JP2009193772A - Electrode for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell equipped with it - Google Patents

Electrode for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell equipped with it Download PDF

Info

Publication number
JP2009193772A
JP2009193772A JP2008031659A JP2008031659A JP2009193772A JP 2009193772 A JP2009193772 A JP 2009193772A JP 2008031659 A JP2008031659 A JP 2008031659A JP 2008031659 A JP2008031659 A JP 2008031659A JP 2009193772 A JP2009193772 A JP 2009193772A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
electrode
fuel cell
electrolyte fuel
perfluoropolyether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008031659A
Other languages
Japanese (ja)
Inventor
Shinichi Toyosawa
真一 豊澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2008031659A priority Critical patent/JP2009193772A/en
Publication of JP2009193772A publication Critical patent/JP2009193772A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for a polymer electrolyte fuel cell capable of improving performance of the fuel cell in a high-humidification operation condition. <P>SOLUTION: This electrode for a polymer electrolyte fuel cell is formed by combining perfluoropolyether with an electrode structure comprising a gas diffusion layer, a carbon fiber layer formed on the gas diffusion layer and supporting a metal catalyst thereto, and a polymer electrolyte impregnated in the carbon fiber layer. The number average molecular weight of the perfluoropolyether is preferably 1,000-8,000. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、固体高分子型燃料電池用電極及びその製造方法、並びに該固体高分子型燃料電池用電極を備えた固体高分子型燃料電池に関し、特には、高加湿運転条件下での燃料電池の性能を向上させることが可能な固体高分子型燃料電池用電極に関するものである。   The present invention relates to an electrode for a polymer electrolyte fuel cell, a method for producing the same, and a polymer electrolyte fuel cell provided with the electrode for a polymer electrolyte fuel cell, and in particular, a fuel cell under high humidification operation conditions. The present invention relates to an electrode for a polymer electrolyte fuel cell capable of improving the performance.

昨今、発電効率が高く、環境への負荷が小さい電池として、燃料電池が注目を集めており、広く研究開発が行われている。燃料電池の中でも、出力密度が高く作動温度が低い固体高分子型燃料電池は、小型化や低コスト化が他のタイプの燃料電池よりも容易なことから、電気自動車用電源、分散発電システム、家庭用のコージェネレーションシステムとして広く普及することが期待されている。   In recent years, fuel cells have attracted attention as a battery having high power generation efficiency and a low environmental load, and extensive research and development has been conducted. Among fuel cells, solid polymer fuel cells with high output density and low operating temperature are easier to reduce in size and cost than other types of fuel cells. It is expected to spread widely as a household cogeneration system.

一般に固体高分子型燃料電池においては、固体高分子電解質膜を挟んで一対の電極を配置すると共に、一方の電極の表面に水素等の燃料ガスを接触させ、もう一方の電極の表面に酸素を含有するガスを接触させ、この時起こる電気化学反応を利用して、電極間から電気エネルギーを取り出している(非特許文献1及び2参照)。なお、上記電極の高分子電解質膜に接する側には触媒層が配設されており、高分子電解質膜と触媒層とガスとの三相界面で電気化学反応が起こる。そのため、固体高分子型燃料電池の発電効率を向上させるためには、該電気化学反応の反応場を大きくする必要がある。   In general, in a polymer electrolyte fuel cell, a pair of electrodes are arranged with a polymer electrolyte membrane sandwiched between them, a fuel gas such as hydrogen is brought into contact with the surface of one electrode, and oxygen is applied to the surface of the other electrode. The contained gas is brought into contact, and electric energy is taken out from between the electrodes by utilizing an electrochemical reaction that occurs at this time (see Non-Patent Documents 1 and 2). A catalyst layer is disposed on the electrode in contact with the polymer electrolyte membrane, and an electrochemical reaction occurs at the three-phase interface between the polymer electrolyte membrane, the catalyst layer, and the gas. Therefore, in order to improve the power generation efficiency of the polymer electrolyte fuel cell, it is necessary to increase the reaction field of the electrochemical reaction.

また、固体高分子型燃料電池においては、燃料極側の触媒層で発生したプロトンを、高分子電解質膜を経て空気極(酸素極)側に伝達するのを容易にするために、上記触媒層には高分子電解質を含有させる必要もある。そのため、上記電気化学反応の反応場を大きくすると共にプロトンの伝導パスを十分に確保するために、従来、触媒層は、白金等の貴金属触媒をカーボンブラック等の粒状カーボン上に担持して作製した触媒粉と高分子電解質とを混合して得たペースト又はスラリーを、カーボンペーパー等からなるガス拡散層上に塗布して形成されてきた。しかしながら、この方法で形成された触媒層を備える固体高分子型燃料電池は、発電効率が低かった。   In the polymer electrolyte fuel cell, in order to facilitate transmission of protons generated in the catalyst layer on the fuel electrode side to the air electrode (oxygen electrode) side through the polymer electrolyte membrane, the catalyst layer It is also necessary to contain a polymer electrolyte. Therefore, in order to increase the reaction field of the electrochemical reaction and to ensure a sufficient proton conduction path, the catalyst layer has been conventionally produced by supporting a noble metal catalyst such as platinum on granular carbon such as carbon black. It has been formed by applying a paste or slurry obtained by mixing catalyst powder and polymer electrolyte onto a gas diffusion layer made of carbon paper or the like. However, the polymer electrolyte fuel cell including the catalyst layer formed by this method has low power generation efficiency.

これに対して、本発明者らは、カーボンペーパー等からなるガス拡散層上に特定の方法で炭素繊維を作製し、該炭素繊維上に電気メッキにより貴金属を担持し、更に該貴金属が担持された炭素繊維に高分子電解質の溶液を塗布して作製した電極を固体高分子型燃料電池に使用することで、固体高分子型燃料電池の発電効率が向上することを見出している(特許文献1参照)。   On the other hand, the present inventors prepared carbon fibers by a specific method on a gas diffusion layer made of carbon paper or the like, supported noble metal on the carbon fiber by electroplating, and further supported the noble metal. It has been found that the power generation efficiency of a solid polymer fuel cell is improved by using an electrode produced by applying a polymer electrolyte solution to a carbon fiber in a polymer electrolyte fuel cell (Patent Document 1). reference).

日本化学会編,「化学総説No.49,新型電池の材料化学」,学会出版センター,2001年,p.180−182The Chemical Society of Japan, “Chemical Review No. 49, Material Chemistry of New Batteries”, Academic Publishing Center, 2001, p. 180-182 「固体高分子型燃料電池<2001年版>」,技術情報協会,2001年,p.14−15“Polymer fuel cell <2001 edition>”, Technical Information Association, 2001, p. 14-15 国際公開第2004/063438号パンフレットInternational Publication No. 2004/063438 Pamphlet

しかしながら、本発明者が更に検討を進めたところ、上記特許文献1に記載の電極を具えた燃料電池は、高加湿運転条件下での性能に改良の余地があることが分かった。   However, as a result of further studies by the present inventor, it has been found that there is room for improvement in the performance of the fuel cell including the electrode described in Patent Document 1 under high humidification operation conditions.

そこで、本発明の目的は、上記従来技術の問題を解決し、高加湿運転条件下での燃料電池の性能を向上させることが可能な固体高分子型燃料電池用電極とその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide an electrode for a polymer electrolyte fuel cell that can solve the above-described problems of the prior art and can improve the performance of the fuel cell under high humidification operation conditions, and a method for manufacturing the same. There is.

本発明者は、上記目的を達成するために鋭意検討した結果、ガス拡散層と、該ガス拡散層上に形成され金属触媒を担持した炭素繊維層と、該炭素繊維層内に含浸された高分子電解質からなる電極構造体に、パーフルオロポリエーテルを複合化することで、高加湿運転条件下での燃料電池の性能が向上することを見出し、本発明を完成させるに至った。   As a result of earnest studies to achieve the above object, the present inventor has found that a gas diffusion layer, a carbon fiber layer formed on the gas diffusion layer and carrying a metal catalyst, and a high impregnated in the carbon fiber layer. It has been found that by combining perfluoropolyether with an electrode structure composed of a molecular electrolyte, the performance of the fuel cell under high humidification operation conditions is improved, and the present invention has been completed.

即ち、本発明の固体高分子型燃料電池用電極は、ガス拡散層と、該ガス拡散層上に形成され金属触媒を担持した炭素繊維層と、該炭素繊維層内に含浸された高分子電解質からなる電極構造体に、パーフルオロポリエーテルを複合化してなることを特徴とする。   That is, the electrode for a solid polymer fuel cell of the present invention comprises a gas diffusion layer, a carbon fiber layer formed on the gas diffusion layer and carrying a metal catalyst, and a polymer electrolyte impregnated in the carbon fiber layer. It is characterized in that perfluoropolyether is combined with an electrode structure comprising

本発明の固体高分子型燃料電池用電極において、前記パーフルオロポリエーテルは、数平均分子量(Mn)が1000〜8000であることが好ましい。   In the polymer electrolyte fuel cell electrode of the present invention, the perfluoropolyether preferably has a number average molecular weight (Mn) of 1000 to 8000.

また、本発明の製造方法は、上記の固体高分子型燃料電池用電極の製造方法であって、
ガス拡散層と、該ガス拡散層上に形成され金属触媒を担持した炭素繊維層と、該炭素繊維層内に含浸された高分子電解質からなる電極構造体に、パーフルオロポリエーテルをフッ素系不活性溶剤で希釈してなるパーフルオロポリエーテルの濃度が0.01〜0.2重量%の溶液を噴霧又は塗布して、電極構造体にパーフルオロポリエーテルを複合化することを特徴とする。
The production method of the present invention is a method for producing the above polymer electrolyte fuel cell electrode,
Perfluoropolyether is added to the electrode structure comprising a gas diffusion layer, a carbon fiber layer formed on the gas diffusion layer and carrying a metal catalyst, and a polymer electrolyte impregnated in the carbon fiber layer. It is characterized in that the perfluoropolyether is diluted with an active solvent and sprayed or applied with a solution having a perfluoropolyether concentration of 0.01 to 0.2% by weight to compound the perfluoropolyether into the electrode structure.

本発明の製造方法の好適例においては、前記パーフルオロポリエーテルの溶液をガス拡散層側から噴霧又は塗布する。   In a preferred embodiment of the production method of the present invention, the perfluoropolyether solution is sprayed or applied from the gas diffusion layer side.

また、本発明の固体高分子型燃料電池は、上記の固体高分子型燃料電池用電極を備えることを特徴とする。   Moreover, the polymer electrolyte fuel cell of the present invention comprises the above-mentioned electrode for a polymer electrolyte fuel cell.

本発明によれば、ガス拡散層と、該ガス拡散層上に形成され金属触媒を担持した炭素繊維層と、該炭素繊維層内に含浸された高分子電解質からなる電極構造体に、パーフルオロポリエーテルを複合化することで、高加湿運転条件下での燃料電池の性能を向上させることが可能な固体高分子型燃料電池用電極を提供することができる。   According to the present invention, an electrode structure comprising a gas diffusion layer, a carbon fiber layer formed on the gas diffusion layer and carrying a metal catalyst, and a polymer electrolyte impregnated in the carbon fiber layer is provided with perfluorocarbon. By combining the polyether, it is possible to provide a polymer electrolyte fuel cell electrode capable of improving the performance of the fuel cell under highly humidified operation conditions.

<固体高分子型燃料電池用電極及びその製造方法>
以下に、本発明の固体高分子型燃料電池用電極を詳細に説明する。本発明の固体高分子型燃料電池用電極は、ガス拡散層と、該ガス拡散層上に形成され金属触媒を担持した炭素繊維層と、該炭素繊維層内に含浸された高分子電解質からなる電極構造体に、パーフルオロポリエーテルを複合化してなることを特徴とする。本発明の固体高分子型燃料電池用電極においては、上記電極構造体にパーフルオロポリエーテルが複合化されているため、パーフルオロポリエーテルに由来する撥水性が発揮され、プロトンと酸素によって生じる水分を電極構造体内に留めずに効率的にガス拡散層へ、更には系外に送り出すことが可能となり、水分の滞留が原因とされる酸化ガスの電極構造体内への移動が阻害されて電池性能が著しく低下する、所謂フラッディングと呼ばれる現象を防止することによって、特に高加湿運転条件下での燃料電池の性能を向上させることができる。
<Electrode for polymer electrolyte fuel cell and method for producing the same>
Hereinafter, the polymer electrolyte fuel cell electrode of the present invention will be described in detail. An electrode for a polymer electrolyte fuel cell of the present invention comprises a gas diffusion layer, a carbon fiber layer formed on the gas diffusion layer and carrying a metal catalyst, and a polymer electrolyte impregnated in the carbon fiber layer. The electrode structure is formed by combining perfluoropolyether. In the polymer electrolyte fuel cell electrode of the present invention, since the perfluoropolyether is combined with the electrode structure, the water repellency derived from the perfluoropolyether is exerted, and moisture generated by protons and oxygen Can be efficiently delivered to the gas diffusion layer and out of the system without staying in the electrode structure, and the battery performance is hindered by the movement of oxidizing gas, which is caused by moisture retention, into the electrode structure. By preventing a phenomenon called so-called flooding, in which the fuel cell performance is significantly reduced, the performance of the fuel cell can be improved particularly under high humidification operation conditions.

上述した本発明の固体高分子型燃料電池用電極は、例えば、ガス拡散層と、該ガス拡散層上に形成され金属触媒を担持した炭素繊維層と、該炭素繊維層内に含浸された高分子電解質からなる電極構造体を準備し、該電極構造体に、パーフルオロポリエーテルをフッ素系不活性溶剤で希釈してなる溶液を噴霧又は塗布することで製造できる。   The above-described electrode for a polymer electrolyte fuel cell of the present invention includes, for example, a gas diffusion layer, a carbon fiber layer formed on the gas diffusion layer and supporting a metal catalyst, and a high impregnated in the carbon fiber layer. It can be produced by preparing an electrode structure made of a molecular electrolyte and spraying or applying a solution obtained by diluting perfluoropolyether with a fluorine-based inert solvent to the electrode structure.

上記電極構造体のガス拡散層としては、多孔質で且つ導電性を有するものが好ましく、具体的には、カーボンペーパー、多孔質のカーボン布等が挙げられ、これらの中でも、カーボンペーパーが好ましい。   The gas diffusion layer of the electrode structure is preferably porous and conductive, and specific examples thereof include carbon paper and porous carbon cloth. Among these, carbon paper is preferable.

上記ガス拡散層上における炭素繊維層の形成は、例えば、ガス拡散層上で芳香環を有する化合物を電解酸化重合してフィブリル状ポリマーの層を形成し、次いで、該フィブリル状ポリマーの層を焼成し炭化することで実施できる。   The carbon fiber layer is formed on the gas diffusion layer by, for example, electrolytic oxidation polymerization of a compound having an aromatic ring on the gas diffusion layer to form a fibril polymer layer, and then firing the fibril polymer layer. It can be carried out by carbonizing.

上記芳香環を有する化合物としては、ベンゼン環を有する化合物、芳香族複素環を有する化合物を挙げることができる。ここで、ベンゼン環を有する化合物としては、アニリン及びアニリン誘導体が好ましく、芳香族複素環を有する化合物としては、ピロール、チオフェン及びこれらの誘導体が好ましい。これら芳香環を有する化合物は、一種単独で用いてもよいし、二種以上の混合物として用いてもよい。   Examples of the compound having an aromatic ring include a compound having a benzene ring and a compound having an aromatic heterocyclic ring. Here, as the compound having a benzene ring, aniline and aniline derivatives are preferable, and as the compound having an aromatic heterocyclic ring, pyrrole, thiophene and derivatives thereof are preferable. These compounds having an aromatic ring may be used singly or as a mixture of two or more.

上記電解酸化重合においては、原料の芳香環を有する化合物と共に、酸を混在させることが好ましい。この場合、酸の負イオンがドーパントとして合成されるフィブリル状ポリマー中に取り込まれ、導電性に優れたフィブリル状ポリマーが得られ、このフィブリル状ポリマーを用いることにより最終的に炭素繊維の導電性を更に向上させることができる。ここで、電解酸化重合の際に混在させる酸としては、HBF4、H2SO4、HCl、HClO4等を例示することができる。また、該酸の濃度は、0.1〜3 mol/Lの範囲が好ましく、0.5〜2.5 mol/Lの範囲が更に好ましい。 In the electrolytic oxidation polymerization, it is preferable to mix an acid together with a raw material compound having an aromatic ring. In this case, the negative ion of the acid is taken into the fibril polymer synthesized as a dopant to obtain a fibril polymer excellent in conductivity. By using this fibril polymer, the conductivity of the carbon fiber is finally improved. Further improvement can be achieved. Here, examples of the acid mixed in the electrolytic oxidation polymerization include HBF 4 , H 2 SO 4 , HCl, HClO 4 and the like. The acid concentration is preferably in the range of 0.1 to 3 mol / L, more preferably in the range of 0.5 to 2.5 mol / L.

上記フィブリル状ポリマーの層の形成は、芳香環を有する化合物を含む溶液中に、上記ガス拡散層を作用極として浸漬し、更に対極を浸漬し、両極間に芳香環を有する化合物の酸化電位以上の電圧を印加するか、または該芳香環を有する化合物が重合するのに充分な電圧が確保できるような条件の電流を通電すればよく、これによりガス拡散層(作用極)上にフィブリル状ポリマーが生成する。ここで、対極としては、ステンレススチール、白金、カーボン等の良導電性物質からなる板や多孔質支持体等を用いることができる。この電解酸化重合法によるフィブリル状ポリマーの合成方法の一例を挙げると、H2SO4、HBF4等の酸及び芳香環を有する化合物を含む電解溶液中にガス拡散層(作用極)及び対極を浸漬し、両極間に0.1〜1000 mA/cm2、好ましくは0.2〜100 mA/cm2の電流を通電して、ガス拡散層(作用極)側にフィブリル状ポリマーを重合析出させる方法等が例示される。ここで、芳香環を有する化合物の電解溶液中の濃度は、0.05〜3 mol/Lが好ましく、0.25〜1.5 mol/Lがより好ましい。また、電解溶液には、上記成分に加え、pHを調製するために可溶性塩等を適宜添加してもよい。 Formation of the fibrillar polymer layer is performed by immersing the gas diffusion layer as a working electrode in a solution containing a compound having an aromatic ring, further immersing the counter electrode, and exceeding the oxidation potential of the compound having an aromatic ring between the two electrodes. Or a current having a condition sufficient to secure a voltage sufficient to polymerize the compound having an aromatic ring may be applied, whereby a fibrillated polymer is formed on the gas diffusion layer (working electrode). Is generated. Here, as the counter electrode, a plate made of a highly conductive material such as stainless steel, platinum, or carbon, a porous support, or the like can be used. An example of a method for synthesizing a fibril-like polymer by this electrolytic oxidation polymerization method is as follows. A gas diffusion layer (working electrode) and a counter electrode are provided in an electrolytic solution containing a compound having an acid and an aromatic ring such as H 2 SO 4 and HBF 4. Examples include a method in which a fibrillated polymer is polymerized and deposited on the gas diffusion layer (working electrode) side by immersing and applying a current of 0.1 to 1000 mA / cm 2 , preferably 0.2 to 100 mA / cm 2 between both electrodes. Is done. Here, the concentration of the compound having an aromatic ring in the electrolytic solution is preferably 0.05 to 3 mol / L, and more preferably 0.25 to 1.5 mol / L. Moreover, in addition to the said component, you may add a soluble salt etc. to an electrolyte solution suitably in order to adjust pH.

上記芳香環を有する化合物を電解酸化重合して得られるフィブリル状ポリマーは、通常、3次元連続構造を有し、直径が30〜数百nmで、好ましくは40〜500 nmであり、長さが0.5μm〜100 mmで、好ましくは1μm〜10 mmである。   The fibrillar polymer obtained by electrolytic oxidation polymerization of the compound having an aromatic ring usually has a three-dimensional continuous structure, has a diameter of 30 to several hundred nm, preferably 40 to 500 nm, and has a length of It is 0.5 μm to 100 mm, preferably 1 μm to 10 mm.

上記フィブリル状ポリマーを焼成し炭化することで、ガス拡散層上に炭素繊維の層を形成することができる。なお、フィブリル状ポリマーの焼成の前に、フィブリル状ポリマーを水や有機溶剤等の溶媒で洗浄し、乾燥させることが好ましい。ここで、乾燥方法としては、特に制限されるものではないが、風乾、真空乾燥の他、流動床乾燥装置、気流乾燥機、スプレードライヤー等を使用した方法を例示することができる。   By baking and carbonizing the fibrillated polymer, a carbon fiber layer can be formed on the gas diffusion layer. In addition, it is preferable to wash | clean a fibril polymer with solvents, such as water and an organic solvent, and to dry before baking of a fibril polymer. Here, the drying method is not particularly limited, and examples thereof include a method using a fluidized bed drying device, an air dryer, a spray dryer, etc., in addition to air drying and vacuum drying.

上記焼成の条件としては、特に限定されるものではなく、最適導電率となるように適宜設定すればよいが、特に高導電率を必要とする場合は、温度500〜3000℃、好ましくは600〜2800℃で、0.5〜6時間焼成することが好ましい。なお、上記焼成は、非酸化性雰囲気中で行うことが好ましく、該非酸化性雰囲気としては、窒素雰囲気、アルゴン雰囲気、ヘリウム雰囲気等を挙げることができ、場合によっては水素雰囲気とすることもできる。   The conditions for the firing are not particularly limited, and may be set as appropriate so as to obtain an optimum conductivity. Particularly, when high conductivity is required, the temperature is 500 to 3000 ° C., preferably 600 to Baking is preferably performed at 2800 ° C. for 0.5 to 6 hours. Note that the firing is preferably performed in a non-oxidizing atmosphere, and examples of the non-oxidizing atmosphere include a nitrogen atmosphere, an argon atmosphere, and a helium atmosphere. In some cases, a hydrogen atmosphere can also be used.

上記炭素繊維は、通常、3次元連続構造を有し、直径が30〜数百nm、好ましくは40〜500 nmであり、長さが0.5μm〜100 mm、好ましくは1μm〜10 mmであり、表面抵抗が106〜10-2Ω、好ましくは104〜10-2Ωである。また、該炭素繊維は、残炭率が90〜20%、好ましくは80〜25%である。該炭素繊維は、カーボン全体が3次元に連続した構造を有するため、粒状カーボンよりも導電性が高い。 The carbon fiber usually has a three-dimensional continuous structure, has a diameter of 30 to several hundred nm, preferably 40 to 500 nm, and a length of 0.5 μm to 100 mm, preferably 1 μm to 10 mm. The surface resistance is 10 6 to 10 −2 Ω, preferably 10 4 to 10 −2 Ω. The carbon fiber has a residual carbon ratio of 90 to 20%, preferably 80 to 25%. Since the carbon fiber has a structure in which the entire carbon is three-dimensionally continuous, the carbon fiber has higher conductivity than the granular carbon.

なお、上記ガス拡散層上に炭素繊維の層を形成した後に、該炭素繊維の層に1500℃以上で高温処理を施すことが好ましく、1800〜3000℃で高温処理を施すことが更に好ましい。高温処理を施した炭素繊維を、金属触媒の担体として使用した電極を備える固体高分子型燃料電池は、高温処理を施していない炭素繊維を用いた電極を備える固体高分子型燃料電池よりも、幅広い電流領域で電池電圧が高く且つ内部抵抗が小さく、良好な発電特性を示す。ここで、上記高温処理は、非酸化性雰囲気中で実施することが好ましく、非酸化性雰囲気としては、窒素雰囲気、アルゴン雰囲気、ヘリウム雰囲気等を挙げることができ、場合によっては水素雰囲気とすることもできる。   In addition, after forming a carbon fiber layer on the gas diffusion layer, it is preferable to subject the carbon fiber layer to a high temperature treatment at 1500 ° C. or higher, and more preferably to a high temperature treatment at 1800 to 3000 ° C. A polymer electrolyte fuel cell comprising an electrode using a carbon fiber subjected to high temperature treatment as a carrier for a metal catalyst is more solid than a polymer electrolyte fuel cell comprising an electrode using carbon fiber not subjected to high temperature treatment. The battery voltage is high and the internal resistance is low in a wide current range, and good power generation characteristics are exhibited. Here, the high-temperature treatment is preferably performed in a non-oxidizing atmosphere, and examples of the non-oxidizing atmosphere include a nitrogen atmosphere, an argon atmosphere, and a helium atmosphere. In some cases, a hydrogen atmosphere is used. You can also.

次に、上記炭素繊維上に金属触媒を担持する。ここで、炭素繊維に担持する金属触媒としては、貴金属が好ましく、Ptが特に好ましい。なお、本発明においては、Ptを単独で用いてもよいし、Ru等の他の金属との合金として用いてもよい。貴金属としてPtを用いることで、100℃以下の低温でも水素を高効率で酸化することができる。また、PtとRu等の合金を用いることで、COによるPtの被毒を防止して、触媒の活性低下を防止することができる。なお、炭素繊維上に担持される金属触媒の粒径は、0.5〜20 nmの範囲が好ましく、該金属触媒の担持率は、炭素繊維1 gに対して0.01〜2 gの範囲が好ましい。ここで、上記金属触媒の炭素繊維上への担持法としては、特に限定されるものではなく、例えば、含浸法、電気メッキ法(電解還元法)、無電解メッキ法、スパッタ法等が挙げられる。   Next, a metal catalyst is supported on the carbon fiber. Here, as the metal catalyst supported on the carbon fiber, a noble metal is preferable, and Pt is particularly preferable. In the present invention, Pt may be used alone or as an alloy with another metal such as Ru. By using Pt as the noble metal, hydrogen can be oxidized with high efficiency even at a low temperature of 100 ° C. or lower. Further, by using an alloy such as Pt and Ru, it is possible to prevent poisoning of Pt by CO and prevent a decrease in the activity of the catalyst. The particle size of the metal catalyst supported on the carbon fiber is preferably in the range of 0.5 to 20 nm, and the support rate of the metal catalyst is preferably in the range of 0.01 to 2 g with respect to 1 g of the carbon fiber. Here, the method for supporting the metal catalyst on the carbon fiber is not particularly limited, and examples thereof include an impregnation method, an electroplating method (electrolytic reduction method), an electroless plating method, and a sputtering method. .

上記金属触媒の炭素繊維上への担持は、電流をパルス状に印加した電気メッキ法により行われることが好ましい。電流をパルス状に印加して金属触媒を電気メッキすることで、担持された金属触媒の表面積を向上させることができる。なお、上記電気メッキにおいて、電流密度は10〜500 mA/cm2の範囲が好ましく、通電電荷量は0.02〜5C/cm2の範囲が好ましい。 The metal catalyst is preferably supported on the carbon fiber by an electroplating method in which an electric current is applied in a pulse shape. The surface area of the supported metal catalyst can be improved by applying a current in pulses to electroplate the metal catalyst. In the electroplating, the current density is preferably in the range of 10 to 500 mA / cm 2 , and the energization charge amount is preferably in the range of 0.02 to 5 C / cm 2 .

次に、上記金属触媒が担持された炭素繊維の層に、高分子電解質を含浸させる。該高分子電解質としては、イオン伝導性のポリマーを使用することができ、該イオン伝導性のポリマーとしては、スルホン酸、カルボン酸、ホスホン酸、亜ホスホン酸等のイオン交換基を有するポリマーを挙げることができ、該ポリマーはフッ素を含んでも、含まなくてもよい。該イオン伝導性のポリマーとしては、ナフィオン(登録商標)等のパーフルオロカーボンスルホン酸系ポリマー等が挙げられる。該高分子電解質の含浸量は、0.01 mg/cm2〜4.0 mg/cm2の範囲が好ましく、高分子電解質の塗布量が0.01 mg/cm2未満では、プロトンの伝導性が低下し、一方、4.0 mg/cm2を超えると、ガスの透過性が低下して、フラッディングが起こり易くなる。なお、触媒層の厚さは、特に限定されるものではないが、0.1〜100μmの範囲が好ましい。また、触媒層の金属触媒担持量は、前記担持率と触媒層の厚さにより定まり、好ましくは0.001〜1 mg/cm2の範囲である。 Next, the polymer electrolyte is impregnated in the carbon fiber layer on which the metal catalyst is supported. As the polyelectrolyte, an ion conductive polymer can be used. Examples of the ion conductive polymer include polymers having an ion exchange group such as sulfonic acid, carboxylic acid, phosphonic acid, and phosphonous acid. And the polymer may or may not contain fluorine. Examples of the ion conductive polymer include perfluorocarbon sulfonic acid polymers such as Nafion (registered trademark). The amount of impregnation of the polymer electrolyte is preferably in the range of 0.01 mg / cm 2 to 4.0 mg / cm 2 , and when the coating amount of the polymer electrolyte is less than 0.01 mg / cm 2 , the proton conductivity decreases, If it exceeds 4.0 mg / cm 2 , the gas permeability decreases and flooding is likely to occur. The thickness of the catalyst layer is not particularly limited, but is preferably in the range of 0.1 to 100 μm. The amount of the metal catalyst supported on the catalyst layer is determined by the loading rate and the thickness of the catalyst layer, and is preferably in the range of 0.001 to 1 mg / cm 2 .

上記の様にして準備した電極構造体に、パーフルオロポリエーテルをフッ素系不活性溶剤で希釈してなるパーフルオロポリエーテルの濃度が0.01〜0.2重量%の溶液を噴霧又は塗布して、電極構造体にパーフルオロポリエーテルを複合化する。ここで、パーフルオロポリエーテルの濃度が0.01重量%未満では、効果を発揮するのに充分な量のパーフルオロポリエーテルを噴霧或いは塗布する量が多くなり、プロセスに長時間必要となる、或いはパーフルオロポリエーテルの分布にむらができる等の不具合が生じ、一方、0.2重量%を超えると、必要以上のパーフルオロポリエーテルが複合化され、高コストになる、或いは発電性能が低下する等の現象が生じてくる。また、本発明においては、上記パーフルオロポリエーテルの溶液をガス拡散層側から噴霧又は塗布することが好ましい。   The electrode structure prepared as described above is sprayed or coated with a solution having a concentration of 0.01 to 0.2% by weight of perfluoropolyether obtained by diluting perfluoropolyether with a fluorine-based inert solvent. The body is compounded with perfluoropolyether. Here, if the concentration of perfluoropolyether is less than 0.01% by weight, the amount of spraying or applying a sufficient amount of perfluoropolyether to exert an effect increases, and the process requires a long time or Problems such as uneven distribution of the fluoropolyether occur. On the other hand, if it exceeds 0.2% by weight, excessive perfluoropolyether is complexed, resulting in high costs or reduced power generation performance. Will arise. In the present invention, the perfluoropolyether solution is preferably sprayed or applied from the gas diffusion layer side.

上記パーフルオロポリエーテルは、分子中にエーテル結合を複数有し、また、パーフルオロメチレン基(CF2)を含む。なお、パーフルオロポリエーテルは、分子中にエーテル結合及びパーフルオロメチレン基以外にも、アルキレン基や、トリアルコキシシリル基等を含んでいてもよく、ここで、アルキレン基としては、メチレン基、エチレン基、トリメチレン基等が、トリアルコキシシリル基としては、トリメトキシシリル基、トリエトキシシリル基、ジメトキシエトキシシリル基、メトキシジエトキシシリル基等が挙げられる。また、上記パーフルオロポリエーテルとして、具体的には、下記式(I):
(CH3O)3Si−C36−O−CH2CF2−(OC24)n−(OCF)m−OCF2CH2−O−C36−Si(OCH3)3 ・・・ (I)
[式中、n及びmは重合度を示す]で表されるポリマーが好ましい。
The perfluoropolyether has a plurality of ether bonds in the molecule and includes a perfluoromethylene group (CF 2 ). The perfluoropolyether may contain an alkylene group, a trialkoxysilyl group, etc. in addition to an ether bond and a perfluoromethylene group in the molecule, where the alkylene group includes a methylene group, ethylene Examples of the trialkoxysilyl group include a trimethoxysilyl group, a triethoxysilyl group, a dimethoxyethoxysilyl group, and a methoxydiethoxysilyl group. Further, as the perfluoropolyether, specifically, the following formula (I):
(CH 3 O) 3 Si—C 3 H 6 —O—CH 2 CF 2 — (OC 2 F 4 ) n — (OCF 2 ) m —OCF 2 CH 2 —O—C 3 H 6 —Si (OCH 3 3 ... (I)
A polymer represented by [wherein n and m represent the degree of polymerization] is preferred.

上記パーフルオロポリエーテルは、数平均分子量(Mn)が1000〜8000であることが好ましい。使用するパーフルオロポリエーテルの数平均分子量が1000未満では、理由は明確ではないが、効果の持続性が悪くなり、また、8000を超えると、効果そのものが発揮されなくなる。   The perfluoropolyether preferably has a number average molecular weight (Mn) of 1000 to 8000. If the number average molecular weight of the perfluoropolyether used is less than 1000, the reason is not clear, but the sustainability of the effect deteriorates, and if it exceeds 8000, the effect itself is not exhibited.

上記パーフルオロポリエーテルの希釈に用いるフッ素系不活性溶剤は、特に限定されず、例えば、パーフルオロヘキサン、パーフルオロメチルシクロヘキサン、パーフルオロエチルシクロヘキサン、パーフルオロジメチルシクロヘキサン等を使用することができる。   The fluorine-based inert solvent used for diluting the perfluoropolyether is not particularly limited, and for example, perfluorohexane, perfluoromethylcyclohexane, perfluoroethylcyclohexane, perfluorodimethylcyclohexane and the like can be used.

本発明の固体高分子型燃料電池用電極は、燃料極としても、空気極(酸素極)としても使用できる。ここで、該固体高分子型燃料電池用電極においては、金属触媒が担持され且つ高分子電解質が含浸された炭素繊維の層が触媒層として機能する。また、ガス拡散層は、触媒層へ水素ガス等の燃料、或いは、酸素や空気等の酸素含有ガスを拡散により供給する機能の他、発生した電子の授受を行う集電体としての機能を担う。   The electrode for a polymer electrolyte fuel cell of the present invention can be used as a fuel electrode or an air electrode (oxygen electrode). Here, in the polymer electrolyte fuel cell electrode, a carbon fiber layer on which a metal catalyst is supported and impregnated with a polymer electrolyte functions as a catalyst layer. The gas diffusion layer has a function as a current collector for transferring generated electrons in addition to a function of supplying fuel such as hydrogen gas or an oxygen-containing gas such as oxygen or air to the catalyst layer by diffusion. .

<固体高分子型燃料電池>
次に、本発明の固体高分子型燃料電池用電極を用いた固体高分子型燃料電池を、図1を参照しながら説明する。図示例の固体高分子型燃料電池は、膜電極接合体(MEA)1とその両側に位置するセパレータ2とを備える。膜電極接合体(MEA)1は、固体高分子電解質膜3とその両側に位置する燃料極4A及び空気極(酸素極)4Bとからなり、燃料極4A及び空気極(酸素極)4Bの少なくとも一方は、本発明の固体高分子型燃料電池用電極である。燃料極4Aでは、2H2→4H++4e-で表される反応が起こり、発生したH+は固体高分子電解質膜3を経て空気極4Bに至り、また、発生したe-は外部に取り出されて電流となる。一方、空気極4Bでは、O2+4H++4e-→2H2Oで表される反応が起こり、水が発生する。燃料極4A及び空気極4Bは、触媒層(金属触媒を担持し、高分子電解質を含浸した炭素繊維の層)5及びガス拡散層6からなり、触媒層5が固体高分子電解質膜3に接触するように配置されている。
<Solid polymer fuel cell>
Next, a polymer electrolyte fuel cell using the polymer electrolyte fuel cell electrode of the present invention will be described with reference to FIG. The illustrated polymer electrolyte fuel cell includes a membrane electrode assembly (MEA) 1 and separators 2 located on both sides thereof. The membrane electrode assembly (MEA) 1 includes a solid polymer electrolyte membrane 3 and a fuel electrode 4A and an air electrode (oxygen electrode) 4B located on both sides thereof, and at least the fuel electrode 4A and the air electrode (oxygen electrode) 4B. One is an electrode for a polymer electrolyte fuel cell of the present invention. In the fuel electrode 4A, a reaction represented by 2H 2 → 4H + + 4e occurs, the generated H + passes through the solid polymer electrolyte membrane 3 to the air electrode 4B, and the generated e is taken out to the outside. Current. On the other hand, in the air electrode 4B, a reaction represented by O 2 + 4H + + 4e → 2H 2 O occurs, and water is generated. The fuel electrode 4A and the air electrode 4B are composed of a catalyst layer (carbon fiber layer supporting a metal catalyst and impregnated with a polymer electrolyte) 5 and a gas diffusion layer 6, and the catalyst layer 5 is in contact with the solid polymer electrolyte membrane 3 Are arranged to be.

本発明の固体高分子型燃料電池において、固体高分子電解質膜3としては、イオン伝導性のポリマーを使用することができ、該イオン伝導性のポリマーとしては、上記炭素繊維層に含浸させることが可能な高分子電解質として例示したものを用いることができる。また、セパレータ2としては、表面に燃料、空気及び生成した水等の流路(図示せず)が形成された通常のセパレータを用いることができる。   In the polymer electrolyte fuel cell of the present invention, an ion conductive polymer can be used as the solid polymer electrolyte membrane 3, and the carbon fiber layer can be impregnated as the ion conductive polymer. What was illustrated as a possible polymer electrolyte can be used. Moreover, as the separator 2, the normal separator with which flow paths (not shown), such as fuel, air, and produced | generated water, were formed in the surface can be used.

本発明の固体高分子型燃料電池においては、触媒層5及びガス拡散層6からなる電極構造体に、パーフルオロポリエーテルが複合化されている結果として、高加湿運転条件下での性能が向上している。   In the polymer electrolyte fuel cell of the present invention, performance under high humidification operation conditions is improved as a result of the perfluoropolyether being combined with the electrode structure comprising the catalyst layer 5 and the gas diffusion layer 6. is doing.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

(実施例1)
<電解重合工程>
硫酸 1.0 mol/Lとアニリン 0.5 mol/Lとを含む水溶液中に、作用極としてカーボンペーパー[東レ社製]を設置し、SUS316L製の対極を設置し、定電流法にて作用極上にポリアニリンを作製した。なお、カーボンペーパーの大きさは、ポリアニリン生成の有効寸法が5×5 cmになるように準備し、室温において、電流密度40 mA/cm2で通電量が3.7C/cm2になるまで重合を継続した。重合終了後、得られたポリアニリンに対し純水で充分に洗浄を繰り返した。乾燥後に質量を測定し、ポリアニリンの生成量を求めたところ、1.4 mg/cm2であった。
(Example 1)
<Electropolymerization process>
In an aqueous solution containing 1.0 mol / L of sulfuric acid and 0.5 mol / L of aniline, carbon paper (manufactured by Toray Industries, Inc.) is installed as a working electrode, a counter electrode made of SUS316L is installed, and polyaniline is placed on the working electrode by the constant current method. Produced. The size of the carbon paper is prepared so that the effective dimension for polyaniline formation is 5 × 5 cm, and polymerization is performed at room temperature at a current density of 40 mA / cm 2 until the energization amount is 3.7 C / cm 2. Continued. After completion of the polymerization, the obtained polyaniline was thoroughly washed with pure water. The mass was measured after drying, and the amount of polyaniline produced was determined to be 1.4 mg / cm 2 .

<焼成工程>
得られたポリアニリンをカーボンペーパーごと電気炉にてAr減圧雰囲気下で室温から1200℃まで3時間かけて昇温し、1200℃で1時間保持して焼成処理を行った。その後、室温まで冷却し、炭素化したポリアニリン(炭素繊維)を電気炉から取り出し、質量を測定したところ、ポリアニリンの残炭率は35%であった。
<Baking process>
The obtained polyaniline was calcined together with carbon paper in an electric furnace under an Ar reduced pressure atmosphere from room temperature to 1200 ° C. over 3 hours and held at 1200 ° C. for 1 hour. Then, it cooled to room temperature, taken out the carbonized polyaniline (carbon fiber) from the electric furnace, measured the mass, and the residual carbon rate of polyaniline was 35%.

<高温処理工程>
次に、炭素化したポリアニリンをカーボンペーパーごと高温電気炉にてAr減圧雰囲気下で室温から1200℃まで1時間、1200℃から2700℃まで2時間かけて昇温し、2700℃で15分間保持して結晶化処理を行った。その後、室温まで冷却し、高温結晶化ポリアニリン炭化物(炭素繊維)を高温電気炉から取り出し、質量を測定したところ、ポリアニリンの残炭率は25%であった。
<High temperature treatment process>
Next, the carbonized polyaniline is heated together with carbon paper in a high-temperature electric furnace in an Ar reduced pressure atmosphere from room temperature to 1200 ° C for 1 hour, from 1200 ° C to 2700 ° C over 2 hours, and held at 2700 ° C for 15 minutes. The crystallization treatment was performed. Then, it cooled to room temperature, when the high temperature crystallized polyaniline carbide (carbon fiber) was taken out from the high temperature electric furnace and the mass was measured, the residual carbon rate of polyaniline was 25%.

<白金の担持工程>
塩化白金酸六水和物 10 gを純水 1000 mLに溶解させてメッキ液を調製した。該メッキ液中に、カーボンペーパーと一体化した高温結晶化ポリアニリン炭化物を作用極として設置し、白金メッキされたチタン製の対極を設置し、パルス法により、白金を炭化物上に担持させた。パルス電流は、作用極の投影面積当り100 mA/cm2、オンタイム0.003秒、オフタイム0.006秒とし、通電量は0.6C/cm2とした。白金担持終了後、得られたサンプルを純水で充分に洗浄し、乾燥後に質量を測定して白金担持量を求めたところ、0.25 mg/cm2であった。
<Platinum loading process>
A plating solution was prepared by dissolving 10 g of chloroplatinic acid hexahydrate in 1000 mL of pure water. In the plating solution, a high-temperature crystallized polyaniline carbide integrated with carbon paper was installed as a working electrode, a platinum-plated titanium counter electrode was installed, and platinum was supported on the carbide by a pulse method. The pulse current was 100 mA / cm 2 per projected area of the working electrode, the on time was 0.003 seconds, the off time was 0.006 seconds, and the energization amount was 0.6 C / cm 2 . After the platinum loading was completed, the obtained sample was thoroughly washed with pure water, and after drying, the mass was measured to determine the platinum loading, which was 0.25 mg / cm 2 .

<MEAの作製>
上記のようにして得た白金担持ポリアニリン炭化物/カーボンペーパーを5×5 cm角に切り出したものを2枚用意し、各々の白金担持ポリアニリン炭化物が配設された側にナフィオン(登録商標)溶液[ナフィオン:水:イソプロピルアルコール=5:47.5:47.5(質量比)]を刷毛にて、乾燥後のナフィオン質量が0.3 mg/cm2になるように塗布した。得られたナフィオン塗布白金担持ポリアニリン炭化物/カーボンペーパー2枚で、ナフィオン112膜を挟み、熱プレスにより圧着して、膜電極接合体(MEA)を得た。
<Production of MEA>
Two pieces of platinum-supported polyaniline carbide / carbon paper obtained as described above were cut out into 5 × 5 cm squares, and Nafion (registered trademark) solution [ Nafion: water: isopropyl alcohol = 5: 47.5: 47.5 (mass ratio)] was applied with a brush so that the mass of Nafion after drying was 0.3 mg / cm 2 . The obtained Nafion-coated platinum-supported polyaniline carbide / carbon paper was sandwiched between Nafion 112 membranes and pressed by hot pressing to obtain a membrane electrode assembly (MEA).

<撥水処理>
得られた膜電極接合体のガス拡散層(カーボンペーパー)側から、フッ素系離型剤[ダイキン化成品販売、デュラサーフHD−2101Z、数平均分子量が2000のパーフルオロポリエーテルを0.1重量%の濃度でパーフルオロヘキサン(フッ素系不活性溶剤)に希釈してなる]を刷毛にて塗布し、その後、一昼夜放置した。
<Water repellent treatment>
From the gas diffusion layer (carbon paper) side of the membrane electrode assembly obtained, 0.1% by weight of a fluorine-based mold release agent [Daikin Chemicals Sales, Durasurf HD-2101Z, perfluoropolyether with a number average molecular weight of 2000] The solution was diluted with perfluorohexane (fluorinated inert solvent) at a concentration] with a brush, and then left overnight.

<燃料電池の性能評価>
得られた膜電極接合体と、グラファイト製のバイポーラプレート、シリコーン製ガスケット、及び金メッキ銅板の集電体を使用して燃料電池を組み立て、アノードに水素、カソードに空気を流して充分に慣らし運転した後の性能を記録した。なお、セル温度は80℃、アノード加湿温度は80℃、カソード加湿温度は85℃、水素流量は0.5 L/分、空気流量は2 L/分とした。また、アノード側もカソード側も、背圧0.05 MPaに設定した。結果を表1に示す。
<Performance evaluation of fuel cell>
A fuel cell was assembled using the obtained membrane electrode assembly, a graphite bipolar plate, a silicone gasket, and a gold-plated copper plate current collector, and fully conditioned by flowing hydrogen to the anode and air to the cathode. Later performance was recorded. The cell temperature was 80 ° C., the anode humidification temperature was 80 ° C., the cathode humidification temperature was 85 ° C., the hydrogen flow rate was 0.5 L / min, and the air flow rate was 2 L / min. The back pressure was set to 0.05 MPa on both the anode side and the cathode side. The results are shown in Table 1.

(比較例1)
撥水処理を行わない以外は、実施例1と同様にして膜電極接合体(MEA)を作製し、燃料電池を組み立て、発電性能を評価した。結果を表1に示す。
(Comparative Example 1)
A membrane electrode assembly (MEA) was produced in the same manner as in Example 1 except that the water repellent treatment was not performed, a fuel cell was assembled, and power generation performance was evaluated. The results are shown in Table 1.

Figure 2009193772
Figure 2009193772

表1から、MEAに撥水処理を施した実施例1は、高加湿運転条件下でも、低電流域から高電流域に渡って発電性能が高いことが分かる。一方、MEAに撥水処理を施していない比較例1は、実施例1に比べて発電性能が低く、また、電流密度1.0 A/cm2における電圧に至っては測定不能であった。 From Table 1, it can be seen that Example 1 in which the MEA was subjected to water repellent treatment has high power generation performance from the low current region to the high current region even under high humidification operation conditions. On the other hand, Comparative Example 1 in which the MEA was not subjected to the water repellent treatment had lower power generation performance than that of Example 1, and measurement was impossible when the voltage reached a current density of 1.0 A / cm 2 .

本発明の固体高分子型燃料電池の一例の断面図である。It is sectional drawing of an example of the polymer electrolyte fuel cell of this invention.

符号の説明Explanation of symbols

1 膜電極接合体(MEA)
2 セパレータ
3 固体高分子電解質膜
4A 燃料極
4B 空気極(酸素極)
5 触媒層
6 ガス拡散層
1 Membrane electrode assembly (MEA)
2 Separator 3 Solid polymer electrolyte membrane 4A Fuel electrode 4B Air electrode (oxygen electrode)
5 Catalyst layer 6 Gas diffusion layer

Claims (5)

ガス拡散層と、該ガス拡散層上に形成され金属触媒を担持した炭素繊維層と、該炭素繊維層内に含浸された高分子電解質からなる電極構造体に、パーフルオロポリエーテルを複合化してなる固体高分子型燃料電池用電極。   A perfluoropolyether is combined with an electrode structure comprising a gas diffusion layer, a carbon fiber layer formed on the gas diffusion layer and carrying a metal catalyst, and a polymer electrolyte impregnated in the carbon fiber layer. An electrode for a polymer electrolyte fuel cell. 前記パーフルオロポリエーテルは、数平均分子量が1000〜8000であることを特徴とする請求項1に記載の固体高分子型燃料電池用電極。   The electrode for a polymer electrolyte fuel cell according to claim 1, wherein the perfluoropolyether has a number average molecular weight of 1000 to 8000. ガス拡散層と、該ガス拡散層上に形成され金属触媒を担持した炭素繊維層と、該炭素繊維層内に含浸された高分子電解質からなる電極構造体に、パーフルオロポリエーテルをフッ素系不活性溶剤で希釈してなるパーフルオロポリエーテルの濃度が0.01〜0.2重量%の溶液を噴霧又は塗布して、電極構造体にパーフルオロポリエーテルを複合化することを特徴とする請求項1又は2に記載の固体高分子型燃料電池用電極の製造方法。   Perfluoropolyether is added to the electrode structure comprising a gas diffusion layer, a carbon fiber layer formed on the gas diffusion layer and carrying a metal catalyst, and a polymer electrolyte impregnated in the carbon fiber layer. 3. The perfluoropolyether is combined with the electrode structure by spraying or applying a solution having a concentration of 0.01 to 0.2% by weight of a perfluoropolyether diluted with an active solvent. The manufacturing method of the electrode for solid polymer type fuel cells as described in any one of. 前記パーフルオロポリエーテルの溶液をガス拡散層側から噴霧又は塗布することを特徴とする請求項3に記載の固体高分子型燃料電池用電極の製造方法。   4. The method for producing an electrode for a polymer electrolyte fuel cell according to claim 3, wherein the perfluoropolyether solution is sprayed or applied from the gas diffusion layer side. 請求項1又は2に記載の固体高分子型燃料電池用電極を備えた固体高分子型燃料電池。   A polymer electrolyte fuel cell comprising the electrode for a polymer electrolyte fuel cell according to claim 1.
JP2008031659A 2008-02-13 2008-02-13 Electrode for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell equipped with it Withdrawn JP2009193772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008031659A JP2009193772A (en) 2008-02-13 2008-02-13 Electrode for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell equipped with it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008031659A JP2009193772A (en) 2008-02-13 2008-02-13 Electrode for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell equipped with it

Publications (1)

Publication Number Publication Date
JP2009193772A true JP2009193772A (en) 2009-08-27

Family

ID=41075625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008031659A Withdrawn JP2009193772A (en) 2008-02-13 2008-02-13 Electrode for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell equipped with it

Country Status (1)

Country Link
JP (1) JP2009193772A (en)

Similar Documents

Publication Publication Date Title
Xu et al. Recent progress in electrocatalysts with mesoporous structures for application in polymer electrolyte membrane fuel cells
Maruyama et al. Formation of platinum-free fuel cell cathode catalyst with highly developed nanospace by carbonizing catalase
JP4745942B2 (en) Cathode catalyst for fuel cell, membrane electrode assembly for fuel cell, and fuel cell system
JP2007099551A (en) Carbon-based composite material and its manufacturing method, electrode for solid polymer type fuel cell and solid polymer type fuel cell
JPWO2006003950A1 (en) Composite, catalyst structure, electrode for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell
JP2011230099A (en) Carbon catalyst and method of manufacturing the same
KR101995830B1 (en) Supporter for fuel cell, method of preparing same, and electrode for fuel cell, membrane-electrode assembly for a fuel cell and fuel cell system including same
JP4393459B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP2008270176A (en) Membrane-electrode assembly and fuel cell using this
KR102199455B1 (en) Binder for membrane electrode assembly electrode and manufacturing method thereof membrane electrode assembly having the same and polymer electrolyte membrane fuel cell having the same
KR20140133774A (en) Electrode catalyst for fuel cell, electrode for fuel cell including the electrode catalyst, and membrane electrode assembly and fuel cell including the same
KR20120067171A (en) Electrode catalyst for fuel cell, manufacturing method thereof, and fuel cell using the same
JP2009193772A (en) Electrode for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell equipped with it
JP2008177023A (en) Electrode for solid polymer fuel cell, its manufacturing method, and solid polymer fuel cell equipped with it
KR102303179B1 (en) Battery cathode, battery cathode catalyst layer composition and battery
JP2009001845A (en) Electroplating method with noble metal, noble metal-carried conductive material, electrode for solid polymer type fuel cell, and solid polymer type fuel cell
JP2008149485A (en) Composite material, its manufacturing method, electrode for solid polymer type fuel cell using composite material and solid polymer type fuel cell
JP2009001846A (en) Electroplating method with noble metal, noble metal-carried conductive material, electrode for solid polymer type fuel cell, and solid polymer type fuel cell
JP2016015283A (en) Cathode electrode structure and membrane-electrode assembly
JP2008198438A (en) Polymer electrolyte fuel cell
JP2007227064A (en) Electrode for solid polymer fuel cell, its manufacturing method and activation method, as well as solid polymer fuel cell
JP2007227088A (en) Electrode for polymer electrolyte fuel cell, its manufacturing method and treating method, and polymer electrolyte fuel cell
JP5251009B2 (en) Electrocatalyst
JP2008069494A (en) Composite material of metal and carbon fibers, method for producing the same, electrode for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP2008177057A (en) Electrode for solid polymer fuel cell, its manufacturing method, and solid polymer fuel cell equipped with it

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110510