JP2008177057A - Electrode for solid polymer fuel cell, its manufacturing method, and solid polymer fuel cell equipped with it - Google Patents

Electrode for solid polymer fuel cell, its manufacturing method, and solid polymer fuel cell equipped with it Download PDF

Info

Publication number
JP2008177057A
JP2008177057A JP2007009520A JP2007009520A JP2008177057A JP 2008177057 A JP2008177057 A JP 2008177057A JP 2007009520 A JP2007009520 A JP 2007009520A JP 2007009520 A JP2007009520 A JP 2007009520A JP 2008177057 A JP2008177057 A JP 2008177057A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
fuel cell
electrode
porous substrate
conductive porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007009520A
Other languages
Japanese (ja)
Inventor
Shinichi Toyosawa
真一 豊澤
Hideo Sugiyama
秀夫 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2007009520A priority Critical patent/JP2008177057A/en
Publication of JP2008177057A publication Critical patent/JP2008177057A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an electrode for a solid polymer fuel cell capable of reducing carrying amount of a metal catalyst and capable of suppressing voltage drop in a large current region. <P>SOLUTION: This is the manufacturing method of an electrode for solid polymer fuel cell equipped with a conductive porous substrate, carbon fiber arranged on the conductive porous substrate, and a metal catalyst carried on the carbon fiber, and comprises (i) a process to apply a water repellency treatment on one of the surfaces of the conductive porous substrate, (ii) a process to produce a fibril-like polymer by electrolytic oxidation polymerization of a compound having an aromatic ring on the other surface of the conductive porous substrate, (iii) a process to produce carbon fiber on the conductive porous substrate by calcining the fibril-like polymer, and (iv) a process to have the metal catalyst carried on the carbon fiber. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、固体高分子型燃料電池用電極及びその製造方法、並びに該固体高分子型燃料電池用電極を備えた固体高分子型燃料電池に関し、特にガスの透過性が良好で、フラッディングが起こり難い固体高分子型燃料電池用電極の製造方法に関するものである。   The present invention relates to a polymer electrolyte fuel cell electrode, a method for producing the same, and a polymer electrolyte fuel cell including the polymer electrolyte fuel cell electrode. Particularly, the gas permeability is good and flooding occurs. The present invention relates to a method for producing a difficult polymer electrolyte fuel cell electrode.

昨今、発電効率が高く、環境への負荷が小さい電池として、燃料電池が注目を集めており、広く研究開発が行われている。燃料電池の中でも、出力密度が高く作動温度が低い固体高分子型燃料電池は、小型化や低コスト化が他のタイプの燃料電池よりも容易なことから、電気自動車用電源、分散発電システム、家庭用のコージェネレーションシステムとして広く普及することが期待されている。   In recent years, fuel cells have attracted attention as a battery with high power generation efficiency and a low environmental load, and extensive research and development has been conducted. Among fuel cells, polymer electrolyte fuel cells with high output density and low operating temperature are easier to reduce in size and cost than other types of fuel cells. It is expected to spread widely as a household cogeneration system.

一般に固体高分子型燃料電池においては、固体高分子電解質膜を挟んで一対の電極を配置すると共に、一方の電極の表面に水素等の燃料ガスを接触させ、もう一方の電極の表面に酸素を含有するガスを接触させ、この時起こる電気化学反応を利用して、電極間から電気エネルギーを取り出している(非特許文献1及び2参照)。なお、上記電極の高分子電解質膜に接する側には触媒層が配設されており、高分子電解質膜と触媒層とガスとの三相界面で電気化学反応が起こる。そのため、固体高分子型燃料電池の発電効率を向上させるためには、上記電気化学反応の反応場を大きくする必要がある。   In general, in a polymer electrolyte fuel cell, a pair of electrodes are arranged with a polymer electrolyte membrane sandwiched between them, a fuel gas such as hydrogen is brought into contact with the surface of one electrode, and oxygen is applied to the surface of the other electrode. The contained gas is brought into contact, and electric energy is taken out from between the electrodes by utilizing an electrochemical reaction that occurs at this time (see Non-Patent Documents 1 and 2). A catalyst layer is disposed on the electrode in contact with the polymer electrolyte membrane, and an electrochemical reaction occurs at the three-phase interface between the polymer electrolyte membrane, the catalyst layer, and the gas. Therefore, in order to improve the power generation efficiency of the polymer electrolyte fuel cell, it is necessary to increase the reaction field of the electrochemical reaction.

また、固体高分子型燃料電池においては、燃料極側の触媒層で発生したプロトンを、高分子電解質膜を経て空気極(酸素極)側に伝達するのを容易にするために、上記触媒層には高分子電解質を含有させる必要もある。そのため、上記電気化学反応の反応場を大きくすると共にプロトンの伝導パスを十分確保するために、従来、触媒層は、白金等の貴金属触媒をカーボンブラック等の粒状カーボン上に担持して作製した触媒粉と高分子電解質とを混合して得たペースト又はスラリーを、カーボンペーパー等の導電性の多孔質支持体上に塗布して形成されてきた。しかしながら、この方法で形成された触媒層を備える固体高分子型燃料電池は、発電効率が低かった。   In the polymer electrolyte fuel cell, in order to facilitate transmission of protons generated in the catalyst layer on the fuel electrode side to the air electrode (oxygen electrode) side through the polymer electrolyte membrane, the catalyst layer It is also necessary to contain a polymer electrolyte. Therefore, in order to increase the reaction field of the electrochemical reaction and to ensure a sufficient proton conduction path, the catalyst layer has conventionally been prepared by supporting a noble metal catalyst such as platinum on granular carbon such as carbon black. It has been formed by applying a paste or slurry obtained by mixing a powder and a polymer electrolyte onto a conductive porous support such as carbon paper. However, the polymer electrolyte fuel cell including the catalyst layer formed by this method has low power generation efficiency.

これに対して、本発明者らは、カーボンペーパー等の導電性の多孔質支持体上に特定の方法で炭素繊維を作製し、該炭素繊維上に電気メッキにより貴金属を担持し、更に炭素繊維内に高分子電解質を含浸して作製した電極を固体高分子型燃料電池に使用することで、固体高分子型燃料電池の発電効率が向上することを見出している(特許文献1参照)。   On the other hand, the present inventors prepared carbon fibers by a specific method on a conductive porous support such as carbon paper, and carried a noble metal on the carbon fibers by electroplating. It has been found that the power generation efficiency of a solid polymer fuel cell is improved by using an electrode produced by impregnating a polymer electrolyte in the polymer electrolyte fuel cell (see Patent Document 1).

日本化学会編,「化学総説No.49,新型電池の材料化学」,学会出版センター,2001年,p.180−182The Chemical Society of Japan, “Chemical Review No. 49, Material Chemistry of New Batteries”, Academic Publishing Center, 2001, p. 180-182 「固体高分子型燃料電池<2001年版>」,技術情報協会,2001年,p.14−15“Polymer fuel cell <2001 edition>”, Technical Information Association, 2001, p. 14-15 国際公開第2004/063438号パンフレットInternational Publication No. 2004/063438 Pamphlet

しかしながら、本発明者らが更に検討を進めたところ、上記特許文献1に記載の電極は、フラッディングの防止の観点から、ガスの透過性に改良の余地があることが分かった。   However, as a result of further studies by the present inventors, it has been found that the electrode described in Patent Document 1 has room for improvement in gas permeability from the viewpoint of preventing flooding.

そこで、本発明の目的は、上記従来技術の問題を解決し、ガスの透過性が良好で、フラッディングを抑制することが可能な固体高分子型燃料電池用電極とその製造方法を提供することにある。また、本発明の他の目的は、かかる固体高分子型燃料電池用電極を備え、フラッディングが起こり難い固体高分子型燃料電池を提供することにある。   Accordingly, an object of the present invention is to provide an electrode for a polymer electrolyte fuel cell that solves the above-described problems of the prior art, has good gas permeability, and can suppress flooding, and a method for manufacturing the same. is there. Another object of the present invention is to provide a polymer electrolyte fuel cell comprising such a polymer electrolyte fuel cell electrode, which is less prone to flooding.

本発明者らは、上記目的を達成するために鋭意検討した結果、導電性多孔質基板の一方の面上にフィブリル状ポリマーを生成させ、該フィブリル状ポリマーを焼成して3次元連続状の炭素繊維とし、該炭素繊維に金属触媒を担持し、更に、炭素繊維が配設されていない導電性多孔質基板のもう一方の面に撥水処理を施した後、撥水処理を施していない導電性多孔質基板の面上に位置する炭素繊維内に高分子電解質を含浸することで、ガスの透過性が良好な固体高分子型燃料電池用電極が得られ、該電極を固体高分子型燃料電池に組み込むことで、燃料電池内でフラッディングが起こり難くなることを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the present inventors have produced a fibril polymer on one surface of a conductive porous substrate, and calcined the fibril polymer to form a three-dimensional continuous carbon. Conductive material that is not subjected to water repellent treatment after being subjected to water repellent treatment on the other surface of the conductive porous substrate on which the carbon fiber is supported and the carbon catalyst is not disposed. By impregnating a carbon electrolyte located on the surface of the porous porous substrate with a polymer electrolyte, an electrode for a polymer electrolyte fuel cell having good gas permeability can be obtained. It has been found that flooding is less likely to occur in the fuel cell by incorporating it into the battery, and the present invention has been completed.

即ち、本発明の固体高分子型燃料電池用電極の製造方法は、導電性多孔質基板と、該導電性多孔質基板上に配設された炭素繊維と、該炭素繊維上に担持された金属触媒と、前記炭素繊維内に含浸された高分子電解質とを具える固体高分子型燃料電池用電極の製造方法であって、
(i)導電性多孔質基板の一方の面上において、芳香環を有する化合物を電解酸化重合してフィブリル状ポリマーを生成させる工程と、
(ii)該フィブリル状ポリマーを焼成して導電性多孔質基板上に炭素繊維を生成させる工程と、
(iii)該炭素繊維上に金属触媒を担持する工程と、
(iv)該金属触媒を担持した炭素繊維が配設されていない導電性多孔質基板のもう一方の面に撥水処理を施す工程と、
(v)該撥水処理が施されていない導電性多孔質基板の一方の面上に配設され且つ金属触媒が担持された炭素繊維内に高分子電解質を含浸する工程と
を含むことを特徴とする。
That is, the method for producing an electrode for a polymer electrolyte fuel cell of the present invention comprises a conductive porous substrate, a carbon fiber disposed on the conductive porous substrate, and a metal supported on the carbon fiber. A method for producing a polymer electrolyte fuel cell electrode comprising a catalyst and a polymer electrolyte impregnated in the carbon fiber,
(i) on one surface of the conductive porous substrate, a step of electrolytically oxidatively polymerizing a compound having an aromatic ring to produce a fibrillated polymer;
(ii) firing the fibrillated polymer to form carbon fibers on the conductive porous substrate;
(iii) supporting a metal catalyst on the carbon fiber;
(iv) performing a water repellent treatment on the other surface of the conductive porous substrate on which the carbon fiber supporting the metal catalyst is not disposed;
(v) a step of impregnating a polymer electrolyte into a carbon fiber disposed on one surface of the conductive porous substrate not subjected to the water repellent treatment and carrying a metal catalyst. And

本発明の固体高分子型燃料電池用電極の製造方法の好適例においては、前記導電性多孔質基板がカーボンペーパーである。   In a preferred example of the method for producing an electrode for a polymer electrolyte fuel cell of the present invention, the conductive porous substrate is carbon paper.

本発明の固体高分子型燃料電池用電極の製造方法の他の好適例においては、前記芳香環を有する化合物が、アニリン、ピロール、チオフェン及びそれらの誘導体からなる群から選択された少なくとも一種である。   In another preferred embodiment of the method for producing a polymer electrolyte fuel cell electrode of the present invention, the compound having an aromatic ring is at least one selected from the group consisting of aniline, pyrrole, thiophene and derivatives thereof. .

本発明の固体高分子型燃料電池用電極の製造方法の他の好適例においては、前記焼成を非酸化性雰囲気中で行う。   In another preferred embodiment of the method for producing an electrode for a polymer electrolyte fuel cell of the present invention, the firing is performed in a non-oxidizing atmosphere.

本発明の固体高分子型燃料電池用電極の製造方法の他の好適例においては、前記金属触媒が少なくともPtを含む。   In another preferred embodiment of the method for producing an electrode for a polymer electrolyte fuel cell of the present invention, the metal catalyst contains at least Pt.

本発明の固体高分子型燃料電池用電極の製造方法の他の好適例においては、前記撥水処理をフッ素系の撥水剤で行う。   In another preferred embodiment of the method for producing a polymer electrolyte fuel cell electrode of the present invention, the water repellent treatment is performed with a fluorine-based water repellent.

本発明の固体高分子型燃料電池用電極の製造方法の他の好適例においては、前記高分子電解質が、スルホン酸、カルボン酸、ホスホン酸及び亜ホスホン酸からなる群なら選択される少なくとも一種のイオン交換基を有するイオン伝導性ポリマーである。   In another preferred embodiment of the method for producing a polymer electrolyte fuel cell electrode of the present invention, the polymer electrolyte is at least one selected from the group consisting of sulfonic acid, carboxylic acid, phosphonic acid and phosphonous acid. It is an ion conductive polymer having an ion exchange group.

また、本発明の固体高分子型燃料電池用電極は、上記の方法で製造されたことを特徴とし、本発明の固体高分子型燃料電池は、該電極を備えることを特徴とする。   In addition, the polymer electrolyte fuel cell electrode of the present invention is manufactured by the above-described method, and the polymer electrolyte fuel cell of the present invention includes the electrode.

本発明によれば、ガスの透過性が良好で、フラッディングを抑制することが可能な固体高分子型燃料電池用電極とその製造方法を提供することができる。また、かかる電極を備え、フラッディングが起こり難い固体高分子型燃料電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the gas permeability is favorable and the electrode for solid polymer type fuel cells which can suppress flooding, and its manufacturing method can be provided. In addition, it is possible to provide a polymer electrolyte fuel cell that includes such an electrode and is less likely to flood.

<固体高分子型燃料電池用電極及びその製造方法>
以下に、本発明の固体高分子型燃料電池用電極及びその製造方法を詳細に説明する。本発明の固体高分子型燃料電池用電極の製造方法は、(i)導電性多孔質基板の一方の面上において、芳香環を有する化合物を電解酸化重合してフィブリル状ポリマーを生成させる工程と、(ii)該フィブリル状ポリマーを焼成して導電性多孔質基板上に炭素繊維を生成させる工程と、(iii)該炭素繊維上に金属触媒を担持する工程と、(iv)該金属触媒を担持した炭素繊維が配設されていない導電性多孔質基板のもう一方の面に撥水処理を施す工程と、(v)該撥水処理が施されていない導電性多孔質基板の一方の面上に配設され且つ金属触媒が担持された炭素繊維内に高分子電解質を含浸する工程とを含むことを特徴とし、該方法によれば、導電性多孔質基板と、該導電性多孔質基板上に配設された炭素繊維と、該炭素繊維上に担持された金属触媒と、前記炭素繊維内に含浸された高分子電解質とを具える固体高分子型燃料電池用電極を製造することができる。
<Electrode for polymer electrolyte fuel cell and method for producing the same>
Below, the electrode for solid polymer type fuel cells of the present invention and its manufacturing method are explained in detail. The method for producing an electrode for a polymer electrolyte fuel cell according to the present invention includes (i) a step of producing a fibril polymer by electrolytic oxidation polymerization of a compound having an aromatic ring on one surface of a conductive porous substrate. (Ii) firing the fibrillated polymer to form carbon fibers on a conductive porous substrate; (iii) supporting a metal catalyst on the carbon fibers; and (iv) A step of performing water repellent treatment on the other surface of the conductive porous substrate on which the supported carbon fibers are not disposed, and (v) one surface of the conductive porous substrate not subjected to the water repellent treatment. And impregnating a polymer fiber in a carbon fiber on which a metal catalyst is supported. According to the method, the conductive porous substrate and the conductive porous substrate A carbon fiber disposed on the metal fiber, a metal catalyst supported on the carbon fiber, and An electrode for a polymer electrolyte fuel cell comprising a polymer electrolyte impregnated in carbon fiber can be produced.

本発明の固体高分子型燃料電池用電極の製造方法では、(i)工程及び(ii)工程で導電性多孔質基板の一方の面上に炭素繊維を形成した後、(iii)工程で炭素繊維上に金属触媒を担持し、更に、(iv)工程で、導電性多孔質基板のもう一方の面に撥水処理を施すことで、(v)工程で撥水処理を施した面上に高分子電解質が付着するのを防止することができる。そのため、(v)工程では、導電性多孔質基板の撥水処理を施していない面上に位置する金属触媒が担持された炭素繊維のみに高分子電解質が含浸される。この結果、導電性多孔質基板の撥水処理を施した面は、高分子電解質が付着していないため、ガスの透過性が高く、フラッディングが起こり難い。   In the method for producing an electrode for a polymer electrolyte fuel cell of the present invention, after forming carbon fibers on one surface of the conductive porous substrate in the steps (i) and (ii), the carbon is added in the step (iii). A metal catalyst is supported on the fiber, and further, in step (iv), the other surface of the conductive porous substrate is subjected to water repellency treatment, so that the surface subjected to water repellency treatment in step (v) It is possible to prevent the polymer electrolyte from adhering. Therefore, in the step (v), the polymer electrolyte is impregnated only in the carbon fibers carrying the metal catalyst located on the surface of the conductive porous substrate that has not been subjected to the water repellent treatment. As a result, the surface of the conductive porous substrate that has been subjected to the water repellent treatment does not have a polymer electrolyte attached thereto, and therefore has high gas permeability and is unlikely to flood.

本発明の固体高分子型燃料電池用電極の製造方法では、(i)工程で、導電性多孔質基板の一方の面上において、芳香環を有する化合物を電解酸化重合してフィブリル状ポリマーを生成させる。ここで、使用する導電性多孔質基板としては、多孔質で且つ導電性を有するものであればよく、具体的には、カーボンペーパー、多孔質のカーボン布等が挙げられ、これらの中でも、カーボンペーパーが好ましい。   In the method for producing a polymer electrolyte fuel cell electrode of the present invention, in step (i), a compound having an aromatic ring is electrolytically oxidatively polymerized on one surface of the conductive porous substrate to produce a fibril polymer. Let Here, the conductive porous substrate to be used may be any porous and conductive material, and specifically includes carbon paper, porous carbon cloth, etc. Among these, carbon Paper is preferred.

上記芳香環を有する化合物としては、ベンゼン環を有する化合物、芳香族複素環を有する化合物を挙げることができる。ここで、ベンゼン環を有する化合物としては、アニリン及びアニリン誘導体が好ましく、芳香族複素環を有する化合物としては、ピロール、チオフェン及びこれらの誘導体が好ましい。これら芳香環を有する化合物は、一種単独で用いてもよいし、二種以上の混合物として用いてもよい。   Examples of the compound having an aromatic ring include a compound having a benzene ring and a compound having an aromatic heterocyclic ring. Here, as the compound having a benzene ring, aniline and aniline derivatives are preferable, and as the compound having an aromatic heterocyclic ring, pyrrole, thiophene and derivatives thereof are preferable. These compounds having an aromatic ring may be used singly or as a mixture of two or more.

上記電解酸化重合においては、原料の芳香環を有する化合物と共に、酸を混在させることが好ましい。この場合、酸の負イオンがドーパントとして合成されるフィブリル状ポリマー中に取り込まれ、導電性に優れたフィブリル状ポリマーが得られ、このフィブリル状ポリマーを用いることにより最終的に炭素繊維の導電性を更に向上させることができる。ここで、電解酸化重合の際に混在させる酸としては、HBF4、H2SO4、HCl、HClO4等を例示することができる。また、該酸の濃度は、0.1〜3mol/Lの範囲が好ましく、0.5〜2.5mol/Lの範囲が更に好ましい。 In the electrolytic oxidation polymerization, it is preferable to mix an acid together with a raw material compound having an aromatic ring. In this case, the negative ion of the acid is taken into the fibril polymer synthesized as a dopant to obtain a fibril polymer excellent in conductivity. By using this fibril polymer, the conductivity of the carbon fiber is finally improved. Further improvement can be achieved. Here, examples of the acid mixed in the electrolytic oxidation polymerization include HBF 4 , H 2 SO 4 , HCl, HClO 4 and the like. The acid concentration is preferably in the range of 0.1 to 3 mol / L, more preferably in the range of 0.5 to 2.5 mol / L.

上記(i)工程は、芳香環を有する化合物を含む溶液中に、上記導電性多孔質基板を作用極として浸漬し、更に対極を浸漬し、両極間に芳香環を有する化合物の酸化電位以上の電圧を印加するか、または該芳香環を有する化合物が重合するのに充分な電圧が確保できるような条件の電流を通電すればよく、これにより導電性多孔質基板(作用極)上にフィブリル状ポリマーが生成する。ここで、対極としては、ステンレススチール、白金、カーボン等の良導電性物質からなる板や多孔質支持体等を用いることができる。この電解酸化重合法によるフィブリル状ポリマーの合成方法の一例を挙げると、H2SO4、HBF4等の酸及び芳香環を有する化合物を含む電解溶液中に導電性多孔質基板からなる作用極及び対極を浸漬し、両極間に0.1〜1000mA/cm2、好ましくは0.2〜100mA/cm2の電流を通電して、導電性多孔質基板からなる作用極側にフィブリル状ポリマーを重合析出させる方法等が例示される。なお、フィブリル状ポリマーは、導電性多孔質基板からなる作用極の対極と対向する面に主として生成する。ここで、芳香環を有する化合物の電解溶液中の濃度は、0.05〜3mol/Lが好ましく、0.25〜1.5mol/Lがより好ましい。また、電解溶液には、上記成分に加え、pHを調製するために可溶性塩等を適宜添加してもよい。 In the step (i), the conductive porous substrate is immersed as a working electrode in a solution containing a compound having an aromatic ring, and the counter electrode is further immersed. It is only necessary to apply a voltage or to pass a current under such a condition that a voltage sufficient to polymerize the compound having an aromatic ring can be ensured, whereby a fibril-like structure is formed on the conductive porous substrate (working electrode). A polymer is formed. Here, as the counter electrode, a plate made of a highly conductive material such as stainless steel, platinum, or carbon, a porous support, or the like can be used. An example of a method for synthesizing a fibril-like polymer by this electrolytic oxidation polymerization method is as follows. A working electrode composed of a conductive porous substrate in an electrolytic solution containing a compound having an acid and an aromatic ring, such as H 2 SO 4 and HBF 4 , and A method of polymerizing and depositing a fibrillated polymer on the working electrode side made of a conductive porous substrate by immersing the counter electrode and passing a current of 0.1 to 1000 mA / cm 2 , preferably 0.2 to 100 mA / cm 2 between both electrodes Is exemplified. The fibril polymer is mainly generated on the surface facing the counter electrode of the working electrode made of a conductive porous substrate. Here, the concentration of the compound having an aromatic ring in the electrolytic solution is preferably 0.05 to 3 mol / L, and more preferably 0.25 to 1.5 mol / L. Moreover, in addition to the said component, you may add a soluble salt etc. to an electrolyte solution suitably in order to adjust pH.

上記芳香環を有する化合物を電解酸化重合して得られるフィブリル状ポリマーは、通常、3次元連続構造を有し、直径が30〜数百nmで、好ましくは40〜500nmであり、長さが0.5μm〜100mmで、好ましくは1μm〜10mmである。   The fibril-like polymer obtained by electrolytic oxidation polymerization of the compound having an aromatic ring usually has a three-dimensional continuous structure, has a diameter of 30 to several hundred nm, preferably 40 to 500 nm, and has a length of 0.5. It is μm to 100 mm, preferably 1 μm to 10 mm.

本発明の固体高分子型燃料電池用電極の製造方法では、(ii)工程で、上記フィブリル状ポリマーを焼成し炭化することで、導電性多孔質基板上に炭素繊維を生成させる。なお、(ii)工程の前に、フィブリル状ポリマーを水や有機溶剤等の溶媒で洗浄し、乾燥させることが好ましい。ここで、乾燥方法としては、特に制限されるものではないが、風乾、真空乾燥の他、流動床乾燥装置、気流乾燥機、スプレードライヤー等を使用した方法を例示することができる。   In the method for producing an electrode for a polymer electrolyte fuel cell of the present invention, in the step (ii), the fibrillated polymer is baked and carbonized to generate carbon fibers on the conductive porous substrate. In addition, before the step (ii), it is preferable that the fibrillated polymer is washed with a solvent such as water or an organic solvent and dried. Here, the drying method is not particularly limited, and examples thereof include a method using a fluidized bed drying device, an air dryer, a spray dryer, etc., in addition to air drying and vacuum drying.

上記(ii)工程の焼成条件としては、特に限定されるものではなく、最適導電率となるように適宜設定すればよいが、特に高導電率を必要とする場合は、温度500〜3000℃、好ましくは600〜2800℃で、0.5〜6時間焼成することが好ましい。なお、本発明の製造方法では、焼成工程を非酸化性雰囲気中で行うことが好ましく、該非酸化性雰囲気としては、窒素雰囲気、アルゴン雰囲気、ヘリウム雰囲気等を挙げることができ、場合によっては水素雰囲気とすることもできる。   The firing conditions in the above step (ii) are not particularly limited, and may be set as appropriate so as to obtain optimum conductivity. Particularly, when high conductivity is required, the temperature is 500 to 3000 ° C., Preferably, baking is performed at 600 to 2800 ° C. for 0.5 to 6 hours. In the production method of the present invention, the firing step is preferably performed in a non-oxidizing atmosphere, and examples of the non-oxidizing atmosphere include a nitrogen atmosphere, an argon atmosphere, and a helium atmosphere. It can also be.

上記炭素繊維は、通常、3次元連続構造を有し、直径が30〜数百nm、好ましくは40〜500nmであり、長さが0.5μm〜100mm、好ましくは1μm〜10mmであり、表面抵抗が106〜10-2Ω、好ましくは104〜10-2Ωである。また、該炭素繊維は、残炭率が95〜30%、好ましくは90〜40%である。該炭素繊維は、カーボン全体が3次元に連続した構造を有するため、粒状カーボンよりも導電性が高い。 The carbon fiber usually has a three-dimensional continuous structure, has a diameter of 30 to several hundred nm, preferably 40 to 500 nm, has a length of 0.5 μm to 100 mm, preferably 1 μm to 10 mm, and has a surface resistance. 10 6 to 10 −2 Ω, preferably 10 4 to 10 −2 Ω. The carbon fiber has a residual carbon ratio of 95 to 30%, preferably 90 to 40%. Since the carbon fiber has a structure in which the entire carbon is three-dimensionally continuous, the carbon fiber has higher conductivity than the granular carbon.

本発明の固体高分子型燃料電池用電極の製造方法では、(iii)工程で、上記炭素繊維上に金属触媒を担持する。ここで、炭素繊維に担持する金属触媒としては、貴金属が好ましく、Ptが特に好ましい。なお、本発明においては、Ptを単独で用いてもよいし、Ru等の他の金属との合金として用いてもよい。貴金属としてPtを用いることで、100℃以下の低温でも水素を高効率で酸化することができる。また、PtとRu等の合金を用いることで、COによるPtの被毒を防止して、触媒の活性低下を防止することができる。なお、炭素繊維上に担持される金属触媒の粒径は、0.5〜20nmの範囲が好ましく、該金属触媒の担持率は、炭素繊維1gに対して0.05〜5gの範囲が好ましい。ここで、上記金属触媒の炭素繊維上への担持法としては、特に限定されるものではなく、例えば、含浸法、電気メッキ法(電解還元法)、無電解メッキ法、スパッタ法等が挙げられる。   In the method for producing an electrode for a polymer electrolyte fuel cell of the present invention, a metal catalyst is supported on the carbon fiber in the step (iii). Here, as the metal catalyst supported on the carbon fiber, a noble metal is preferable, and Pt is particularly preferable. In the present invention, Pt may be used alone or as an alloy with another metal such as Ru. By using Pt as the noble metal, hydrogen can be oxidized with high efficiency even at a low temperature of 100 ° C. or lower. In addition, by using an alloy such as Pt and Ru, it is possible to prevent poisoning of Pt by CO and prevent a decrease in the activity of the catalyst. The particle size of the metal catalyst supported on the carbon fiber is preferably in the range of 0.5 to 20 nm, and the support rate of the metal catalyst is preferably in the range of 0.05 to 5 g with respect to 1 g of the carbon fiber. Here, the method for supporting the metal catalyst on the carbon fiber is not particularly limited, and examples thereof include an impregnation method, an electroplating method (electrolytic reduction method), an electroless plating method, and a sputtering method. .

本発明の方法では、上記金属触媒の炭素繊維上への担持を、電流をパルス状に印加した電気メッキ法により行うことが好ましい。ここで、電流の印加条件は、下記式(I):
デューティ比=t1/(t1+t2)×100 ・・・ (I)
[式中、t1は電流の印加時間(秒)を表し、t2は休止時間(秒)を表す]で表されるデューティ比を2〜20%とすることが好ましい。パルス電流におけるデューティ比が2%未満では、所定の通電電荷量を満たすための総時間がかかり実用上好適でなく、また、金属触媒の表面積向上効果も不十分であり、一方、デューティ比が20%を超えると、電流をパルス状に印加する効果が小さく、担持された金属触媒の表面積を十分に向上させることができない。
In the method of the present invention, it is preferable to carry the metal catalyst on the carbon fiber by an electroplating method in which a current is applied in a pulsed manner. Here, the current application condition is the following formula (I):
Duty ratio = t 1 / (t 1 + t 2 ) × 100 (I)
It is preferable that the duty ratio represented by [where t 1 represents current application time (seconds) and t 2 represents rest time (seconds)] be 2 to 20%. If the duty ratio in the pulse current is less than 2%, it takes a long time to satisfy the predetermined energized charge amount, which is not suitable for practical use, and the effect of improving the surface area of the metal catalyst is insufficient, while the duty ratio is 20 If it exceeds%, the effect of applying current in a pulsed manner is small, and the surface area of the supported metal catalyst cannot be sufficiently improved.

上記電気メッキにおける休止時間(t2)は、0.05〜0.5秒とすることが好ましい。休止時間(t2)が0.05秒未満では、電流をパルス状に印加する効果が小さく、担持された金属触媒の表面積を十分に向上させることができず、一方、休止時間(t2)が0.5秒を超えると、所定の通電電荷量を満たすための総時間がかかり実用上好適でなく、また、金属触媒の表面積向上効果も不十分である。 Dwell time in the electroplating (t 2) is preferably set to 0.05 to 0.5 seconds. When the pause time (t 2 ) is less than 0.05 seconds, the effect of applying the current in a pulsed manner is small, and the surface area of the supported metal catalyst cannot be sufficiently improved, while the pause time (t 2 ) is 0.5. If it exceeds 2 seconds, it takes a total time to satisfy the predetermined energized charge amount, which is not suitable for practical use, and the effect of improving the surface area of the metal catalyst is insufficient.

なお、上記電気メッキにおいて、電流密度は10〜500mA/cm2の範囲が好ましく、通電電荷量は0.1〜5Cの範囲が好ましい。また、印加時間(t1)は、デューティ比を2〜20%としつつ、休止時間(t2)が0.05〜0.5秒の範囲になるように選択することが好ましい。更に、パルスメッキにおけるパルス数(サイクル数)は、上記した好適な通電電荷量の範囲になるように適宜選択することが好ましい。 In the electroplating, the current density is preferably in the range of 10 to 500 mA / cm 2 , and the energization charge amount is preferably in the range of 0.1 to 5C. The application time (t 1 ) is preferably selected so that the rest time (t 2 ) is in the range of 0.05 to 0.5 seconds while the duty ratio is 2 to 20%. Furthermore, the number of pulses (number of cycles) in pulse plating is preferably selected as appropriate so as to be in the above-described range of the preferred energized charge amount.

本発明の固体高分子型燃料電池用電極の製造方法では、(iv)工程で、上記金属触媒を担持した炭素繊維が配設されていない導電性多孔質基板のもう一方の面に撥水処理を施す。該撥水処理は、ポリテトラフルオロエチレン、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体等のフッ素系共重合体を主成分とするフッ素系の撥水剤で行うことが好ましく、フッ素系の撥水剤で導電性多孔質基板の炭素繊維が配設されていない面に表面処理を施すことで、該面に(v)工程で高分子電解質が付着するのを確実に防止することができる。なお、撥水処理は、例えば、撥水剤を適宜溶媒に溶解させて、導電性多孔質基板の炭素繊維が配設されていない面に塗布する等して実施され、撥水剤溶液中の撥水剤成分の濃度等は、適宜調整することができる。また、撥水剤溶液の塗布後は、熱処理を施して、溶媒を除去するとともに、撥水剤を定着させることが好ましい。   In the method for producing a polymer electrolyte fuel cell electrode of the present invention, in step (iv), the water repellent treatment is performed on the other surface of the conductive porous substrate on which the carbon fiber supporting the metal catalyst is not disposed. Apply. The water repellent treatment is preferably carried out with a fluorine-based water repellent mainly composed of a fluorine-based copolymer such as polytetrafluoroethylene or tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer. By applying a surface treatment to the surface of the conductive porous substrate on which the carbon fibers are not disposed with the liquid agent, it is possible to reliably prevent the polymer electrolyte from adhering to the surface in the step (v). The water repellent treatment is carried out, for example, by dissolving a water repellent in a suitable solvent and applying it to the surface of the conductive porous substrate where the carbon fibers are not disposed. The concentration and the like of the water repellent component can be adjusted as appropriate. Further, after the application of the water repellent solution, it is preferable to perform a heat treatment to remove the solvent and fix the water repellent.

本発明の固体高分子型燃料電池用電極の製造方法では、(v)工程で、上記撥水処理が施されていない導電性多孔質基板の一方の面上に配設され且つ金属触媒が担持された炭素繊維内に高分子電解質を含浸する。ここで、高分子電解質としては、イオン伝導性のポリマーが好ましく、該イオン伝導性のポリマーとしては、スルホン酸、カルボン酸、ホスホン酸、亜ホスホン酸等のイオン交換基を有するポリマーを挙げることができ、該ポリマーはフッ素を含んでも、含まなくてもよい。該イオン伝導性のポリマーとしては、ナフィオン(登録商標)等のパーフルオロカーボンスルホン酸系ポリマー等が挙げられる。上記高分子電解質の含浸は、例えば、高分子電解質を水及び/又は有機溶媒に溶解させて溶液を調製し、該高分子電解質の溶液を、金属触媒が担持された炭素繊維に塗布することで実施でき、また、その含浸量は、溶液の量や濃度を制御することで適宜調整することができる。上記高分子電解質の含浸量は、0.01mg/cm2〜4.0mg/cm2の範囲が好ましく、高分子電解質の含浸量が0.01mg/cm2未満では、プロトンの伝導性が低下し、一方、4.0mg/cm2を超えると、ガスの透過性が低下して、フラッディングが起こり易くなる。 In the method for producing an electrode for a polymer electrolyte fuel cell of the present invention, in step (v), the metal catalyst is supported and disposed on one surface of the conductive porous substrate not subjected to the water-repellent treatment. A polymer electrolyte is impregnated into the carbon fiber. Here, the polymer electrolyte is preferably an ion conductive polymer, and examples of the ion conductive polymer include polymers having an ion exchange group such as sulfonic acid, carboxylic acid, phosphonic acid, and phosphonous acid. The polymer may or may not contain fluorine. Examples of the ion conductive polymer include perfluorocarbon sulfonic acid polymers such as Nafion (registered trademark). The impregnation of the polymer electrolyte is performed by, for example, preparing a solution by dissolving the polymer electrolyte in water and / or an organic solvent, and applying the solution of the polymer electrolyte to carbon fibers supporting a metal catalyst. The amount of impregnation can be appropriately adjusted by controlling the amount and concentration of the solution. Impregnated amount of the polymer electrolyte is preferably in the range of 0.01mg / cm 2 ~4.0mg / cm 2 , in less than 0.01 mg / cm 2 impregnation amount of the polymer electrolyte, proton conductivity is lowered, whereas, If it exceeds 4.0 mg / cm 2 , the gas permeability decreases and flooding is likely to occur.

上述の方法で製造される本発明の固体高分子型燃料電池用電極は、導電性多孔質基板と、該導電性多孔質基板上に配設された炭素繊維と、該炭素繊維上に担持された金属触媒と、前記炭素繊維内に含浸された高分子電解質とを具え、燃料極としても、空気極(酸素極)としても使用できる。ここで、該固体高分子型燃料電池用電極においては、金属触媒が担持され且つ高分子電解質が含浸された炭素繊維が触媒層として機能し、導電性多孔質基板が、触媒層へ水素ガス等の燃料、或いは、酸素や空気等の酸素含有ガスを供給するガス拡散層としての機能と、発生した電子の授受を行う集電体としての機能を担う。なお、触媒層の厚さは、特に限定されるものではないが、0.1〜100μmの範囲が好ましい。また、触媒層の金属触媒担持量は、前記担持率と触媒層の厚さにより定まり、好ましくは0.001〜0.8mg/cm2の範囲である。 The electrode for a polymer electrolyte fuel cell of the present invention produced by the above-described method comprises a conductive porous substrate, carbon fibers disposed on the conductive porous substrate, and supported on the carbon fibers. The metal catalyst and the polymer electrolyte impregnated in the carbon fiber can be used as a fuel electrode or an air electrode (oxygen electrode). Here, in the polymer electrolyte fuel cell electrode, the carbon fiber supported with the metal catalyst and impregnated with the polymer electrolyte functions as a catalyst layer, and the conductive porous substrate is supplied with hydrogen gas or the like to the catalyst layer. It functions as a gas diffusion layer for supplying an oxygen-containing gas such as oxygen or air, and as a current collector for transferring generated electrons. The thickness of the catalyst layer is not particularly limited, but is preferably in the range of 0.1 to 100 μm. The amount of the metal catalyst supported on the catalyst layer is determined by the loading rate and the thickness of the catalyst layer, and is preferably in the range of 0.001 to 0.8 mg / cm 2 .

<固体高分子型燃料電池>
次に、本発明の固体高分子型燃料電池用電極を用いた固体高分子型燃料電池を、図1を参照しながら説明する。図示例の固体高分子型燃料電池は、膜電極接合体(MEA)1とその両側に位置するセパレータ2とを備える。膜電極接合体(MEA)1は、固体高分子電解質膜3とその両側に位置する燃料極4A及び空気極(酸素極)4Bとからなる。燃料極4Aでは、2H2→4H++4e-で表される反応が起こり、発生したH+は固体高分子電解質膜3を経て空気極4Bに至り、また、発生したe-は外部に取り出されて電流となる。一方、空気極4Bでは、O2+4H++4e-→2H2Oで表される反応が起こり、水が発生する。燃料極4A及び空気極4Bは、触媒層5及びガス拡散層(導電性多孔質基板)6からなり、触媒層5が固体高分子電解質膜3に接触するように配置されている。
<Solid polymer fuel cell>
Next, a polymer electrolyte fuel cell using the polymer electrolyte fuel cell electrode of the present invention will be described with reference to FIG. The illustrated polymer electrolyte fuel cell includes a membrane electrode assembly (MEA) 1 and separators 2 located on both sides thereof. The membrane electrode assembly (MEA) 1 includes a solid polymer electrolyte membrane 3, a fuel electrode 4A and an air electrode (oxygen electrode) 4B located on both sides thereof. In the fuel electrode 4A, a reaction represented by 2H 2 → 4H + + 4e occurs, the generated H + passes through the solid polymer electrolyte membrane 3 to the air electrode 4B, and the generated e is taken out to the outside. Current. On the other hand, in the air electrode 4B, a reaction represented by O 2 + 4H + + 4e → 2H 2 O occurs, and water is generated. The fuel electrode 4 </ b> A and the air electrode 4 </ b> B are composed of a catalyst layer 5 and a gas diffusion layer (conductive porous substrate) 6, and are arranged so that the catalyst layer 5 is in contact with the solid polymer electrolyte membrane 3.

本発明の固体高分子型燃料電池において、固体高分子電解質膜3としては、イオン伝導性のポリマーを使用することができ、該イオン伝導性のポリマーとしては、上記金属触媒が担持された炭素繊維に含浸させることが可能な高分子電解質として例示したものを用いることができる。また、セパレータ2としては、表面に燃料、空気及び生成した水等の流路(図示せず)が形成された通常のセパレータを用いることができる。   In the polymer electrolyte fuel cell of the present invention, an ion conductive polymer can be used as the solid polymer electrolyte membrane 3, and the ion conductive polymer includes a carbon fiber carrying the metal catalyst. What was illustrated as a polymer electrolyte which can be impregnated in can be used. Moreover, as the separator 2, the normal separator with which flow paths (not shown), such as fuel, air, and produced | generated water, were formed in the surface can be used.

本発明の固体高分子型燃料電池において、触媒層5は、炭素繊維に金属触媒を担持し、更に、該炭素繊維に高分子電解質を含浸してなり、担持された金属触媒の表面積が非常に広いため、固体高分子電解質膜3と触媒層5とガスとの三相界面での電気化学反応の反応場が非常に大きく、その結果、固体高分子型燃料電池の発電効率が大幅に改善される。また、ガス拡散層6は、触媒層5に接しない面に、高分子電解質が付着していないため、ガスの透過性が非常に高い。そのため、本発明の固体高分子型燃料電池は、フラッディングが起こり難く、高電流域で運転しても、電圧の低下が小さい。   In the polymer electrolyte fuel cell of the present invention, the catalyst layer 5 is formed by supporting a metal catalyst on carbon fiber, and further impregnating the carbon fiber with a polymer electrolyte, and the surface area of the supported metal catalyst is very high. Since it is wide, the reaction field of the electrochemical reaction at the three-phase interface between the solid polymer electrolyte membrane 3, the catalyst layer 5, and the gas is very large, and as a result, the power generation efficiency of the solid polymer fuel cell is greatly improved. The In addition, the gas diffusion layer 6 has a very high gas permeability because the polymer electrolyte is not attached to the surface not in contact with the catalyst layer 5. Therefore, in the polymer electrolyte fuel cell of the present invention, flooding is unlikely to occur, and the voltage drop is small even when operated in a high current region.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

(実施例1)
<炭素繊維の作製>
アニリン 0.5mol/Lとホウフッ化水素酸 1.0mol/Lとを含む酸性水溶液中に、作用極としてカーボンペーパー[東レ製]を設置し、対極としてSUS316L製のパンチングメタルを設置し、15℃にて5mA/cm2の定電流で700秒間電解酸化重合を行い、作用極上にポリアニリンを電析させた。得られたポリアニリンを1.0mol/LのNaOH水溶液に1時間浸漬した後、純水で十分に洗浄し、100℃で減圧乾燥した。更に、得られたポリアニリンをカーボンペーパーごとAr減圧雰囲気下で1200℃まで2時間かけて昇温し、該温度で1時間保持して焼成処理を行った。その後、室温まで冷却し、得られた焼成物(炭素繊維)を取り出した。
(Example 1)
<Production of carbon fiber>
In an acidic aqueous solution containing aniline 0.5 mol / L and borohydrofluoric acid 1.0 mol / L, carbon paper [manufactured by Toray] was installed as a working electrode, and punching metal made of SUS316L was installed as a counter electrode at 15 ° C. Electrolytic oxidation polymerization was carried out at a constant current of 5 mA / cm 2 for 700 seconds, and polyaniline was electrodeposited on the working electrode. The obtained polyaniline was immersed in a 1.0 mol / L NaOH aqueous solution for 1 hour, washed thoroughly with pure water, and dried at 100 ° C. under reduced pressure. Further, the obtained polyaniline was heated together with carbon paper to 1200 ° C. in an Ar reduced pressure atmosphere over 2 hours, and held at that temperature for 1 hour for firing treatment. Then, it cooled to room temperature and took out the obtained baked material (carbon fiber).

<白金の担持>
次に、上記で得られた焼成物(炭素繊維)をカーボンペーパーごと塩化白金酸六水和物 10gを純水 1Lに溶解させて得た水溶液中に作用極として設置し、更に、対極として白金メッキされたチタン板を設置した。その後、室温にで、120mA/cm2のパルス電流を流し、炭素繊維上に白金を担持させた。なお、パルス条件は、印加時間(オンタイム):0.005秒、休止時間(オフタイム):0.1秒とし、通電量:1.0C/cm2とした。また、通電終了後、十分に洗浄及び乾燥した。なお、質量変化から白金担持量を計算したところ、0.27mg/cm2であった。
<Platinum support>
Next, the fired product (carbon fiber) obtained above was placed as a working electrode in an aqueous solution obtained by dissolving 10 g of chloroplatinic acid hexahydrate together with carbon paper in 1 L of pure water, and further, white as a counter electrode. A gold-plated titanium plate was installed. Thereafter, a pulse current of 120 mA / cm 2 was passed at room temperature, and platinum was supported on the carbon fiber. The pulse conditions were as follows: application time (on time): 0.005 seconds, rest time (off time): 0.1 seconds, and energization amount: 1.0 C / cm 2 . Moreover, after energization was completed, it was sufficiently washed and dried. The platinum loading was calculated from the mass change and found to be 0.27 mg / cm 2 .

<MEAの作製>
次に、上記のようにして得た白金担持炭素繊維付きカーボンペーパーを50mm角の大きさに打ち抜き、カーボンペーパーの白金担持炭素繊維が配設されていない面にフッ素系処理剤[ダイフリーGA−6010, ダイキン工業製]をスプレー塗布し、170℃で5分間熱処理を施した。質量変化からフッ素系処理剤の付着量を計算したところ、0.05mg/cm2であった。その後、カーボンペーパーの白金担持炭素繊維が配設されている面にナフィオン(登録商標)溶液[ポリマー:5質量%, イソプロピルアルコール:50質量%, 水:45質量%]を塗布し、100℃で溶剤を乾燥除去した。なお、ナフィオン量は0.4mg/cm2に調整した。得られたナフィオン塗布白金担持炭素繊維/カーボンペーパー2枚で、ナフィオン112膜を挟み、熱プレスして一体化し、膜電極接合体(MEA)を得た。
<Production of MEA>
Next, the carbon paper with platinum-supported carbon fibers obtained as described above was punched out to a size of 50 mm square, and a fluorine-based treatment agent [die-free GA- 6010, manufactured by Daikin Industries, Ltd.] and sprayed at 170 ° C. for 5 minutes. The adhesion amount of the fluorinated treating agent was calculated from the mass change and found to be 0.05 mg / cm 2 . Then, apply Nafion (registered trademark) solution [polymer: 5% by mass, isopropyl alcohol: 50% by mass, water: 45% by mass] on the surface of the carbon paper where the platinum-supported carbon fibers are disposed, The solvent was removed by drying. The amount of Nafion was adjusted to 0.4 mg / cm 2 . The two Nafion-coated platinum-supported carbon fibers / carbon paper sandwiched the Nafion 112 membrane and integrated by hot pressing to obtain a membrane electrode assembly (MEA).

<燃料電池の性能評価>
得られた膜電極接合体をエレクトロケミカル社製の試験セル(EFC25−01SP)に組み込み、燃料電池を作製し、得られた燃料電池の発電特性を、燃料ガス(水素)流量0.3L/分、燃料ガス加湿温度80℃、酸化ガス(酸素)流量0.3L/分、酸化ガス加湿温度80℃、セル温度80℃の条件で測定した。各電流での電圧を表1に示す。
<Performance evaluation of fuel cell>
The obtained membrane electrode assembly was incorporated into a test cell (EFC25-01SP) manufactured by Electrochemical Co., and a fuel cell was produced. The power generation characteristics of the obtained fuel cell were determined with a fuel gas (hydrogen) flow rate of 0.3 L / min, Measurement was performed under the conditions of a fuel gas humidification temperature of 80 ° C., an oxidizing gas (oxygen) flow rate of 0.3 L / min, an oxidizing gas humidification temperature of 80 ° C., and a cell temperature of 80 ° C. Table 1 shows the voltage at each current.

Figure 2008177057
Figure 2008177057

(比較例1)
実施例1と同様にして炭素繊維を作製し、白金を担持した。なお、質量変化から求めた白金担持量は、0.27mg/cm2であった。更に、ナフィオン液の塗布前にフッ素系処理剤による撥水処理を行わない以外は、実施例1と同様にしてMEAを作製し、燃料電池を組み立てて、発電性能を評価した。各電流での電圧を表2に示す。
(Comparative Example 1)
Carbon fibers were produced in the same manner as in Example 1 and supported with platinum. The platinum loading determined from the mass change was 0.27 mg / cm 2 . Furthermore, an MEA was prepared in the same manner as in Example 1 except that the water repellent treatment with a fluorine-based treatment agent was not performed before the Nafion liquid was applied, and a fuel cell was assembled to evaluate the power generation performance. Table 2 shows the voltage at each current.

Figure 2008177057
Figure 2008177057

表1及び2から、本発明に従う実施例1の電極を備えた燃料電池は、一般にフラッディングが起こり易いとされている高電流域での電圧低下が小さく、フラッディングが抑制されていることが分かる。一方、ナフィオン液の塗布前に撥水処理を行わずに作製した比較例1の電極を備えた燃料電池は、フラッディングの発生により、特に高電流域での電圧低下が大きかった。   From Tables 1 and 2, it can be seen that the fuel cell provided with the electrode of Example 1 according to the present invention has a small voltage drop in a high current region in which flooding is generally likely to occur, and the flooding is suppressed. On the other hand, the fuel cell including the electrode of Comparative Example 1 manufactured without performing the water repellent treatment before the application of the Nafion liquid had a large voltage drop particularly in a high current region due to the occurrence of flooding.

本発明の固体高分子型燃料電池の一例の断面図である。It is sectional drawing of an example of the polymer electrolyte fuel cell of this invention.

符号の説明Explanation of symbols

1 膜電極接合体(MEA)
2 セパレータ
3 固体高分子電解質膜
4A 燃料極
4B 空気極(酸素極)
5 触媒層
6 ガス拡散層(導電性多孔質基板)
1 Membrane electrode assembly (MEA)
2 Separator 3 Solid polymer electrolyte membrane 4A Fuel electrode 4B Air electrode (oxygen electrode)
5 Catalyst layer 6 Gas diffusion layer (conductive porous substrate)

Claims (9)

導電性多孔質基板と、該導電性多孔質基板上に配設された炭素繊維と、該炭素繊維上に担持された金属触媒と、前記炭素繊維内に含浸された高分子電解質とを具える固体高分子型燃料電池用電極の製造方法であって、
(i)導電性多孔質基板の一方の面上において、芳香環を有する化合物を電解酸化重合してフィブリル状ポリマーを生成させる工程と、
(ii)該フィブリル状ポリマーを焼成して導電性多孔質基板上に炭素繊維を生成させる工程と、
(iii)該炭素繊維上に金属触媒を担持する工程と、
(iv)該金属触媒を担持した炭素繊維が配設されていない導電性多孔質基板のもう一方の面に撥水処理を施す工程と、
(v)該撥水処理が施されていない導電性多孔質基板の一方の面上に配設され且つ金属触媒が担持された炭素繊維内に高分子電解質を含浸する工程と
を含むことを特徴とする固体高分子型燃料電池用電極の製造方法。
A conductive porous substrate; carbon fibers disposed on the conductive porous substrate; a metal catalyst supported on the carbon fibers; and a polymer electrolyte impregnated in the carbon fibers. A method for producing a polymer electrolyte fuel cell electrode,
(i) on one surface of the conductive porous substrate, a step of electrolytically oxidatively polymerizing a compound having an aromatic ring to produce a fibrillated polymer;
(ii) firing the fibrillated polymer to form carbon fibers on the conductive porous substrate;
(iii) supporting a metal catalyst on the carbon fiber;
(iv) performing a water repellent treatment on the other surface of the conductive porous substrate on which the carbon fiber supporting the metal catalyst is not disposed;
(v) a step of impregnating a polymer electrolyte into a carbon fiber disposed on one surface of the conductive porous substrate not subjected to the water repellent treatment and carrying a metal catalyst. A method for producing an electrode for a polymer electrolyte fuel cell.
前記導電性多孔質基板がカーボンペーパーであることを特徴とする請求項1に記載の固体高分子型燃料電池用電極の製造方法。   The method for producing an electrode for a polymer electrolyte fuel cell according to claim 1, wherein the conductive porous substrate is carbon paper. 前記芳香環を有する化合物が、アニリン、ピロール、チオフェン及びそれらの誘導体からなる群から選択された少なくとも一種であることを特徴とする請求項1に記載の固体高分子型燃料電池用電極の製造方法。   2. The method for producing an electrode for a polymer electrolyte fuel cell according to claim 1, wherein the compound having an aromatic ring is at least one selected from the group consisting of aniline, pyrrole, thiophene and derivatives thereof. . 前記焼成を非酸化性雰囲気中で行うことを特徴とする請求項1に記載の固体高分子型燃料電池用電極の製造方法。   The method for producing an electrode for a polymer electrolyte fuel cell according to claim 1, wherein the firing is performed in a non-oxidizing atmosphere. 前記金属触媒が少なくともPtを含むことを特徴とする請求項1に記載の固体高分子型燃料電池用電極の製造方法。   The method for producing a polymer electrolyte fuel cell electrode according to claim 1, wherein the metal catalyst contains at least Pt. 前記撥水処理をフッ素系の撥水剤で行うことを特徴とする請求項1に記載の固体高分子型燃料電池用電極の製造方法。   The method for producing an electrode for a polymer electrolyte fuel cell according to claim 1, wherein the water repellent treatment is performed with a fluorine-based water repellent. 前記高分子電解質が、スルホン酸、カルボン酸、ホスホン酸及び亜ホスホン酸からなる群なら選択される少なくとも一種のイオン交換基を有するイオン伝導性ポリマーであることを特徴とする請求項1に記載の固体高分子型燃料電池用電極の製造方法。   The polymer electrolyte is an ion conductive polymer having at least one ion exchange group selected from the group consisting of sulfonic acid, carboxylic acid, phosphonic acid and phosphonous acid. A method for producing an electrode for a polymer electrolyte fuel cell. 請求項1〜7のいずれかに記載の方法で製造された固体高分子型燃料電池用電極。   An electrode for a polymer electrolyte fuel cell produced by the method according to claim 1. 請求項8に記載の固体高分子型燃料電池用電極を備えた固体高分子型燃料電池。   A polymer electrolyte fuel cell comprising the electrode for a polymer electrolyte fuel cell according to claim 8.
JP2007009520A 2007-01-18 2007-01-18 Electrode for solid polymer fuel cell, its manufacturing method, and solid polymer fuel cell equipped with it Withdrawn JP2008177057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007009520A JP2008177057A (en) 2007-01-18 2007-01-18 Electrode for solid polymer fuel cell, its manufacturing method, and solid polymer fuel cell equipped with it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007009520A JP2008177057A (en) 2007-01-18 2007-01-18 Electrode for solid polymer fuel cell, its manufacturing method, and solid polymer fuel cell equipped with it

Publications (1)

Publication Number Publication Date
JP2008177057A true JP2008177057A (en) 2008-07-31

Family

ID=39703922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007009520A Withdrawn JP2008177057A (en) 2007-01-18 2007-01-18 Electrode for solid polymer fuel cell, its manufacturing method, and solid polymer fuel cell equipped with it

Country Status (1)

Country Link
JP (1) JP2008177057A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012533856A (en) * 2009-07-17 2012-12-27 フロリダ・ステイト・ユニバーシティ・リサーチ・ファウンデイション・インコーポレイテッド Catalytic electrode with gradient porosity and catalyst density for fuel cells

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012533856A (en) * 2009-07-17 2012-12-27 フロリダ・ステイト・ユニバーシティ・リサーチ・ファウンデイション・インコーポレイテッド Catalytic electrode with gradient porosity and catalyst density for fuel cells

Similar Documents

Publication Publication Date Title
KR101823158B1 (en) Anode-side catalyst composition for fuel cell and membrane electrode assembly (mea) for solid polymer-type fuel cell
CN111900420A (en) Anode catalyst slurry, anode catalyst layer, membrane electrode and fuel cell
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
JP2007186823A (en) Method for treating surface of carbon fiber, hydrophilic carbon fiber and electrode and method for producing the same
JP4393459B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP2007099551A (en) Carbon-based composite material and its manufacturing method, electrode for solid polymer type fuel cell and solid polymer type fuel cell
JPWO2006003950A1 (en) Composite, catalyst structure, electrode for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell
JP2008177023A (en) Electrode for solid polymer fuel cell, its manufacturing method, and solid polymer fuel cell equipped with it
KR102199455B1 (en) Binder for membrane electrode assembly electrode and manufacturing method thereof membrane electrode assembly having the same and polymer electrolyte membrane fuel cell having the same
JP2008177057A (en) Electrode for solid polymer fuel cell, its manufacturing method, and solid polymer fuel cell equipped with it
JP2006079917A (en) Mea for fuel cell, and fuel cell using this
KR20120067171A (en) Electrode catalyst for fuel cell, manufacturing method thereof, and fuel cell using the same
Ioroi et al. PEM-type water electrolysis/fuel cell reversible cell with low PGM catalyst loadings
JP2009001845A (en) Electroplating method with noble metal, noble metal-carried conductive material, electrode for solid polymer type fuel cell, and solid polymer type fuel cell
JP2009001846A (en) Electroplating method with noble metal, noble metal-carried conductive material, electrode for solid polymer type fuel cell, and solid polymer type fuel cell
JP2008149485A (en) Composite material, its manufacturing method, electrode for solid polymer type fuel cell using composite material and solid polymer type fuel cell
JP2008198438A (en) Polymer electrolyte fuel cell
JP2008177056A (en) Electrode for solid polymer fuel cell, its manufacturing method, and solid polymer cell equipped with it
JP2006179412A (en) Fuel cell electrode catalyst layer and fuel cell using the same
JP2008198436A (en) Electrode for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell equipped with it
JP2007227088A (en) Electrode for polymer electrolyte fuel cell, its manufacturing method and treating method, and polymer electrolyte fuel cell
JP2008069494A (en) Composite material of metal and carbon fibers, method for producing the same, electrode for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP2008177046A (en) Electrode for solid polymer fuel cell, its manufacturing method, and solid polymer fuel cell equipped with it
JP2007227064A (en) Electrode for solid polymer fuel cell, its manufacturing method and activation method, as well as solid polymer fuel cell
JP2016015283A (en) Cathode electrode structure and membrane-electrode assembly

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100406