JP2009203576A - Method for producing stereo complex polylactic acid fiber - Google Patents

Method for producing stereo complex polylactic acid fiber Download PDF

Info

Publication number
JP2009203576A
JP2009203576A JP2008045999A JP2008045999A JP2009203576A JP 2009203576 A JP2009203576 A JP 2009203576A JP 2008045999 A JP2008045999 A JP 2008045999A JP 2008045999 A JP2008045999 A JP 2008045999A JP 2009203576 A JP2009203576 A JP 2009203576A
Authority
JP
Japan
Prior art keywords
lactic acid
poly
acid
polylactic acid
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008045999A
Other languages
Japanese (ja)
Other versions
JP5139838B2 (en
Inventor
Hironori Aida
裕憲 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd, Teijin Ltd filed Critical Teijin Fibers Ltd
Priority to JP2008045999A priority Critical patent/JP5139838B2/en
Publication of JP2009203576A publication Critical patent/JP2009203576A/en
Application granted granted Critical
Publication of JP5139838B2 publication Critical patent/JP5139838B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a stereo complex polylactic acid fiber, in which both process conditions and physical properties are good in an FOY process including two steps of a spinning process for obtaining an undrawn fiber and a drawing and thermally treating process. <P>SOLUTION: Provided is the method for producing the stereo complex polylactic acid fiber having a melting point of 200 to 230°C and substantially not having an observed melting point at 150 to 190°C, characterized by including (a) a process for melt-spinning a polylactic acid composition comprising poly L-lactic acid (component A) containing L-lactic acid as a main component and having a mass-average mol.wt. of 50,000 to 300,000 and poly D-lactic acid (component B) containing D-lactic acid as a main component and having a mass-average mol.wt. of 50,000 to 300,000, at a spinning speed of 100 to 2,000 m/min, to obtain the undrawn fiber, (b) a process for drawing the undrawn fiber at one step or at two or more steps so that the drawing at the one step is performed to give a drawing ratio of 0.55 to 2.0 times the CDR of the undrawn fiber in a liquid bath of 20 to 150°C, and give a total drawing ratio of 0.55 to 3.0 times the CDR of the undrawn fiber, and (c) a process for applying a constant length thermal treatment at 130 to 200°C or a relation thermal treatment at 130 to 165°C after the drawing process, [wherein, CDR represents a cold draw ratio for visually finishing a necking phenomenon, when the undrawn fiber is pulled in 25°C water]. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、低配向の未延伸糸を採取した後、別工程の延伸機で延伸を行うFOY(Fully Oriented Yarn)を得るプロセス(紡糸・延伸法、別延伸法)において、延伸工程における断糸や繊度変動、物性変動を抑制し、生産性の高いステレオコンプレックスポリ乳酸繊維の製造方法に関する。   The present invention relates to a process (spinning / stretching method, separate stretching method) for obtaining FOY (Fully Oriented Yarn) in which a low-oriented unstretched yarn is collected and then stretched by a stretching machine in a separate step. Further, the present invention relates to a method for producing stereocomplex polylactic acid fibers having high productivity by suppressing fluctuations in fineness and physical properties.

近年の地球環境保護意識の高まりを受け、バイオマスプラスチックとしての脂肪族ポリエステルの研究開発が積極的になされている。中でも、ポリL−乳酸は、脂肪族ポリエステルの中では融点が約170℃と高く、機械物性が優れている上、ポリ乳酸の原料である乳酸あるいはラクチドの大量生産技術が飛躍的な進歩を遂げたことによって、農業用や生活雑貨用フィルム、電気製品筐体等の樹脂製品、衣料用布帛、医療器具等の用途で実用化が進んでいる。ただし、衣料や産業資材用途の汎用合成繊維であるポリエステル(主としてポリエチレンテレフタレート)や脂肪族ポリアミド(主としてナイロン6やナイロン6,6)対比ポリL−乳酸は融点が低いため、ポリL−乳酸の融点を超える180℃以上の温度がかかるアイロン掛けやタンブラー乾燥、紡績糸の毛焼きや織物の熱セット、車両内装材としての熱成型等ができないと言った実用上の耐熱性に問題がある。そのため、石油由来プラスチックをバイオマスプラスチックへ置き換えるための大きな障害となっている。   In recent years, with the growing awareness of protecting the global environment, research and development of aliphatic polyesters as biomass plastics has been actively conducted. Among them, poly-L-lactic acid has a melting point as high as about 170 ° C. among aliphatic polyesters, has excellent mechanical properties, and has made great progress in mass production technology of lactic acid or lactide, which is a raw material for polylactic acid. As a result, it has been put to practical use in applications such as films for agriculture and household goods, resin products such as electrical product casings, clothing fabrics, and medical instruments. However, since poly L-lactic acid has a low melting point compared to polyester (mainly polyethylene terephthalate) and aliphatic polyamide (mainly nylon 6, nylon 6,6), which are general-purpose synthetic fibers for clothing and industrial materials, the melting point of poly L-lactic acid. There is a problem in practical heat resistance that ironing, tumbler drying, hot-fired spun yarn, heat setting of woven fabric, thermoforming as a vehicle interior material, etc. cannot be performed. Therefore, it becomes a big obstacle to replace petroleum-derived plastic with biomass plastic.

その中で、L−乳酸を主成分とするポリL−乳酸(以降、PLLAと略記)とD−乳酸を主成分とするポリD−乳酸(以降、PDLAと略記)を溶液状態あるいは溶融状態にて分子レベルでの混練を行うことにより、PLLA分子鎖とPDLA分子鎖が結晶内に交互にパッキングされたステレオコンプレックスポリ乳酸結晶を形成し、融点をポリブチレンテレフタレートやナイロン6並の220〜230℃まで上昇できることが知られており(例えば、非特許文献1参照。)、このステレオコンプレックスポリ乳酸を繊維化する検討がなされている。(例えば、特許文献1〜3、非特許文献2参照。)   Among them, poly-L-lactic acid containing L-lactic acid as a main component (hereinafter abbreviated as PLLA) and poly-D-lactic acid containing D-lactic acid as a main component (hereinafter abbreviated as PDLA) in a solution state or molten state. By kneading at the molecular level, a stereocomplex polylactic acid crystal in which PLLA molecular chains and PDLA molecular chains are alternately packed in the crystal is formed, and the melting point is 220 to 230 ° C., similar to polybutylene terephthalate or nylon 6. (For example, refer nonpatent literature 1), and examination which makes this stereocomplex polylactic acid into a fiber is made | formed. (For example, refer to Patent Documents 1 to 3 and Non-Patent Document 2.)

例えば、ポリL−乳酸とポリD−乳酸を等モル量含む組成物を溶融紡糸したステレオコンプレックスポリ乳酸繊維が開示されているが、得られた繊維の強度は0.5cN/dtex程度で実用に供するには強度は充分ではなかった(例えば、特許文献1参照)。   For example, a stereocomplex polylactic acid fiber obtained by melt spinning a composition containing equimolar amounts of poly-L-lactic acid and poly-D-lactic acid is disclosed, but the strength of the obtained fiber is about 0.5 cN / dtex and practical. The strength was not sufficient to provide (see, for example, Patent Document 1).

また、溶融紡糸によりステレオコンプレックスポリ乳酸繊維を得たことが記載されている(例えば、非特許文献2参照)。この文献には、ポリL−乳酸とポリD−乳酸との溶融ブレンド物を溶融紡糸した未延伸糸を熱処理することでステレオコンプレックス繊維を得ることが記載されているが、熱処理時に繊維内部の分子配向が緩和してしまい、得られる繊維の強度は2.3cN/dtexにとどまっている。   Moreover, it is described that the stereocomplex polylactic acid fiber was obtained by melt spinning (for example, refer nonpatent literature 2). This document describes that a stereocomplex fiber is obtained by heat-treating an undrawn yarn obtained by melt-spinning a melt blend of poly-L-lactic acid and poly-D-lactic acid. The orientation is relaxed, and the strength of the resulting fiber remains at 2.3 cN / dtex.

これらのように、従来のステレオコンプレックスの形成方法は、ポリL−乳酸とポリD−乳酸のブレンド物を紡糸して得られる非晶性未延伸糸を延伸、熱処理するものであるが、ステレオコンプレックスポリ乳酸結晶を十分成長させるために、ポリL−乳酸単独結晶あるいはポリD−乳酸単独結晶の融点以上の温度で熱処理する方法が主流である。確かに、ステレオコンプレックスポリ乳酸結晶生成にこの高温熱処理は有効であるが、糸の部分融解が発生し、糸が粗硬化したり低強度化したりする問題があった。   As described above, the conventional stereocomplex formation method involves stretching and heat-treating an amorphous undrawn yarn obtained by spinning a blend of poly-L-lactic acid and poly-D-lactic acid. In order to sufficiently grow the polylactic acid crystal, a method of performing heat treatment at a temperature equal to or higher than the melting point of the poly L-lactic acid single crystal or the poly D-lactic acid single crystal is the mainstream. Certainly, this high-temperature heat treatment is effective for the formation of stereocomplex polylactic acid crystals, but there is a problem that partial melting of the yarn occurs, and the yarn is coarsely cured or reduced in strength.

この問題に対し、ポリL−乳酸とポリD−乳酸の溶融混合体から紡糸線上で一気にステレオコンプレックスの形成する方法が提案されている(例えば、特許文献2参照)。例えば紡糸速度4000m/分の高速で紡糸し、広角X線回折測定よるステレオ化率が10〜35%の結晶化未延伸糸を1.4〜2.3倍の延伸を行うことで、糸の部分融着を改善することが提案されている。しかし、この方法を実施するためには、3000m/分程度の紡速では不十分で、5000m/分以上の紡速で紡糸するための特殊な紡糸設備を必要とする等、工業的実施には越えなければならない問題点も残されている。この提案における耐熱性の評価は、繊維の筒編に170℃アイロンをあて編地の破れ、粗硬化といった激しい変化をみるものであり、衣料用繊維における衣料の縮みについてはなんら検討されておらず、耐熱性についての検討は不十分である。このように、ステレオ化率が0%の未延伸糸から、高いステレオ化率を有し、強度及び耐熱収縮性に優れた繊維を製造する技術は完成されていないのが現状である。また、ポリエチレンテレフタレートでの知見では、前述のような高速紡糸によって得られた未延伸糸(POY:Partially Oriented Yarn)を延伸・熱セットして得られる延伸糸は、2000m/分以下の紡糸速度により得られる未延伸糸(UDY:Un Drawn Yarn)を別工程で延伸・熱セットする通常紡糸・延伸法により得られるFOY(Fully Oriented Yarn)に比べ、配向結晶化により比較的大きいサイズの結晶を形成すると共に、非晶部の配向が低いため、より高強度のステレオコンプレックスポリ乳酸繊維を得るには、通常のUDYを延伸する紡糸・延伸法での技術確立を追求する必要がある。   In order to solve this problem, a method has been proposed in which a stereo complex is formed at a stretch on a spinning line from a molten mixture of poly L-lactic acid and poly D-lactic acid (see, for example, Patent Document 2). For example, spinning is performed at a spinning speed of 4000 m / min, and a crystallized unstretched yarn having a stereoization rate of 10 to 35% by wide-angle X-ray diffraction measurement is stretched 1.4 to 2.3 times. It has been proposed to improve partial fusion. However, in order to carry out this method, a spinning speed of about 3000 m / min is insufficient, and a special spinning facility for spinning at a spinning speed of 5000 m / min or more is required. There are also problems that must be overcome. The evaluation of heat resistance in this proposal shows a drastic change such as breaking the knitted fabric and rough hardening by applying a 170 ° C iron to the tube of the fiber, and no consideration has been given to the shrinkage of the clothing in the clothing fiber. However, the study on heat resistance is insufficient. Thus, the present condition is that the technique which manufactures the fiber which has a high stereoization rate and was excellent in the intensity | strength and heat-resistant shrinkage from the undrawn yarn whose stereoization rate is 0% is not completed. In addition, based on the knowledge of polyethylene terephthalate, drawn yarn obtained by drawing and heat setting undrawn yarn (POY: Partially Oriented Yarn) obtained by high-speed spinning as described above has a spinning speed of 2000 m / min or less. Compared to FOY (Fully Oriented Yarn) obtained by normal spinning / drawing method in which the obtained undrawn yarn (UDY: Un Drawn Yarn) is drawn and heat set in a separate process, crystals of relatively large size are formed by orientation crystallization. At the same time, since the orientation of the amorphous part is low, in order to obtain a higher-strength stereocomplex polylactic acid fiber, it is necessary to pursue establishment of a technique by a spinning / stretching method for stretching ordinary UDY.

特許文献3には、紡糸ドラフト≧50、引き取り速度≧300m/分で溶融紡糸した未延伸糸をいったん巻き取ったあと延伸を行うか、又は巻き取ることなく2.8倍延伸を行い、120〜180℃で熱処理することによりポリ乳酸ホモ結晶と190℃以上のステレオコンプレックスポリ乳酸結晶の2つのピークを有する200℃の耐熱性を有する繊維が提案されている(例えば、特許文献3参照)。但し、このような繊維は180〜200℃のアイロンやタンブラー乾燥、熱成形等の加工を施した際、ポリ乳酸ホモ結晶の融解に伴う熱収縮や皺を生じ、実用上の耐熱性を有するとはいえなかった。また、本発明者らによる検討では、ステレオコンプレックスポリ乳酸の非晶性未延伸糸は堅く脆い傾向にあり、空気中又は乾熱雰囲気下でのネック変形を起こし難い。そのため、長繊維の別延工程で用いられる接触ヒーターや加熱ローラー等による乾熱下の延伸では延伸性が非常に悪く、延伸単糸切れによる引き取りローラーやヤーンガイドへの捲付を生じたり、所定の糸長までのボビン巻きが出来ない(完巻き率が悪い)といった課題があった。延伸性のカバーするために、所定の延伸倍率まで多段に分け、少しずつ延伸する方法があるが、ネック変形の張力がばらつきやすく、単糸の強伸度や径が不均一となる欠点があった。   In Patent Document 3, undrawn yarn melt-spun at a spinning draft ≧ 50 and take-up speed ≧ 300 m / min is wound once and then stretched, or stretched 2.8 times without winding, and 120 to A fiber having heat resistance of 200 ° C. having two peaks of a polylactic acid homocrystal and a stereocomplex polylactic acid crystal of 190 ° C. or higher by heat treatment at 180 ° C. has been proposed (for example, see Patent Document 3). However, when such a fiber is subjected to processing such as ironing at 180 to 200 ° C., tumbler drying, thermoforming, etc., it causes heat shrinkage and wrinkles accompanying melting of polylactic acid homocrystal, and has practical heat resistance. I could not say. Further, according to the study by the present inventors, the amorphous undrawn yarn of stereocomplex polylactic acid tends to be firm and brittle, and it is difficult to cause neck deformation in the air or in a dry heat atmosphere. For this reason, stretching under dry heat by a contact heater or heating roller used in the separate drawing process of long fibers is very poor in stretchability, and the take-up roller and the yarn guide due to breakage of the stretched single yarn may cause wrinkling. There was a problem that bobbins could not be wound up to the yarn length (the complete winding rate was poor). In order to cover the stretchability, there is a method in which the stretch ratio is divided into a plurality of stages up to a predetermined stretch ratio and stretched little by little. However, there is a drawback that the tension of the neck deformation tends to vary, and the single yarn's strength and diameter are not uniform. It was.

特開昭63−241024号公報JP 63-24014 A 特開2003−293220号公報JP 2003-293220 A 特開2005−23512号公報Japanese Patent Laid-Open No. 2005-23512 Macromolecules,24,5651(1991)Macromolecules, 24, 5651 (1991). Seni Gakkai Preprints (1989)Seni Gakkai Preprints (1989)

本発明は、上記従来技術を背景になされたもので、その目的は、未延伸糸を得る紡糸工程と延伸・熱処理工程の2ステップであるFOYプロセスにおいて、工程調子と物性の双方が良好なステレオコンプレックスポリ乳酸繊維を製造する方法を提供することにある。   The present invention has been made against the background of the above-described prior art, and the purpose of the present invention is to provide a stereo with excellent process tone and physical properties in the FOY process, which is a two-step process of spinning to obtain an undrawn yarn and a drawing / heat treatment process. It is providing the method of manufacturing a complex polylactic acid fiber.

本発明者は、上記課題を解決するため鋭意検討を重ねた結果、延伸工程における1段目の延伸を20〜150℃の液浴中で延伸した後、乾熱雰囲気中又は乾熱加熱体との接触により130〜200℃の定長熱処理又は130〜165℃弛緩熱処理を施すことを特徴とする別延伸法を採用することにより、ステレオコンプレックスポリ乳酸繊維の工程調子、品質ともに安定化することを見出し、本発明に到達した。   As a result of intensive studies to solve the above-mentioned problems, the present inventor, after stretching the first stage stretching in the stretching step in a liquid bath at 20 to 150 ° C., in a dry heat atmosphere or a dry heat heating body It is possible to stabilize both the process tone and quality of the stereocomplex polylactic acid fiber by adopting another drawing method characterized by performing constant length heat treatment at 130 to 200 ° C. or relaxation heat treatment at 130 to 165 ° C. The headline, the present invention has been reached.

すなわち本発明は、(ア)L乳酸を主成分とする質量平均分子量5万〜30万のポリL−乳酸(A成分)とD乳酸を主成分とする質量平均分子量5万〜30万のポリD−乳酸(B成分)のポリ乳酸組成物を紡糸速度100〜2000m/分で溶融紡糸することにより未延伸糸を得る工程、(イ)該未延伸糸を1段延伸又は2段以上の多段延伸を行うにあたり、1段目の延伸を20〜150℃の液浴中で該未延伸糸のCDRの0.55〜2.0倍となるように行い、かつ全延伸倍率が該未延伸糸のCDRの0.55〜3.0倍となるように延伸する工程、(ウ)延伸する工程の後、130〜200℃の定長熱処理又は130〜165℃弛緩熱処理を施す工程を含むことを特徴とする融点が200〜230℃にあり、150〜190℃に実質的に融点が観測されないステレオコンプレックスポリ乳酸繊維の製造方法であり、当該発明により上記課題を解決することができる。
[ただし、CDRとは、25℃の水中で未延伸糸を引っ張ったとき、目視によるネッキング現象が終了する延伸倍率を表す。]
That is, the present invention relates to (a) a poly L-lactic acid (component A) having a weight average molecular weight of 50,000 to 300,000 having L lactic acid as a main component and a poly L having a weight average molecular weight of 50,000 to 300,000 having D lactic acid as a main component. A step of obtaining an unstretched yarn by melt-spinning a polylactic acid composition of D-lactic acid (component B) at a spinning speed of 100 to 2000 m / min, (a) the unstretched yarn is stretched in one stage or in multiple stages of two or more stages In stretching, the first stage of stretching is performed in a liquid bath at 20 to 150 ° C. so as to be 0.55 to 2.0 times the CDR of the undrawn yarn, and the total draw ratio is the undrawn yarn. A step of stretching so as to be 0.55 to 3.0 times the CDR of (c), and (c) including a step of performing a constant-length heat treatment at 130 to 200 ° C. or a relaxation heat treatment at 130 to 165 ° C. after the step of stretching. The characteristic melting point is in the range of 200-230 ° C and substantially in the range of 150-190 ° C. A method for producing a stereocomplex polylactic acid fiber that point is not observed, it is possible to solve the above problems by the invention.
[However, CDR represents the draw ratio at which the visual necking phenomenon ends when the undrawn yarn is pulled in water at 25 ° C.] ]

本発明のステレオコンプレックスポリ乳酸繊維の製造方法は、液浴中で延伸を行うことで、未延伸糸の可塑性を高め、延伸性を向上させることによって、別延伸方式での延伸単糸切れや繊度斑、強伸度斑等の発生を抑え、従来検討技術に比べて、品質と工程調子の両面で変動を最小限にとどめることができる。よって、別延伸方式の長繊維だけでなく、基本的に紡速2000m/分を超える高速紡糸が採用できず、別延伸方式で生産性向上を確保している短繊維のプロセスにも適用でき、ステレオコンプレックス短繊維の量産を可能とすることができる。   The production method of the stereocomplex polylactic acid fiber of the present invention increases the plasticity of the undrawn yarn by drawing in a liquid bath and improves the drawability. It is possible to suppress the occurrence of spots, strong elongation spots, etc., and to minimize fluctuations in both quality and process condition as compared with conventional examination techniques. Therefore, not only long fibers of another drawing method, but basically high speed spinning exceeding a spinning speed of 2000 m / min can not be adopted, and it can be applied to the process of short fibers that have secured productivity improvement by another drawing method, This enables mass production of stereocomplex short fibers.

以下本発明の実施形態について詳細に説明する。
(ポリL−乳酸:A成分)
ポリL―乳酸は、主としてL−乳酸単位からなる。L−乳酸単位はL−乳酸由来の繰り返し単位である。ポリL−乳酸は、好ましくは90〜100モル%、より好ましくは95〜100モル%、さらに好ましくは98〜100モル%のL−乳酸単位を含有する。他の繰り返し単位としてD−乳酸単位、乳酸以外の共重合単位がある。D−乳酸単位及び乳酸以外の共重合単位は、好ましくは0〜10モル%、より好ましくは0〜5モル%、さらに好ましくは0〜2モル%である。
Hereinafter, embodiments of the present invention will be described in detail.
(Poly L-lactic acid: A component)
Poly L-lactic acid mainly consists of L-lactic acid units. The L-lactic acid unit is a repeating unit derived from L-lactic acid. The poly L-lactic acid preferably contains 90 to 100 mol%, more preferably 95 to 100 mol%, and still more preferably 98 to 100 mol% of L-lactic acid units. Other repeating units include D-lactic acid units and copolymer units other than lactic acid. The D-lactic acid unit and the copolymer unit other than lactic acid are preferably 0 to 10 mol%, more preferably 0 to 5 mol%, still more preferably 0 to 2 mol%.

共重合単位としては、ε−カプロラクトン、δ−バレロラクトン、γ−バレロラクトン、β−バレロラクトン、γ−ブチロラクトン、β−ブチロラクトン、β−プロピオラクトン、グリコール酸等のヒドロキシカルボン酸類(環状エステルを含めて)、エチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール等の炭素数が2〜30の脂肪族ジオール類、コハク酸、マレイン酸、アジピン酸等の炭素数2〜30の脂肪族ジカルボン酸、テレフタル酸、イソフタル酸、ヒドロキシ安息香酸、ヒドロキノン等の芳香族ジオール、芳香族ジカルボン酸等から選ばれる1種以上のモノマー由来の単位である。   Copolymerized units include ε-caprolactone, δ-valerolactone, γ-valerolactone, β-valerolactone, γ-butyrolactone, β-butyrolactone, β-propiolactone, glycolic acid and other hydroxycarboxylic acids (cyclic esters). Aliphatic glycols having 2 to 30 carbon atoms such as ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, and succinic acid One or more monomers selected from aliphatic dicarboxylic acids having 2 to 30 carbon atoms such as maleic acid and adipic acid, aromatic diols such as terephthalic acid, isophthalic acid, hydroxybenzoic acid and hydroquinone, and aromatic dicarboxylic acids Unit.

ポリL−乳酸は、好ましくは結晶性を有する。融点は、好ましくは150〜190℃、より好ましくは160〜190℃である。更にそのポリL−乳酸は、重量平均分子量が、好ましくは5万〜30万、より好ましくは14万〜25万である。これらの条件を満足すると、高融点のステレオコンプレックスポリ乳酸結晶を形成させることができ、かつ、結晶化度を上げることが出来るからである。   The poly L-lactic acid preferably has crystallinity. The melting point is preferably 150 to 190 ° C, more preferably 160 to 190 ° C. Furthermore, the poly L-lactic acid has a weight average molecular weight of preferably 50,000 to 300,000, more preferably 140,000 to 250,000. This is because, if these conditions are satisfied, a stereocomplex polylactic acid crystal having a high melting point can be formed and the crystallinity can be increased.

(ポリD−乳酸:B成分)
ポリD―乳酸は、主としてD−乳酸単位からなる。D−乳酸単位はD―乳酸由来の繰り返し単位である。ポリD―乳酸は、好ましくは90〜100モル%、より好ましくは95〜100モル%、さらに好ましくは98〜100モル%のD−乳酸単位を含有する。他の繰り返し単位としてL−乳酸単位、乳酸以外の共重合単位がある。L−乳酸単位及び乳酸以外の共重合単位は、好ましくは0〜10モル%、より好ましくは0〜5モル%、さらに好ましくは0〜2モル%である。
(Poly D-lactic acid: B component)
Poly D-lactic acid mainly consists of D-lactic acid units. The D-lactic acid unit is a repeating unit derived from D-lactic acid. The poly-D-lactic acid preferably contains 90 to 100 mol%, more preferably 95 to 100 mol%, still more preferably 98 to 100 mol% of D-lactic acid units. Other repeating units include L-lactic acid units and copolymerized units other than lactic acid. The L-lactic acid unit and the copolymer unit other than lactic acid are preferably 0 to 10 mol%, more preferably 0 to 5 mol%, and still more preferably 0 to 2 mol%.

共重合単位としては、ε−カプロラクトン、δ−バレロラクトン、γ−バレロラクトン、β−バレロラクトン、γ−ブチロラクトン、β−ブチロラクトン、β−プロピオラクトン、グリコール酸等のヒドロキシカルボン酸類(環状エステルを含めて)、エチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール等の炭素数が2〜30の脂肪族ジオール類、コハク酸、マレイン酸、アジピン酸等の炭素数2〜30の脂肪族ジカルボン酸、テレフタル酸、イソフタル酸、ヒドロキシ安息香酸、ヒドロキノン等の芳香族ジオール、芳香族ジカルボン酸等から選ばれる1種以上のモノマー由来の単位である。   Copolymerized units include ε-caprolactone, δ-valerolactone, γ-valerolactone, β-valerolactone, γ-butyrolactone, β-butyrolactone, β-propiolactone, glycolic acid and other hydroxycarboxylic acids (cyclic esters). Aliphatic glycols having 2 to 30 carbon atoms such as ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, and succinic acid One or more monomers selected from aliphatic dicarboxylic acids having 2 to 30 carbon atoms such as maleic acid and adipic acid, aromatic diols such as terephthalic acid, isophthalic acid, hydroxybenzoic acid and hydroquinone, and aromatic dicarboxylic acids Unit.

ポリD−乳酸は、好ましくは結晶性を有する。融点は、好ましくは150〜190℃、より好ましくは160〜190℃である。更にそのポリD−乳酸は、重量平均分子量が、好ましくは5万〜30万、より好ましくは14万〜25万である。これらの条件を満足すると、高融点のステレオコンプレックスポリ乳酸結晶を形成させることができ、かつ、結晶化度を上げることが出来るからである。   The poly D-lactic acid preferably has crystallinity. The melting point is preferably 150 to 190 ° C, more preferably 160 to 190 ° C. Furthermore, the poly D-lactic acid has a weight average molecular weight of preferably 50,000 to 300,000, more preferably 140,000 to 250,000. This is because, if these conditions are satisfied, a stereocomplex polylactic acid crystal having a high melting point can be formed and the crystallinity can be increased.

(ポリL−乳酸又はポリD−乳酸の製造方法)
ポリL−乳酸又はポリD−乳酸は、L−乳酸又はD−乳酸を直接脱水縮合する方法で製造したり、L−乳酸又はD−乳酸を一度脱水環化してL−ラクチド又はD−ラクチドとした後に開環重合したりする方法で製造することができる。これらの方法に用いる触媒として、オクチル酸スズ、塩化スズ若しくはスズのジアルコキシド等の2価のスズ化合物、酸化スズ、酸化ジブチルスズ若しくは酸化ジエチルスズ等の4価のスズ化合物、金属スズ、亜鉛化合物、アルミニウム化合物、カルシウム化合物、又はランタニド化合物等を例示することが出来る。
(Method for producing poly L-lactic acid or poly D-lactic acid)
Poly-L-lactic acid or poly-D-lactic acid is produced by directly dehydrating condensation of L-lactic acid or D-lactic acid, or once L-lactic acid or D-lactic acid is dehydrated and cyclized with L-lactide or D-lactide. And then ring-opening polymerization. Catalysts used in these methods include divalent tin compounds such as tin octylate, tin chloride or tin dialkoxide, tetravalent tin compounds such as tin oxide, dibutyltin oxide or diethyltin oxide, metal tin, zinc compounds, aluminum A compound, a calcium compound, a lanthanide compound, etc. can be illustrated.

ポリL−乳酸及び/又はポリD−乳酸は、重合時使用された重合触媒を溶媒で洗浄除去するか、触媒活性を不活性化しておくのが好ましい。触媒活性を不活性化するには、触媒失活剤を用いることができる。   For poly L-lactic acid and / or poly D-lactic acid, it is preferable that the polymerization catalyst used in the polymerization is removed by washing with a solvent or the catalytic activity is deactivated. A catalyst deactivator can be used to inactivate the catalyst activity.

触媒失活剤として、イミノ基を有し且つ金属重合触媒に配位し得るキレート配位子の群からなる有機リガンド、リンオキソ酸、リンオキソ酸エステル及び下記一般式(2)で表される有機リンオキソ酸化合物群から選択される少なくとも1種が挙げられる。触媒失活剤は、重合終了の時点において触媒中の金属元素1当量あたり、好ましくは0.3〜20当量、より好ましくは0.4〜15当量、さらに好ましくは0.5〜10当量配合する。
−P(=O)(OH)(OX2−n (2)
[上記式中、mは0又は1、nは1又は2、X及びXは各々独立に炭素数1〜20の置換基を有していても良い炭化水素基を表す。]
As a catalyst deactivator, an organic ligand consisting of a group of chelate ligands having an imino group and capable of coordinating with a metal polymerization catalyst, a phosphorus oxoacid, a phosphorus oxoacid ester, and an organic phosphorus oxo represented by the following general formula (2) The at least 1 sort (s) selected from an acid compound group is mentioned. The catalyst deactivator is preferably blended in an amount of 0.3 to 20 equivalents, more preferably 0.4 to 15 equivalents, and even more preferably 0.5 to 10 equivalents per equivalent of the metal element in the catalyst at the end of the polymerization. .
X 1 -P (= O) m (OH) n (OX 2) 2-n (2)
[Wherein, m is 0 or 1, n is 1 or 2, and X 1 and X 2 each independently represent a hydrocarbon group optionally having a substituent having 1 to 20 carbon atoms. ]

炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、フェニル基等をあげることができる。置換基としては、ハロゲン原子基、ヒドロキシ基、アミノ基、カルボキシル基、カルボキシル金属塩基、スルホン酸基、スルホン酸金属塩基等を挙げることができる。   Examples of the hydrocarbon group include a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, and a phenyl group. Examples of the substituent include a halogen atom group, a hydroxy group, an amino group, a carboxyl group, a carboxyl metal base, a sulfonic acid group, and a sulfonic acid metal base.

かかる失活剤のより具体的な例としては、たとえば例えばイミノ基を有し且つ重合金属触媒に配位し得るキレート配位子の群からなる有機リガンド及びジヒドリドオキソリン(I)酸、ジヒドリドテトラオキソ二リン(II,II)酸、ヒドリドトリオキソリン(III)酸、ジヒドリドペンタオキソ二リン(III)酸、ヒドリドペンタオキソ二(II,IV)酸、ドデカオキソ六リン(III)III、ヒドリドオクタオキソ三リン(III,IV,IV)酸、オクタオキソ三リン(IV,III,IV)酸、ヒドリドヘキサオキソ二リン(III,V)酸、ヘキサオキソ二リン(IV)酸、デカオキソ四リン(IV)酸、ヘンデカオキソ四リン(IV)酸、エネアオキソ三リン(V,IV,IV)酸等の酸価数5以下の低酸化数リン酸、式xHO・yPで表され、x/y=3のオルトリン酸、2>x/y>1であり、縮合度より二リン酸、三リン酸、四リン酸、五リン酸等と称せられるポリリン酸及びこれらの混合物、x/y=1で表されるメタリン酸、なかでもトリメタリン酸、テトラメタリン酸、1>x/y>0で表され、五酸化リン構造の一部をのこした網目構造を有するウルトラリン酸(これらを総称してメタ燐酸系化合物と呼ぶことがある。)、及びこれらの酸の酸性塩、一価、多価のアルコール類、あるいはポリアルキレングリコール類の部分エステル、完全エスエテル、ホスホノ置換低級脂肪族カルボン酸誘導体等が例示される。 More specific examples of such deactivators include, for example, organic ligands consisting of a group of chelate ligands having an imino group and capable of coordinating to a polymerized metal catalyst, dihydridooxoline (I) acid, dihydride Tetraoxodiphosphoric acid (II, II), hydridotrioxophosphoric acid (III), dihydridopentaoxodiphosphoric acid (III), hydridopentaoxodiphosphoric acid (II, IV), dodecaoxo hexaphosphorus (III) III, hydride Octaoxotriphosphoric acid (III, IV, IV), octaoxotriphosphoric acid (IV, III, IV), hydridohexaoxodiphosphoric acid (III, V), hexaoxodiphosphoric acid (IV), decaoxotetraphosphoric acid (IV ) Low oxidation number phosphoric acid having an acid number of 5 or less, such as acid, hendecaoxotetralinic (IV) acid, eneoxotriphosphoric acid (V, IV, IV) acid, formula x Is represented by 2 O · yP 2 O 5, x / y = 3 of orthophosphoric acid, 2> a x / y> 1, diphosphate than the degree of condensation, triphosphate, tetraphosphate, and the like phosphorus pentachloride acid Polyphosphoric acid and mixtures thereof, metaphosphoric acid represented by x / y = 1, especially trimetaphosphoric acid, tetrametaphosphoric acid, 1> x / y> 0, and part of the phosphorus pentoxide structure Ultraphosphoric acid having such a network structure (sometimes collectively referred to as metaphosphoric acid compounds), acid salts of these acids, monovalent and polyhydric alcohols, or polyalkylene glycols. Examples include partial esters, fully ethers, phosphono-substituted lower aliphatic carboxylic acid derivatives, and the like.

触媒失活能の観点から、式xHO・yPで表され、x/y=3のオルトリン酸、2>x/y>1であり、縮合度より二リン酸、三リン酸、四リン酸、五リン酸等と称せられるポリリン酸及びこれらの混合物、x/y=1で表されるメタリン酸、なかでもトリメタリン酸、テトラメタリン酸、1>x/y>0で表され、五酸化リン構造の一部を残した網目構造を有するウルトラリン酸(これらを総称してメタ燐酸系化合物と呼ぶことがある。)、及びこれらの酸の酸性塩、一価、多価のアルコール類、あるいはポリアルキレングリコール類の部分エステルリンオキソ酸あるいはこれらの酸性エステル類、ホスホノ置換低級脂肪族カルボン酸誘導体及び上記のメタ燐酸系化合物が好適に使用される。 From the viewpoint of catalyst deactivation ability, it is represented by the formula xH 2 O · yP 2 O 5 , x / y = 3 orthophosphoric acid, 2> x / y> 1, and diphosphoric acid and triphosphoric acid from the degree of condensation , Tetraphosphoric acid, polyphosphoric acid called pentaphosphoric acid and mixtures thereof, metaphosphoric acid represented by x / y = 1, especially trimetaphosphoric acid, tetrametaphosphoric acid, 1> x / y> 0 , Ultraphosphoric acid having a network structure in which part of the phosphorus pentoxide structure is left (sometimes collectively referred to as a metaphosphoric acid compound), and acid salts of these acids, monovalent, polyvalent Alcohols, partial esters of polyalkylene glycols, phosphorus oxoacids or acidic esters thereof, phosphono-substituted lower aliphatic carboxylic acid derivatives and the above-mentioned metaphosphoric acid compounds are preferably used.

本発明で使用するメタ燐酸系化合物は、3から200程度の燐酸単位が縮合した環状のメタ燐酸あるいは立体網目状構造を有するウルトラ領域メタ燐酸あるいはそれらの(アルカル金属塩、アルカリ土類金属塩、オニウム塩)を包含する。   The metaphosphoric acid compound used in the present invention is a cyclic metaphosphoric acid in which about 3 to 200 phosphoric acid units are condensed, an ultra-regional metaphosphoric acid having a three-dimensional network structure, or their (alkal metal salt, alkaline earth metal salt, Onium salts).

なかでも環状メタ燐酸ナトリウムやウルトラ領域メタ燐酸ナトリウム、ホスホノ置換低級脂肪族カルボン酸誘導体のジヘキシルホスホノエチルアセテート(以下DHPAと略称することがある)等が好適に使用される。   Of these, cyclic sodium metaphosphate, ultra-region sodium metaphosphate, phosphono-substituted lower aliphatic carboxylic acid derivative dihexylphosphonoethyl acetate (hereinafter sometimes abbreviated as DHPA) and the like are preferably used.

ポリL−乳酸及び/又はポリD−乳酸中の金属イオン含有量は20ppm以下であることが繊維の耐熱性、耐加水分解性の点から好ましい。金属イオン含有量は、アルカリ土類金属、希土類、第三周期の遷移金属類、アルミニウム、ゲルマニウム、スズ及びアンチモンから選ばれる金属の各々の含有量が20ppm以下であることが好ましい。   The metal ion content in poly L-lactic acid and / or poly D-lactic acid is preferably 20 ppm or less from the viewpoint of heat resistance and hydrolysis resistance of the fiber. The metal ion content is preferably such that the content of each metal selected from alkaline earth metals, rare earths, transition metals of the third period, aluminum, germanium, tin and antimony is 20 ppm or less.

(燐酸エステル金属塩:C成分)
ポリL−乳酸とポリD−乳酸を溶液あるいは溶融状態で混合を行い結晶化させると、ステレオコンプレックスポリ乳酸結晶のみが形成されるが、分子レベルでの十分な混合状態が達成できていないとポリL−乳酸の単独結晶あるいはポリD−乳酸の単独結晶を形成しうる前駆体が残留していることがあり、ステレオコンプレックスポリ乳酸結晶前駆体との溶融粘度差により、溶融紡糸時に繊度斑や吐出不良を起こすことがある。従って、ステレオコンプレックス生成をより安定化させるために、下記一般式(1)の構造式で示される燐酸エステル金属塩(C成分)を添加する方がより好ましい。燐酸エステル金属塩は1種類を用いても複数種類を併用してもよい。
(Phosphate metal salt: C component)
When poly L-lactic acid and poly D-lactic acid are mixed and crystallized in a solution or in a molten state, only stereocomplex polylactic acid crystals are formed. However, if a sufficient mixed state at the molecular level cannot be achieved, Precursors that can form single crystals of L-lactic acid or single crystals of poly-D-lactic acid may remain. Due to the difference in melt viscosity from the stereocomplex polylactic acid crystal precursor, fineness spots and ejection during melt spinning May cause defects. Accordingly, in order to further stabilize the formation of the stereocomplex, it is more preferable to add a phosphate metal salt (component C) represented by the structural formula of the following general formula (1). The phosphoric acid ester metal salt may be used alone or in combination.

Figure 2009203576
Figure 2009203576

上記一般式(1)において、Rは、水素原子又は炭素数1〜4のアルキル基を表す。Rで表される炭素数1〜4のアルキル基として、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基、tert−ブチル基等が例示される。 In the general formula (1), R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. Examples of the alkyl group having 1 to 4 carbon atoms represented by R 1 include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, and tert-butyl. Examples are groups.

、Rは、各々独立に水素原子又は炭素数1〜12のアルキル基を表す。炭素数1〜12のアルキル基としては、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基、tert−ブチル基、n−アミル基、iso−アミル基、sec−アミル基、tert−アミル基、ヘキシル基、ヘプチル基、オクチル基、iso−オクチル基、tert−オクチル基、2−エチルヘキシル基、ノニル基、iso−ノニル基、sec−ノニル基、デシル基、iso−デシル基、tert−デシル基、ウンデシル基、ドデシル基、tert−ドデシル基等が挙げられる。 R 2 and R 3 each independently represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms. Examples of the alkyl group having 1 to 12 carbon atoms include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, and n-amyl. Group, iso-amyl group, sec-amyl group, tert-amyl group, hexyl group, heptyl group, octyl group, iso-octyl group, tert-octyl group, 2-ethylhexyl group, nonyl group, iso-nonyl group, sec -Nonyl group, decyl group, iso-decyl group, tert-decyl group, undecyl group, dodecyl group, tert-dodecyl group, etc. are mentioned.

は、Li、Na、K、Rb等のアルカリ金属原子、Mg、Ca、Sr等のアルカリ土類金属原子、亜鉛原子又はアルミニウム原子を表す。pは1又は2を表す。Mがアルカリ金属原子、アルカリ土類金属原子又は亜鉛原子のときqは0を表し、Mがアルミニウム原子のときqは1又は2を表す。 M 1 represents an alkali metal atom such as Li, Na, K, or Rb, an alkaline earth metal atom such as Mg, Ca, or Sr, a zinc atom, or an aluminum atom. p represents 1 or 2. When M 1 is an alkali metal atom, an alkaline earth metal atom or a zinc atom, q represents 0, and when M 1 is an aluminum atom, q represents 1 or 2.

一般式(1)で表される燐酸エステル金属塩のうち好ましいものとしては、例えばRが水素原子、R、Rがともにtert−ブチル基の化合物が挙げられる。このような燐酸エステル金属塩として、旭電化(株)製の商品名、アデカスタブNA−10、NA−11、NA−21、NA−30、NA−35等が挙げられる。燐酸エステル金属塩は公知の方法により合成することができる。 Preferable examples of the phosphoric acid ester metal salt represented by the general formula (1) include compounds in which R 1 is a hydrogen atom, and R 2 and R 3 are both tert-butyl groups. As such a phosphoric acid ester metal salt, trade names manufactured by Asahi Denka Co., Ltd., ADK STAB NA-10, NA-11, NA-21, NA-30, NA-35 and the like can be mentioned. The phosphoric acid ester metal salt can be synthesized by a known method.

燐酸エステル金属塩は、平均粒径が好ましくは0.01〜10μm、より好ましくは0.05〜7μmである。粒径を0.01μmより小さくすることは工業的に困難であり、それほど小さくする必要もない。また10μmより大きいと、紡糸、延伸時、断糸の頻度が高まる。   The average particle size of the phosphoric acid ester metal salt is preferably 0.01 to 10 μm, more preferably 0.05 to 7 μm. It is industrially difficult to make the particle size smaller than 0.01 μm, and it is not necessary to make it so small. On the other hand, if it is larger than 10 μm, the frequency of yarn breakage increases during spinning and drawing.

(ポリL−乳酸とポリD−乳酸からなるポリ乳酸組成物)
本発明におけるポリ乳酸組成物を構成するポリL−乳酸(A成分)とポリD−乳酸(B成分)との比は、A成分/B成分(質量)で、好ましくは40/60〜60/40、より好ましくは45/55〜55/45、さらに好ましくは50/50である。この範囲を逸脱すると、ステレオコンプレックスポリ乳酸結晶以外にポリL−乳酸単独結晶あるいはポリD−乳酸単独結晶が生成しやすくなり、結果として耐熱性を下げる結果となってしまう。
(Polylactic acid composition comprising poly-L-lactic acid and poly-D-lactic acid)
The ratio of poly L-lactic acid (A component) and poly D-lactic acid (B component) constituting the polylactic acid composition in the present invention is A component / B component (mass), preferably 40 / 60-60 / 40, more preferably 45/55 to 55/45, still more preferably 50/50. If it deviates from this range, a poly L-lactic acid single crystal or a poly D-lactic acid single crystal is likely to be generated in addition to the stereocomplex polylactic acid crystal, resulting in a decrease in heat resistance.

ポリ乳酸組成物には更に、燐酸エステル金属塩(C成分)が含まれていても良い。その燐酸エステル金属塩(C成分)の好ましい含有量は、ポリL−乳酸(A成分)とポリD―乳酸(B成分)との合計100質量部(ポリ乳酸組成物)あたり0.05〜5.0質量部、好ましくは0.05〜4.0質量部、より好ましくは0.1〜3.0質量部である。0.05質量部より少量であると、ポリL−乳酸とポリD−乳酸の混練状態によってはポリL−乳酸単体の結晶あるいはポリD−乳酸単体の結晶が存在していることがあり、熱安定性が劣化することがある。また5.0質量部より多量に使用すると繊維形成時、熱分解を起こしたり、断糸が発生したりする場合があり好ましくない。   The polylactic acid composition may further contain a phosphate metal salt (component C). The preferable content of the phosphoric acid ester metal salt (component C) is 0.05 to 5 per 100 parts by mass (polylactic acid composition) of poly L-lactic acid (component A) and poly D-lactic acid (component B). 0.0 parts by mass, preferably 0.05-4.0 parts by mass, more preferably 0.1-3.0 parts by mass. If the amount is less than 0.05 parts by mass, crystals of poly L-lactic acid alone or crystals of poly D-lactic acid alone may exist depending on the kneading state of poly L-lactic acid and poly D-lactic acid. Stability may deteriorate. On the other hand, if it is used in an amount larger than 5.0 parts by mass, it may cause thermal decomposition or fiber breakage during fiber formation, which is not preferable.

A成分、B成分及びC成分の混合は、従来公知の各種方法を使用することができる。例えば、A成分、B成分及びC成分を、タンブラー、V型ブレンダー、スーパーミキサー、ナウタミキサー、バンバリーミキサー、混練ロール又は1軸若しくは2軸の溶融押出機等で混合することができる。また、C成分単独からなる剤やC成分を含むペレットを一定量に供給するために、スクリューフィーダーやコイルフィーダー、振動式フィーダー等の公知の供給装置を用いることができる。   For mixing the A component, the B component and the C component, various conventionally known methods can be used. For example, the A component, the B component, and the C component can be mixed with a tumbler, a V-type blender, a super mixer, a nauta mixer, a Banbury mixer, a kneading roll, a uniaxial or biaxial melt extruder, or the like. Moreover, in order to supply the agent which consists only of C component, and the pellet containing C component to a fixed quantity, well-known supply apparatuses, such as a screw feeder, a coil feeder, and a vibration type feeder, can be used.

こうして得られるポリ乳酸組成物(必要に応じてC成分を含んでも良い。)は、溶融混合され、そのまま、又は計量ポンプ等を経由して紡糸装置に移送することもできる。また、一旦ペレット状にしてから紡糸装置に供給することもできる。その際のペレット長は1〜7mm、長径3〜5mm、短径1〜4mmのものが好ましい。ペレットの形状は、ばらつきのないものが好ましい。ペレット化されたポリ乳酸組成物は、プレッシャーメルター型や1軸あるいは2軸エクストルーダー型等の通常の溶融押出し機を使用して紡糸装置に移送することもできる。ステレオコンプレックスポリ乳酸結晶の形成にあたっては、A成分及びB成分を十分に混合することが重要であり、とりわけ剪断応力下、混合することが好ましい。   The polylactic acid composition thus obtained (which may contain a C component as required) can be melt-mixed and transferred to the spinning device as it is or via a metering pump or the like. Further, it may be once pelletized and then supplied to the spinning device. The pellet length in that case is preferably 1 to 7 mm, the major axis is 3 to 5 mm, and the minor axis is 1 to 4 mm. The pellet shape is preferably uniform. The pelletized polylactic acid composition can also be transferred to a spinning device using a normal melt extruder such as a pressure melter type or a single-screw or twin-screw extruder type. In forming the stereocomplex polylactic acid crystal, it is important to sufficiently mix the A component and the B component, and it is particularly preferable to mix them under shear stress.

ポリ乳酸組成物は、260℃において溶融させた場合の質量平均分子量の低下が20%以下であるのが好ましい。高温での分子量低下が激しいと、紡糸が困難になるばかりでなく、得られた糸の物性が低下し好ましくない。   The polylactic acid composition preferably has a decrease in mass average molecular weight of 20% or less when melted at 260 ° C. When the molecular weight is drastically reduced at high temperatures, spinning is not only difficult, but physical properties of the obtained yarn are lowered, which is not preferable.

またポリ乳酸組成物は、水分率が100ppm以下であることが好ましい。水分率が高いとポリL−乳酸成分とポリD―乳酸成分の加水分解が促進され、分子量が著しく低下し、紡糸が困難になるばかりでなく、得られた糸の物性が低下し、好ましくない。また、ポリ乳酸組成物中の残留ラクチド量は400ppm以下が好ましい。ラクチド法によって得られるポリ乳酸中のラクチドは溶融紡糸時に気化して糸斑の原因になることがあるため、ラクチド量を400ppm以下に抑えることが良好な糸を得る目的からすると好ましい。   The polylactic acid composition preferably has a moisture content of 100 ppm or less. When the moisture content is high, hydrolysis of the poly-L-lactic acid component and the poly-D-lactic acid component is promoted, the molecular weight is remarkably lowered, and not only spinning becomes difficult, but physical properties of the obtained yarn are lowered, which is not preferable. . Further, the amount of residual lactide in the polylactic acid composition is preferably 400 ppm or less. Since lactide in the polylactic acid obtained by the lactide method may vaporize during melt spinning and cause yarn unevenness, it is preferable for the purpose of obtaining a good yarn to suppress the lactide amount to 400 ppm or less.

前述のポリ乳酸組成物には必要に応じて、触媒のほか、各種の添加剤、例えば、艶消し剤、熱安定剤、光安定剤、中和剤、造核剤、滑剤、減粘剤、抗菌剤、難燃剤、帯電防止剤、可塑剤、消泡剤、整色剤、酸化防止剤、紫外線吸収剤、蛍光増白剤、染料や顔料等が添加されていてもよい。なお、ポリL−乳酸及びポリD−乳酸は高温高湿下や酸、アルカリ等の存在下で加水分解を受け易いので、カルボジイミド化合物等のポリエステル用等で公知の加水分解抑制剤を添加してもよい。   In addition to the catalyst, various additives such as matting agents, heat stabilizers, light stabilizers, light stabilizers, neutralizers, nucleating agents, lubricants, thinning agents, as necessary, may be added to the polylactic acid composition described above. Antibacterial agents, flame retardants, antistatic agents, plasticizers, antifoaming agents, color adjusting agents, antioxidants, ultraviolet absorbers, fluorescent whitening agents, dyes and pigments may be added. Poly L-lactic acid and poly D-lactic acid are susceptible to hydrolysis under high temperature and high humidity and in the presence of acid, alkali, etc., so a known hydrolysis inhibitor is added for polyesters such as carbodiimide compounds. Also good.

(溶融紡糸を行い未延伸糸を得る工程(ア))
ポリ乳酸組成物は、エクストルーダー型やプレッシャーメルター型の溶融押出し機で溶融された後、ギアポンプにより計量され、口金に設けられたノズルからモノフィラメント、マルチフィラメント等として吐出される。ポリ乳酸組成物は、ポリL−乳酸とポリD−乳酸及び必要に応じて燐酸エステル金属塩を予め溶融混練して得たペレットを溶融押出機で溶融してもよいし、ポリL−乳酸とポリD−乳酸のペレット及び必要に応じて燐酸エステル金属塩の粉体、溶融物、あるいは燐酸エステル金属塩を樹脂中に含有するマスターチップをドライブレンドの状態でブレンドしたものを溶融押出機に供給して溶融してもよい。但し、溶融温度及び紡糸温度(輸送温度、紡糸口金温度)は220〜260℃、好ましくは225〜255℃の間に制限することが必要である。なぜならば、260℃を超えると、ポリL−乳酸及びポリD−乳酸が加水分解、熱分解を起こして、ラクチド等の低分子量物を発生し、220℃を下回ると、吐出前にステレオコンプレックスポリ乳酸結晶を形成し始め、ノズルや吐出ポリマー中で固化し、紡糸単糸切れになるからである。なお紡糸の際に用いるノズルの形状、ノズル数は特に制限されるものではなく、円形、異形、中実、中空等のいずれも採用することができる。
(Process to obtain undrawn yarn by melt spinning (A))
The polylactic acid composition is melted by an extruder type or pressure melter type melt extruder, then measured by a gear pump, and discharged as a monofilament, a multifilament, or the like from a nozzle provided in the base. The polylactic acid composition may be obtained by melting pellets obtained by previously melt-kneading poly-L-lactic acid, poly-D-lactic acid and, if necessary, a phosphate metal salt with a melt extruder, Supply poly D-lactic acid pellets and phosphate metal salt powder as required, melt, or master chips containing phosphate metal salt in resin in dry blend to melt extruder And may be melted. However, the melting temperature and spinning temperature (transport temperature, spinneret temperature) must be limited to 220 to 260 ° C, preferably 225 to 255 ° C. This is because when it exceeds 260 ° C., poly L-lactic acid and poly D-lactic acid are hydrolyzed and thermally decomposed to generate low molecular weight substances such as lactide. This is because lactic acid crystals begin to form, solidify in the nozzle and the discharged polymer, and the spun single yarn breaks. The shape of the nozzle and the number of nozzles used for spinning are not particularly limited, and any of circular, irregular, solid, hollow and the like can be adopted.

その後、紡糸口金下5〜200mmの位置で、紡出糸条に10〜40℃の空気を送風して冷却固化させた後、摩擦低減や集束を目的とした紡糸油剤を付与して、紡糸速度100〜3000m/分以下で引き取って、ワインダーを用いてボビンに巻き取るか、数百〜数万デシテックスのトウの状態で缶等の容器に得られた未延伸糸を収納する。紡糸速度は特に限定されるものではないが、3000m/分を超えると未延伸糸内に配向結晶化による結晶が生成するため延伸後の強度が落ちる傾向にある。設備や目標とする繊度、強伸度物性に応じて100〜3000m/分の範囲で選定されることが多く、且つ好ましい態様である。特に、短繊維の量産機では、数十〜数千フィラメントの未延伸糸トウを数百〜数万デシテックスに束ね、バケツや缶等の容器に受けるプロセスをとっている場合が多いが、トウのもつれがないように容器内に収納するには、缶や収納済みトウへの衝突による衝撃の少ない2000m/分以下の紡糸速度とすることが好ましい。   Thereafter, at a position of 5 to 200 mm below the spinneret, the spinning yarn is blown with air at 10 to 40 ° C. to be cooled and solidified, and then a spinning oil agent is applied for the purpose of reducing friction and converging, and spinning speed. The undrawn yarn is taken up at a speed of 100 to 3000 m / min and wound on a bobbin using a winder, or the undrawn yarn obtained in a container such as a can in a state of a tow of several hundred to several tens of thousands dtex. The spinning speed is not particularly limited, but if it exceeds 3000 m / min, crystals due to orientation crystallization are generated in the undrawn yarn, and the strength after drawing tends to decrease. This is a preferred mode in many cases, and is selected in the range of 100 to 3000 m / min depending on the equipment, the desired fineness, and the high elongation properties. In particular, mass production machines for short fibers often take the process of bundling undrawn yarn tows of tens to thousands of filaments into hundreds to tens of thousands dtex and receiving them in containers such as buckets and cans. In order to store in the container so as not to be entangled, it is preferable to set the spinning speed to 2000 m / min or less with less impact caused by collision with the can or the stored tow.

(1段延伸あるいは2段以上の多段延伸を行う延伸工程(イ))
未延伸糸(UDY)をボビンに一旦巻き取るか、缶等の容器内に収納した後、公知の別延用延伸機に供される。
延伸は、1段延伸でも、2段以上の多段延伸でも良いが、本発明の製造方法では、1段目の延伸を20〜150℃の液浴中で、CDRの0.55〜2.0倍といった比較的高倍率の延伸倍率に設定することで、室温あるいは乾熱中での多段延伸と異なり、延伸張力を低下させ、かつ延伸点を一定位置に固定することによって、延伸での単糸切れやスリップ、発熱による延伸斑、繊度斑、強伸度斑を抑制することに特徴がある。
(Stretching process (b) that performs one-stage stretching or multi-stage stretching of two or more stages)
The unstretched yarn (UDY) is once wound around a bobbin or stored in a container such as a can, and then supplied to a known separate stretcher.
The stretching may be one-stage stretching or multi-stage stretching of two or more stages. However, in the production method of the present invention, the first-stage stretching is carried out in a liquid bath at 20 to 150 ° C. Different from multi-stage drawing at room temperature or dry heat by setting the draw ratio to a relatively high magnification such as double, the draw tension is lowered and the drawing point is fixed at a fixed position, thereby breaking the single yarn in drawing. It is characterized by suppressing stretch spots, fine spots, and strong stretch spots caused by heat, slip, and heat generation.

ここで、CDRとは冷延伸倍率(cold draw ratio)の略であるが、ここでは特に、25℃の水中で未延伸糸を手で引っ張ったときに、目視でのネッキング現象が終了する時点における未延伸糸の長さを基準とした延伸倍率を表す。紡糸速度100〜2000m/分で得られたステレオコンプレックスポリ乳酸未延伸糸は降伏応力が高く、かつ脆い傾向があるため、通常の室温空気中で行う冷延伸では破断してしまうが、水中に浸漬して冷延伸を行うと、未延伸糸への水分子の浸透拡散と推定される可塑化効果により、通常のポリエステル等と同様のネッキング現象が確認される。1段目の延伸は液浴中でCDRの0.55〜2.0倍の延伸倍率に設定することが好ましいが、延伸ローラーあるいは延伸ピンに延伸点がかからないような延伸倍率の設定が肝要である。延伸ローラー又は延伸ピンに延伸点がかかってしまうと、断熱変形に伴う発熱で未延伸糸自体が加熱され、融着や延伸点バラツキによる未延伸状態が発生してしまうためである。結果として、全延伸倍率はCDRの0.55〜3.0倍に設定し、目標とする強伸度物性や熱収縮物性に応じて設定すればよい。但し1段目の延伸及び全延伸倍率がCDRの0.55〜1.0倍の場合であっても、実質的な延伸倍率、すなわち未延伸糸の長さに対する延伸糸の長さが1.0倍未満の場合を除く。当該工程を通過した後に実質的に未延伸糸が延伸されていない場合を除く趣旨である。2段目以降の延伸も液浴中で実施するのが好ましい。1段目の延伸倍率がCDRの2.0倍あるいは全延伸倍率がCDRの3.0倍を超えると、ポリ乳酸組成物の可能延伸倍率を越え、延伸で単糸切れを生じる。一方、1段目の延伸倍率又は全延伸倍率がCDRの0.55倍未満では、延伸点にバラツキを生じ、部分的に未延伸部分が発生したり、強伸度や熱収縮率、繊度に不均一性が生じたり、延伸で単糸切れを起こし、ローラーへの捲付や断糸端の融着等の問題が生じる。好ましくは1段目の延伸はCDRの0.6〜2.0倍、全延伸倍率はCDRの0.6〜3.0倍となるように設定することである。   Here, CDR is an abbreviation for cold draw ratio, but here, particularly when the undrawn yarn is pulled by hand in water at 25 ° C., when the visual necking phenomenon ends. Represents the draw ratio based on the length of the undrawn yarn. The stereocomplex polylactic acid undrawn yarn obtained at a spinning speed of 100 to 2000 m / min has high yield stress and tends to be brittle, so it breaks in cold drawing performed in normal room temperature air, but it is immersed in water. When cold drawing is performed, a necking phenomenon similar to that of ordinary polyester or the like is confirmed by the plasticizing effect that is presumed to be the permeation and diffusion of water molecules into the undrawn yarn. The first stage of stretching is preferably set to a draw ratio of 0.55 to 2.0 times that of CDR in a liquid bath, but it is important to set the draw ratio so that the drawing roller or drawing pin does not have a drawing point. is there. This is because when the drawing point is applied to the drawing roller or the drawing pin, the undrawn yarn itself is heated by the heat generated by the adiabatic deformation and an undrawn state due to fusion or drawing point variation occurs. As a result, the total draw ratio may be set to 0.55 to 3.0 times the CDR, and may be set according to the targeted high elongation property and heat shrink property. However, even when the first-stage drawing and the total draw ratio are 0.55 to 1.0 times the CDR, the substantial draw ratio, that is, the length of the drawn yarn relative to the length of the undrawn yarn is 1. Excludes less than 0 times. The purpose is to exclude the case where the undrawn yarn is not substantially drawn after passing through the step. It is preferable to carry out the second and subsequent stretching in a liquid bath. If the first stage draw ratio is 2.0 times the CDR or the total draw ratio exceeds 3.0 times the CDR, the polylactic acid composition exceeds the possible draw ratio, and single yarn breakage occurs during drawing. On the other hand, if the draw ratio of the first stage or the total draw ratio is less than 0.55 times the CDR, the stretching points will vary, resulting in partial unstretched parts, strong elongation, heat shrinkage, and fineness. Non-uniformity occurs, or single yarn breakage occurs during stretching, causing problems such as wrinkling on a roller and fusion of a yarn end. Preferably, the first-stage stretching is set to 0.6 to 2.0 times the CDR, and the total stretching ratio is set to 0.6 to 3.0 times the CDR.

延伸は20〜150℃の液浴中で行うとよい。空気中や乾熱雰囲気下で延伸を行うと、熱交換効率が悪いために、非晶部分子鎖のパッキング状態が緻密になっているとみられるステレオコンプレックスポリ乳酸結晶形成能をもつ未延伸糸をネック変形させるに十分な温度に短時間にすることができない。延伸温度が20℃未満であると非晶分子の運動性が悪く本発明が目標とする延伸性を得られない。また、150℃を超えると、延伸により部分的に生じたポリL−乳酸単独結晶やポリD−乳酸単独結晶(各々融点が約170℃)が存在するため、結晶融解開始に伴う融着や繊維の硬化が見られる。好ましくは40〜130℃の範囲である。   The stretching is preferably performed in a liquid bath at 20 to 150 ° C. Unstretched yarn with stereocomplex polylactic acid crystal forming ability, which is considered to have a dense packing state of amorphous part molecular chains due to poor heat exchange efficiency when stretched in air or in a dry heat atmosphere. It is not possible to make the temperature short enough to deform the neck. If the stretching temperature is less than 20 ° C., the mobility of amorphous molecules is poor and the target stretchability of the present invention cannot be obtained. Further, when the temperature exceeds 150 ° C., poly L-lactic acid single crystals and poly D-lactic acid single crystals partially generated by stretching (each melting point is about 170 ° C.) exist. Can be seen. Preferably it is the range of 40-130 degreeC.

液浴に用いる媒体は、水、シリコーンオイル、エチレングリコールやアセトン等の有機溶媒、塩化カリウム塩水溶液等の無機塩溶液、超臨界二酸化炭素等が上げられるが、プロセスや繊維への汚染や作業面の安全性等を考慮すると、水が最も好ましい。水浴延伸は、ポリエステル短繊維の量産設備として知られている温水バス等を活用することができる。水浴の場合の延伸温度は20〜100℃が好ましいということになる。   The medium used for the liquid bath is water, silicone oil, organic solvents such as ethylene glycol and acetone, inorganic salt solutions such as potassium chloride aqueous solution, supercritical carbon dioxide, etc. In view of safety, etc., water is most preferable. For the water bath drawing, a hot water bath or the like known as mass production equipment for polyester short fibers can be used. The stretching temperature in the case of a water bath is preferably 20 to 100 ° C.

(定長熱処理又は弛緩熱処理を施す工程(ウ))
延伸糸(DY)を緊張熱処理又は弛緩熱収縮させることにより、延伸後のポリL−乳酸単独結晶前駆体あるいはポリD−乳酸単独結晶前駆体をステレオコンプレックスポリ乳酸結晶へ転移させ、かつ非晶部の結晶化促進あるいは非晶部の歪を除去し熱収縮を下げることができる。緊張熱処理は、130〜200℃、好ましくは140〜190℃で行うことが好ましい。緊張熱処理温度が130℃未満では、延伸時に生成するポリL−乳酸又はポリD−乳酸単独の結晶からステレオコンプレックスポリ乳酸結晶への転移が進まない。緊張熱処理温度が200℃を超えると、ステレオコンプレックスポリ乳酸結晶の融解が始まり、熱収縮や繊維硬化が始まる。また一方、弛緩熱処理は、130〜165℃、好ましくは140〜160℃で行うことが好ましい。弛緩熱処理温度が130℃未満では、延伸時に生成するポリL−乳酸又はポリD−乳酸単独の結晶からステレオコンプレックスポリ乳酸結晶への転移が進まない。弛緩熱処理温度が165℃を超えると、延伸で生じたポリL−乳酸単独結晶あるいはポリD−乳酸単独結晶の融解が始まり、熱収縮や繊維硬化が始まる。
(Process to perform constant length heat treatment or relaxation heat treatment (c))
The drawn yarn (DY) is subjected to tension heat treatment or relaxation heat shrinkage to transfer the drawn poly L-lactic acid single crystal precursor or poly D-lactic acid single crystal precursor to a stereocomplex polylactic acid crystal, and an amorphous part It is possible to reduce the thermal shrinkage by promoting the crystallization of the material or removing the distortion of the amorphous part. The tension heat treatment is preferably performed at 130 to 200 ° C, preferably 140 to 190 ° C. When the tension heat treatment temperature is less than 130 ° C., the transition from the poly L-lactic acid or poly D-lactic acid single crystal produced during stretching to the stereocomplex polylactic acid crystal does not proceed. When the tension heat treatment temperature exceeds 200 ° C., melting of the stereocomplex polylactic acid crystal starts, and heat shrinkage and fiber hardening start. On the other hand, the relaxation heat treatment is preferably performed at 130 to 165 ° C, preferably 140 to 160 ° C. When the relaxation heat treatment temperature is less than 130 ° C., the transition from the poly L-lactic acid or poly D-lactic acid single crystal produced during stretching to the stereocomplex polylactic acid crystal does not proceed. When the relaxation heat treatment temperature exceeds 165 ° C., melting of the poly L-lactic acid single crystal or poly D-lactic acid single crystal generated by stretching starts, and heat shrinkage and fiber hardening start.

熱処理はテンションがかかった状態で行う定長熱処理でもテンションがかからない状態で行う弛緩熱処理のいずれでもよいが、水分や有機溶媒で湿った湿熱状態でなく乾熱状態で行うことが肝要である。湿熱状態で熱処理を行うと、ポリL−乳酸あるいはポリD−乳酸の非晶部分が水分子あるいは水酸基を含む化合物、アルカリによる加水分解(若しくは加溶媒分解等)を受けやすくなり、強伸度物性や靱性が低下するためである。   The heat treatment may be either a constant-length heat treatment performed in a tensioned state or a relaxation heat treatment performed in a state where no tension is applied, but it is important that the heat treatment be performed in a dry heat state rather than a moist heat state moistened with moisture or an organic solvent. When heat treatment is carried out in a wet heat state, the amorphous part of poly-L-lactic acid or poly-D-lactic acid becomes susceptible to hydrolysis (or solvolysis, etc.) by water molecules or hydroxyl group-containing compounds and alkalis, resulting in high elongation properties It is because toughness falls.

定長熱処理を施す手段としては、延伸糸に一定のテンションがかかった状態で、熱媒や電気ヒーターで表面を加熱したローラーや接触式ヒーターに接触させる接触加熱法と、スーパーヒートした高温蒸気(水蒸気等)噴射や熱風循環のチャンバー、赤外線ヒーター等の輻射熱による非接触加熱法がある。定長熱処理は基本的にはドラフトが1.0倍であるが、熱処理に伴う繊維の収縮や伸長変化等に伴い、0.85〜1.15倍等のドラフトもとり得るものとする。なお、液浴延伸後の水分を除去するために、熱処理前にローラーによる狭窄や乾熱ローラーによる低温乾燥、温風あるいは減湿空気、高圧空気を吹き付ける等のプロセスが併設されることが好ましい。   The constant-length heat treatment can be performed by contacting the heated yarn with a heated medium or an electric heater with a constant tension applied to the drawn yarn, contact with a roller or contact heater, and superheated high-temperature steam ( There is a non-contact heating method using radiant heat such as a steam or hot air circulation chamber or an infrared heater. In the constant length heat treatment, the draft is basically 1.0 times. However, the draft of 0.85 to 1.15 times can be taken in accordance with the shrinkage and elongation change of the fiber accompanying the heat treatment. In addition, in order to remove the water after the liquid bath stretching, it is preferable that a process such as constriction by a roller, low temperature drying by a dry heat roller, blowing warm air or dehumidified air, high pressure air, etc. is additionally provided before the heat treatment.

一方、弛緩熱処理は、延伸糸に無緊張状態で、熱風循環チャンバーや熱風を通過させるサクションドラム、オーバーフィードの状態で加熱ローラーや接触式ヒーター上を通過させる等の方法がある。
このように定長熱処理又は弛緩熱処理における延伸糸への加熱方法は、乾熱雰囲気中又は乾熱加熱体との接触によって行うことが好ましい。
On the other hand, the relaxation heat treatment includes a method in which the drawn yarn is passed through a hot air circulation chamber, a suction drum through which hot air passes, a heating roller or a contact heater in an overfeed state without tension.
As described above, the heating method for the drawn yarn in the constant length heat treatment or the relaxation heat treatment is preferably performed in a dry heat atmosphere or by contact with a dry heat heater.

定長熱処理と弛緩熱処理の両方を組み合せると、強度が高く、熱収縮率が低い繊維が得られるのでより好ましい。その場合、定長熱処理の方が繊維軸方向に配向した状態のステレオコンプレックスポリ乳酸結晶を得ることができるので、定長熱処理を130〜200℃に設定し、弛緩熱処理は40〜160℃の間で設定することが好ましい。弛緩熱処理温度を下げると、より高強度や高捲縮性の繊維が得られるが、熱収縮はやや高目となるので、弛緩熱処理は40℃以上で行うことが好ましい。比較的強度は低目で伸度高め、熱収縮率低めの繊維を得ようとするならば、弛緩熱処理温度を160℃で行うことが好ましいが、200℃まで上げることも可能である。   A combination of both constant length heat treatment and relaxation heat treatment is more preferable because a fiber having high strength and low heat shrinkage can be obtained. In that case, since the stereocomplex polylactic acid crystal in the state in which the constant length heat treatment is oriented in the fiber axis direction can be obtained, the constant length heat treatment is set to 130 to 200 ° C., and the relaxation heat treatment is between 40 to 160 ° C. It is preferable to set by. When the relaxation heat treatment temperature is lowered, fibers having higher strength and higher crimpability can be obtained, but heat shrinkage is somewhat high, so that the relaxation heat treatment is preferably performed at 40 ° C. or higher. If it is intended to obtain a fiber having a relatively low strength and a high degree of elongation and a low heat shrinkage rate, the relaxation heat treatment temperature is preferably 160 ° C., but can be increased to 200 ° C.

本発明のステレオコンプレックスポリ乳酸繊維においてはこのような紡糸、延伸、熱処理を行うことによって、ポリL−乳酸単体結晶、ポリD−乳酸単体の結晶からステレオコンプレックスポリ乳酸結晶への転移が進んだポリ乳酸繊維を得ることができる。そしてその融点を200〜230℃にすることができる。背景技術の欄にて説明したようにポリL−乳酸においては、その融点は150〜190℃、より厳密には約170℃前後であり、
本発明のステレオコンプレックスポリ乳酸繊維の製造方法において得られたステレオコンプレックスポリ乳酸繊維においては、この150〜190℃の温度領域に実質的に融点が観測されない。「実質的に観測されない」とは後述するように、示差走査熱量測定計(DSC)を用いて、試料10mgを窒素雰囲気下、昇温速度10℃/分で室温から260℃まで昇温した場合に、結晶融解に基づく吸熱ピークが観測されないことを表す。
In the stereocomplex polylactic acid fiber of the present invention, by performing such spinning, stretching, and heat treatment, poly L-lactic acid simple crystals, poly D-lactic acid simple crystals to polycomplexes having progressed from stereocomplex polylactic acid crystals. Lactic acid fibers can be obtained. And the melting | fusing point can be 200-230 degreeC. As explained in the background art section, in poly L-lactic acid, the melting point is 150 to 190 ° C., more strictly, about 170 ° C.,
In the stereocomplex polylactic acid fiber obtained by the method for producing stereocomplex polylactic acid fiber of the present invention, substantially no melting point is observed in the temperature range of 150 to 190 ° C. “Substantially not observed” means that 10 mg of a sample is heated from room temperature to 260 ° C. at a heating rate of 10 ° C./min in a nitrogen atmosphere using a differential scanning calorimeter (DSC) as described later. Represents that no endothermic peak based on crystal melting is observed.

故に本発明の製造方法によって得られたステレオコンプレックスポリ乳酸繊維は、従来のポリ乳酸繊維を用いて織られた布帛等が有していたような、180℃以上の温度がかかるアイロン掛け等ができないといった実用上の問題が発生することがなくなる。   Therefore, the stereocomplex polylactic acid fiber obtained by the production method of the present invention cannot be ironed at a temperature of 180 ° C. or higher, as was the case with fabrics woven using conventional polylactic acid fiber. No practical problems such as this will occur.

本発明の繊維の製造方法は、未延伸糸を紡糸とは別工程で延伸するFOY長繊維にも適用できるが、量産機の殆どが溶融紡糸と延伸・熱処理が別工程であって、3000m/分以上の高速紡糸が困難である短繊維の製造方法に特に適している。短繊維を製造する場合は、長繊維での延伸方法に加えて、用途に応じた所定の繊維長にロータリーカッター等でカットする工程、更に捲縮が必要とされる場合は、定長熱処理と弛緩熱処理の間に押し込みクリンパー等で捲縮を付与する工程が加わる。その際、捲縮付与性を高めるため、水蒸気や電熱ヒーター等でクリンパー前で予熱することができる。   The fiber production method of the present invention can also be applied to FOY long fibers in which undrawn yarn is drawn in a separate process from spinning, but most mass production machines have separate processes for melt spinning and stretching / heat treatment, and 3000 m / It is particularly suitable for a method for producing short fibers in which high-speed spinning for more than 5 minutes is difficult. When producing short fibers, in addition to the method of drawing with long fibers, a step of cutting with a rotary cutter or the like into a predetermined fiber length according to the application, and if further crimping is required, constant length heat treatment and A step of imparting crimp with an indentation crimper or the like is added during the relaxation heat treatment. In that case, in order to improve crimp imparting property, it can be preheated before the crimper with steam, an electric heater or the like.

以下、実施例により、本発明を更に具体的に説明するが、本発明は実施例によって何ら限定を受けるものではない。
なお、実施例における各項目は次の方法で測定した。
Hereinafter, the present invention will be described more specifically by way of examples. However, the present invention is not limited to the examples.
In addition, each item in an Example was measured with the following method.

(1)還元粘度:
ポリマーサンプル0.12gを10mLのテトラクロロエタン/フェノール(容量比1/1)に溶解し、35℃における還元粘度(mL/g)を測定した。
(1) Reduced viscosity:
0.12 g of a polymer sample was dissolved in 10 mL of tetrachloroethane / phenol (volume ratio 1/1), and the reduced viscosity (mL / g) at 35 ° C. was measured.

(2)質量平均分子量(Mw):
ポリマーの質量平均分子量はGPC(カラム温度40℃、クロロホルム)により、ポリスチレン標準サンプルとの比較で求めた。
(2) Mass average molecular weight (Mw):
The mass average molecular weight of the polymer was determined by GPC (column temperature 40 ° C., chloroform) in comparison with a polystyrene standard sample.

(3)ステレオ化率(Sc化率)
理化学電気社製ROTA FLEX RU200B型X線回折装置用いて透過法により、以下条件でX線回折図形をイメージングプレートに記録した。得られたX線回折図形において赤道方向の回折強度プロファイルを求め、ここで2θ=12.0°、20.7°、24.0°付近に現れるステレオコンプレックスポリ乳酸結晶に由来する各回折ピークの積分強度の総和ΣISCiと、2θ=16.5°付近に現れるホモポリ乳酸結晶に由来する回折ピークの積分強度IHMから下式に従いステレオ化率(Sc化率)を求めた。尚、ΣISCi並びにIHMは図1に示すように、赤道方向の回折強度プロファイルにおいてバックグランドや非晶による散漫散乱を差し引くことによって見積もった。本願発明においては、延伸後に得られた延伸糸(DY)のSc化率が92%以上の場合を、ステレオコンプレックスポリ乳酸繊維が得られていると評価した。
X線源: Cu−Kα線(コンフォーカル ミラー)
出力: 45kV×70mA
スリット: 1mmΦ〜0.8mmΦ
カメラ長: 120mm
積算時間: 10分
サンプル: 長さ3cm、35mg
Sc化率=ΣISCi/(ΣISCi+IHM)×100
ここで、ΣISCi=ISC1+ISC2+ISC3
SCi(i=1〜3)はそれぞれ2θ=12.0°、20.7°、24.0°付近の各回折ピークの積分強度を、
HMは2θ=16.5°付近の回折ピークの積分強度をそれぞれ表す。
(3) Stereo ratio (Sc ratio)
An X-ray diffraction pattern was recorded on an imaging plate under the following conditions by a transmission method using a ROTA FLEX RU200B type X-ray diffractometer manufactured by RIKEN. In the obtained X-ray diffraction pattern, a diffraction intensity profile in the equator direction is obtained, and here, each diffraction peak derived from the stereocomplex polylactic acid crystal appearing in the vicinity of 2θ = 12.0 °, 20.7 °, and 24.0 °. From the integrated intensity total ΣI SCi and the integrated intensity I HM of diffraction peaks derived from homopolylactic acid crystals appearing in the vicinity of 2θ = 16.5 °, the stereoization rate (Sc conversion rate) was determined according to the following formula. Incidentally, as shown in FIG. 1, ΣI SCi and I HM were estimated by subtracting diffuse scattering due to background or amorphous in the diffraction intensity profile in the equator direction. In the present invention, it was evaluated that a stereocomplex polylactic acid fiber was obtained when the Sc conversion rate of the drawn yarn (DY) obtained after drawing was 92% or more.
X-ray source: Cu-Kα ray (confocal mirror)
Output: 45kV x 70mA
Slit: 1mmΦ ~ 0.8mmΦ
Camera length: 120mm
Integration time: 10 minutes Sample: 3cm length, 35mg
Sc conversion rate = ΣI SCi / (ΣI SCi + I HM ) × 100
Here, ΣI SCi = I SC1 + I SC2 + I SC3
I SCi (i = 1 to 3) is the integrated intensity of each diffraction peak around 2θ = 12.0 °, 20.7 °, and 24.0 °, respectively.
I HM represents the integrated intensity of the diffraction peak around 2θ = 16.5 °, respectively.

(4)融点、結晶化点
TAインストルメンツ製 TA−2920示差走査熱量測定計DSCを用いた。
測定は、試料10mgを窒素雰囲気下、昇温速度10℃/分で室温から260℃まで昇温し、結晶融解吸熱ピーク及び結晶化発熱ピークのピーク温度を各々融点及び結晶化点と定義した。
(4) Melting point, crystallization point A TA-2920 differential scanning calorimeter DSC manufactured by TA Instruments was used.
In the measurement, 10 mg of a sample was heated from room temperature to 260 ° C. at a heating rate of 10 ° C./min in a nitrogen atmosphere, and the peak temperatures of the crystal melting endothermic peak and the crystallization exothermic peak were defined as the melting point and the crystallization point, respectively.

(5)単糸繊度
JIS L 1015:2005 8.5.1 A法に記載の方法により測定した。
(5) Single yarn fineness Measured by the method described in JIS L 1015: 2005 8.5.1 Method A.

(6)乾強度・乾伸度
JIS L 1015:2005 8.7.1法に記載の方法により測定した。
(6) Dry strength and dry elongation Measured by the method described in JIS L 1015: 2005 8.7.1 method.

(7)繊維長
JIS L 1015:2005 8.4.1 C法に記載の方法により測定した。
(7) Fiber length Measured by the method described in JIS L 1015: 2005 8.4.1 Method C.

(8)捲縮数
JIS L 1015:2005 8.12に記載の方法により測定した。
(8) Number of crimps Measured by the method described in JIS L 1015: 2005 8.12.

(9)油剤付着率
JIS L 1015:2005 8.22 c)法において、試料量を9g、抽出用溶媒をメタノール(25℃)とし、油分抽出を25℃のメタノールで30分静置して行った以外は同様の方法により測定した。
(9) Oil agent adhesion rate In the JIS L 1015: 2005 8.22 c) method, the sample amount is 9 g, the extraction solvent is methanol (25 ° C.), and the oil extraction is performed by leaving it at 25 ° C. for 30 minutes. The measurement was performed in the same manner except that.

(10)150℃乾熱収縮率
JIS L 1015:2005 8.15 b)法に記載の方法により、150℃で測定した。
(10) 150 degreeC dry heat shrinkage rate It measured at 150 degreeC by the method as described in JISL1015: 2005 8.15 b) method.

(11)CDR
25℃の水中に未延伸糸を浸漬し、10cmの間隔で未延伸糸をチャックして両方に引っ張り、ネッキングが終了した点のチャック間隔(Lcm)を測定し、次式にて算出した。
CDR=(L−10)/10
(11) CDR
The undrawn yarn was immersed in water at 25 ° C., the undrawn yarn was chucked at an interval of 10 cm, pulled on both sides, the chuck interval (Lcm) at the point where necking was completed was measured, and the following formula was calculated.
CDR = (L−10) / 10

(12)延伸ローラーへの単糸捲付
短繊維製造用の別延伸法延伸機にて10分間延伸を行った際、延伸〜緊張熱処理までのローラーに巻きつく回数を記録した。単糸捲付が目視で確認された段階で、延伸機を運転したまま、ローラーに巻きついた単糸を真鍮ワイヤーブラシで除去し、再度捲付が確認できるようにした。
(12) Single yarn wrinkle on a drawing roller When the drawing was performed for 10 minutes by another drawing method drawing machine for producing short fibers, the number of times of winding around the roller from drawing to tension heat treatment was recorded. When the single yarn wrinkle was visually confirmed, the single yarn wound around the roller was removed with a brass wire brush while the drawing machine was operated, so that the wrinkle could be confirmed again.

(13)燐酸エステル金属塩含有量
燐酸エステル金属塩の含有量はポリ乳酸チップ又はポリ乳酸繊維サンプルをスチール板上で加熱溶融した後、圧縮プレス機で平坦面を有する試験成形体を作成した。この試験成形体を使って蛍光X線装置(理学電機工業株式会社製3270E型)を用いてリン元素及び金属元素含有量求めた。
また別にポリ乳酸チップ又はポリ乳酸繊維サンプルを、可溶な溶媒に溶解してメタノールにより再沈澱処理操作を行った。得られたポリ乳酸以外の成分から燐酸エステル金属塩成分を抽出した。得られた抽出成分を重水素化トリフルオロ酢酸/重水素化クロロホルム=1/1混合溶媒に溶解後、日本電子(株)製JEOL A−600 超伝導FT−NMRを用いて核磁気共鳴スペクトル(H−NMR)を測定した。そのスペクトルパターンから含有されている燐酸エステル金属塩の化学構造を特定した。これらの結果を総合的に評価して燐酸エステル金属塩含有量を算出した。
(13) Phosphate metal salt content The content of the phosphoric acid ester metal salt was obtained by heating and melting a polylactic acid chip or a polylactic acid fiber sample on a steel plate, and then preparing a test molded body having a flat surface with a compression press. Using this test molded body, phosphorus element and metal element contents were determined using a fluorescent X-ray apparatus (type 3270E manufactured by Rigaku Corporation).
Separately, a polylactic acid chip or a polylactic acid fiber sample was dissolved in a soluble solvent and reprecipitated with methanol. The phosphate ester metal salt component was extracted from the components other than the obtained polylactic acid. The obtained extract component was dissolved in a deuterated trifluoroacetic acid / deuterated chloroform = 1/1 mixed solvent, and then subjected to nuclear magnetic resonance spectrum using JEOL A-600 superconducting FT-NMR manufactured by JEOL Ltd. ( < 1 > H-NMR) was measured. The chemical structure of the phosphate metal salt contained was identified from the spectral pattern. These results were comprehensively evaluated to calculate the phosphate metal salt content.

(製造例1:ポリL−乳酸A1の製造)
光学純度99.8%のL−ラクチド(株式会社武蔵野化学研究所)100質量%を重合容器に加え、重合容器内を窒素置換した後、ステアリルアルコール0.2質量%、触媒としてオクチル酸スズ0.05質量%を加え、190℃、2時間、重合を行い、ポリマーを製造した。このポリマーを7%5N塩酸のアセトン溶液で洗浄し、触媒を除去し、ポリL−乳酸A1を得た。得られたポリL−乳酸A1の還元粘度は2.92(mL/g)、重量平均分子量は13万であった。融点(Tm)は168℃であった。結晶化点(Tc)は122℃であった。
(Production Example 1: Production of poly L-lactic acid A1)
After adding 100% by mass of L-lactide having an optical purity of 99.8% (Musashino Chemical Laboratory Co., Ltd.) to the polymerization vessel and replacing the inside of the polymerization vessel with nitrogen, 0.2% by mass of stearyl alcohol and 0% tin octylate as a catalyst 0.05% by mass was added, and polymerization was carried out at 190 ° C. for 2 hours to produce a polymer. This polymer was washed with an acetone solution of 7% 5N hydrochloric acid to remove the catalyst, and poly L-lactic acid A1 was obtained. The resulting poly L-lactic acid A1 had a reduced viscosity of 2.92 (mL / g) and a weight average molecular weight of 130,000. The melting point (Tm) was 168 ° C. The crystallization point (Tc) was 122 ° C.

(製造例2:ポリD−乳酸B1の製造)
光学純度99.8%のD−ラクチド(株式会社武蔵野化学研究所)100質量%を重合容器に加え、重合容器内を窒素置換した後、ステアリルアルコール0.2質量%、触媒としてオクチル酸スズ0.05質量%を加え、190℃、2時間、重合を行い、ポリマーを製造した。このポリマーを7%5N塩酸のアセトン溶液で洗浄し、触媒を除去し、ポリD−乳酸B1を得た。得られたポリD−乳酸B1の還元粘度は2.65(mL/g)、重量平均分子量は13万であった。融点(Tm)は176℃であった。結晶化点(Tc)は139℃であった。
(Production Example 2: Production of poly-D-lactic acid B1)
After adding 100% by mass of D-lactide having an optical purity of 99.8% (Musashino Chemical Laboratory Co., Ltd.) to the polymerization vessel and replacing the inside of the polymerization vessel with nitrogen, 0.2% by mass of stearyl alcohol and 0% tin octylate as a catalyst 0.05% by mass was added, and polymerization was carried out at 190 ° C. for 2 hours to produce a polymer. This polymer was washed with an acetone solution of 7% 5N hydrochloric acid to remove the catalyst, and poly D-lactic acid B1 was obtained. The resulting poly-D-lactic acid B1 had a reduced viscosity of 2.65 (mL / g) and a weight average molecular weight of 130,000. The melting point (Tm) was 176 ° C. The crystallization point (Tc) was 139 ° C.

[実施例1]
ポリL−乳酸A1及びポリD−乳酸B1のチップを作成し、ポリL−乳酸A1/ポリD−乳酸B1=50/50(質量比)の割合でV型ブレンダーを使用してチップブレンドした後、110℃の減湿空気を循環して5時間乾燥を行った。このチップ100質量%に、燐酸2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)ナトリウム塩(平均粒径5μm)0.5質量%を加え、2軸ルーダー溶融紡糸機を用い230℃で溶融し、0.45Φの吐出孔を1008ホールもつ紡糸口金から430g/分で吐出させた。
その後、紡糸口金下35mmの位置で25℃の空気を吹き付けて冷却固化させながら、1000m/分の速度で未延伸糸を巻き取った。この未延伸糸はSc化率0%で、示差走査熱量計(DSC)で217℃にステレオコンプレックスに由来する単一の結晶融解ピークを有していた。CDRは2.4倍であった。
[Example 1]
After making chips of poly L-lactic acid A1 and poly D-lactic acid B1, and chip blending using a V-type blender at a ratio of poly L-lactic acid A1 / poly D-lactic acid B1 = 50/50 (mass ratio) Drying was performed for 5 hours by circulating dehumidified air at 110 ° C. To 100% by mass of this chip, 0.5% by mass of 2,2′-methylenebis (4,6-di-tert-butylphenyl) sodium phosphate (average particle size 5 μm) was added, and a twin-screw rudder melt spinning machine was used. It was melted at 230 ° C., and was discharged at 430 g / min from a spinneret having 1008 holes with 0.45Φ discharge holes.
Thereafter, the undrawn yarn was wound up at a speed of 1000 m / min while being cooled and solidified by blowing air at 25 ° C. at a position 35 mm below the spinneret. This undrawn yarn had a Sc conversion rate of 0% and had a single crystal melting peak derived from the stereocomplex at 217 ° C. using a differential scanning calorimeter (DSC). The CDR was 2.4 times.

この未延伸糸を束ねて48万デシテックスのトウとし、60℃の温水中で3.07倍(CDRの1.28倍)に延伸し、引続き90℃の温水中で1.02倍延伸し、全延伸倍率3.13倍(CDRの1.30倍)とした。その後、0.6MPaの水蒸気で加熱した金属ローラー6本を通過させ、通過後のトウ温度155℃の状態で定長熱処理(1.0倍)を行った。更にその後、ステアリルホスフェートカリウム塩からなる油剤を付与し、水蒸気で65℃に加熱したトウを押し込み型クリンパーに供給して、18個/25mmの捲縮を付与した後、45℃の循環熱風中を50分間通過させ、弛緩熱処理を実施した。その後、ロータリーカッターにてカットし、1.47デシテックス、38mmの短繊維を得た。得られた繊維は、示差走査熱量計(DSC)測定において、ポリL−乳酸及びポリD―乳酸からなるステレオコンプレックスポリ乳酸結晶の単一融解ピークを示し、融点が218℃であった。また、広角X線回折測定でのSc化率100%、繊維の強度は3.3cN/dtex、伸度33%であり、150℃熱収縮率は7.0%であった。
このときの延伸機ローラーへの単糸捲付は0回/10分であった。結果を表1に示した。
The unstretched yarn is bundled to form a 480,000 dtex tow, stretched 3.07 times in hot water at 60 ° C. (1.28 times the CDR), and then stretched 1.02 times in hot water at 90 ° C., The total draw ratio was 3.13 times (CDR 1.30 times). Thereafter, six metal rollers heated with 0.6 MPa water vapor were passed, and constant length heat treatment (1.0 times) was performed at a tow temperature of 155 ° C. after passing. After that, an oil agent consisting of stearyl phosphate potassium salt was applied, tow heated to 65 ° C. with water vapor was supplied to the indentation type crimper, 18 crimps / 25 mm crimp was applied, and then in the circulating hot air at 45 ° C. Passing for 50 minutes, relaxation heat treatment was performed. Then, it cut with the rotary cutter and obtained the short fiber of 1.47 dtex and 38 mm. The obtained fiber showed a single melting peak of a stereocomplex polylactic acid crystal composed of poly L-lactic acid and poly D-lactic acid in a differential scanning calorimeter (DSC) measurement, and the melting point was 218 ° C. Further, the Sc conversion rate was 100% in wide-angle X-ray diffraction measurement, the fiber strength was 3.3 cN / dtex, the elongation was 33%, and the 150 ° C. heat shrinkage rate was 7.0%.
At this time, the single yarn wrinkle on the drawing roller was 0 times / 10 minutes. The results are shown in Table 1.

[実施例2]
緊張熱処理温度を140℃とした他は、実施例1と同様に実施した。結果を表1に示した。
[Example 2]
The same procedure as in Example 1 was performed except that the tension heat treatment temperature was 140 ° C. The results are shown in Table 1.

[比較例1]
緊張熱処理温度を120℃とした他は、実施例1と同様に実施した。結果を表1に示した。
[Comparative Example 1]
The same procedure as in Example 1 was performed except that the tension heat treatment temperature was 120 ° C. The results are shown in Table 1.

[実施例3]
緊張熱処理温度を200℃とし、弛緩熱処理温度を120℃とした他は、実施例1と同様に実施した。結果を表1に示した。
[Example 3]
The same procedure as in Example 1 was performed except that the tension heat treatment temperature was 200 ° C. and the relaxation heat treatment temperature was 120 ° C. The results are shown in Table 1.

[比較例2]
緊張熱処理温度を210℃とした他は、実施例3と同様に実施した。結果を表1に示した。
[Comparative Example 2]
The same procedure as in Example 3 was performed except that the tension heat treatment temperature was 210 ° C. The results are shown in Table 1.

[実施例4]
弛緩熱処理温度を20℃(常温風乾条件)とした他は、実施例1と同様に実施した。結果を表1に示した。
[Example 4]
The same procedure as in Example 1 was performed except that the relaxation heat treatment temperature was 20 ° C. (normal temperature air drying conditions). The results are shown in Table 1.

Figure 2009203576
Figure 2009203576

[実施例5]
緊張熱処理を実施せず(バイパスさせた。)、弛緩熱温度を155℃とした他は、実施例1と同様に実施した。結果を表2に示した。
[Example 5]
This was carried out in the same manner as in Example 1 except that the tension heat treatment was not carried out (bypassed) and the relaxation heat temperature was changed to 155 ° C. The results are shown in Table 2.

[比較例3]
弛緩熱処理温度を120℃とした他は、実施例5と同様に実施した。結果を表2に示した。
[Comparative Example 3]
The same procedure as in Example 5 was performed except that the relaxation heat treatment temperature was 120 ° C. The results are shown in Table 2.

[比較例4]
弛緩熱処理温度を180℃とした他は、実施例5と同様に実施した。結果を表2に示した。
[Comparative Example 4]
The same procedure as in Example 5 was performed except that the relaxation heat treatment temperature was 180 ° C. The results are shown in Table 2.

[実施例6]
全延伸倍率1.7倍(CDR対比0.71倍)の1段延伸とした他は、実施例1と同様に実施した。結果を表2に示した。
[Example 6]
The same procedure as in Example 1 was performed except that the total draw ratio was 1.7 times (0.71 times the CDR) compared to the single-stage drawing. The results are shown in Table 2.

[比較例5]
全延伸倍率1.2倍(CDR対比0.50倍)の1段延伸とした他は、実施例1と同様に実施した。結果を表2に示した。
[Comparative Example 5]
The same procedure as in Example 1 was performed except that the total stretching ratio was 1.2 times (0.50 times as compared with the CDR). The results are shown in Table 2.

[実施例7]
紡糸速度を500m/分(CDRは3.6倍)、1段目の延伸を90℃の温水中で6.0倍(CDR対比1.67倍)で行い、更に2段目の延伸を63℃温水中で1.8倍とし、全延伸倍率を10.8倍(CDR対比3.00倍)とし、更に緊張熱処理温度を185℃、弛緩熱処理温度を20℃の風乾とした他は、実施例1と同様に実施した。結果を表2に示した。
[Example 7]
The spinning speed is 500 m / min (CDR is 3.6 times), the first stage stretching is performed 6.0 times in hot water at 90 ° C. (1.67 times the CDR), and the second stage stretching is 63 times. Implemented except that it was 1.8 times in warm water at 0 ° C, the total draw ratio was 10.8 times (3.00 times that of CDR), the heat treatment temperature was 185 ° C and the relaxation heat treatment temperature was 20 ° C. Performed as in Example 1. The results are shown in Table 2.

Figure 2009203576
Figure 2009203576

[実施例8〜10、比較例6]
C成分(燐酸エステル金属塩)の種類、添加量を変更した他は、実施例1と同様に実施した。結果を表3に示した。比較例6で得られた延伸糸は、そのSc化率(DY−Sc化率)が80%と低く、218℃以外に168℃にも融点ピークが認められ、充分にステレオコンプレックスポリ乳酸結晶への転移が進行したステレオコンプレックスポリ乳酸繊維ではなかった。
[Examples 8 to 10, Comparative Example 6]
The same procedure as in Example 1 was performed except that the type and amount of component C (phosphate metal salt) were changed. The results are shown in Table 3. The drawn yarn obtained in Comparative Example 6 has a Sc conversion rate (DY-Sc conversion rate) of 80% and a melting point peak at 168 ° C in addition to 218 ° C. It was not a stereocomplex polylactic acid fiber that had undergone a transition of.

[比較例7〜8]
全ての延伸媒体を非接触電熱ヒーターとして、延伸前糸温度が80℃となるように輻射熱加熱し、延伸した他は、実施例1と同様に実施した。結果を表3に示した。なお、比較例7は2段延伸、比較例8は4段延伸を実施した。
[Comparative Examples 7-8]
The same procedure as in Example 1 was performed, except that all the drawing media were heated by radiant heat so that the yarn temperature before drawing was 80 ° C. using a non-contact electric heater. The results are shown in Table 3. Comparative Example 7 was subjected to two-stage stretching, and Comparative Example 8 was subjected to four-stage stretching.

Figure 2009203576
Figure 2009203576

本発明のステレオコンプレックスポリ乳酸繊維の製造方法は、液浴中で延伸を行うことで、未延伸糸の可塑性を高め、延伸性を向上させることによって、別延伸式での延伸単糸切れや繊度斑、強伸度斑等の発生を抑え、従来検討技術に比べて、品質と工程調子の両面で変動を最小限にとどめることができる。よって、別延方式の長繊維だけでなく、基本的に紡速2000m/分を超える高速紡糸が採用できず、別延方式で生産性向上を確保している短繊維のプロセスにも適用でき、ステレオコンプレックス短繊維の量産を可能とすることができる。更に衣料や産業資材用途の汎用合成繊維としても使用することができ、非常に有用である。   The production method of the stereocomplex polylactic acid fiber of the present invention includes stretching in a liquid bath to increase the plasticity of the unstretched yarn and improve the stretchability. It is possible to suppress the occurrence of spots, strong elongation spots, etc., and to minimize fluctuations in both quality and process condition as compared with conventional examination techniques. Therefore, it is not only possible to adopt high-speed spinning exceeding 2000 m / min, but also to the short fiber process that ensures productivity improvement by the separate-rolling method, as well as long-rolled long-fiber. This enables mass production of stereocomplex short fibers. Furthermore, it can be used as a general-purpose synthetic fiber for clothing and industrial materials, and is very useful.

実施例等において得られた繊維のステレオ化率(Sc化率)の計算に用いた赤道方向の回折強度プロファイルの一例である。It is an example of the diffraction intensity profile of the equator direction used for calculation of the stereoification rate (Sc conversion rate) of the fiber obtained in the Example etc.

Claims (4)

(ア)L乳酸を主成分とする質量平均分子量5万〜30万のポリL−乳酸(A成分)とD乳酸を主成分とする質量平均分子量5万〜30万のポリD−乳酸(B成分)のポリ乳酸組成物を紡糸速度100〜2000m/分で溶融紡糸することにより未延伸糸を得る工程、(イ)該未延伸糸を1段延伸又は2段以上の多段延伸を行うにあたり、1段目の延伸を20〜150℃の液浴中で該未延伸糸のCDRの0.55〜2.0倍となるように行い、かつ全延伸倍率が該未延伸糸のCDRの0.55〜3.0倍となるように延伸する工程、(ウ)延伸する工程の後、130〜200℃の定長熱処理又は130〜165℃弛緩熱処理を施す工程を含むことを特徴とする融点が200〜230℃にあり、150〜190℃に実質的に融点が観測されないステレオコンプレックスポリ乳酸繊維の製造方法。
[ただし、CDRとは、25℃の水中で未延伸糸を引っ張ったとき、目視によるネッキング現象が終了する延伸倍率を表す。]
(A) Poly L-lactic acid (component A) having a weight average molecular weight of 50,000 to 300,000 having L lactic acid as a main component and poly D-lactic acid having a weight average molecular weight of 50,000 to 300,000 having a main component of D lactic acid (B) (B) In the step of obtaining an unstretched yarn by melt spinning the polylactic acid composition of component) at a spinning speed of 100 to 2000 m / min, (a) In performing the one-stage stretching or the multi-stage stretching of two or more stages of the unstretched yarn, The first stage of drawing is performed in a liquid bath at 20 to 150 ° C. so that the CDR of the undrawn yarn is 0.55 to 2.0 times, and the total draw ratio is 0. 0 of the CDR of the undrawn yarn. A melting point characterized by including a step of performing a constant-length heat treatment at 130 to 200 ° C. or a heat treatment for relaxation at 130 to 165 ° C. after the step of stretching to 55 to 3.0 times, and (c) the step of stretching. 200 to 230 ° C., and substantially no melting point is observed at 150 to 190 ° C. Method for producing a stereo polylactic acid fiber.
[However, CDR represents a draw ratio at which the visual necking phenomenon ends when an undrawn yarn is pulled in water at 25 ° C.] ]
1段目の延伸を20〜100℃の水中で行うことを特徴とする請求項1記載のステレオコンプレックスポリ乳酸繊維の製造方法。   The method for producing a stereocomplex polylactic acid fiber according to claim 1, wherein the first-stage stretching is performed in water at 20 to 100 ° C. 130〜200℃の定長熱処理後、40〜160℃で弛緩熱処理を行うことを特徴とする請求項1〜2のいずれか記載のステレオコンプレックスポリ乳酸繊維の製造方法。   The method for producing a stereocomplex polylactic acid fiber according to any one of claims 1 to 2, wherein a relaxation heat treatment is performed at 40 to 160 ° C after a constant length heat treatment at 130 to 200 ° C. A成分とB成分との合計100質量部当りに対して、式(1)で表される燐酸エステル金属塩(C成分)を0.05〜5.0質量部添加することを特徴とする請求項1〜3のいずれか1項記載のステレオコンプレックスポリ乳酸繊維の製造方法。
Figure 2009203576
[上記式中、Rは水素原子又は炭素数1〜4のアルキル基を表し、R、Rは各々独立に水素原子又は炭素数1〜12のアルキル基を表し、Mはアルカリ金属原子、アルカリ土類金属原子、亜鉛原子又はアルミニウム原子を表し、pは1又は2を表し、Mがアルカリ金属原子、アルカリ土類金属原子又は亜鉛原子のときqは0を表し、Mがアルミニウム原子のときqは1又は2を表す。]
The phosphoric acid ester metal salt (C component) represented by the formula (1) is added in an amount of 0.05 to 5.0 parts by mass per 100 parts by mass of the total of the A component and the B component. The manufacturing method of the stereocomplex polylactic acid fiber of any one of claim | item 1-3.
Figure 2009203576
[Wherein R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, R 2 and R 3 each independently represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms, and M 1 represents an alkali metal. An atom, an alkaline earth metal atom, a zinc atom or an aluminum atom, p represents 1 or 2, q represents 0 when M 1 is an alkali metal atom, an alkaline earth metal atom or a zinc atom, and M 1 represents In the case of an aluminum atom, q represents 1 or 2. ]
JP2008045999A 2008-02-27 2008-02-27 Method for producing stereocomplex polylactic acid fiber Expired - Fee Related JP5139838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008045999A JP5139838B2 (en) 2008-02-27 2008-02-27 Method for producing stereocomplex polylactic acid fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008045999A JP5139838B2 (en) 2008-02-27 2008-02-27 Method for producing stereocomplex polylactic acid fiber

Publications (2)

Publication Number Publication Date
JP2009203576A true JP2009203576A (en) 2009-09-10
JP5139838B2 JP5139838B2 (en) 2013-02-06

Family

ID=41146120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008045999A Expired - Fee Related JP5139838B2 (en) 2008-02-27 2008-02-27 Method for producing stereocomplex polylactic acid fiber

Country Status (1)

Country Link
JP (1) JP5139838B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074527A (en) * 2009-09-30 2011-04-14 Teijin Fibers Ltd Woven name label
JP2012149359A (en) * 2011-01-19 2012-08-09 Teijin Ltd Method for producing stereo complex polylactic acid fiber having low dry heat shrinkage
WO2016002965A1 (en) * 2014-07-04 2016-01-07 帝人株式会社 Polylactic acid composition, molded product obtained from polylactic acid composition, and method for producing polylactic acid
KR101764237B1 (en) * 2015-11-12 2017-08-03 이윤정 Crystallized polylactic acid filament, production method thereof, and method and fdm 3d printer for producing 3d output using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08302526A (en) * 1995-05-09 1996-11-19 Unitika Ltd Biodegradable conjugate fiber
JP2000234217A (en) * 1999-02-10 2000-08-29 Toray Ind Inc Spun-dyed polyester fiber
WO2003057781A1 (en) * 2001-12-28 2003-07-17 Asahi Denka Co., Ltd. Polylactic acid-based resin compositions, molded articles and process for producing the same
JP2005023512A (en) * 2004-10-25 2005-01-27 Toray Ind Inc Polylactic acid fiber
JP2005187626A (en) * 2003-12-25 2005-07-14 Musashino Chemical Laboratory Ltd Manufacturing process of polylactic acid stereo complex body
JP2005232645A (en) * 2004-02-23 2005-09-02 Toray Ind Inc Polylactic acid fiber, method for producing the same and fiber structure for industrial material composed of polylactic acid fiber
JP2007070750A (en) * 2005-09-05 2007-03-22 Teijin Ltd High strength polylactic acid fiber and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08302526A (en) * 1995-05-09 1996-11-19 Unitika Ltd Biodegradable conjugate fiber
JP2000234217A (en) * 1999-02-10 2000-08-29 Toray Ind Inc Spun-dyed polyester fiber
WO2003057781A1 (en) * 2001-12-28 2003-07-17 Asahi Denka Co., Ltd. Polylactic acid-based resin compositions, molded articles and process for producing the same
JP2005187626A (en) * 2003-12-25 2005-07-14 Musashino Chemical Laboratory Ltd Manufacturing process of polylactic acid stereo complex body
JP2005232645A (en) * 2004-02-23 2005-09-02 Toray Ind Inc Polylactic acid fiber, method for producing the same and fiber structure for industrial material composed of polylactic acid fiber
JP2005023512A (en) * 2004-10-25 2005-01-27 Toray Ind Inc Polylactic acid fiber
JP2007070750A (en) * 2005-09-05 2007-03-22 Teijin Ltd High strength polylactic acid fiber and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074527A (en) * 2009-09-30 2011-04-14 Teijin Fibers Ltd Woven name label
JP2012149359A (en) * 2011-01-19 2012-08-09 Teijin Ltd Method for producing stereo complex polylactic acid fiber having low dry heat shrinkage
WO2016002965A1 (en) * 2014-07-04 2016-01-07 帝人株式会社 Polylactic acid composition, molded product obtained from polylactic acid composition, and method for producing polylactic acid
US11001707B2 (en) 2014-07-04 2021-05-11 Teijin Limited Polylactic acid composition, formed article obtained from polylactic acid composition, and method for producing polylactic acid composition
CN106471061B (en) * 2014-07-04 2021-06-08 帝人株式会社 Polylactic acid composition, molded body obtained from polylactic acid composition, and method for producing polylactic acid composition
KR101764237B1 (en) * 2015-11-12 2017-08-03 이윤정 Crystallized polylactic acid filament, production method thereof, and method and fdm 3d printer for producing 3d output using the same

Also Published As

Publication number Publication date
JP5139838B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
JP5023065B2 (en) Polylactic acid fiber and method for producing the same
JP5243410B2 (en) Polylactic acid composition and fiber comprising the same
TW200909512A (en) Polylactic acid composition and fiber composed of the same
JP4423882B2 (en) Polylactic acid fiber
WO2007007893A1 (en) Composition containing stereocomplex polylactic acid
KR20140143414A (en) Polyesters and Fibers Made Therefrom
WO2006104092A1 (en) Resin composition, molded article produced from the same, and processes for production of the composition and article
JP5139838B2 (en) Method for producing stereocomplex polylactic acid fiber
JP2010281006A (en) Polylactic acid type composite fiber
JP5139841B2 (en) Polylactic acid primary fiber, method for producing the same, and chip used in the method
JP2011063646A (en) Method for producing polyester composition for production of polyester fiber having high vividness
JP2009191411A (en) Polylactic acid twisted yarn, fabric, and textile product
JP5731207B2 (en) Method for producing stereocomplex polylactic acid fiber with low dry heat shrinkage
JP2007217832A (en) Polyester fiber for industrial material
JP2010084266A (en) Polylactic acid fiber and fiber structure
JP5638850B2 (en) Resin composition
JP2012001845A (en) Fiber structure including at least polylactic acid containing conjugated fiber
CN103451764A (en) Heat-resistant polylactic acid fiber and product thereof
JP2009144258A (en) Direct drawn polylactic acid fiber and method for producing the same
JP5155095B2 (en) Polylactic acid fiber
JP2010024576A (en) Polylactic acid fabric and clothing
CN117795140A (en) Multifilament for stretching and method for producing the same, multifilament and method for producing the same, and staple fiber and method for producing the same
JP2011058121A (en) Polylactic acid fiber
JP2011058120A (en) Spun-like polylactic acid composite false-twisted yarn and method for manufacturing the same
JP2009270228A (en) Heat storage interlining cloth

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101213

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110713

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees