JP2009192474A - Device for measuring and determining male screw - Google Patents

Device for measuring and determining male screw Download PDF

Info

Publication number
JP2009192474A
JP2009192474A JP2008035908A JP2008035908A JP2009192474A JP 2009192474 A JP2009192474 A JP 2009192474A JP 2008035908 A JP2008035908 A JP 2008035908A JP 2008035908 A JP2008035908 A JP 2008035908A JP 2009192474 A JP2009192474 A JP 2009192474A
Authority
JP
Japan
Prior art keywords
screw
radius
male screw
detection position
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008035908A
Other languages
Japanese (ja)
Other versions
JP5033672B2 (en
Inventor
Takao Nemoto
貴雄 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOSHIZAWA MOTOAKI
Original Assignee
YOSHIZAWA MOTOAKI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOSHIZAWA MOTOAKI filed Critical YOSHIZAWA MOTOAKI
Priority to JP2008035908A priority Critical patent/JP5033672B2/en
Publication of JP2009192474A publication Critical patent/JP2009192474A/en
Application granted granted Critical
Publication of JP5033672B2 publication Critical patent/JP5033672B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simply-structured device for measuring helical geometry of any threaded portion in a short time without contacting. <P>SOLUTION: The measuring device 20 of a male screw 10 for measuring the shape of a threaded portion 13 by using projection light obtained from irradiation of measuring light on the threaded portion 13 of the male screw 10 includes a support 21 for supporting the male screw 10 with the threaded portion 13 in a protruded state, an irradiation part which can irradiate the measuring light through one lateral side of the threaded portion 13, a detecting part 35 to detect sensing position of the threaded portion 13 depending on any outer edge of maximum cross-sectional shaped projection image along the axis line L of the threaded portion 13 obtained by the measuring light, and a processing part which calculates vertical distance between the sensing position and the axis line L of the threaded portion 13 to derive radii of the helical shape on the threaded portion 13. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、雄螺子の螺子部の螺旋形状を測定するための雄螺子の測定装置と、この螺子部が規格に適合するか否かの合否判定をするための雄螺子の判定装置に関する。   The present invention relates to a male screw measuring device for measuring the helical shape of a screw portion of a male screw, and a male screw determining device for determining whether or not the screw portion conforms to a standard.

従来より、雄螺子の螺子部が規格に適合するか否かの合否判定をする検査では、螺子部の螺旋形状を測定することが行われている。この検査では、測定対象の螺子の螺子部の側周面に、規格に適合する形状を有する螺子ゲージを螺子部の軸方向に沿って当接させ、螺旋形状と螺子ゲージの形状とが一致するか否かを目視により測定していた。   Conventionally, in the inspection for determining whether or not the screw portion of the male screw conforms to the standard, the spiral shape of the screw portion is measured. In this inspection, a screw gauge having a shape conforming to the standard is brought into contact with the side peripheral surface of the screw portion of the screw to be measured along the axial direction of the screw portion, so that the spiral shape matches the shape of the screw gauge. Whether or not was measured visually.

しかし、このような検査では、規格に応じて多数の螺子ゲージを予め用意して、測定時に必要な螺子ゲージを選択し、個々に人手により行なわなければならず、測定に手間を要していた。また、繰り返し螺子ゲージを雄螺子の外表面に当接して測定するため、摩耗して測定が不正確になり易かった。多数の雄螺子の測定や検査を行い難かった。   However, in such an inspection, a large number of screw gauges are prepared in advance according to the standard, the necessary screw gauges are selected at the time of measurement, and it must be performed manually, and the measurement is troublesome. . In addition, since the measurement is performed with the screw gauge repeatedly contacting the outer surface of the male screw, the measurement is likely to be worn and inaccurate. It was difficult to measure and inspect many male screws.

下記特許文献1には、非接触状態で、しかも、自動で雄螺子の形状を測定することが可能な螺子判別装置が提案されている。   Patent Document 1 below proposes a screw discrimination device that can measure the shape of a male screw automatically in a non-contact state.

この螺子判別装置では、レーザ光を照射し、その投影像から螺子部の外径とピッチとを測定し、測定結果に基づいてリードを演算で求め、リード角に応じて測定部に角度を付け、リード角に沿って螺子部の形状を測定して螺旋形状データを求めることが行われている。
特開平6−147834号公報
In this screw discrimination device, laser light is irradiated, the outer diameter and pitch of the screw part are measured from the projected image, a lead is obtained by calculation based on the measurement result, and the measurement part is angled according to the lead angle. The spiral shape data is obtained by measuring the shape of the screw portion along the lead angle.
Japanese Patent Laid-Open No. 6-147834

しかしながら、このような従来の自動測定可能な装置では、螺旋形状を測定するために、リード角に応じて測定部を傾斜させなければならず、測定装置の構造が複雑で、測定に長時間を要し易かった。   However, in such a conventional device capable of automatic measurement, in order to measure the spiral shape, the measurement unit must be inclined according to the lead angle, the structure of the measurement device is complicated, and the measurement takes a long time. It was easy.

そこで、この発明は、簡単な構造で短時間で螺子部の螺旋形状を非接触状態で測定することが可能な雄螺子の測定装置を提供することを課題とし、また、この測定装置を用いた合否判定装置を提供することを他の課題とする。   Accordingly, an object of the present invention is to provide a male screw measuring device capable of measuring the helical shape of the screw portion in a non-contact state with a simple structure in a short time, and also using this measuring device. It is another object to provide a pass / fail judgment device.

上記課題を解決する請求項1に記載の雄螺子の測定装置は、雄螺子の螺子部に測定光を照射して得られる投影光により前記螺子部の形状を測定する雄螺子の測定装置において、前記螺子部を突出させた状態で前記雄螺子を支持する支持部と、前記測定光を前記螺子部の一方の側方側から照射可能な照射部と、前記測定光により得られる螺子部の軸線に沿う最大断面形状の外縁により、該外縁に対応する前記螺子部の検出位置を検出する検出部と、前記検出位置と前記螺子部の軸線との間の垂直距離を演算することで、前記螺子部の螺旋形状の半径を求める処理部と、を備えたことを特徴とする。   The male screw measuring device according to claim 1, wherein the male screw measuring device measures the shape of the screw portion with projection light obtained by irradiating the screw portion of the male screw with measurement light. A support portion that supports the male screw in a state in which the screw portion protrudes, an irradiation portion that can irradiate the measurement light from one side of the screw portion, and an axis of the screw portion obtained by the measurement light And calculating the vertical distance between the detection position of the screw portion corresponding to the outer edge and the axis of the screw portion by calculating the vertical distance between the detection portion and the axis of the screw portion. And a processing unit for obtaining a radius of the spiral shape of the unit.

請求項2に記載の雄螺子の測定装置は、請求項1に記載の構成に加え、前記処理部は、前記外縁の第1の検出位置の第1の半径と、該第1の検出位置とは半回転ずれると共にn+0.5(nは整数である)ピッチずれた第2の検出位置の第2の半径とを求め、前記第1の半径と前記第2の半径とを加算して前記螺子部の螺旋形状の直径を求めることを特徴とする。   The male screw measuring device according to claim 2 is the configuration according to claim 1, wherein the processing unit includes a first radius of a first detection position of the outer edge, and the first detection position. Finds the second radius of the second detection position shifted by half rotation and n + 0.5 (n is an integer), and adds the first radius and the second radius to the screw. The diameter of the spiral shape of the part is obtained.

請求項3に記載の雄螺子の測定装置は、請求項2に記載の構成に加え、前記第1の検出位置と前記第2の検出位置とが、前記螺子部の螺子山の頂部及び/又は螺子溝の底部であることを特徴とする。   The male screw measuring device according to a third aspect of the present invention has the configuration according to the second aspect, wherein the first detection position and the second detection position are a top part of a screw thread of the screw part and / or It is the bottom of the screw groove.

請求項4に記載の雄螺子の測定装置は、請求項1乃至3の何れか一つに記載の構成に加え、前記処理部は、複数の前記検出位置の前記垂直距離を平均して前記半径又は直径の平均を求めることを特徴とする。   According to a fourth aspect of the present invention, in the male screw measuring device, in addition to the configuration according to any one of the first to third aspects, the processing unit averages the vertical distances of the plurality of detection positions to calculate the radius. Alternatively, an average of diameters is obtained.

請求項5に記載の雄螺子の判定装置は、請求項1乃至4の何れか一つに記載の雄螺子部の測定装置を備え、記憶部に記憶された判定データと前記螺旋形状の半径又は直径とを比較し、合否を判定する判定部を備えたことを特徴とする。   A male screw determination device according to a fifth aspect includes the male screw portion measurement device according to any one of the first to fourth aspects, wherein the determination data stored in a storage unit and the radius of the spiral shape or A determination unit that compares the diameter and determines pass / fail is provided.

請求項1に記載の発明によれば、測定光により得られる螺子部の軸線に沿う最大断面形状の投影像の外縁により螺子部の検出位置を検出し、この検出位置と螺子部の軸線との間の垂直距離により半径を求めるので、螺子部に非接触状態で螺旋形状の半径を測定することができ、しかも、半径を測定するため、螺子部に存在するリードの影響を受けることなく、簡単な構成で螺子部の螺旋形状を短時間で測定することができる。   According to the first aspect of the present invention, the detection position of the screw part is detected by the outer edge of the projection image having the maximum cross-sectional shape along the axis of the screw part obtained by the measurement light, and the detection position and the axis of the screw part are detected. Since the radius is determined by the vertical distance between them, the radius of the spiral shape can be measured in a non-contact state with the screw portion, and since the radius is measured, it is easy without being affected by the lead existing in the screw portion. With this configuration, the spiral shape of the screw portion can be measured in a short time.

請求項2に記載の発明によれば、外縁の第1の検出位置の第1の半径と、第1の検出位置とは半回転ずれると共にn+0.5(nは整数である)ピッチずれた第2の検出位置の第2の半径とを求めるので、照射部及び検出部により第1の検出位置と第2の検出位置とを同一方向から測定することが可能で、螺子部を回転させることなく螺子部の螺旋形状を測定することができる。しかも、第1の半径と第2の半径とを加算して螺子部の螺旋形状の直径を求めるので、螺子部に存在するリードの影響を受けることなく、簡単な構成で螺子部の螺旋形状の直径を測定することができる。   According to the second aspect of the present invention, the first radius of the first detection position of the outer edge and the first detection position are shifted from each other by a half rotation and shifted by n + 0.5 (n is an integer) pitch. Since the second radius of the second detection position is obtained, the first detection position and the second detection position can be measured from the same direction by the irradiation unit and the detection unit without rotating the screw portion. The helical shape of the screw part can be measured. In addition, since the first radius and the second radius are added to obtain the spiral shape diameter of the screw portion, the spiral shape of the screw portion can be obtained with a simple configuration without being affected by the lead existing in the screw portion. Diameter can be measured.

請求項3に記載の発明によれば、第1の検出位置と第2の検出位置とが螺子部の螺子山の頂部或いは螺子部の螺子溝の底部であるので、検出部において第1の検出位置及び第2の検出位置を明確に識別し易く、精度よく測定し易い。   According to the invention of claim 3, since the first detection position and the second detection position are the top of the screw thread of the screw part or the bottom of the screw groove of the screw part, the first detection position is detected in the detection part. It is easy to clearly identify the position and the second detection position, and to measure accurately.

請求項4に記載の発明によれば、複数の検出位置の垂直距離を平均して半径又は直径を求めるので、測定結果を安定化して比較し易くできる。   According to the invention described in claim 4, since the radius or diameter is obtained by averaging the vertical distances of the plurality of detection positions, the measurement result can be stabilized and easily compared.

請求項5に記載の雄螺子の判定装置によれば、請求項1乃至5の何れか一つに記載の雄螺子部の測定装置を用いて螺子部の螺旋形状の半径又は直径を演算するので、簡単な構造で短時間で螺子部の螺旋形状を測定することができる上、その測定結果を、記憶部に記憶された判定データと比較して合否を判定するので、螺子部の螺旋形状の測定から合否の判定までを自動で行うことができる。   According to the male screw determination device of the fifth aspect, since the male screw portion measuring device according to any one of the first to fifth aspects is used to calculate the spiral radius or diameter of the screw portion. The spiral shape of the screw portion can be measured in a short time with a simple structure, and the measurement result is compared with the determination data stored in the storage unit to determine pass / fail. From measurement to pass / fail judgment can be performed automatically.

[実施の形態1]   [Embodiment 1]

以下、この発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

図1は、この実施の形態の測定装置を備えた雄螺子の測定装置の要部を示す。   FIG. 1 shows a main part of a male screw measuring device provided with the measuring device of this embodiment.

この雄螺子10の測定装置20は、ベース部22上に配設され、螺子部13を突出させた状態で雄螺子10を支持可能な支持部21と、支持部21に支持された雄螺子10の螺子部13の螺旋形状を測定するための測定部30とを備えている。   The measuring device 20 for the male screw 10 is disposed on a base portion 22, a support portion 21 that can support the male screw 10 with the screw portion 13 protruding, and the male screw 10 supported by the support portion 21. And a measuring unit 30 for measuring the helical shape of the screw part 13.

まず、測定対象の雄螺子10は、図2に示すように、螺子山15及び螺子溝16が螺旋状に形成されたビス、ボルト等の各種の螺子であり、頭部を有していても有しなくてもよい。好ましくは、複数の螺子山15の頂部や複数の螺子溝16の底部を結ぶ線が、螺子部13の軸線Lと平行であるものが好適である。軸線Lを把握し易いからである。   First, as shown in FIG. 2, the male screw 10 to be measured is a variety of screws such as screws and bolts in which a screw thread 15 and a screw groove 16 are formed in a spiral shape, and has a head. You do not have to. Preferably, the line connecting the tops of the plurality of screw threads 15 and the bottoms of the plurality of screw grooves 16 is parallel to the axis L of the screw part 13. This is because the axis L can be easily grasped.

支持部21は、ベース部22に直接又は間接に固定された支柱部23と、支柱部23に設けられたチャック部25とを備え、チャック部25に設けられた径方向に開閉可能な支持片27により雄螺子10の頭部11を固定及び開放可能に構成されている。   The support portion 21 includes a support portion 23 fixed directly or indirectly to the base portion 22 and a chuck portion 25 provided on the support portion 23, and a support piece that can be opened and closed in the radial direction provided on the chuck portion 25. 27, the head 11 of the male screw 10 can be fixed and opened.

この支持部21は、チャック部25に雄螺子10の頭部11を支持させると、螺子部13の軸線Lがベース部22の軸心と平行に配置されるように構成されている。ここでは、支持片27の端部側の段差部27aにより雄螺子10の頭部11の螺子部13側端面を支持することで軸線Lを所定方向に配向させている。   The support portion 21 is configured such that when the chuck portion 25 supports the head portion 11 of the male screw 10, the axis L of the screw portion 13 is arranged in parallel with the axis of the base portion 22. Here, the axis L is oriented in a predetermined direction by supporting the end surface on the screw portion 13 side of the head 11 of the male screw 10 by the step portion 27 a on the end portion side of the support piece 27.

測定部30は、支持部21に支持された雄螺子10の螺子部13に測定光を照射可能な照射部31と、照射部31からの測定光により形成される螺子部13の投影光を受光する検出部35とを備えている。   The measurement unit 30 receives an irradiation unit 31 that can irradiate the screw part 13 of the male screw 10 supported by the support unit 21 with measurement light, and projection light of the screw part 13 formed by the measurement light from the irradiation unit 31. And a detecting unit 35 for performing the above operation.

照射部31は、図示しない制御部からの信号線33からの信号により、帯状のレーザ光等の測定光を発光し、螺子部13の一方の側面側から、軸線Lに対して直交方向となるように測定光を照射可能に構成されている。   The irradiation unit 31 emits measurement light such as a belt-shaped laser beam in response to a signal from a signal line 33 from a control unit (not shown), and is in a direction orthogonal to the axis L from one side surface side of the screw unit 13. In this way, the measurement light can be irradiated.

帯状の測定光では、帯厚は螺子部13の螺子山15及び螺子溝16に比べて十分に薄い。また、帯幅は、好ましくは各螺子山15の高さより広いものが好適である。螺子部13と測定部30とを相対移動させることで、螺子山15及び螺子溝16を連続して測定する際、測定部30を螺子山15及び螺子溝16の形状に応じて軸線Lと交差する方向に移動させる必要がなく、精度を向上し易くできるからである。この実施の形態では、両側の螺子山15を測定可能となるように、螺子部13の螺旋形状の最大径より大きい帯幅となっている。   In the band-shaped measuring light, the band thickness is sufficiently thinner than the screw thread 15 and the screw groove 16 of the screw part 13. The width of the band is preferably wider than the height of each screw thread 15. When the screw thread 15 and the screw groove 16 are continuously measured by moving the screw part 13 and the measurement part 30 relative to each other, the measurement part 30 intersects the axis L according to the shape of the screw thread 15 and the screw groove 16. This is because it is not necessary to move in the direction of movement, and accuracy can be easily improved. In this embodiment, the band width is larger than the maximum spiral diameter of the screw portion 13 so that the screw threads 15 on both sides can be measured.

検出部35は、測定光の幅方向の一部が螺子部13により遮蔽されると共に残部が螺子部13の側面側を通過することで形成された投影像を受光し、遮蔽された部位と検出部35に投影光として到達した部位との境界により投影像の外縁を検出可能に構成されている。ここでは、測定光が螺子部13の一方の側面側から照射されているので、投影像は螺子部の測定光に対する最大断面形状、即ち、螺子部13の軸線Lを含む断面の形状となっている。   The detection unit 35 receives a projection image formed by a part of the measurement light in the width direction being shielded by the screw part 13 and the remaining part passing through the side of the screw part 13, and detects the shielded part. The outer edge of the projected image can be detected by the boundary with the part that reaches the unit 35 as projection light. Here, since the measurement light is irradiated from one side of the screw portion 13, the projection image has a maximum cross-sectional shape with respect to the measurement light of the screw portion, that is, a cross-sectional shape including the axis L of the screw portion 13. Yes.

この検出部35では、螺子部13の任意の検出位置が最大断面形状の縁部となるように配置された状態で形成された投影像の外縁を検出することで、検出位置に対応する外縁の位置を示す検出データが生成される。この検出データは、例えば、検出部35が光電変換素子からなる場合は、電流等である。   The detection unit 35 detects the outer edge of the projection image formed in a state where the arbitrary detection position of the screw part 13 is the edge of the maximum cross-sectional shape, so that the outer edge corresponding to the detection position is detected. Detection data indicating the position is generated. This detection data is, for example, a current or the like when the detection unit 35 is composed of a photoelectric conversion element.

検出部35で検出された検出データは、信号線37を介して、図示しない処理部に伝達可能に構成されている。   Detection data detected by the detection unit 35 is configured to be transmitted to a processing unit (not shown) via a signal line 37.

これらの照射部31と検出部35とは、精度良く対向するように位置合わせされていることが必要であり、この測定装置20では、照射部31と検出部35とが互いの相対位置を変化させることなく螺子部13に対して相対移動可能となっており、具体的には、ベース部22の軸心や螺子部13の軸線Lに平行に移動可能な図示しない可動部材上に上下動可能に固定して設置されている。   The irradiation unit 31 and the detection unit 35 need to be aligned so as to oppose each other with high accuracy. In the measurement apparatus 20, the irradiation unit 31 and the detection unit 35 change relative positions of each other. It can be moved relative to the screw part 13 without being moved. Specifically, it can move up and down on a movable member (not shown) that can move in parallel with the axis of the base part 22 and the axis L of the screw part 13. It is fixed and installed.

次に、このような測定装置20により雄螺子10の螺旋形状を測定する方法について説明する。   Next, a method for measuring the helical shape of the male screw 10 with such a measuring device 20 will be described.

まず、雄螺子10の頭部11を支持部21のチャック部25に固定する。このとき、支持片27の段差部27aを雄螺子10の頭部11の螺子部13側端面を係止することで、螺子部13の軸線Lがベース部22の軸心と平行になるように固定する。軸線Lを精度よく軸心に平行にするために、例えば、心出し治具等を用いて固定してもよい。   First, the head portion 11 of the male screw 10 is fixed to the chuck portion 25 of the support portion 21. At this time, the stepped portion 27a of the support piece 27 is engaged with the end surface of the head portion 11 of the male screw 10 on the screw portion 13 side so that the axis L of the screw portion 13 is parallel to the axis of the base portion 22. Fix it. In order to make the axis L accurately parallel to the axis, it may be fixed using, for example, a centering jig.

次いで、照射部31から帯状の測定光を螺子部13の検出位置に照射することで、螺子部13の最大断面形状の投影像を形成し、検出部35により投影光を受光する。ここで検出位置とは、例えば、螺子山15の頂部、螺子溝16の底部、螺子溝16の傾斜面など、螺子部13において加工精度などが要求される各種の部位である。検出位置を投影像の外縁として検出するには、当該検出部位が最大断面形状の縁部となるように螺子部13を支持部21に支持させた状態で測定光を照射すればよいが、通常、螺子部13は周方向に同一の螺旋形状が存在するため、螺子部13の側周面に方向性がなく、そのため、任意の向きで雄螺子10を支持部21に支持させた状態で測定光により形成される投影像の外縁に対応する各位置を検出位置として採用することができる。   Next, by irradiating the detection position of the screw portion 13 with the band-shaped measurement light from the irradiation unit 31, a projection image having the maximum cross-sectional shape of the screw portion 13 is formed, and the detection light is received by the detection unit 35. Here, the detection position refers to various parts such as the top part of the screw thread 15, the bottom part of the screw groove 16, and the inclined surface of the screw groove 16 that require machining accuracy and the like in the screw part 13. In order to detect the detection position as the outer edge of the projection image, the measurement light may be irradiated with the screw portion 13 supported by the support portion 21 so that the detection portion is the edge of the maximum cross-sectional shape. Since the screw part 13 has the same spiral shape in the circumferential direction, the side peripheral surface of the screw part 13 has no directionality, and therefore measurement is performed with the male screw 10 supported by the support part 21 in an arbitrary direction. Each position corresponding to the outer edge of the projection image formed by light can be adopted as the detection position.

投影光が検出部35で受光されることで、螺子部13の検出位置に対応する投影像の外縁の位置が、投影光の有無による境界として検出部35で検出され、これに基づく、電流等の検出データが生成される。測定光が実質的に拡散しない光からなり、螺子部13における各種の距離と投影像における各種の距離とが一致するため、検出データにより検出された位置は螺子部13の各検出位置と精度良く対応している。   When the projection light is received by the detection unit 35, the position of the outer edge of the projection image corresponding to the detection position of the screw unit 13 is detected by the detection unit 35 as a boundary due to the presence or absence of the projection light, and based on this, the current, etc. Detection data is generated. Since the measurement light consists of light that does not substantially diffuse and the various distances in the screw portion 13 and the various distances in the projection image coincide with each other, the position detected by the detection data is precisely the same as each detection position of the screw portion 13. It corresponds.

このように生成された検出データは信号線37を介して図示しない処理部に伝達される。   The detection data generated in this way is transmitted to a processing unit (not shown) via the signal line 37.

この実施の形態1では、測定部30がベース部22の軸心及び螺子部13の軸線Lに沿って移動可能に構成されているため、照射部31で測定光を照射すると共に検出部35で受光しつつ、測定部30を螺子部13の全長に渡り連続して移動させることで、多数の検出位置の検出を実施することができ、これにより螺子部13の外縁の軸線Lに沿う全長の形状が連続的に検出することが可能である。   In the first embodiment, since the measurement unit 30 is configured to be movable along the axis of the base unit 22 and the axis L of the screw unit 13, the measurement unit 30 emits measurement light and the detection unit 35 emits measurement light. By continuously moving the measuring unit 30 over the entire length of the screw portion 13 while receiving light, it is possible to detect a large number of detection positions, whereby the entire length along the axis L of the outer edge of the screw portion 13 can be detected. The shape can be detected continuously.

その後、検出された各検出位置に対して、周方向に半回転ずれた別の検出位置、即ち、螺子部13の軸線Lを挟んで反対側となる検出位置の検出を同様にして行う。このとき、先の検出で一部の検出位置のみを検出した場合には、周方向に半回転ずれると共に軸線Lに沿ってn+0.5(nは整数である)ピッチずれた位置の検出を行う。ここで、n+0.5ピッチずれた位置とするのは、連続する螺旋形状により先に検出された検出位置と同一の形状の検出位置が配置されているからである。   Thereafter, another detection position shifted by a half rotation in the circumferential direction with respect to each detected detection position, that is, a detection position on the opposite side across the axis L of the screw portion 13 is similarly detected. At this time, when only a part of the detection positions is detected in the previous detection, a position shifted by a half rotation in the circumferential direction and shifted by n + 0.5 (n is an integer) along the axis L is detected. . Here, the reason why the position is shifted by n + 0.5 pitch is that the detection position having the same shape as the detection position detected earlier by the continuous spiral shape is arranged.

なお、測定光の帯状形状の測定光の帯幅が螺子部13の最大幅より広いものであれば、一方の検出位置の検出と、半回転ずれた検出位置の検出とを同時に行うことが可能である。   If the band width of the measurement light in the shape of a band of the measurement light is wider than the maximum width of the screw portion 13, detection of one detection position and detection of a detection position shifted by a half rotation can be performed simultaneously. It is.

そして、各検出位置の検出と共に、或いは検出後に、処理部において各検出データに基づいてデータ処理が実行される。ここでは、検出データと螺子部13の軸線Lの位置データとに基づいて、各検出位置と螺子部13の軸線Lとの間の垂直距離が演算され、螺子部の螺旋形状の各位置の半径、例えば、螺子山15の頂部の半径、螺子溝16の底部の半径、同一ピッチにおける螺子溝16の傾斜面の半径などが求められる。更に、この実施の形態では、これらの半径に基づいて、各部の直径も求められる。   Then, together with detection of each detection position or after detection, the processing unit executes data processing based on each detection data. Here, based on the detection data and the position data of the axis L of the screw portion 13, the vertical distance between each detection position and the axis L of the screw portion 13 is calculated, and the radius of each position of the spiral shape of the screw portion is calculated. For example, the radius of the top of the screw thread 15, the radius of the bottom of the screw groove 16, the radius of the inclined surface of the screw groove 16 at the same pitch, and the like are obtained. Furthermore, in this embodiment, the diameter of each part is also obtained based on these radii.

ここで、軸線Lの位置データは、チャック部25及び測定装置20の軸心に基づいて予め処理部に設定されていてもよく、その場合、測定部30は軸線Lを基準にして各位置を検出しているためデータ処理が容易となる。また、各検出位置の検出前に、チャック部25に雄螺子10を支持させた後、測定部30により螺子部13の全長或いは両端側の投影像に基づいて、中心線を求めて螺子部13の軸線Lの位置データとして設定することも可能である。その場合、雄螺子10を支持部21に支持させる際に軸線Lと測定装置の軸心との間に多少のずれが生じていても精度よく半径の測定を行うことが可能である。   Here, the position data of the axis L may be set in the processing unit in advance based on the axis of the chuck unit 25 and the measuring device 20, and in this case, the measuring unit 30 determines each position with reference to the axis L. Since it is detected, data processing becomes easy. Further, before the detection of each detection position, the male screw 10 is supported by the chuck portion 25, and then the center line is obtained by the measuring unit 30 based on the entire length of the screw portion 13 or the projected images at both ends, and the screw portion 13 is obtained. It is also possible to set it as the position data of the axis L. In that case, when the male screw 10 is supported by the support portion 21, the radius can be accurately measured even if there is a slight deviation between the axis L and the axis of the measuring device.

そして、このような螺子部13の軸線Lの位置データを用い、位置データと各検出データとを加算或いは減算することで垂直距離を算出し、半径を求める。この半径は、螺子部13の検出位置の1点を測定するだけで、直ちに求められる値であるため、螺子部13のリードの影響を全く受けることなく容易に測定することが可能である。   Then, using the position data of the axis L of the screw portion 13 as described above, the vertical distance is calculated by adding or subtracting the position data and each detection data, and the radius is obtained. Since this radius is a value that can be obtained immediately by measuring only one point of the detection position of the screw portion 13, it can be easily measured without being affected by the lead of the screw portion 13 at all.

具体的に、例えば、螺子山15の頂部の半径を求めるには、図2に示すように、第1の検出位置としての頂部P1の検出データと、螺子部13の軸線Lの頂点P1からの垂線の交点P2の位置データとを加減算すれば、垂直距離rm1を半径として求めることができる。   Specifically, for example, in order to obtain the radius of the top of the screw thread 15, the detection data of the top P1 as the first detection position and the apex P1 of the axis L of the screw 13 are obtained as shown in FIG. The vertical distance rm1 can be obtained as the radius by adding / subtracting the position data of the perpendicular intersection P2.

また、螺子山15の頂部の直径を求めるには、頂部P1とは周方向に半回転ずれると共に軸線L方向に0.5ピッチずれた第2の検出位置としての頂部P3の検出データと、螺子部13の軸線Lの頂点P3からの垂線の交点P4の位置データとを加減算すれば、垂直距離rm2を頂点P3の半径rm2として求めることができる。そして、頂点P1の半径rm1と頂点P2の半径rm2とを加算することで、螺子山15の頂部の直径を求めることができる。   Further, in order to obtain the diameter of the top portion of the screw thread 15, the detection data of the top portion P3 as the second detection position that is shifted from the top portion P1 by a half rotation in the circumferential direction and shifted by 0.5 pitch in the axis L direction, The vertical distance rm2 can be obtained as the radius rm2 of the vertex P3 by adding and subtracting the position data of the intersection point P4 of the perpendicular from the vertex P3 of the axis L of the part 13. Then, by adding the radius rm1 of the vertex P1 and the radius rm2 of the vertex P2, the diameter of the top portion of the screw thread 15 can be obtained.

更に、螺子溝16の底部の半径を求めるには、第1の検出位置としての底部P5の検出データと、螺子部13の軸線Lの底部P5からの垂線の交点P6の位置データとを加減算すれば、垂直距離rv1を半径として求めることができる。   Further, in order to obtain the radius of the bottom of the screw groove 16, the detection data of the bottom P5 as the first detection position and the position data of the intersection P6 of the perpendicular from the bottom P5 of the axis L of the screw 13 are added or subtracted. For example, the vertical distance rv1 can be obtained as the radius.

また、螺子溝16の底部の直径を求めるには、底部P5とは周方向に半回転ずれると共に軸線L方向に0.5ピッチずれた第2の検出位置としての底部P7の検出データと、螺子部13の軸線Lの底部P7からの垂線の交点P8の位置データとを加減算すれば、垂直距離rv2を底部P7の半径rv2として求めることができる。そして、底部P5の半径rv1と底部P7の半径rv2とを加算することで、螺子溝16の底部の直径を求めることができる。   Further, in order to obtain the diameter of the bottom portion of the screw groove 16, the detection data of the bottom portion P7 as the second detection position shifted from the bottom portion P5 by a half rotation in the circumferential direction and shifted by 0.5 pitch in the axis L direction, and the screw The vertical distance rv2 can be obtained as the radius rv2 of the bottom portion P7 by adding and subtracting the position data of the intersection point P8 of the perpendicular from the bottom portion P7 of the axis L of the portion 13. Then, the diameter of the bottom portion of the screw groove 16 can be obtained by adding the radius rv1 of the bottom portion P5 and the radius rv2 of the bottom portion P7.

このような螺子山15或いは螺子溝16の直径を測定する際には、周方向に半回転ずれた位置であって、軸方向に螺子部13の軸線Lに沿ってn+0.5(nは1以上の整数)ずれた任意の2点の半径を組み合わせて求めることも可能であり、更に、周方向に任意の回転角度ずれた位置であって、軸方向に回転角度に対応したピッチ分ずれた任意の2点の半径を組み合わせて求めることが可能である。しかし、この実施の形態では、互いに最も近接する検出位置同士の半径を加算して直径を求めることで、螺子部13の軸方向の位置により変動する誤差等をも測定し易くしている。   When measuring the diameter of the screw thread 15 or the screw groove 16, the position is shifted by a half rotation in the circumferential direction and is n + 0.5 (n is 1) along the axis L of the screw portion 13 in the axial direction. It is also possible to obtain by combining the radii of arbitrary two points which are shifted (an integer above), and further at a position shifted by an arbitrary rotation angle in the circumferential direction and shifted by a pitch corresponding to the rotation angle in the axial direction It is possible to obtain by combining the radii of two arbitrary points. However, in this embodiment, by adding the radii of the detection positions closest to each other to obtain the diameter, it is possible to easily measure an error that varies depending on the axial position of the screw portion 13.

そして、このようにして、螺子部13の軸線Lに沿う全長に渡り、投影像により得られる全ての螺子山15及び螺子溝16について同様の処理を実行することで、半径及び直径の測定を完了する。   Then, the measurement of the radius and the diameter is completed by executing the same processing for all the screw threads 15 and the screw grooves 16 obtained by the projection image over the entire length along the axis L of the screw portion 13 in this way. To do.

これらの測定で得られた結果は、図示しないモニターに数値及び図等として表示することができる。また、各雄螺子10の記録として保存したり、他の装置の制御に利用することが可能である。   The results obtained by these measurements can be displayed as numerical values and figures on a monitor (not shown). Further, it can be stored as a record of each male screw 10 or used for control of other devices.

なお、複数の螺子山15の頂部や螺子溝16の底部のような検出位置の軸線Lとの垂直距離からぞれぞれ半径を求める代わりに、複数の垂直距離を平均することにより、半径を求めてもよい。   Instead of obtaining the radii from the vertical distance from the axis L of the detection position such as the top of the plurality of screw threads 15 or the bottom of the screw groove 16, the radius is calculated by averaging the plurality of vertical distances. You may ask for it.

以上のような測定装置20によれば、測定光により得られる螺子部13の軸線Lに沿う最大断面形状の投影像の外縁により螺子部13の検出位置を検出し、この検出位置と螺子部13の軸線Lとの間の垂直距離により半径を求めるので、螺子部13に非接触状態で螺旋形状の半径を測定することができる。しかも、半径を測定しているため、螺子部13に存在するリードの影響を受けることなく、各検出位置の1点を検出するだけで半径を求めることができ、簡単な構成で螺子部13の螺旋形状を短時間で測定することが可能である。   According to the measuring apparatus 20 as described above, the detection position of the screw portion 13 is detected by the outer edge of the projection image having the maximum cross-sectional shape along the axis L of the screw portion 13 obtained by the measurement light, and this detection position and the screw portion 13 are detected. Therefore, the radius of the spiral shape can be measured in a non-contact state with the screw portion 13. Moreover, since the radius is measured, the radius can be obtained by detecting only one point at each detection position without being affected by the lead existing in the screw portion 13, and the screw portion 13 can be obtained with a simple configuration. It is possible to measure the spiral shape in a short time.

また、外縁の第1の検出位置の第1の半径と、第1の検出位置とは半回転ずれると共にn+0.5(nは整数である)ピッチずれた第2の検出位置の第2の半径とを求めるので、照射部31及び検出部35により第1の検出位置と第2の検出位置とを同一方向から測定することが可能で、螺子部13を回転させることなく螺子部13の螺旋形状を測定することができる。しかも、第1の半径と第2の半径とを加算して螺子部13の螺旋形状の直径を求めるので、螺子部13に存在するリードの影響を受けることなく、簡単な構成で螺子部13の螺旋形状の直径を測定することができる。   Further, the first radius of the first detection position of the outer edge and the second radius of the second detection position shifted from the first detection position by a half rotation and shifted by n + 0.5 (n is an integer). Therefore, the irradiation unit 31 and the detection unit 35 can measure the first detection position and the second detection position from the same direction, and the helical shape of the screw part 13 without rotating the screw part 13. Can be measured. In addition, the first radius and the second radius are added to obtain the helical diameter of the screw portion 13, so that the screw portion 13 can be simply configured without being influenced by the lead existing in the screw portion 13. The diameter of the spiral shape can be measured.

更に、第1の検出位置と第2の検出位置とが螺子部13の螺子山15の頂部或いは螺子部13の螺子溝16の底部であるので、検出部35において第1の検出位置及び第2の検出位置を明確に識別し易く、精度よく測定し易い。   Further, since the first detection position and the second detection position are the top of the screw thread 15 of the screw part 13 or the bottom of the screw groove 16 of the screw part 13, the first detection position and the second detection point 35 are detected in the detection part 35. It is easy to clearly identify the detection position, and to measure accurately.

また、複数の検出位置の垂直距離を平均して半径又は直径を求める場合には、測定結果を安定化して比較し易くできる。   Further, when the radius or diameter is obtained by averaging the vertical distances of a plurality of detection positions, the measurement result can be stabilized and easily compared.

なお、上記実施の形態は、この発明の範囲内において適宜変更可能である。例えば、上記では、支持部21として、雄螺子10を固定して支持するものについて説明したが、特に限定されるものではなく、支持部21が螺子部13の軸線Lを中心に回転可能に構成されたものであってもよい。その場合、任意の検出位置について、外縁の半径を測定した後、任意の回転量を回転させると共に、該回転量に対応したピッチの倍数分だけ、測定部30を螺子部13の軸線Lに沿って移動させ、螺子部13の外縁の所定各移動した部位の半径を検出するようにしてもよい。このようにすれば、螺子部13の外縁の直径をより細かい位置で測定することが可能である。   The above embodiment can be appropriately changed within the scope of the present invention. For example, in the above description, the support portion 21 has been described in which the male screw 10 is fixed and supported. However, the support portion 21 is not particularly limited, and the support portion 21 is configured to be rotatable about the axis L of the screw portion 13. It may be what was done. In that case, after measuring the radius of the outer edge at an arbitrary detection position, the arbitrary rotation amount is rotated, and the measurement unit 30 is moved along the axis L of the screw portion 13 by a multiple of the pitch corresponding to the rotation amount. It is also possible to detect the radius of each of the predetermined moved portions of the outer edge of the screw portion 13. In this way, the diameter of the outer edge of the screw portion 13 can be measured at a finer position.

更に、この場合、180°回転させて(n+0.5)ピッチずれた位置を測定するようにすれば、照射部31から照射する測定光の帯幅が螺子部13の最大幅に比べて小さい光であっても、螺子部13の軸線Lと対称位置に形成される外縁を測定するために、測定部30を軸線Lに対して直交方向に移動させる必要がなく、装置の構成をより簡単にすることが可能である。
[実施の形態2]
Further, in this case, if the position rotated by 180 ° and shifted by (n + 0.5) is measured, the light of the measurement light emitted from the irradiation unit 31 is smaller than the maximum width of the screw unit 13. Even so, in order to measure the outer edge formed at a position symmetrical to the axis L of the screw portion 13, it is not necessary to move the measuring unit 30 in the direction orthogonal to the axis L, and the configuration of the apparatus can be simplified. Is possible.
[Embodiment 2]

図3は、この実施の形態2を示す。この実施の形態2は、実施の形態1の測定装置を用いた雄螺子の合否判定装置の例である。   FIG. 3 shows the second embodiment. The second embodiment is an example of a male screw acceptance / rejection determination device using the measurement device of the first embodiment.

この雄螺子の合否判定装置は、実施の形態1の測定装置20の動作を制御する制御部41と、各種の雄螺子10の螺子部13の規格寸法及び許容誤差からなる判定データが記憶された記憶部45とが設けられており、測定装置20のデータ処理部43において、螺旋形状の各検出位置の直径或いは半径が求められた後、この直径或いは半径が規格に適合するか否かを、データ処理部43において判別することが可能となっている。   This male screw acceptance / rejection determination device stores control data for controlling the operation of the measuring device 20 according to the first embodiment, and determination data including standard dimensions and allowable errors of the screw portions 13 of the various male screws 10. Storage unit 45 is provided, and after the diameter or radius of each detection position of the spiral shape is obtained in the data processing unit 43 of the measurement apparatus 20, whether or not the diameter or radius conforms to the standard is determined. The data processing unit 43 can make a determination.

また、データ処理部43により求められた螺子部13の螺旋形状の各検出位置の半径或いは直径をを表示するためのモニター47が設けられている。ここでは、螺子部13の軸線Lに沿う最大直交断面の投影像と共に、各測定結果の直径或いは半径が表示されるように構成されている。   A monitor 47 for displaying the radius or diameter of each helical detection position of the screw portion 13 obtained by the data processing unit 43 is provided. Here, the diameter or radius of each measurement result is displayed together with the projection image of the maximum orthogonal cross section along the axis L of the screw portion 13.

次に、この雄螺子の合否判定装置の動作について説明する。   Next, the operation of the male screw acceptance / rejection determination device will be described.

まず、測定装置20の支持部21に雄螺子10を支持させ、精度よく軸線Lをベース部22の軸心に沿って装着した状態とし、判定処理を開始する。このとき、データ処理部43には、螺子部13の軸線Lの位置が精度よく設定される。   First, the male screw 10 is supported on the support portion 21 of the measuring device 20 and the axis L is accurately mounted along the axis of the base portion 22 and the determination process is started. At this time, the position of the axis L of the screw portion 13 is accurately set in the data processing unit 43.

この軸線Lの設定は、手動で入力することも可能であり、また、予め、軸線Lの位置が特定されている測定装置20で、雄螺子10を支持部21に支持させるのでもよい。更に、駆動制御部41からの信号により、測定部30を螺子部13の全長や両端部の投影像を測定することで、螺子部13の外縁の位置から軸線Lの位置を求めて設定してもよい。   The setting of the axis L can be manually input, or the male screw 10 may be supported by the support unit 21 with the measuring device 20 in which the position of the axis L is specified in advance. Further, the position of the axis L is obtained from the position of the outer edge of the screw portion 13 by measuring the entire length of the screw portion 13 and the projected images of both ends by the signal from the drive control unit 41. Also good.

判定処理では、まず、駆動制御部41からの信号により、実施の形態1のように、測定部30により螺子部13の外縁と軸線Lとの間の垂直距離が測定され、検出データがデータ処理部43に伝達される。   In the determination process, first, the vertical distance between the outer edge of the screw portion 13 and the axis L is measured by the measurement unit 30 by the signal from the drive control unit 41 as in the first embodiment, and the detected data is processed by data processing. Is transmitted to the unit 43.

次いで、データ処理部43でこの検出データに基づいて演算されて直径或いは半径が求められる。   Next, the data processing unit 43 calculates the diameter or radius based on the detection data.

その後、データ処理部43に設けられている判定部において、記憶部45に記憶されている判定データを読み出し、求められた直径或いは半径を判定データと比較することで、規格寸法の許容誤差の範囲内であるか否かが判定される。直径或いは半径が許容誤差範囲内である場合、合格と判定する。このとき、判定データとしては、雄螺子10の径や種類に応じて複数種類の判定データから選択して使用される。この判定データの選択は、予め手動で行ってもよく、測定部30の測定結果に基づいて自動で選択可能であれば、自動で選択して使用することも可能である。   Thereafter, in the determination unit provided in the data processing unit 43, the determination data stored in the storage unit 45 is read, and the obtained diameter or radius is compared with the determination data. It is determined whether it is within. If the diameter or radius is within the allowable error range, it is determined to be acceptable. At this time, the determination data is selected from a plurality of types of determination data according to the diameter and type of the male screw 10 and used. The selection of the determination data may be performed manually in advance, and can be automatically selected and used as long as it can be automatically selected based on the measurement result of the measurement unit 30.

そして、判定結果が、半径及び直径の値と共にモニター47に伝達されて表示される。この判定結果に基づいて、測定された雄螺子10の合否を認識して、例えば、手動で雄螺子10を合格品と不合格品とに選別することで、判定処理を完了することができる。   Then, the determination result is transmitted to the monitor 47 and displayed together with the radius and diameter values. Based on this determination result, the determination process can be completed by recognizing the pass / fail of the measured male screw 10 and manually selecting the male screw 10 into a pass product and a reject product, for example.

なお、より精度よく合否判定を行うため、螺子部13の多数、より好ましくは全ての螺子山15、螺子溝16、螺子溝16の傾斜面などの半径或いは直径を測定し、全ての値が規格の範囲内であるか、範囲外であるかを判定するようにすることが特に好適である。   In order to perform pass / fail judgment with higher accuracy, the radius or diameter of a large number of screw portions 13, more preferably all screw threads 15, screw grooves 16, and inclined surfaces of screw grooves 16 are measured, and all values are specified. It is particularly preferable to determine whether it is within the range or outside the range.

以上のような雄螺子10の判定装置によれば、実施の形態1のような雄螺子10の測定装置20を用いて螺子部10の螺旋形状の半径或いは直径を演算するので、簡単な構造で短時間で螺子部13の螺旋形状を測定することができる上、その測定結果を、データ処理部43に設けられた判定部において、記憶部45に記憶された判定データと比較して合否を判定するので、螺子部13の螺旋形状の測定から規格の範囲内であるか否かの合否判定までを自動で行うことが可能である。   According to the determination device for the male screw 10 as described above, the spiral shape radius or diameter of the screw portion 10 is calculated using the measurement device 20 of the male screw 10 as in the first embodiment. The spiral shape of the screw part 13 can be measured in a short time, and the measurement result is compared with the determination data stored in the storage unit 45 in the determination unit provided in the data processing unit 43 to determine pass / fail. Therefore, it is possible to automatically perform from the measurement of the spiral shape of the screw portion 13 to the pass / fail determination of whether or not the screw portion 13 is within the standard range.

特に、各検出位置の半径を用いて雄螺子10の合否判定を行う場合には、螺子部13の検出位置の1点を測定するだけで、直ちに半径が求められて合否判定を行うことができる。そのため、螺子部13にリードが存在していても、リードの影響を全く受けることなく極めて速やかに、且つ容易に判定を実施することが可能である。   In particular, when the pass / fail determination of the male screw 10 is performed using the radius of each detection position, the radius is immediately obtained by measuring only one point of the detection position of the screw portion 13, and the pass / fail determination can be performed. . Therefore, even if there is a lead in the screw portion 13, it is possible to perform the determination very quickly and easily without being affected by the lead at all.

また、各検出位置の直径を用いて雄螺子10の合否判定を行う場合であっても、一旦、検出位置の半径を求めてから直径を求めるので、一つの検出位置において半径を求めておき、別の検出位置の1点を測定すれば、この位置の半径を求めて先に求めた半径と加算することで直ちに直径が求めることが可能である。そのため、螺子部13にリードが存在していても、同様にリードの影響を全く受けることなく極めて速やかに、且つ容易に判定を実施することが可能である。
[実施の形態3]
Further, even when the pass / fail determination of the male screw 10 is performed using the diameter of each detection position, since the diameter is obtained after obtaining the radius of the detection position, the radius is obtained at one detection position, If one point at another detection position is measured, the diameter can be obtained immediately by obtaining the radius of this position and adding it to the previously obtained radius. Therefore, even if there is a lead in the screw portion 13, it is possible to make a determination very quickly and easily without being affected by the lead.
[Embodiment 3]

図4は、この実施の形態3を示す。この実施の形態3では、実施の形態2のような雄螺子10の判定装置が雄螺子搬送ラインに設けられた例である。   FIG. 4 shows the third embodiment. The third embodiment is an example in which the determination device for the male screw 10 as in the second embodiment is provided in the male screw conveyance line.

この雄螺子10の判定装置では、一次側搬送部51において搬送された例えば螺子作製工程後の雄螺子10を、駆動制御部41からの信号で自動で測定装置20の支持部21に支持させ、実施の形態1と同様に螺子部13の螺旋形状の直径或いは半径を測定し、実施の形態2と同様に、判定データ及び許容誤差と比較して合否の判定を行った後、二次側搬送部53に搬出し、合格品を合格品ストッカ55に収容し、不合格品を不合格品ストッカ57に収容するように構成されている。   In the determination device for the male screw 10, for example, the male screw 10 that has been transported in the primary-side transport unit 51, for example, after the screw manufacturing step, is automatically supported by the support unit 21 of the measuring device 20 by a signal from the drive control unit 41 The diameter or radius of the spiral shape of the screw portion 13 is measured in the same manner as in the first embodiment, and after the pass / fail judgment is made in comparison with the judgment data and the allowable error in the same manner as in the second embodiment, the secondary side transport It is carried out to the part 53, and the acceptable product is accommodated in the acceptable product stocker 55, and the rejected product is accommodated in the rejected product stocker 57.

このような雄螺子10の判定装置によれば、雄螺子10の搬入、固定、測定、判定、搬出を全て自動で行うことができ、雄螺子10の搬送ラインに設けることができ、多数の雄螺子10の螺子部13の判定を行うことが容易であり、雄螺子10の全数の検査を行うことも可能である。   According to such a determination device for the male screw 10, the loading, fixing, measurement, determination, and unloading of the male screw 10 can be performed automatically, and can be provided in the conveying line of the male screw 10, so that a large number of male screws 10 can be provided. It is easy to determine the screw portion 13 of the screw 10, and it is possible to inspect all the male screws 10.

この発明の実施の形態1の雄螺子の測定装置の要部の平面図である。It is a top view of the principal part of the measuring apparatus of the external thread of Embodiment 1 of this invention. この発明の実施の形態1の雄螺子の測定装置の測定対象の雄螺子を示す正面図である。It is a front view which shows the male screw of the measuring object of the measuring device of the male screw of Embodiment 1 of this invention. この発明の実施の形態2の合否判定装置を示すブロック図である。It is a block diagram which shows the pass / fail determination apparatus of Embodiment 2 of this invention. この発明の実施の形態3の合否判定装置を示すブロック図である。It is a block diagram which shows the pass / fail determination apparatus of Embodiment 3 of this invention.

符号の説明Explanation of symbols

10 雄螺子
13 螺子部
15 螺子山
16 螺子溝
20 測定装置
21 支持部
30 測定部
31 照射部
35 検出部
41 駆動制御部
43 データ処理部
45 記憶部
DESCRIPTION OF SYMBOLS 10 Male screw 13 Screw part 15 Screw thread 16 Screw groove 20 Measuring apparatus 21 Support part 30 Measuring part 31 Irradiation part 35 Detection part 41 Drive control part 43 Data processing part 45 Storage part

Claims (5)

雄螺子の螺子部に測定光を照射して得られる投影光により前記螺子部の形状を測定する雄螺子の測定装置において、
前記螺子部を突出させた状態で前記雄螺子を支持する支持部と、
前記測定光を前記螺子部の一方の側方側から照射可能な照射部と、
前記測定光により得られる螺子部の軸線に沿う最大断面形状の投影像の外縁により、該外縁に対応する前記螺子部の検出位置を検出する検出部と、
前記検出位置と前記螺子部の軸線との間の垂直距離を演算することで、前記螺子部の螺旋形状の半径を求める処理部と、を備えたことを特徴とする雄螺子の測定装置。
In the male screw measuring device for measuring the shape of the screw portion by projection light obtained by irradiating the screw portion of the male screw with measurement light,
A support portion for supporting the male screw in a state in which the screw portion is protruded;
An irradiation unit capable of irradiating the measurement light from one side of the screw unit;
A detection unit for detecting a detection position of the screw part corresponding to the outer edge by an outer edge of a projection image having a maximum cross-sectional shape along the axis of the screw part obtained by the measurement light;
An apparatus for measuring a male screw, comprising: a processing unit that obtains a spiral radius of the screw part by calculating a vertical distance between the detection position and the axis of the screw part.
前記処理部は、前記外縁の第1の検出位置の第1の半径と、該第1の検出位置とは半回転ずれると共にn+0.5(nは整数である)ピッチずれた第2の検出位置の第2の半径とを求め、前記第1の半径と前記第2の半径とを加算して前記螺子部の螺旋形状の直径を求めることを特徴とする請求項1に記載の雄螺子の測定装置。   The processing unit is configured to shift a first radius of the first detection position of the outer edge from the first detection position by a half rotation and a second detection position shifted by n + 0.5 (n is an integer) pitch. 2. The male screw measurement according to claim 1, wherein the second radius of the screw portion is obtained, and the first radius and the second radius are added to obtain a helical shape diameter of the screw portion. apparatus. 前記第1の検出位置と前記第2の検出位置とが、前記螺子部の螺子山の頂部及び/又は螺子溝の底部であることを特徴とする請求項2に記載の雄螺子の測定装置。   The male screw measuring device according to claim 2, wherein the first detection position and the second detection position are a top of a screw thread and / or a bottom of a screw groove of the screw part. 前記処理部は、複数の前記検出位置の前記垂直距離を平均して前記半径又は直径の平均を求めることを特徴とする請求項1乃至3の何れか一つに記載の雄螺子の測定装置。   4. The male screw measuring device according to claim 1, wherein the processing unit obtains an average of the radius or diameter by averaging the vertical distances of the plurality of detection positions. 5. 請求項1乃至4の何れか一つに記載の雄螺子部の測定装置を備え、
記憶部に記憶された判定データと前記螺旋形状の半径又は直径とを比較し、合否を判定する判定部を備えたことを特徴とする雄螺子の判定装置。
The male screw part measuring device according to any one of claims 1 to 4, comprising:
A male screw determination device comprising: a determination unit that compares determination data stored in a storage unit with a radius or a diameter of the spiral shape to determine pass / fail.
JP2008035908A 2008-02-18 2008-02-18 Male screw measuring device and judging device Expired - Fee Related JP5033672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008035908A JP5033672B2 (en) 2008-02-18 2008-02-18 Male screw measuring device and judging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008035908A JP5033672B2 (en) 2008-02-18 2008-02-18 Male screw measuring device and judging device

Publications (2)

Publication Number Publication Date
JP2009192474A true JP2009192474A (en) 2009-08-27
JP5033672B2 JP5033672B2 (en) 2012-09-26

Family

ID=41074606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008035908A Expired - Fee Related JP5033672B2 (en) 2008-02-18 2008-02-18 Male screw measuring device and judging device

Country Status (1)

Country Link
JP (1) JP5033672B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112929A (en) * 2010-11-22 2012-06-14 Ching Chan Optical Technology Co Ltd Screw inspection device
JP2014025855A (en) * 2012-07-27 2014-02-06 Ricoh Elemex Corp Appearance inspection device and appearance inspection method
US20150241303A1 (en) * 2014-02-26 2015-08-27 Siemens Energy, Inc. Method for inspecting a turbine engine rotor with a thru bolt threads inspection apparatus
CN109538112A (en) * 2019-01-04 2019-03-29 中国地质大学(北京) It is a kind of to be set with spliced all-metal screw stator and its processing method
CN112146593A (en) * 2020-09-25 2020-12-29 上海红马饲料有限公司 Machine vision-based external thread detection method and real-time detection system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811804A (en) * 1981-07-14 1983-01-22 Sumitomo Metal Ind Ltd Method and device for measuring screw shape
JPS58171613A (en) * 1982-03-31 1983-10-08 Sumitomo Metal Ind Ltd Method and device for measuring wall thickness of screw part of pipe
JPH06147834A (en) * 1992-11-02 1994-05-27 Mitsubishi Heavy Ind Ltd Thread discriminating system
JPH08184416A (en) * 1994-08-25 1996-07-16 Owens Brockway Glass Container Inc Optical inspection of shape parameter for finished part of container
JPH08233536A (en) * 1995-02-28 1996-09-13 Sankoole Kk Measuring apparatus for article to be measured and measuring method therefor
JP2005221270A (en) * 2004-02-03 2005-08-18 Tsunehiro Yoshida Screw inspection apparatus
JP2007057489A (en) * 2005-08-26 2007-03-08 Yutaka:Kk Apparatus for measuring diameter of screw shaft

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811804A (en) * 1981-07-14 1983-01-22 Sumitomo Metal Ind Ltd Method and device for measuring screw shape
JPS58171613A (en) * 1982-03-31 1983-10-08 Sumitomo Metal Ind Ltd Method and device for measuring wall thickness of screw part of pipe
JPH06147834A (en) * 1992-11-02 1994-05-27 Mitsubishi Heavy Ind Ltd Thread discriminating system
JPH08184416A (en) * 1994-08-25 1996-07-16 Owens Brockway Glass Container Inc Optical inspection of shape parameter for finished part of container
JPH08233536A (en) * 1995-02-28 1996-09-13 Sankoole Kk Measuring apparatus for article to be measured and measuring method therefor
JP2005221270A (en) * 2004-02-03 2005-08-18 Tsunehiro Yoshida Screw inspection apparatus
JP2007057489A (en) * 2005-08-26 2007-03-08 Yutaka:Kk Apparatus for measuring diameter of screw shaft

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112929A (en) * 2010-11-22 2012-06-14 Ching Chan Optical Technology Co Ltd Screw inspection device
JP2014025855A (en) * 2012-07-27 2014-02-06 Ricoh Elemex Corp Appearance inspection device and appearance inspection method
US20150241303A1 (en) * 2014-02-26 2015-08-27 Siemens Energy, Inc. Method for inspecting a turbine engine rotor with a thru bolt threads inspection apparatus
US9494487B2 (en) * 2014-02-26 2016-11-15 Siemens Energy, Inc. Method for inspecting a turbine engine rotor with a thru bolt threads inspection apparatus
CN109538112A (en) * 2019-01-04 2019-03-29 中国地质大学(北京) It is a kind of to be set with spliced all-metal screw stator and its processing method
CN109538112B (en) * 2019-01-04 2023-09-08 中国地质大学(北京) Processing method of sleeved spliced all-metal screw stator
CN112146593A (en) * 2020-09-25 2020-12-29 上海红马饲料有限公司 Machine vision-based external thread detection method and real-time detection system

Also Published As

Publication number Publication date
JP5033672B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
JP4828974B2 (en) Screw measuring method, screw measuring probe, and screw measuring device using the same
JP5033672B2 (en) Male screw measuring device and judging device
EP2275777B1 (en) Device and method for measuring object to be measured having hollow circular cylindrical shape
JP2009520984A (en) Steel plate welded part online detection device and method
EP2799809B1 (en) Method for measuring shape of threaded tube end portion
EP4007887B1 (en) Apparatus and method of measuring the inner diameter of a tube along the respective production line
US20060273268A1 (en) Method for detecting 3D measurement data using allowable error zone
US20190323828A1 (en) Method for detecting shape of butt joint of welded steel pipe, and quality control method and apparatus for welded steel pipes using the shape detecting method
CN111451838B (en) Machine tool, management system, and tool deterioration detection method
US11229983B2 (en) Apparatus and method for assessing the beam profile of a non-contact tool setting apparatus
JP2020094874A (en) X-ray diffraction measuring device
JP7375458B2 (en) Appearance inspection equipment and defect inspection method
JP2008212944A (en) Method and equipment for deciding good/defective condition of butt welding
JP2007010336A (en) Method and device for inspecting appearance
JP2016142725A (en) Screw inspection device
JP2023074700A (en) Front and rear discrimination device
JP6095438B2 (en) Inner surface inspection device and reference piece
JP7395950B2 (en) Visual inspection equipment and visual inspection method
JP2009236706A (en) Shape calculator, shape calculation program, shape calculating method, and shape-measuring device
JP6818224B2 (en) X-ray diffraction measuring device
JP2007183145A (en) Method and instrument for measuring tubular bore
JP2010216927A (en) Apparatus and method of measuring thickness of steel pipe
JP2004151091A (en) Method and apparatus for measuring form of pipe
JP2017161266A (en) Surface inspection device and surface inspection method
JP2024107594A (en) Measuring Equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

R150 Certificate of patent or registration of utility model

Ref document number: 5033672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees