JP2009197258A - Molded article by high temperature pressurized gas molding - Google Patents
Molded article by high temperature pressurized gas molding Download PDFInfo
- Publication number
- JP2009197258A JP2009197258A JP2008037714A JP2008037714A JP2009197258A JP 2009197258 A JP2009197258 A JP 2009197258A JP 2008037714 A JP2008037714 A JP 2008037714A JP 2008037714 A JP2008037714 A JP 2008037714A JP 2009197258 A JP2009197258 A JP 2009197258A
- Authority
- JP
- Japan
- Prior art keywords
- less
- pressurized gas
- molded article
- molding
- mpa
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Abstract
Description
本発明は、高温加圧気体成形により成形される、高温加圧気体成形品及びその高温加圧気体成形品の製造方法に関するものである。 The present invention relates to a high-temperature pressurized gas molded article molded by high-temperature pressurized gas molding and a method for producing the high-temperature pressurized gas molded article.
高温加圧気体を利用したアルミニウム合金板材の成形方法として、超塑性成形が知られている。 一般にアルミニウム合金板材の超塑性成形では、350℃〜550℃の温度範囲、1MPa未満の圧力、10−3/sec〜10−4/sec程度のひずみ速度で、ゆっくり成形する必要がある。この条件下で成形することにより、アルミニウム合金板材に超塑性現象が発現し、結晶粒界すべりを主体とした変形により成形される。 Superplastic forming is known as a method for forming an aluminum alloy sheet using high-temperature pressurized gas. In general, in superplastic forming of an aluminum alloy sheet, it is necessary to form slowly at a temperature range of 350 ° C. to 550 ° C., a pressure of less than 1 MPa, and a strain rate of about 10 −3 / sec to 10 −4 / sec. By forming under such conditions, a superplastic phenomenon appears in the aluminum alloy sheet, and the aluminum alloy sheet is formed by deformation mainly composed of grain boundary sliding.
この超塑性成形によれば超塑性変形により150%を超える伸びが得られることから、複雑な形状を一体成形することが可能となり、航空機や自動車部品など様々な用途に利用されている。 しかしこの超塑性成形によって複雑な形状に成形した場合、局部的に大きな伸びが与えられ、その部分で板厚が薄くなり過ぎ、構造的に強度不足が生じることがある。
その様に軽量で、強度に優れた材料であるアルミニウム合金板材の良好な特性が損なわれるという問題に対して、材料の提案だけでなく、冷間予成形を行うなど加工技術面からの提案もなされている。
According to this superplastic forming, an elongation exceeding 150% can be obtained by superplastic deformation. Therefore, it becomes possible to integrally form a complicated shape, and it is used for various applications such as aircraft and automobile parts. However, when it is formed into a complicated shape by this superplastic forming, a large elongation is given locally, and the plate thickness becomes too thin at that portion, resulting in a structurally insufficient strength.
In response to the problem that the good properties of aluminum alloy sheets, which are lightweight and excellent in strength, are impaired, not only material proposals but also proposals from processing technology such as cold preforming Has been made.
一般にアルミニウム合金板材の超塑性成形には、安価で強度に優れたAl−Mg系合金が用いられる例が多い。
特許文献1には、アルミニウム合金を予め冷間で予成形を行い、その後超塑性成形を行えば、局部的な薄肉化を回避でき、強度面でも優れた成形品が得られることが示されている。
特許文献2には、このAl−Mg系合金にMnとCuの両者を特定量含有させる化学成分組成とすることで、成形品の強度を確保することが提案されている。
In general, there are many examples in which an Al—Mg alloy that is inexpensive and excellent in strength is used for superplastic forming of an aluminum alloy sheet.
Patent Document 1 shows that if an aluminum alloy is preformed in advance in a cold state and then superplastic forming is performed, local thinning can be avoided and an excellent molded product can be obtained in terms of strength. Yes.
Patent Document 2 proposes securing the strength of a molded product by using a chemical component composition in which a specific amount of both Mn and Cu is contained in this Al—Mg-based alloy.
しかし、強度低下をもたらす原因は局部的な板厚減少だけではなく、超塑性成形におけるキャビテーションも強度低下の原因となる。
すなわち超塑性成形では、200%を超える大変形に伴い、結晶粒界の三重点や晶出物近傍でマトリックスが充填されずに空洞となる場合があり、係るキャビテーションは強度の低下だけでなく、構造材などの用途では疲労強度を低下する原因ともなる。
このキャビテーションは結晶粒を微細化することで抑制することができる。
However, the cause of the strength reduction is not only the local thickness reduction, but also cavitation in superplastic forming causes the strength reduction.
That is, in superplastic forming, with a large deformation exceeding 200%, there are cases where the matrix is not filled in the vicinity of the triple point of crystal grain boundaries or crystallized matter, and the cavitation is not only reduced in strength, In applications such as structural materials, it also causes a decrease in fatigue strength.
This cavitation can be suppressed by making the crystal grains finer.
このキャビテーションに関し、特許文献3にはキャビテーションの原因となる不純物としてのFeおよびSiの制限範囲と、Al−Mg系合金の超塑性成形を向上させる一方、キャビテーションを抑制するCuの添加量との量的バランスについて究明し、Cuを添加することで、キャビテーションを抑制する方法が提案されている。 With respect to this cavitation, Patent Document 3 discloses the amount of Fe and Si as the impurities that cause cavitation, and the amount of addition of Cu that suppresses cavitation while improving superplastic forming of an Al-Mg alloy. A method for suppressing cavitation by investigating the physical balance and adding Cu has been proposed.
また、前述したように超塑性成形では、超塑性現象を発現させるためゆっくり成形することが必要であり、具体的には20分〜30分程度の成形時間を必要とする。このことは、工業規模の生産においては生産性を悪化させる原因となり、より早い成形速度で成形できる加工方法の開発が望まれている。
こうした要望に対して、特許文献4や特許文献5などにおいて、従来に比べより早い成形速度での成形技術が提案されている。
Further, as described above, in superplastic forming, it is necessary to form slowly in order to develop a superplastic phenomenon, and specifically, a forming time of about 20 minutes to 30 minutes is required. This causes deterioration of productivity in industrial scale production, and development of a processing method capable of forming at a higher forming speed is desired.
In response to such a demand, Patent Document 4 and Patent Document 5 propose a molding technique at a higher molding speed than in the past.
特許文献4では400℃〜510℃の温度範囲、250PSI(約1.8MPa)〜500PSI(約3.6MPa)で、形状の複雑にも依存し、2〜12分で成形されている。
特許文献5では150℃以上450℃未満の温度範囲、15kg/cm2(約1.5PMa)〜150kg/cm2(約15PMa)で、2分以下で成形することが提案されている。
In patent document 4, it is a temperature range of 400 to 510 ° C., 250 PSI (about 1.8 MPa) to 500 PSI (about 3.6 MPa), and it takes 2 to 12 minutes depending on the complexity of the shape.
Temperature range below Patent Document 5 at 0.99 ° C. or higher 450 ° C., at 15 kg / cm 2 (about 1.5PMa) ~150kg / cm 2 (about 15PMa), be formed in less than 2 minutes has been proposed.
以上の特許文献1〜特許文献5にもみられる様に、軽量で、強度に優れた材料であるアルミニウム合金板材の良好な特性を損なわず、かつ生産性が良い超塑性成形を工業規模の生産において行うための検討が進められてきた。
しかし実際の加工工程においては、以上の従来の高温加圧気体成形品及びその高温加圧気体成形品の製造方法ではAl−Mg系アルミニウム合金板材を用いた超塑性成形での、生産性の悪さは未だ満足できる程度には改善されていない。
As seen in the above Patent Document 1 to Patent Document 5, superplastic forming that does not impair the good properties of the aluminum alloy sheet, which is a lightweight and excellent material, and has good productivity in industrial scale production. Consideration has been made to do this.
However, in actual processing steps, the conventional high-temperature pressurized gas molded product and the manufacturing method of the high-temperature pressurized gas molded product have poor productivity in superplastic forming using an Al-Mg-based aluminum alloy sheet. Has not yet been improved to a satisfactory degree.
また形状の複雑さにもより、現実にしばしば破断やキャビテーションが問題となることがあり、複雑形状の高速成形を実施したときの破断やキャビテーションの抑制が未だ充分な解決には至っていない。
さらに特許文献3に示す様に、Cuを添加することで、キャビテーションを抑制することができたとしても、Cuの添加は、耐食性を劣化させると言う裏面の問題があり、成形品の強度を向上させるための現実的な解決とはなっていない。
Further, due to the complexity of the shape, breakage and cavitation often become a problem in practice, and the suppression of breakage and cavitation when high-speed molding of complex shapes is performed has not yet been fully solved.
Further, as shown in Patent Document 3, even if cavitation can be suppressed by adding Cu, there is a problem of the back surface that the addition of Cu deteriorates the corrosion resistance, and the strength of the molded product is improved. It is not a realistic solution to make it happen.
したがってこうした現状において、Al−Mg系アルミニウム合金板材を用いた超塑性成形での成形品の強度を向上させ、生産性を改善すると共に複雑形状の高速成形を実施したときの破断を抑制し、さらには、耐食性を劣化させることなくキャビテーションを抑制することが可能で、更なる高強度薄肉化、軽量化を達成することができる安定した高速成形技術の開発が望まれている。 Therefore, in such a current situation, the strength of the molded article in the superplastic forming using the Al-Mg-based aluminum alloy sheet is improved, the productivity is improved and the breakage when the high-speed forming of the complex shape is performed is further suppressed. Therefore, it is desired to develop a stable high-speed molding technique that can suppress cavitation without deteriorating corrosion resistance and can achieve further reduction in thickness and weight.
本発明は以上の従来技術における問題に鑑み、耐食性に優れた強度の高い成形品を生産性良く、安定して供給することを可能とした高温加圧気体成形品及びその高温加圧気体成形品の製造方法を提供することを目的とする。 In view of the problems in the prior art described above, the present invention provides a high-temperature pressurized gas molded article and a high-temperature pressurized gas molded article capable of stably supplying a high-strength molded article excellent in corrosion resistance with high productivity. It aims at providing the manufacturing method of.
本発明者らは以上の課題を達成するべく鋭意実験検討を重ねた結果、300℃〜450℃の温度に加熱された所定のアルミニウム合金板材を、成形前の結晶粒径を20μm未満、引張試験における伸び100%でのキャビテーション面積率を1.5%以下に調製し、1〜4MPaの圧力で3分以内に成形すると、高速で導入された加工ひずみが蓄積され、その場再結晶が起こり、結晶粒径が10μm以下の極めて微細な結晶粒を有する成形品が得られることを見い出した。 As a result of repeated earnest experiments to achieve the above-mentioned problems, the present inventors have determined that a predetermined aluminum alloy sheet heated to a temperature of 300 ° C. to 450 ° C. has a crystal grain size of less than 20 μm and a tensile test. When the cavitation area ratio at an elongation of 100% is adjusted to 1.5% or less and molded within 3 minutes at a pressure of 1 to 4 MPa, processing strain introduced at high speed is accumulated, and in-situ recrystallization occurs. It has been found that a molded article having extremely fine crystal grains having a crystal grain size of 10 μm or less can be obtained.
すなわち本発明の高温加圧気体成形品はMg3.0〜8.0%((mass%、以下成分量の記載において同じ)、Cr0.3%以下(0%は含まない)及びZr0.3%以下(0%は含まない)及びV0.3%以下(0%は含まない)のうちの1種または2種以上を含有すると共に1.0%を超えて2.0%以下のMnを含有し、残部がAlおよび不可避不純物からなるアルミニウム合金板材を、均質化処理後、熱間圧延、冷間圧延して成形前の結晶粒径を20μm未満、引張試験における伸び100%でのキャビテーション面積率を1.5%以下に調製し、300℃以上450℃以下に加熱して圧力1MPa以上4MPa以下の加圧気体により3分以内に成形されてなることを特徴とする。 That is, the high-temperature pressurized gas molded product of the present invention has Mg 3.0-8.0% ((mass%, the same in the description of the component amount), Cr 0.3% or less (0% is not included), and Zr 0.3%. 1% or more of the following (not including 0%) and V 0.3% or less (not including 0%), and more than 1.0% and not more than 2.0% Mn Then, after the aluminum alloy sheet consisting of Al and inevitable impurities is homogenized, it is hot-rolled and cold-rolled so that the crystal grain size before forming is less than 20 μm, and the cavitation area ratio is 100% elongation in the tensile test. Is adjusted to 1.5% or less, heated to 300 ° C. or higher and 450 ° C. or lower, and molded with a pressurized gas having a pressure of 1 MPa or higher and 4 MPa or lower within 3 minutes.
また本発明の高温加圧気体成形品の製造方法は、Mg3.0〜8.0%、Cr0.3%以下(0%は含まない)及びZr0.3%以下(0%は含まない)及びV0.3%以下(0%は含まない)のうちの1種または2種以上を含有すると共に1.0%を超えて2.0%以下のMnを含有し、残部がAlおよび不可避不純物からなるアルミニウム合金板材を、均質化処理後、熱間圧延、冷間圧延して成形前の結晶粒径を20μm未満、引張試験における伸び100%でのキャビテーション面積率を1.5%以下に調製する工程と、300℃以上450℃以下に加熱し、圧力1MPa以上4MPa以下の加圧気体により3分以内に成形する工程とよりなることを特徴とする。 In addition, the method for producing a high-temperature pressurized gas molded product of the present invention includes Mg 3.0 to 8.0%, Cr 0.3% or less (not including 0%) and Zr 0.3% or less (not including 0%) and V contains 0.3% or less (0% is not included) and contains 1.0% or more and 2.0% or less of Mn, with the balance being Al and inevitable impurities. The resulting aluminum alloy sheet is subjected to homogenization treatment, hot rolling and cold rolling to adjust the crystal grain size before forming to less than 20 μm and the cavitation area ratio at an elongation of 100% in a tensile test to 1.5% or less. And a step of heating to 300 ° C. to 450 ° C. and molding within 3 minutes with a pressurized gas having a pressure of 1 MPa to 4 MPa.
高温加圧気体成形品の0.2%耐力が150MPa以上であるのが好ましい。また、高温加圧気体成形品の結晶粒径が10μm以下であるのが好ましい。 It is preferable that the 0.2% yield strength of the high-temperature pressurized gas molded product is 150 MPa or more. Moreover, it is preferable that the crystal grain size of the high-temperature pressurized gas molded product is 10 μm or less.
本発明の高温加圧気体成形品及びその高温加圧気体成形品の製造方法によれば、高速成形が可能で生産性が向上し、破断やキャビテーションの問題がなく、安定した成形品が保証される。また、本発明の高温加圧気体成形により成形された製品は、きわめて微細な結晶組織を有することから、従来に比べ高い強度が得られる。その結果適用部品の薄肉化、軽量化が可能となり、コスト低減、省エネ等、経済や環境に大きな効果をもたらすことが期待される。 According to the high-temperature pressurized gas molded product and the manufacturing method of the high-temperature pressurized gas molded product of the present invention, high-speed molding is possible, productivity is improved, there is no problem of fracture or cavitation, and a stable molded product is guaranteed. The Moreover, since the product molded by the high-temperature pressurized gas molding of the present invention has a very fine crystal structure, a higher strength can be obtained than in the prior art. As a result, it is possible to reduce the thickness and weight of the applied parts, and it is expected to bring about great effects on the economy and the environment, such as cost reduction and energy saving.
本発明の詳細な内容について説明する。先ずこの発明に使用するアルミニウム合金板材の成分限定理由について述べる。
Mg:Mgは再結晶粒を微細化して、成形性を向上させ、また材料の耐食性および溶接性を阻害することなく、強度を向上させる作用を有する。ここで、Mg量が3.0%未満では成形性向上効果が不充分となり、8.0%を越えれば、熱間圧延性、冷間圧延性が悪くなって、製造が困難となる。したがってMg量は3.0〜8.0%の範囲内とした。
The detailed contents of the present invention will be described. First, the reasons for limiting the components of the aluminum alloy sheet used in the present invention will be described.
Mg: Mg refines the recrystallized grains to improve the formability, and has the effect of improving the strength without inhibiting the corrosion resistance and weldability of the material. Here, if the amount of Mg is less than 3.0%, the effect of improving the formability becomes insufficient, and if it exceeds 8.0%, the hot rolling property and the cold rolling property are deteriorated and the production becomes difficult. Therefore, the amount of Mg is set in the range of 3.0 to 8.0%.
Mn:Mnは再結晶粒を微細化し、かつ成形時に結晶粒の異常粗大化を防ぐ効果がある。また強度向上の効果もある。Mnが1.0%以下ではこれらの効果が不十分であり、一方Mnが2.0%を越えれば粗大金属間化合物が生成して成形が困難となるから、Mnは1.0%を超えて2.0%以下の範囲とした。
結晶粒の微細化はキャビテーションの発生を抑制する上でも重要である。
Mn: Mn has an effect of making recrystallized grains fine and preventing abnormal coarsening of crystal grains during molding. It also has the effect of improving strength. If Mn is 1.0% or less, these effects are insufficient. On the other hand, if Mn exceeds 2.0%, a coarse intermetallic compound is formed and molding becomes difficult, so Mn exceeds 1.0%. Of 2.0% or less.
Refinement of crystal grains is important for suppressing the occurrence of cavitation.
Cr、Zr、V:これらの元素はいずれも再結晶粒を微細化し、かつ成形時に結晶粒の異常粗大化を防ぐ効果があるから、これらのうちから選ばれた1種または2種以上を添加する。またCr、Zr、Vのいずれかが0.3%を越えれば粗大金属間化合物が生成して成形が困難となる。したがって、Cr0.3%以下(0%は含まない)及びZr0.3%以下(0%は含まない)及びV0.3%以下(0%は含まない)のうちの1種または2種以上を含有することとした。 Cr, Zr, V: All of these elements have the effect of making the recrystallized grains finer and preventing abnormal coarsening of the grains during molding. Therefore, one or more selected from these elements are added. To do. Further, if any of Cr, Zr, and V exceeds 0.3%, a coarse intermetallic compound is generated and molding becomes difficult. Accordingly, one or more of Cr 0.3% or less (not including 0%) and Zr 0.3% or less (not including 0%) and V 0.3% or less (not including 0%) are included. It was supposed to contain.
さらに、一般のアルミニウム合金では不純物としてFe、Si、Cu、Zn等が含有されるが、不純物としてのFe量が多ければ、粗大なAl−Fe系、Al−Fe−S系やAl−Fe―Mn系の金属間化合物が晶出しやすくなり、キャビテーションが多くなることから、Feは不純物として0.3%未満に規制することが好ましい。Siの量が多ければ、粗大なαAl−Mn(Fe)−Si相やMg2Si相等の金属間化合物が晶出しやすくなり、キャビテーションが多くなることから、Siは不純物として0.3%未満に規制することが好ましい。またCuが多ければ耐食性が劣化するだけでなく、熱間圧延が困難となることから、Cuは0.1%未満に規制することが好ましい。そのほか、不純物としてのZnは、0.5%以下であれば特に本発明のアルミニウム合金板材の特性を損なうことはない。 Furthermore, in general aluminum alloys, Fe, Si, Cu, Zn, and the like are contained as impurities, but if the amount of Fe as impurities is large, coarse Al—Fe, Al—Fe—S, Al—Fe— Since Mn-based intermetallic compounds are easily crystallized and cavitation increases, Fe is preferably regulated to less than 0.3% as an impurity. If the amount of Si is large, coarse intermetallic compounds such as αAl-Mn (Fe) -Si phase and Mg 2 Si phase are easily crystallized, and cavitation increases, so Si is less than 0.3% as an impurity. It is preferable to regulate. Moreover, if there is much Cu, not only corrosion resistance will deteriorate but hot rolling will become difficult, Therefore It is preferable to control Cu to less than 0.1%. In addition, if Zn as an impurity is 0.5% or less, the characteristics of the aluminum alloy sheet of the present invention are not particularly impaired.
また、Beは一般に溶湯中のMgの酸化防止のために添加される場合がある。この発明の場合にもBeが溶湯表面に緻密な酸化皮膜を形成し、水素の混入を防止して、圧延板のキャビテーション発生の防止に役立つため、添加することが望ましい。
ここで、キャビテーションは伸びの低下の原因となるとともに、成形後の製品の機械的性質、耐食性を劣化させる原因となる。またBeは、圧延板表面のMgの酸化を抑制し、表面を安定化する。
Further, Be is generally added to prevent oxidation of Mg in the molten metal. Also in this invention, it is desirable to add Be because it forms a dense oxide film on the surface of the molten metal and prevents the mixing of hydrogen, thereby preventing the occurrence of cavitation in the rolled sheet.
Here, cavitation causes a decrease in elongation and also causes deterioration in mechanical properties and corrosion resistance of the molded product. Moreover, Be suppresses the oxidation of Mg on the surface of the rolled sheet and stabilizes the surface.
本発明における成形は、300〜450℃と高温で行われるため、この発明の合金のようにMg量が多い場合、成形時における表面の酸化が激しくなって、表面が黒変しやすいが、Beの添加により成形時の板表面の酸化が抑制されて、製品表面が安定化する。Be量が0.0001%(1ppm)未満では上記の効果が発現せず、0.01%(100ppm)を越えると効果が飽和するばかりでなく、毒性や経済性の点で問題を生じるから、Be量は0.0001〜0.01%の範囲内とする。 Since the molding in the present invention is performed at a high temperature of 300 to 450 ° C., when the amount of Mg is large as in the alloy of the present invention, the surface is easily oxidized during the molding and the surface is easily blackened. Oxidation prevents the oxidation of the plate surface during molding and stabilizes the product surface. If the amount of Be is less than 0.0001% (1 ppm), the above effect is not exhibited, and if it exceeds 0.01% (100 ppm), not only the effect is saturated, but also a problem occurs in terms of toxicity and economy. The amount of Be is in the range of 0.0001 to 0.01%.
さらに本発明のアルミニウム合金板材の製造にあたっては、鋳造前もしくは鋳造中に、鋳塊組織微細化のためにTiを単独で、あるいはTiをBもしくはCと組合せて添加するのが通常である。この場合、Ti量が0.15%を越えればTiAl3 の粗大初晶粒子が晶出して成形性に悪影響を与えるから、Ti量は0.15%以下の範囲内とすることが好ましい。またBおよびCはいずれもTiと共存して添加されて、結晶粒の微細化と均一化を一層促進するが、B量が0.05%を越えればTiB2 粒子が生じ、またC量が0.05%を越えればグラファイトが生じ、いずれの場合も成形性に悪影響を与える。したがってTiと併せて添加するB,Cはいずれも0.05%以下の範囲内とすることが好ましい。 Furthermore, in the production of the aluminum alloy sheet of the present invention, it is usual to add Ti alone or Ti in combination with B or C for refining the ingot structure before or during casting. In this case, if the Ti content exceeds 0.15%, coarse primary crystal particles of TiAl3 are crystallized and adversely affect the formability. Therefore, the Ti content is preferably within the range of 0.15% or less. Further, both B and C are added together with Ti to further promote the refinement and homogenization of crystal grains. However, if the amount of B exceeds 0.05%, TiB2 particles are formed, and the amount of C is 0. If it exceeds 0.05%, graphite is produced, and in any case, the moldability is adversely affected. Therefore, it is preferable that both B and C added together with Ti be in the range of 0.05% or less.
次に本発明の高温加圧気体成形品の製造方法について説明する。
先ず前述のような成分組成の合金溶湯を溶製し、これを鋳造する。その鋳造法としては半連続鋳造法(DC鋳造法)が一般的であるが、連続鋳造法(例えばロールキャスト法)を用いることも可能である。なお鋳造前もしくは鋳造中には、鋳塊組織微細化剤として前述のようなTiを単独でもしくはBもしくはCとともに溶湯に添加しても良い。
Next, the manufacturing method of the high temperature pressurization gas molded product of this invention is demonstrated.
First, a molten alloy having the composition described above is melted and cast. As the casting method, a semi-continuous casting method (DC casting method) is generally used, but a continuous casting method (for example, roll casting method) can also be used. In addition, before or during casting, Ti as described above may be added to the molten metal alone or together with B or C as an ingot structure refining agent.
DC鋳造法によって得られた鋳塊には、必要に応じて面削を施してから、鋳塊加熱(均質化処理)を通常は400〜560℃×0.5〜24時間保持で行なう。400℃以下では均質化効果が不十分であり、560℃以上では共晶融解が発生し、キャビテーションが増加する。0.5時間未満では均質化効果が不十分であり、24時間以上では効果が飽和し、また不経済である。この鋳塊加熱は、均質化と熱間圧延前予備加熱とを兼ねて1段で行なっても、あるいはこれらを区別して2段で行なっても良い。 The ingot obtained by the DC casting method is chamfered as necessary, and then the ingot is heated (homogenized) usually at 400 to 560 ° C. for 0.5 to 24 hours. Below 400 ° C., the homogenization effect is insufficient, and above 560 ° C. eutectic melting occurs and cavitation increases. If it is less than 0.5 hours, the homogenizing effect is insufficient, and if it is 24 hours or more, the effect is saturated and uneconomical. This ingot heating may be performed in one stage for both homogenization and preheating before hot rolling, or may be performed in two stages by distinguishing these.
鋳塊加熱後、常法に従って熱間圧延を行ない、さらに冷間圧延を施して所要の最終板厚とする。この場合、熱間圧延と冷間圧延との間、もしくは冷間圧延の中途において1回または2回以上の中間焼鈍を施しても良い。中間焼鈍の条件は特に限定しないが、バッチ式の中間焼鈍の場合には、250〜450℃×0.5〜12時間とし、連続焼鈍を適用する場合は400〜560℃×0〜30秒とすることが好ましい。バッチ式250℃以下、連続焼鈍400℃以下では軟質化の効果が不十分、バッチ式450℃以上では表面酸化皮膜が厚くなり圧延性と表面品質が低下する。連続焼鈍560℃以上では、共晶融解が発生し、キャビテーションが増加する。バッチ式0.5時間以下は軟質化の効果が不十分、12時間以上は効果が飽和し、不経済である。連続焼鈍30秒以上では表面酸化皮膜が厚くなり圧延性と表面品質が低下し好ましくない。 After the ingot is heated, hot rolling is performed according to a conventional method, and cold rolling is further performed to obtain a required final thickness. In this case, intermediate annealing may be performed once or twice or more between hot rolling and cold rolling or in the middle of cold rolling. The conditions for the intermediate annealing are not particularly limited, but in the case of batch-type intermediate annealing, the temperature is 250 to 450 ° C. × 0.5 to 12 hours, and when continuous annealing is applied, the temperature is 400 to 560 ° C. × 0 to 30 seconds. It is preferable to do. When the batch type is 250 ° C. or lower and the continuous annealing is 400 ° C. or lower, the effect of softening is insufficient, and when the batch type is 450 ° C. or higher, the surface oxide film becomes thick and the rollability and surface quality are deteriorated. At continuous annealing at 560 ° C. or higher, eutectic melting occurs and cavitation increases. When the batch type is 0.5 hours or less, the effect of softening is insufficient, and when the time is 12 hours or more, the effect is saturated, which is uneconomical. Continuous annealing for 30 seconds or more is not preferable because the surface oxide film becomes thick and the rollability and surface quality deteriorate.
一方、連続鋳造法によって得られた鋳造板に対しては、熱間圧延を行いまたは行わずにコイルに巻取り、コイルの状態で通常は400〜560℃×0.5〜24時間の均質化加熱を施してから、熱間圧延を行なうことなく、冷間圧延のみによって所要の最終板厚とする。この場合も冷間圧延の中途において前記同様な条件で1回または2回以上の中間焼鈍を施しても良い。 On the other hand, a cast plate obtained by a continuous casting method is wound on a coil with or without hot rolling, and is normally homogenized at 400 to 560 ° C. for 0.5 to 24 hours in the coil state. After the heating, the required final plate thickness is obtained only by cold rolling without performing hot rolling. In this case, intermediate annealing may be performed once or twice or more under the same conditions as described above during the cold rolling.
ここで、最終板厚となる前の冷間圧延における圧延率(すなわち中間焼鈍を挟まずに最終板厚まで冷間圧延する場合にはその全体の圧延率、また1回または2回以上の中間焼鈍を挟んで最終板厚まで冷間圧延する場合には最終の中間焼鈍後の冷間圧延率)を特に50%以上、さらに70%以上が望ましい。
最終板厚前の冷間圧延率が50%未満では、再結晶粒が粗大化して、充分な特性が得られない。最終板厚前の冷間圧延率が50%以上であれば、再結晶粒の粗大化を招くことなく、成形前の結晶粒径を20μm未満の微細な再結晶組織とすることができる。結晶粒径が20μm以上では強度及び成形性において十分な性能が得られない。
成形前に再結晶組織とするためには、アルミニウム合金板材の最後の製造工程として、冷間圧延板に焼鈍を施しても良いが、成形のために板を300℃〜450℃に加熱する工程で再結晶させることが好ましい。
Here, the rolling rate in the cold rolling before reaching the final plate thickness (that is, in the case of cold rolling to the final plate thickness without intermediate annealing, the entire rolling rate, or one or more intermediate times) In the case of cold rolling to the final sheet thickness with annealing, the cold rolling rate after the final intermediate annealing is particularly preferably 50% or more, and more preferably 70% or more.
If the cold rolling ratio before the final plate thickness is less than 50%, the recrystallized grains become coarse and sufficient characteristics cannot be obtained. If the cold rolling ratio before the final plate thickness is 50% or more, the crystal grain size before forming can be made to be a fine recrystallized structure of less than 20 μm without causing coarsening of recrystallized grains. When the crystal grain size is 20 μm or more, sufficient performance in strength and moldability cannot be obtained.
In order to obtain a recrystallized structure before forming, as a final manufacturing process of the aluminum alloy sheet, the cold rolled sheet may be annealed, but the sheet is heated to 300 ° C. to 450 ° C. for forming. It is preferable to recrystallize.
次に成形条件について詳細に説明する。
予め加熱された加圧気体成形機にアルミニウム合金板材をセットし、300℃〜450℃に加熱する。300℃未満ではアルミニウム合金板材を十分に再結晶させることができない。450℃を超えて加熱すると、再結晶粒が粗大化する恐れが有り好ましくない。ひずみの開放を抑制し、成形品の結晶粒を微細にするためには450℃未満とすることが望ましい。このことから成形温度は300℃〜450℃、望ましくは380℃以上420℃未満とする。
成形機にセットする前に、予め板を加熱することもできる。予め板を加熱しておくことで、成形のサイクルタイムを短縮することが可能となる。その場合、板材の搬送中に温度低下を起こすときには、低下温度を見込んだ温度で予め加熱を施しても良い。成形用の高圧ガスとしては、N2ガスが比較的安価で適しているが、不活性ガスが必要な場合にはアルゴンガス等も利用できる。また、圧縮機があれば空気でもよい。
Next, the molding conditions will be described in detail.
An aluminum alloy plate material is set in a pre-heated pressurized gas forming machine and heated to 300 ° C to 450 ° C. Below 300 ° C., the aluminum alloy sheet cannot be sufficiently recrystallized. Heating above 450 ° C. is not preferable because the recrystallized grains may become coarse. In order to suppress the release of strain and make the crystal grains of the molded product finer, it is desirable that the temperature be less than 450 ° C. Therefore, the molding temperature is set to 300 ° C. to 450 ° C., desirably 380 ° C. or higher and lower than 420 ° C.
The plate can also be heated in advance before being set in the molding machine. By heating the plate in advance, the molding cycle time can be shortened. In that case, when the temperature is lowered during the conveyance of the plate material, heating may be performed in advance at a temperature allowing for the lowered temperature. As the high-pressure gas for molding, N 2 gas is suitable at a relatively low cost, but argon gas or the like can be used when an inert gas is required. Further, air may be used if a compressor is provided.
成形圧力は1〜4MPaで成形時間は3分以内で成形する。
300℃〜450℃の成形温度で圧力1MPa未満では、3分以内で成形を完了することは困難である。一方4MPaを超えた圧力での成形は、破断が生じる恐れがある。成形時間については、3分以内としたが、3分を越える時間で成形すると、部分的に結晶粒の粗大化が生じる恐れが有るため好ましくない。望ましくは2分以内である。
1MPa未満の圧力では板厚にもよるが、十分なひずみ速度が得られず、その場再結晶を起こすに足り得る加工ひずみの蓄積が不十分となる。その結果、結晶粒は成形前の状態を維持するか、あるいは部分的に粗大化が起こることが有り、本発明の目的とする強度の高い高温加圧気体成形品は得られない。
The molding pressure is 1 to 4 MPa and the molding time is within 3 minutes.
If the pressure is less than 1 MPa at a molding temperature of 300 ° C. to 450 ° C., it is difficult to complete the molding within 3 minutes. On the other hand, molding at a pressure exceeding 4 MPa may cause breakage. Although the molding time is set to be within 3 minutes, if the molding is performed for a time exceeding 3 minutes, there is a possibility that the crystal grains are partially coarsened. Desirably within 2 minutes.
If the pressure is less than 1 MPa, although depending on the plate thickness, a sufficient strain rate cannot be obtained, and the accumulation of processing strain sufficient to cause in-situ recrystallization will be insufficient. As a result, the crystal grains may remain in the state before molding or may be partially coarsened, and a high-temperature pressurized gas molded product having a high strength targeted by the present invention cannot be obtained.
本発明においては、引張試験における伸び100%でのキャビテーション面積率が1.5%以下、望ましくは1.0%以下のアルミニウム合金板材を用いる。
高温加圧成形では部分的に大きな板厚減少を伴う場合が多く、しばしばキャビテーションが問題となることがある。キャビテーション面積率が大きくなると、成形品の静的強度や疲労強度の劣化を招く恐れがあり好ましくない。本発明者らの検討結果から、大変形の目安となる伸び100%でのキャビテーション面積率が1.5%以下であれば、実用上問題ないことが解った。望ましくは1.0%以下である。
ここでキャビテーション面積率とは、具体的には、成形板材の断面を研磨し、画像解析装置により観察し、材料内部に発生している、キャビティーション量を測定することである。
伸び100%でのキャビテーション面積率の測定は、成形板材の板厚が、元板の1/2板厚になった板材(成形品)の測定を行うことである。
In the present invention, an aluminum alloy plate material having a cavitation area ratio at an elongation of 100% in a tensile test of 1.5% or less, preferably 1.0% or less is used.
High temperature pressing often involves a large reduction in thickness, and cavitation is often a problem. When the cavitation area ratio is large, there is a risk that the static strength and fatigue strength of the molded product may be deteriorated. From the examination results of the present inventors, it has been found that there is no practical problem if the cavitation area ratio at an elongation of 100%, which is an indication of large deformation, is 1.5% or less. Desirably, it is 1.0% or less.
Here, the cavitation area ratio is to specifically measure the amount of cavitation generated in the material by polishing the cross section of the molded plate material and observing it with an image analyzer.
The measurement of the cavitation area ratio at an elongation of 100% is to measure a plate material (molded product) in which the plate thickness of the formed plate material is ½ the thickness of the base plate.
また本発明の高温加圧気体成形品は0.2%耐力で150MP以上の強度を有することを特徴とする。
結晶粒を微細にすることで、強度が向上することは一般に知られている。本発明の組成のアルミニウム合金板材では、結晶粒径を10μm以下とすることで、0.2%耐力で150MP以上を達成することができる。そのためには、本発明で特定した合金組成、成形温度300℃〜450℃、成形圧力1〜4MPa、成形時間3分以内、結晶粒径10μm以下のすべての条件が満たされなければならない。0.2%耐力が150MPaを超えることで、たとえば薄肉化や軽量化が可能となりコスト低減、省エネ等、経済や環境に大きな効果をもたらすことが期待される。
The high-temperature pressurized gas molded article of the present invention is characterized by having a strength of 150 MP or more with a 0.2% proof stress.
It is generally known that the strength is improved by making the crystal grains fine. In the aluminum alloy sheet having the composition of the present invention, 150 MP or more can be achieved with a 0.2% proof stress by setting the crystal grain size to 10 μm or less. For this purpose, all conditions of the alloy composition specified in the present invention, a forming temperature of 300 ° C. to 450 ° C., a forming pressure of 1 to 4 MPa, a forming time of 3 minutes or less, and a crystal grain size of 10 μm or less must be satisfied. When the 0.2% proof stress exceeds 150 MPa, for example, it is possible to reduce the thickness and weight, and it is expected to bring about great effects on the economy and the environment such as cost reduction and energy saving.
[実施例]
表1に示す成分組成の11種類の合金を、常法に従ってDC鋳造法により鋳造した。
合金番号1〜合金番号8は本発明で規定した成分範囲に適合する合金であり、合金番号9〜合金番号11は本発明で規定した成分範囲を外れた合金である。
各鋳塊を面削した後、530℃×10時間の均質化処理を行なった。次に500℃に加熱して熱間圧延を施し、板厚6mmの熱延板を得た。その後冷間圧延を行って板厚1.5mmに仕上げた。一部のものついては冷間圧延途中で中間焼鈍を実施した。中間焼鈍は390℃×2時間保持のバッチ焼鈍とした。
[Example]
Eleven kinds of alloys having the component compositions shown in Table 1 were cast by a DC casting method according to a conventional method.
Alloy No. 1 to Alloy No. 8 are alloys that conform to the component ranges defined in the present invention, and Alloy No. 9 to Alloy No. 11 are alloys that deviate from the component ranges defined in the present invention.
After chamfering each ingot, homogenization treatment was performed at 530 ° C. for 10 hours. Next, it heated to 500 degreeC and hot-rolled and obtained the hot-rolled sheet of 6 mm in thickness. Thereafter, it was cold-rolled to finish a plate thickness of 1.5 mm. For some products, intermediate annealing was performed during cold rolling. The intermediate annealing was batch annealing at 390 ° C. × 2 hours.
成形実験はN2ガスを使用した加圧成形法により、350mm×350mm、高さ80mmの角筒成形を実施した。成形条件を表2に示す。成形時間については、昇圧を30secとし、昇圧後の保持時間を加えて成形時間とした。角筒成形の中央付近からサンプルを切り出し、圧延方向に直角方向断面のミクロ組織観察により成形後の結晶粒径を測定した。また圧延に平行方向の引張試験により0.2%耐力を測定した。
成形前の結晶粒については、別途成形温度に加熱したサンプルのミクロ組織観察により結晶粒径を測定した。さらに温度350℃、ひずみ速度1×10−2/secで引張試験を行い、伸び100%でのキャビテーション面積率を測定した。
In the molding experiment, square tube molding of 350 mm × 350 mm and height 80 mm was performed by a pressure molding method using N 2 gas. Table 2 shows the molding conditions. The molding time was set to 30 sec, and the holding time after the pressure increase was added to form the molding time. A sample was cut out from the vicinity of the center of the rectangular tube forming, and the crystal grain size after forming was measured by observing the microstructure of the cross section perpendicular to the rolling direction. The 0.2% proof stress was measured by a tensile test parallel to the rolling.
For the crystal grains before molding, the crystal grain size was measured by observing the microstructure of a sample separately heated to the molding temperature. Further, a tensile test was conducted at a temperature of 350 ° C. and a strain rate of 1 × 10 −2 / sec, and the cavitation area ratio at an elongation of 100% was measured.
製造番号1、製造番号2、製造番号3、製造番号4の本発明例及び製造番号5〜製造番号8の比較例は本発明合金番号1を用いて製造された。また比較例である製造番号9は本発明例の合金番号4を用いて製造された。 The present invention example of production number 1, production number 2, production number 3, production number 4 and the comparative example of production number 5 to production number 8 were produced using the present invention alloy number 1. Further, production number 9 as a comparative example was produced using alloy number 4 of the present invention example.
また製造番号1、製造番号2、の本発明例及び製造番号5、製造番号7〜製造番号9の比較例は圧力3MPaの加圧気体により成形時間を100secとし、一方、製造番号3の本発明例は圧力4MPaの加圧気体により成形時間を80secとし、製造番号4の本発明例は圧力3MPaの加圧気体により成形時間を150secとし、いずれも圧力1MPa以上4MPa以下の加圧気体により3分以内に成形されるとする条件に適合する条件で成形された。 In addition, the present invention example of production number 1 and production number 2 and the comparative example of production number 5 and production number 7 to production number 9 have a molding time of 100 sec using a pressurized gas at a pressure of 3 MPa, while the present invention of production number 3 In the example, the molding time is set to 80 sec with a pressurized gas at a pressure of 4 MPa, and in the example of the present invention of production number 4, the molding time is set to 150 sec with a pressurized gas at a pressure of 3 MPa. It was molded under conditions suitable for the conditions to be molded within.
さらに製造番号1、製造番号2、製造番号3、製造番号4の本発明例及び製造番号8、製造番号9の比較例では成形温度が320℃〜420℃の温度範囲とされ、温度300℃以上450℃以下に加熱するという条件に適合する条件で成形された。 Furthermore, in the present invention example of production number 1, production number 2, production number 3, production number 4 and the comparative example of production number 8 and production number 9, the molding temperature is set to a temperature range of 320 ° C. to 420 ° C., and the temperature is 300 ° C. or more. Molding was performed under conditions suitable for heating to 450 ° C. or lower.
また製造番号1、製造番号2、製造番号3、製造番号4の本発明例では成形前の結晶粒径が8μm未満、成形後の結晶粒径が4〜7μmであり、成形前の結晶粒径が20μm未満、成形後の結晶粒径が10μm以下とする条件に適合する。
さらにまた製造番号1、製造番号2、製造番号3、製造番号4の本発明例では成形品0.2%耐力が155〜190MPaであり、0.2%耐力が150MPa以上とする条件に適合する。
加えて製造番号1、製造番号2、製造番号3、製造番号4の本発明例及び製造番号7の比較例では引張試験における伸び100%でのキャビテーション面積率が0.5〜0.7%であり、1.5%以下とする条件に適合する。
Further, in the present invention examples of production number 1, production number 2, production number 3 and production number 4, the crystal grain size before molding is less than 8 μm, the crystal grain size after molding is 4 to 7 μm, and the crystal grain size before molding Is less than 20 μm and the crystal grain size after molding is 10 μm or less.
Furthermore, in the present invention examples of production number 1, production number 2, production number 3, and production number 4, the molded product has a 0.2% proof stress of 155 to 190 MPa and a 0.2% proof stress of 150 MPa or more. .
In addition, in the inventive example of production number 1, production number 2, production number 3, production number 4 and comparative example of production number 7, the cavitation area ratio at an elongation of 100% in the tensile test is 0.5 to 0.7%. Yes, to meet the condition of 1.5% or less.
以上の様に製造番号1、製造番号2、製造番号3、製造番号4の本発明例は本発明で規定したすべての条件を満たす実施例であり、良好な成形性、成形品強度を示した。 As described above, the present invention examples of production number 1, production number 2, production number 3, and production number 4 are examples that satisfy all the conditions defined in the present invention, and showed good moldability and molded product strength. .
しかし製造番号5は成形温度が本発明の規定を越える520℃であり、成形は可能であったものの、成形後の結晶粒径が10μm以下という本発明の規定を越える12μmであり、やや大きく、その結果成形後の0.2%耐力が150MPa以上という条件に満たない145MPaであった。 However, the production number 5 is 520 ° C., which exceeds the provision of the present invention, and molding is possible, but the crystal grain size after molding is 12 μm, which exceeds the provision of the present invention of 10 μm or less. As a result, the 0.2% yield strength after molding was 145 MPa which did not satisfy the condition of 150 MPa or more.
製造番号6は成形前のアルミニウム合金板材のキャビテーション面積率が1.5%を越える3.0%板材につき製造番号5と同様に成形温度を520℃とし、製造番号5とは異なり、圧力1MPa以上の加圧気体により成形するという条件に到達しない0.85MPaの成形圧力で、かつ成形時間を長くし3分を越える300secとして成形され、それによって成形は可能であった。
しかし製造番号5と同様に加工後の結晶粒径が10μmを越えて20μmとやや大きく、0.2%耐力は150MPa以下の138MPaであった。
The production number 6 is a 3.0% plate material in which the cavitation area ratio of the aluminum alloy plate material before forming exceeds 1.5%, and the forming temperature is set to 520 ° C. like the production number 5 and, unlike the production number 5, the pressure is 1 MPa or more. The molding pressure was 0.85 MPa which did not reach the condition of molding with the pressurized gas, and the molding time was extended to 300 seconds exceeding 3 minutes, thereby allowing molding.
However, the crystal grain diameter after processing exceeded 10 μm and was slightly large as 20 μm as in the case of production number 5, and the 0.2% proof stress was 138 MPa which is 150 MPa or less.
製造番号7は成形温度が300℃に到達せず280℃と低すぎるため、十分な変形能が得られず、成形途中で破断した。
製造番号8、製造番号9は成形前のアルミニウム合金板材のキャビテーション面積率が1.5%を越えて製造番号8では2.3%であり、製造番号9では2.1%であった。このようなアルミニウム合金板材につき冷間圧延途中で中間焼鈍を施したが、焼鈍後の冷間圧延率が50%に満たなかったため、再結晶前の加工ひずみの蓄積が少なく、加工前結晶粒径が製造番号8では30μmであり、製造番号9では27μmであり、いずれも結晶粒径の大きい材料となったが、成形は可能であった。製造番号8の成形後の結晶粒径が10μm以下という本発明の規定を越える15μmであり、その結果成形後の0.2%耐力が150MPa以上という条件に満たない143MPaであった。また、製造番号9の成形後の結晶粒径が10μm以下という本発明の規定を越える12μmであり、その結果成形後の0.2%耐力が150MPa以上という条件に満たない145MPaであった。
Production number 7 did not reach 300 ° C. and was too low at 280 ° C., so that sufficient deformability could not be obtained, and fracture occurred during the molding.
In production numbers 8 and 9, the cavitation area ratio of the aluminum alloy sheet material before forming exceeded 1.5%, production number 8 was 2.3%, and production number 9 was 2.1%. Although such an aluminum alloy sheet was subjected to intermediate annealing in the middle of cold rolling, the cold rolling rate after annealing was less than 50%, so there was little accumulation of processing strain before recrystallization, and the crystal grain size before processing However, in the production number 8, it was 30 μm, and in the production number 9, it was 27 μm. The crystal grain size after molding of production number 8 was 15 μm exceeding the regulation of the present invention of 10 μm or less, and as a result, the 0.2% proof stress after molding was 143 MPa which did not satisfy the condition of 150 MPa or more. In addition, the crystal grain size after molding of production number 9 was 12 μm exceeding the provision of the present invention of 10 μm or less, and as a result, the 0.2% proof stress after molding was 145 MPa which did not satisfy the condition of 150 MPa or more.
製造番号10〜製造番号19は、温度360℃に加熱し、圧力3MPaの加圧気体により成形時間を100secとして本発明条件に適合する同一の条件で成形された。
その中で本発明例である製造番号10〜製造番号16は、製造番号10は合金番号2、製造番号11は合金番号3、製造番号12は合金番号4、製造番号13は合金番号5、製造番号14は合金番号6、製造番号15は合金番号7、製造番号16は合金番号8を用いて製造され、いずれも本発明例に該当する合金を用いて製造されたことから、良好な成形性、成形品強度を示した。
The production numbers 10 to 19 were molded under the same conditions that met the conditions of the present invention by heating to a temperature of 360 ° C. and using a pressurized gas with a pressure of 3 MPa for a molding time of 100 sec.
Among them, production number 10 to production number 16, which are examples of the present invention, production number 10 is alloy number 2, production number 11 is alloy number 3, production number 12 is alloy number 4, production number 13 is alloy number 5, production No. 14 was manufactured using Alloy No. 6, Manufacturing No. 15 was manufactured using Alloy No. 7, and Manufacturing No. 16 was manufactured using Alloy No. 8, both of which were manufactured using alloys corresponding to the examples of the present invention. The strength of the molded product was shown.
これに対して製造番号17はMn添加量が1.0%を超えて2.0%以下とする条件に達しない0.50%である合金番号9を用いており、また製造番号18はMn添加量が1.0%を超えて2.0%以下とする条件に達しない0.70%とし、さらに成形中の結晶粒の粗大化を抑制するCr0.3%以下、Zr0.3%以下、V0.3%以下(いずれも0%は含まない)のうちの1種または2種以上を含有するとする条件に反してCr、Zr、Vいずれも添加しない合金番号10を用いたため、成形後の結晶粒径が10μm以下とする条件を越えて結晶粒径が製造番号17は15μmに達し、製造番号18は16μmに達し、成形後の結晶粒の微細化が不十分で成形後の0.2%耐力が150MPa以上という条件を充足しない。 On the other hand, production number 17 uses alloy number 9 which is 0.50% which does not reach the condition that the Mn addition amount exceeds 1.0% and is not more than 2.0%. Cr is 0.3% or less and Zr is 0.3% or less, which is 0.70% which does not reach the condition that the addition amount exceeds 1.0% and is 2.0% or less, and further suppresses the coarsening of crystal grains during forming. , V 0.3% or less (none of which includes 0%), alloy number 10 containing none of Cr, Zr, and V was used, contrary to the condition of containing one or more of V 0.3% and below. Exceeding the condition that the crystal grain size is not more than 10 μm, the crystal grain size reaches 15 μm for the production number 17 and 16 μm for the production number 18 and the crystal grain size after the molding is not sufficiently refined. The condition that the 2% proof stress is 150 MPa or more is not satisfied.
製造番号19は成形中の結晶粒の粗大化を抑制するCr0.3%以下、Zr0.3%以下、V0.3%以下(いずれも0%は含まない)のうちの1種のみとしてFe0.3%以下とする条件を越えてFe含有量が0.35%の合金番号11を用いたため、鋳造時生じた粗大な晶出物が原因で、成形途中に破断が発生した。また晶出物周りにキャビテーションが発生し、キャビテーション面積率が1.5%以下とする条件を充足せずキャビテーション面積率は3.2%であった。このため十分な変形能が得られず、成形途中で破断した。 Production number 19 is Fe 0.3% or less as one of Cr 0.3% or less, Zr 0.3% or less, and V 0.3% or less (both not including 0%) that suppress the coarsening of crystal grains during molding. Since Alloy No. 11 having an Fe content of 0.35% was used beyond the condition of 3% or less, fracture occurred during the molding due to the coarse crystallized product generated during casting. Further, cavitation occurred around the crystallized product, and the condition that the cavitation area ratio was 1.5% or less was not satisfied, and the cavitation area ratio was 3.2%. For this reason, sufficient deformability was not obtained, and it broke in the middle of molding.
Claims (6)
The method for producing a high-temperature pressurized gas molded article according to claim 4 or 5, wherein the crystal grain size of the obtained high-temperature pressurized gas molded article is 10 µm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008037714A JP5376812B2 (en) | 2008-02-19 | 2008-02-19 | Manufacturing method of high-temperature pressurized gas molded product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008037714A JP5376812B2 (en) | 2008-02-19 | 2008-02-19 | Manufacturing method of high-temperature pressurized gas molded product |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009197258A true JP2009197258A (en) | 2009-09-03 |
JP5376812B2 JP5376812B2 (en) | 2013-12-25 |
Family
ID=41141089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008037714A Expired - Fee Related JP5376812B2 (en) | 2008-02-19 | 2008-02-19 | Manufacturing method of high-temperature pressurized gas molded product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5376812B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016056240A1 (en) * | 2014-10-09 | 2016-04-14 | 株式会社Uacj | Superplastic-forming aluminium alloy plate and production method therefor |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007186747A (en) * | 2006-01-12 | 2007-07-26 | Furukawa Sky Kk | Aluminum alloy material to be formed at high temperature and a high speed, manufacturing method therefor and method for manufacturing formed article from aluminum alloy |
-
2008
- 2008-02-19 JP JP2008037714A patent/JP5376812B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007186747A (en) * | 2006-01-12 | 2007-07-26 | Furukawa Sky Kk | Aluminum alloy material to be formed at high temperature and a high speed, manufacturing method therefor and method for manufacturing formed article from aluminum alloy |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016056240A1 (en) * | 2014-10-09 | 2016-04-14 | 株式会社Uacj | Superplastic-forming aluminium alloy plate and production method therefor |
JPWO2016056240A1 (en) * | 2014-10-09 | 2017-07-20 | 株式会社Uacj | Aluminum alloy plate for superplastic forming and manufacturing method thereof |
US11499209B2 (en) | 2014-10-09 | 2022-11-15 | Uacj Corporation | Superplastic-forming aluminum alloy plate and production method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP5376812B2 (en) | 2013-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10913242B2 (en) | Titanium material for hot rolling | |
US20070217943A1 (en) | Al-Mg Alloy Sheet with Excellent Formability at High Temperatures and High Speeds and Method of Production of Same | |
JP2013525608A (en) | Damage-resistant aluminum material with hierarchical microstructure | |
JP2009221567A (en) | Aluminum alloy sheet for positive pressure coated can lid, and method for producing the same | |
CN110042285B (en) | High-strength aluminum-magnesium alloy wire for rivet and preparation method thereof | |
CN104451285A (en) | Al-Mg alloy sheet for car body and manufacturing method of Al-Mg alloy sheet | |
JP2007254825A (en) | Method for manufacturing aluminum alloy sheet superior in bendability | |
JP2015040340A (en) | Molding aluminum alloy sheet and method for manufacturing the same | |
JP2008063623A (en) | Method for producing aluminum alloy sheet for forming | |
JP2010116594A (en) | Al-Mg-Si-BASED ALUMINUM ALLOY SHEET SUPERIOR IN BENDABILITY | |
JP6719219B2 (en) | High strength aluminum alloy sheet excellent in formability and method for producing the same | |
JP2008190022A (en) | Al-Mg-Si-BASED ALLOY HOT ROLLED SHEET, AND METHOD FOR PRODUCING THE SAME | |
JP5111966B2 (en) | Method for manufacturing aluminum alloy panel | |
JP4117243B2 (en) | Aluminum alloy sheet with excellent bake hardenability | |
JP5050577B2 (en) | Aluminum alloy plate for forming process excellent in deep drawability and bake-proof softening property and method for producing the same | |
WO2018003709A1 (en) | Aluminum alloy sheet having excellent ridging resistance and hem bendability and production method for same | |
JPH08165538A (en) | Rolled aluminum alloy sheet for automobile body sheet, improved in recycling property, and production thereof | |
JP2007070672A (en) | Method for producing aluminum alloy thick plate having excellent fatigue property | |
JP2012224929A (en) | High formable aluminum-magnesium-silicon based alloy sheet, and manufacturing method therefor | |
JP2008062255A (en) | SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET | |
JP2008231475A (en) | Aluminum alloy sheet for forming workpiece, and producing method therefor | |
JP4201745B2 (en) | 6000 series aluminum alloy plate for superplastic forming excellent in paint bake hardenability and method for producing the same | |
JP5376812B2 (en) | Manufacturing method of high-temperature pressurized gas molded product | |
JP4771791B2 (en) | Method for producing aluminum alloy sheet for forming | |
JP6619919B2 (en) | Aluminum alloy plate excellent in ridging resistance and hem bendability and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100305 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120314 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120329 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120525 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130228 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130531 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20130627 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20130719 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130822 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130829 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130919 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130924 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5376812 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |