/3 Co 1/3 Mn 1/3 O 2 and LiCoO 2 were 2: 1, to obtain an active material mixture. The active material mixture, carbon black as a conductive agent, and polyvinylidene fluoride as a binder were mixed at a mass ratio of 100: 5: 3. The mixture thus obtained was added to N-methyl-2-pyrrolidone as a solvent, and this was kneaded and stirred by a planetary mixer to prepare a positive electrode slurry. The positive electrode slurry was applied and dried so as to form a partially uncoated part on the front and back of a 12 μm thick aluminum foil. Slitting was performed so as to have a coated width of 90 mm and an uncoated width of 25 mm, and then compression was performed by a roll press to produce a positive electrode.
[負極の作製]
負極活物質として、チタン酸リチウムLiTi12を準備した。この活物質と、導電剤としてのカーボンブラックと、結着剤としてのポリフッ化ビニリデンとを、質量比100:5:5の割合で混合した。かくして得られた混合物を溶媒としてのN-メチル-2-ピロリドンに投入し、これをプラネタリミキサで混練及び攪拌し、負極スラリーを作製した。この負極スラリーを厚み12μmのアルミ箔の表裏に一部未塗工部分ができるよう塗布、乾燥した。塗工幅95mm、未塗工幅20mmになるようスリットを行い、その後ロールプレスで圧縮を行い、負極を作製した。
[Fabrication of negative electrode]
Lithium titanate Li 4 Ti 5 O 12 was prepared as a negative electrode active material. The active material, carbon black as a conductive agent, and polyvinylidene fluoride as a binder were mixed at a mass ratio of 100: 5: 5. The mixture thus obtained was added to N-methyl-2-pyrrolidone as a solvent, and this was kneaded and stirred by a planetary mixer to prepare a negative electrode slurry. The negative electrode slurry was applied and dried so as to form a partially uncoated part on the front and back of a 12 μm thick aluminum foil. Slitting was performed so as to have a coated width of 95 mm and an uncoated width of 20 mm, and then compression was performed by a roll press to produce a negative electrode.
 [巻回式電極群の作製]
前記のように作製した負極、及び前記のように作製した正極を積層し、この正極と負極との間にセルロース製セパレータを介在させて、積層体を得た。この時使用したセパレータは膜厚10μm、空隙率60%であった。次いで、この積層体を巻回装置に移し、積層体全体を折り曲げて、渦巻き状に巻回した。電極を巻回し終えた後、セパレータを10周巻回し、電極群を得た。このセパレータは、電極群巻回時に使用したセパレータと繋がっている。このようにして得られた巻回式電極群をプレスし、扁平形状の巻回式電極群を得た。
[Preparation of wound electrode group]
The negative electrode produced as described above and the positive electrode produced as described above were laminated, and a cellulose separator was interposed between the positive electrode and the negative electrode to obtain a laminate. The separator used at this time had a film thickness of 10 μm and a porosity of 60%. The laminate was then transferred to a winding device, and the entire laminate was folded and wound in a spiral. After winding the electrode, the separator was wound 10 times to obtain an electrode group. This separator is connected to the separator used when winding the electrode group. The wound electrode group obtained in this manner was pressed to obtain a flat wound electrode group.
[電池の組立て]
正極端子に接続された正極リード及び負極端子に接続された負極リードを具備する封口体を準備した。巻回式電極群の一方の端に配置される正極未塗工部分と、正極リードとを超音波接合した。また、巻回式電極群の他方の端に配置される負極未塗工部分と、負極リードとを超音波接合した。これを外装缶に挿入、勘合させ、封口体と外装缶とを溶接したこのようにして電池ユニットを得た。
[Assembly of battery]
A sealing body provided with a positive electrode lead connected to the positive electrode terminal and a negative electrode lead connected to the negative electrode terminal was prepared. The positive electrode uncoated portion disposed at one end of the wound electrode group and the positive electrode lead were ultrasonically bonded. Moreover, the negative electrode uncoated part arrange | positioned at the other end of a winding-type electrode group and the negative electrode lead were ultrasonically bonded. This was inserted into and fitted into the outer can, and the sealing body and the outer can were welded in this manner to obtain a battery unit.
 [電解液の注入と二次電池の完成]
 エチレンカーボネートとジメチルカーボネートとを1:1で混合して、溶媒を調整した。この溶媒に、電解質としての六フッ化リン酸リチウムLiPFを1mol/Lの濃度となるように溶解させた。かくして、非水電解液が得られた。この電解液を、封口体に設けられた注液口から電池ユニットに注入した。注入後、注液口にアルミニウム製の封止部材をはめ込み、封止部材の周囲を封口体に溶接した。このようにして、実施例1の二次電池が完成した。作製した二次電池の初期容量と55℃で1000サイクル後のサイクル容量をもとめた。また、初期と1000サイクル後の正極と負極間の抵抗を求め、抵抗変化率を求めた。なお、2Cの充放電レートで二次電池の充放電を行った。表1と表2に各実施例の第1のセパレータ(中心部)、第2のセパレータ(外周部)、外周部のセパレータの総巻回数、セパレータ厚さ、セパレータの空隙率、正極活物質、負極活物質、サイクル試験後の容量維持率、抵抗変化率と初期容量をまとめて示す。
[Injection of electrolyte and completion of secondary battery]
The solvent was adjusted by mixing ethylene carbonate and dimethyl carbonate 1: 1. In this solvent, lithium hexafluorophosphate LiPF 6 as an electrolyte was dissolved to a concentration of 1 mol / L. Thus, a non-aqueous electrolyte was obtained. The electrolytic solution was injected into the battery unit from a liquid injection port provided in the sealing body. After the injection, a sealing member made of aluminum was fitted into the liquid inlet, and the periphery of the sealing member was welded to the sealing body. Thus, the secondary battery of Example 1 was completed. The initial capacity of the produced secondary battery and the cycle capacity after 1000 cycles at 55 ° C. were determined. Further, the resistance between the positive electrode and the negative electrode in the initial stage and after 1000 cycles was determined, and the rate of change in resistance was determined. The secondary battery was charged and discharged at a charge and discharge rate of 2C. Tables 1 and 2 show the first separator (center portion), the second separator (peripheral portion), the total number of turns of the separator in the peripheral portion, the thickness of the separator, the porosity of the separator, the positive electrode active material, The negative electrode active material, the capacity retention rate after the cycle test, the resistance change rate and the initial capacity are collectively shown.
(実施例2)
 外周部のセパレータが、中心部の電極群とは繋がっていない以外は、実施例1と同様の手法により、二次電池を作製した。なお、中心部と外周部のセパレータは、同じセパレータである。
(Example 2)
A secondary battery was produced in the same manner as in Example 1 except that the separator in the outer peripheral portion was not connected to the electrode group in the central portion. In addition, the separator of a center part and an outer peripheral part is the same separator.
(実施例3)
 外周部のセパレータ巻回数を4周とした以外は、実施例1と同様の手法により、二次電池を作製した。
(Example 3)
A secondary battery was produced in the same manner as in Example 1 except that the number of separator windings in the outer peripheral portion was 4 turns.
(実施例4)
 外周部のセパレータ巻回数を20周とした以外は、実施例1と同様の手法により、二次電池を作製した。
(Example 4)
A secondary battery was produced in the same manner as in Example 1 except that the number of separator windings in the outer peripheral portion was set to 20.
(実施例5)
 セパレータの膜厚を12μmとした以外は、実施例1と同様の手法により、二次電池を作製した。
(Example 5)
A secondary battery was produced in the same manner as in Example 1 except that the film thickness of the separator was 12 μm.
(実施例6)
 セパレータの膜厚を6μmとした以外は、実施例1と同様の手法により、二次電池を作製した。
(Example 6)
A secondary battery was produced in the same manner as in Example 1 except that the film thickness of the separator was 6 μm.
(実施例7)
 セパレータの空隙率を40%とした以外は、実施例1と同様の手法により、二次電池を作製した。
(Example 7)
A secondary battery was produced in the same manner as in Example 1 except that the porosity of the separator was 40%.
(実施例8)
 セパレータの空隙率を80%とした以外は、実施例1と同様の手法により、二次電池を作製した。
(Example 8)
A secondary battery was produced in the same manner as in Example 1 except that the porosity of the separator was 80%.
(実施例9)
 外周部のセパレータの巻回数を30周とした以外は、実施例1と同様の手法により、二次電池を作製した。
(Example 9)
A secondary battery was produced in the same manner as in Example 1 except that the number of turns of the separator in the outer peripheral portion was set to 30.
(実施例10)
 外周部のセパレータの巻回数を30周とした以外は、実施例1と同様の手法により、二次電池を作製した。
(Example 10)
A secondary battery was produced in the same manner as in Example 1 except that the number of turns of the separator in the outer peripheral portion was set to 30.
(実施例11)
 外周部のセパレータの巻回数を40周とした以外は、実施例1と同様の手法により、二次電池を作製した。
(Example 11)
A secondary battery was produced in the same manner as in Example 1 except that the number of turns of the separator in the outer peripheral portion was changed to 40.
(実施例12)
 セパレータにポリエチレン製の空隙率50%、厚さ6μmのポリオレフィン多孔質セパレータを用いたこと以外は、実施例1と同様の手法により、二次電池を作製した。
(Example 12)
A secondary battery was produced in the same manner as in Example 1 except that a polyolefin porous separator having a porosity of 50% and a thickness of 6 μm made of polyethylene was used as the separator.
(実施例13)
 負極活物質にTiO(B)を用い、セパレータにポリエチレン製の空隙率60%、厚さ10μmのポリオレフィン多孔質セパレータを用いたこと以外は、実施例1と同様の手法により、二次電池を作製した。
(Example 13)
A secondary battery was prepared in the same manner as in Example 1, except that TiO 2 (B) was used as the negative electrode active material and a polyolefin porous separator having a porosity of 60% and a thickness of 10 μm made of polyethylene was used as the separator. Made.
(実施例14)
 負極活物資質にTiO(B)を用い、セパレータにポリエチレン製の空隙率60%、厚さ10μmのポリオレフィン多孔質セパレータを用い、外周部のセパレータの巻回数を20回としたこと以外は、実施例1と同様の手法により、二次電池を作製した。
(Example 14)
Except that TiO 2 (B) is used as the negative electrode active material, a polyolefin porous separator with a porosity of 60% and a thickness of 10 μm made of polyethylene is used as the separator, and the number of turns of the separator on the outer peripheral portion is 20 times. A secondary battery was produced in the same manner as in Example 1.
(実施例15)
 負極活物質にグラファイトを用い、セパレータにポリエチレン製の空隙率60%、厚さ10μmのポリオレフィン多孔質セパレータを用いたこと以外は、実施例1と同様の手法により、二次電池を作製した。
(Example 15)
A secondary battery was produced in the same manner as in Example 1, except that graphite was used as the negative electrode active material and a polyolefin porous separator having a porosity of 60% and a thickness of 10 μm made of polyethylene was used as the separator.
(実施例16)
 負極活物質にグラファイトを用い、セパレータにポリエチレン製の空隙率60%、厚さ10μmのポリオレフィン多孔質セパレータを用い、外周部のセパレータの巻回数を20回としたこと以外は、実施例1と同様の手法により、二次電池を作製した。
(Example 16)
The same as Example 1 except that graphite is used as the negative electrode active material, a polyolefin porous separator having a porosity of 60% and a thickness of 10 μm made of polyethylene is used as the separator and the number of turns of the separator on the outer peripheral portion is 20 times A secondary battery was produced by the method of
(実施例17)
 負極活物質にLiMnを用いたこと以外は、実施例1と同様の手法により、二次電池を作製した。
(Example 17)
A secondary battery was produced in the same manner as in Example 1 except that LiMn 2 O 4 was used as the negative electrode active material.
(実施例18)
 負極活物質にLiMnを用い、外周部のセパレータの巻回数を20回としたこと以外は、実施例1と同様の手法により、二次電池を作製した。
(Example 18)
A secondary battery was produced in the same manner as in Example 1 except that LiMn 2 O 4 was used as the negative electrode active material, and the number of turns of the separator in the outer peripheral portion was set to 20.
(実施例19)
 外周部のセパレータの巻回数を3周とした以外は、実施例1と同様の手法により、二次電池を作製した。
(Example 19)
A secondary battery was produced in the same manner as in Example 1 except that the number of turns of the separator in the outer peripheral portion was set to 3 turns.
(実施例20)
 電極群を積層型の電極群としたこと以外は、実施例1と同様の手法により二次電池を作製した。
Example 20
A secondary battery was produced in the same manner as in Example 1 except that the electrode group was changed to a laminated electrode group.
(実施例21)
 外周部のセパレータの巻回数を3周とした以外は、実施例20と同様の手法により、二次電池を作製した。
(Example 21)
A secondary battery was produced in the same manner as in Example 20, except that the number of turns of the separator in the outer peripheral portion was set to 3 turns.
(実施例22)
 外周部のセパレータの巻回数を20周とした以外は、実施例20と同様の手法により、二次電池を作製した。
(Example 22)
A secondary battery was produced in the same manner as in Example 20 except that the number of turns of the separator in the outer peripheral portion was changed to 20.
(実施例23)
 外周部のセパレータが中心部のセパレータとつながっていないこと以外は、実施例20と同様の手法により、二次電池を作製した。なお、中心部と外周部のセパレータは同じである。
(Example 23)
A secondary battery was produced in the same manner as in Example 20 except that the separator in the outer peripheral portion was not connected to the separator in the central portion. In addition, the separator of a center part and an outer peripheral part is the same.
(実施例24)
 中心部にポリエチレン製の空隙率50%、厚さ6μmのポリオレフィン多孔質セパレータを用い、外周部に空隙率60%、厚さ10μmのセルロースを用い、外周部のセパレータが中心部のセパレータとつながっておらず、外周部のセパレータの巻回数を10回としたこと以外は、実施例1と同様の手法により、二次電池を作製した。
(Example 24)
Using a porous polyolefin separator with a porosity of 50% and a thickness of 6 μm made of polyethylene in the central part, using a cellulose with a porosity of 60% and a thickness of 10 μm in the outer peripheral part, the separator in the outer peripheral part is connected to the separator in the central part A secondary battery was manufactured in the same manner as in Example 1 except that the number of turns of the separator in the outer peripheral portion was 10 times.
(実施例25)
 中心部のセパレータに厚さ6μmで、平均粒径1μmの酸化アルミとアクリル酸メチルの混合物(空隙率40%)を用いたこと以外は、実施例23と同様の手法により、二次電池を作製した。なお、外周部のセパレータは実施例1と同じである。
(Example 25)
A secondary battery is fabricated in the same manner as in Example 23, except that a mixture of aluminum oxide and methyl acrylate (porosity 40%) having a thickness of 6 μm and an average particle diameter of 1 μm is used for the central separator. did. The separator at the outer peripheral portion is the same as that of the first embodiment.
(比較例1)
 外周部のセパレータの巻回数を2周とした以外は、実施例1と同様の手法により、非水電解質二次電池を作製した。
(Comparative example 1)
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the number of turns of the separator in the outer peripheral portion was changed to 2 turns.
(比較例2)
 外周部のセパレータの巻回数を50周とした以外は、実施例1と同様の手法により、非水電解質二次電池を作製した。
(Comparative example 2)
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the number of turns of the separator in the outer peripheral portion was set to 50.
(比較例3)
 セパレータの膜厚を2μmとした以外は、実施例1と同様の手法により、二次電池を作製した。
(Comparative example 3)
A secondary battery was produced in the same manner as in Example 1 except that the film thickness of the separator was 2 μm.
(比較例4)
 セパレータの膜厚を25μmとした以外は、実施例1と同様の手法により、二次電池を作製した。
(Comparative example 4)
A secondary battery was produced in the same manner as in Example 1 except that the thickness of the separator was 25 μm.
(比較例5)
 セパレータの空隙率を30%とした以外は、実施例1と同様の手法により、二次電池を作製した。
(Comparative example 5)
A secondary battery was produced in the same manner as in Example 1 except that the porosity of the separator was 30%.
(比較例6)
 セパレータの空隙率を95%とした以外は、実施例1と同様の手法により、二次電池を作製したが、セパレータの空隙率が高すぎて巻回することができなかった。
(Comparative example 6)
A secondary battery was produced in the same manner as in Example 1 except that the porosity of the separator was 95%, but the porosity of the separator was too high to be wound.
(比較例7)
 外周部のセパレータの巻回数を0周とした以外は、実施例1と同様の手法により、非水電解質二次電池を作製した。
(Comparative example 7)
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the number of turns of the separator in the outer peripheral portion was 0.
(比較例8)
 外周部のセパレータの巻回数を0周とした以外は、実施例11と同様の手法により、非水電解質二次電池を作製した。
(Comparative example 8)
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 11 except that the number of turns of the separator in the outer peripheral portion was 0.
(比較例9)
 外周部のセパレータの巻回数を2周とした以外は、実施例13と同様の手法により、二次電池を作製した。
(Comparative example 9)
A secondary battery was produced in the same manner as in Example 13 except that the number of turns of the separator in the outer peripheral portion was changed to 2 turns.
(比較例10)
 外周部のセパレータの巻回数を2周とした以外は、実施例15と同様の手法により、二次電池を作製した。
(Comparative example 10)
A secondary battery was produced in the same manner as in Example 15, except that the number of turns of the separator in the outer peripheral portion was changed to 2 turns.
(比較例11)
 外周部のセパレータの巻回数を2周とした以外は、実施例20と同様の手法により、二次電池を作製した。
(Comparative example 11)
A secondary battery was produced in the same manner as in Example 20 except that the number of turns of the separator in the outer peripheral portion was changed to 2 turns.
(比較例12)
 外周部のセパレータの巻回数を2周とした以外は、実施例25と同様の手法により、二次電池を作製した。
(Comparative example 12)
A secondary battery was produced in the same manner as in Example 25 except that the number of turns of the separator in the outer peripheral portion was changed to 2 turns.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 最外周のセパレータを少なくした比較例1と比較し、実施例はサイクル試験後の容量維持率、抵抗変化率の点で優れていることが示される。また、最外周にセパレータを多く巻回した比較例2に比べ体積エネルギー密度の点において、実施例が著しく優れていることが示される。
 明細書中、一部の元素は、元素記号のみで表している。
As compared with Comparative Example 1 in which the outermost separator is reduced, the example is shown to be superior in terms of the capacity retention rate after the cycle test and the resistance change rate. In addition, it is shown that the example is significantly superior in terms of volume energy density as compared with Comparative Example 2 in which a large number of separators are wound around the outermost periphery.
In the specification, some elements are represented only by elemental symbols.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 While certain embodiments of the present invention have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the invention. These embodiments can be implemented in other various forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the invention described in the claims and the equivalents thereof as well as included in the scope and the gist of the invention.
100、101、102、103、104、105…電極群、10…正極、11…正極集電体、12…正極活物質層、13…正極集電タブ、20…負極、21…負極集電体、22…負極活物質層、23…負極集電タブ、30…第1Aセパレータ、40…第1Bセパレータ、50…第2セパレータ(第2Aセパレータ)、60…識別コード、70…第2Bセパレータ、80…第2セパレータ、90…第2セパレータ、
200…二次電池、201…外装材、202…電極群202(100、101、102、103)、203…正極リード、204…負極リード、205…蓋、206…正極端子、207…負極端子、208…正極バックアップリード、209…負極バックアップリード、210…正極絶縁カバー、211…負極絶縁カバー、212…正極ガスケット、213…負極ガスケット、214…安全弁、215…電解液注入口、216…正極集電タブ、217…負極集電タブと図示しない電解液
300…電池モジュール、301…単電池301、302…正極ガスケット、303(303A、303B)…正極端子、304…安全弁、305…負極ガスケット、306(306A、306B)…負極端子、307…下ケース、308…上ケース、309…電源入出力用端子(正極端子)、310…電源入出力用端子(負極端子)、311…開口部、312…バスバー、313…基板、314A…正極端子、314B…負極端子、315…蓋、
400…蓄電装置、401…コンバーター、402…インバーター、403…外部交流電源、404…負荷、
500…車両、501…車体、502…モーター、503…車輪、504…制御ユニット、
600…飛翔体、601…機体骨格、602…モーター、603…回転翼、604…制御ユニット

 
100, 101, 102, 103, 104, 105: electrode group, 10: positive electrode, 11: positive electrode current collector, 12: positive electrode active material layer, 13: positive electrode current collection tab, 20: negative electrode, 21: negative electrode current collector , 22: negative electrode active material layer, 23: negative electrode current collecting tab, 30: first A separator, 40: first B separator, 50: second separator (second A separator), 60: identification code, 70: second B separator, 80 ... second separator, 90 ... second separator,
200 secondary battery 201 packaging material 202 electrode group 202 (100, 101, 102, 103) 203 positive electrode lead 204 negative electrode lead 205 lid 206 positive electrode terminal 207 negative electrode terminal 208: positive electrode backup lead 209: negative electrode backup lead 210: positive electrode insulating cover 211: negative electrode insulating cover 212: positive electrode gasket 213: negative electrode gasket 214: safety valve 215: electrolyte solution inlet 216: positive electrode current collector Tab 217, negative electrode current collecting tab and electrolyte 300 (not shown) battery module 301, cells 301, 302 positive electrode gasket 303 (303A, 303B) positive electrode terminal 304 safety valve 305 negative electrode gasket 306 (306) 306A, 306B) ... negative electrode terminal, 307 ... lower case, 308 ... upper case, 30 ... power output terminal (positive terminal), 310 ... power input terminal (negative terminal), 311 ... opening, 312 ... bus bar, 313 ... substrate, 314A ... positive terminal, 314B ... negative terminal, 315 ... lid,
400 ... storage device, 401 ... converter, 402 ... inverter, 403 ... external AC power supply, 404 ... load,
500 ... vehicle, 501 ... vehicle body, 502 ... motor, 503 ... wheel, 504 ... control unit,
600 ... projectile body, 601 ... body frame, 602 ... motor, 603 ... rotary wing, 604 ... control unit

Claims (18)

  1.  中心部は、正極、負極と、前記正極と負極の間に配置された第1セパレータが巻回した中心部と、第2セパレータが前記中心部の外周を巻いている外周部を含む電極群において、
     前記第2セパレータの総巻回数が3以上である電極群。
    A central portion is an electrode group including a positive electrode, a negative electrode, a central portion in which a first separator disposed between the positive electrode and the negative electrode is wound, and an outer peripheral portion in which a second separator is wound around an outer periphery of the central portion. ,
    An electrode group in which the total number of turns of the second separator is 3 or more.
  2.  前記第1セパレータの空隙率は、40%以上90%以下であり、
     前記第2セパレータの空隙率は、40%以上90%以下である請求項1に記載の電極群。
    The porosity of the first separator is 40% to 90%,
    The electrode group according to claim 1, wherein a porosity of the second separator is 40% or more and 90% or less.
  3.  前記第1セパレータの厚さは、4μm以上20μm以下であり、
     前記第2セパレータの厚さは、4μm以上20μm以下である請求項1又は2に記載の電極群。
    The thickness of the first separator is 4 μm or more and 20 μm or less,
    The electrode group according to claim 1, wherein a thickness of the second separator is 4 μm or more and 20 μm or less.
  4.  前記第2セパレータの総巻回数は、40以下である請求項1ないし3のいずれか1項に記載の電極群。 The electrode group according to any one of claims 1 to 3, wherein a total number of turns of the second separator is 40 or less.
  5.  前記第1セパレータと前記第2セパレータは接し、
     前記第2セパレータは、最外周から連続して前記中心部を巻回している請求項1ないし4のいずれかに記載の電極群。
    The first separator and the second separator are in contact with each other,
    The electrode group according to any one of claims 1 to 4, wherein the second separator is wound around the central portion continuously from the outermost periphery.
  6.  前記第1セパレータと前記第2セパレータは連続したセパレータ、又は、
     前記第1セパレータと前記第2セパレータは分離したセパレータである請求項1ないし5のいずれか1項に記載の電極群。
    The first separator and the second separator are continuous separators, or
    The electrode group according to any one of claims 1 to 5, wherein the first separator and the second separator are separated separators.
  7.  前記第1セパレータの空隙率は、60%以上80%以下であり、
     前記第2セパレータの空隙率は、60%以上80%以下である請求項1ないし6のいずれか1項に記載の電極群。
    The porosity of the first separator is 60% to 80%,
    The electrode group according to any one of claims 1 to 6, wherein a porosity of the second separator is 60% or more and 80% or less.
  8.  前記第1セパレータの厚さは、6μm以上12μm以下であり、
     前記第2セパレータの厚さは、6μm以上12μm以下である請求項1ないし7のいずれか1項に記載の電極群。
    The thickness of the first separator is 6 μm or more and 12 μm or less,
    The electrode group according to any one of claims 1 to 7, wherein a thickness of the second separator is 6 μm or more and 12 μm or less.
  9.  前記第2セパレータの総巻回数は、30以下である請求項1ないし8のいずれか1項に記載の電極群。 The electrode group according to any one of claims 1 to 8, wherein a total number of turns of the second separator is 30 or less.
  10.  前記第2セパレータの総巻回数は、20以下である請求項1ないし9のいずれか1項に記載の電極群。 The electrode group according to any one of claims 1 to 9, wherein a total number of turns of the second separator is 20 or less.
  11.  前記第2セパレータの最外周には、識別コードが記されている請求項1ないし10のいずれか1項に記載の電極群。 The electrode group according to any one of claims 1 to 10, wherein an identification code is written on the outermost periphery of the second separator.
  12.  前記第1のセパレータは、セルロースの不織布であり、
     前記第2のセパレータは、セルロースの不織布である請求項1ないし12のいずれか1項に記載の電極群。
    The first separator is a non-woven fabric of cellulose,
    The electrode group according to any one of claims 1 to 12, wherein the second separator is a non-woven fabric of cellulose.
  13.  正極、負極と、前記正極と負極の間に配置された第1セパレータが巻回した中心部と、第2セパレータが前記中心部を巻いている外周部を含む電極群において、
     前記第2セパレータの最外周には、識別コードが記されている電極群。
    In an electrode group including a positive electrode, a negative electrode, a central portion on which a first separator disposed between the positive electrode and the negative electrode is wound, and an outer peripheral portion on which the second separator winds the central portion.
    An electrode group in which an identification code is written on the outermost periphery of the second separator.
  14.  請求項1ないし13のいずれか1項に記載の電極群と、電解液を電池缶に含む二次電池。 A secondary battery comprising the electrode group according to any one of claims 1 to 13 and an electrolytic solution in a battery can.
  15.  請求項14に記載の二次電池を用いた電池モジュール。 A battery module using the secondary battery according to claim 14.
  16.  請求項14に記載の二次電池又は請求項15に記載の電池モジュールを用いた蓄電装置。 A storage device using the secondary battery according to claim 14 or the battery module according to claim 15.
  17.  請求項14に記載の二次電池又は請求項15に記載の電池モジュールを用いた車両。 A vehicle using the secondary battery according to claim 14 or the battery module according to claim 15.
  18.  請求項14に記載の二次電池又は請求項15に記載の電池モジュールを用いた飛翔体。

     
    A projectile using the secondary battery according to claim 14 or the battery module according to claim 15.

PCT/JP2017/035886 2017-10-02 2017-10-02 Electrode group, secondary battery, battery module, electricity storage device, vehicle and flying body WO2019069356A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/035886 WO2019069356A1 (en) 2017-10-02 2017-10-02 Electrode group, secondary battery, battery module, electricity storage device, vehicle and flying body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/035886 WO2019069356A1 (en) 2017-10-02 2017-10-02 Electrode group, secondary battery, battery module, electricity storage device, vehicle and flying body

Publications (1)

Publication Number Publication Date
WO2019069356A1 true WO2019069356A1 (en) 2019-04-11

Family

ID=65995039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035886 WO2019069356A1 (en) 2017-10-02 2017-10-02 Electrode group, secondary battery, battery module, electricity storage device, vehicle and flying body

Country Status (1)

Country Link
WO (1) WO2019069356A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112713363A (en) * 2019-10-25 2021-04-27 尼吉康株式会社 Wound secondary battery and method for manufacturing same
WO2024048197A1 (en) * 2022-08-30 2024-03-07 パナソニックエナジー株式会社 Electrode plate, electrode body, battery, and method for manufacturing electrode plate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268877A (en) * 1999-03-17 2000-09-29 Nec Corp Secondary battery
JP2006049797A (en) * 2004-07-06 2006-02-16 Asahi Kasei Corp Separator for electric storage device
JP2008274525A (en) * 2007-04-06 2008-11-13 Asahi Kasei Corp Nonwoven cellulose fabric having low basis weight
JP2013026072A (en) * 2011-07-22 2013-02-04 Sony Corp Nonaqueous electrolyte battery, and battery pack, electronic apparatus, electric vehicle, electricity storage device and electric power system
JP2013164903A (en) * 2012-02-09 2013-08-22 Hitachi Vehicle Energy Ltd Square secondary battery and module
JP2014063703A (en) * 2012-09-24 2014-04-10 Daicel Corp Separator
JP2016001620A (en) * 2015-08-25 2016-01-07 Ckd株式会社 Winding device and manufacturing method of wound element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268877A (en) * 1999-03-17 2000-09-29 Nec Corp Secondary battery
JP2006049797A (en) * 2004-07-06 2006-02-16 Asahi Kasei Corp Separator for electric storage device
JP2008274525A (en) * 2007-04-06 2008-11-13 Asahi Kasei Corp Nonwoven cellulose fabric having low basis weight
JP2013026072A (en) * 2011-07-22 2013-02-04 Sony Corp Nonaqueous electrolyte battery, and battery pack, electronic apparatus, electric vehicle, electricity storage device and electric power system
JP2013164903A (en) * 2012-02-09 2013-08-22 Hitachi Vehicle Energy Ltd Square secondary battery and module
JP2014063703A (en) * 2012-09-24 2014-04-10 Daicel Corp Separator
JP2016001620A (en) * 2015-08-25 2016-01-07 Ckd株式会社 Winding device and manufacturing method of wound element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112713363A (en) * 2019-10-25 2021-04-27 尼吉康株式会社 Wound secondary battery and method for manufacturing same
WO2024048197A1 (en) * 2022-08-30 2024-03-07 パナソニックエナジー株式会社 Electrode plate, electrode body, battery, and method for manufacturing electrode plate

Similar Documents

Publication Publication Date Title
US8492028B2 (en) Positive electrode material for non-aqueous electrolyte lithium ion battery and battery using the same
JP5694221B2 (en) Nonaqueous electrolyte battery and battery pack
WO2016113863A1 (en) Nonaqueous electrolyte battery and battery pack
JP2016035900A (en) Non-aqueous electrolyte battery and battery pack
JP6479984B2 (en) Non-aqueous electrolyte battery and battery pack
US20180248235A1 (en) Battery cell including electrode lead containing gas adsorbent
US20190341605A1 (en) Electrode body, electrode group, secondary battery, battery module and vehicle
JP2019160734A (en) Assembled battery, battery pack, vehicle, stationary power supply
JP3526786B2 (en) Lithium secondary battery
US11646452B2 (en) Secondary battery, battery module, vehicle, and flying object
US9356312B2 (en) Method for preparing secondary battery and the secondary battery prepared by using the same
WO2019069356A1 (en) Electrode group, secondary battery, battery module, electricity storage device, vehicle and flying body
JP7003775B2 (en) Lithium ion secondary battery
US9564635B2 (en) Lithium secondary battery with excellent performance
KR20130005886A (en) Battery case of high durability and secondary battery including the same
WO2019193690A1 (en) Non-aqueous electrolyte cell, and cell pack
JP6813332B2 (en) Electrodes, electrode bodies, secondary batteries, battery modules and vehicles
CN112335091B (en) Lithium ion secondary battery
WO2016171276A1 (en) Lithium ion cell
JP6054540B2 (en) Positive electrode active material, non-aqueous electrolyte battery, and battery pack
JP6419433B2 (en) Electrode group, secondary battery, and manufacturing method of electrode group
CN112335092A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP