JP2007010336A - Method and device for inspecting appearance - Google Patents

Method and device for inspecting appearance Download PDF

Info

Publication number
JP2007010336A
JP2007010336A JP2005188114A JP2005188114A JP2007010336A JP 2007010336 A JP2007010336 A JP 2007010336A JP 2005188114 A JP2005188114 A JP 2005188114A JP 2005188114 A JP2005188114 A JP 2005188114A JP 2007010336 A JP2007010336 A JP 2007010336A
Authority
JP
Japan
Prior art keywords
inspection
displacement
face
inspected
cylindrical tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005188114A
Other languages
Japanese (ja)
Inventor
Tomio Aikawa
富男 相川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoei Kogyo KK
Hoei Industries Co Ltd
Original Assignee
Hoei Kogyo KK
Hoei Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoei Kogyo KK, Hoei Industries Co Ltd filed Critical Hoei Kogyo KK
Priority to JP2005188114A priority Critical patent/JP2007010336A/en
Publication of JP2007010336A publication Critical patent/JP2007010336A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an appearance inspection device for simplifying the inspection method and shortening the inspection time, by simultaneously performing, in one operation, appearance inspection of an inspected object, especially a plurality of appearance inspections of length dimension of the inspected object with a circular outline, roughness of each end face, and the like. <P>SOLUTION: The appearance inspection device comprises a driving means 2 for rotating a cylinder pipe 1 at a fixed position, a pair of displacement gauges 3 that are arranged on both axial sides of the cylinder pipe 1, radiate respective laser beams to both end faces 4 of the cylinder pipe 1, and detect the reflected light, and a controller 5 for inspecting the length dimension of the cylinder pipe 1, the roughness of the end faces 4, and chamfers 7a and 7b of the end faces 4 based on the displacement of each end face 4 obtained from the displacement gauges 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、円筒体や円柱体など外形が円形である被検査物の長さ寸法や端面の表面粗さなどを検査するための外観検査方法及びその装置に関する。   The present invention relates to an appearance inspection method and an apparatus for inspecting a length dimension, a surface roughness of an end surface, and the like of an inspection object having a circular outer shape such as a cylindrical body or a cylindrical body.

従来この種の外観検査方法としては、例えば、円筒体の表面に光ビームを照射し、その反射光を光センサで検出し、その光センサの出力を演算回路により基準値と比較することにより円筒体の寸法を測定する方法が知られている(特許文献1)。また、直進又は回動する基板に、その一方の端面外部から他方の端面外側まで光ビームを走査させ、基板の表面及び端面から反射する反射光を受光センサで受光し、受光センサからの出力信号を処理することで基板表面や端面の欠陥を検査する方法も知られている(特許文献2)。   Conventionally, as this kind of appearance inspection method, for example, the surface of a cylindrical body is irradiated with a light beam, the reflected light is detected by an optical sensor, and the output of the optical sensor is compared with a reference value by an arithmetic circuit. A method for measuring body dimensions is known (Patent Document 1). In addition, a light beam is scanned from the outside of one end surface to the outside of the other end surface of the substrate that moves straight or rotates, and the reflected light reflected from the surface and end surface of the substrate is received by the light receiving sensor, and the output signal from the light receiving sensor There is also known a method for inspecting defects on the substrate surface and the end face by processing the above (Patent Document 2).

しかしながら、上記のように光ビームを利用した外観検査方法については既に知られているが、これらの検査方法では検査する項目が一つに限られているため、例えば円筒体の寸法測定と端面の欠陥について外観検査しようとする場合には別々に検査しなければならず、面倒であると共に検査時間が掛かってしまうという問題があった。
特開2001−255119 特開2002−181717
However, as described above, visual inspection methods using a light beam are already known. However, these inspection methods have only one item to be inspected. When trying to inspect the appearance of defects, they must be inspected separately, which is troublesome and takes an inspection time.
JP 2001-255119 A JP 2002-181717 A

そこで、本発明が解決しようとする課題は、被検査物の外観検査、特に外形が円形である被検査物の長さ寸法及び各端面の表面粗さなど複数の外観検査を一回の操作の中で同時に行えるようにして、検査方法の簡素化と検査時間の短縮を図れるようにした外観検査方法及びその装置を提供することである。   Therefore, the problem to be solved by the present invention is to perform a plurality of appearance inspections such as the length inspection of the inspection object having a circular outer shape and the surface roughness of each end surface in one operation. It is possible to provide an appearance inspection method and an apparatus thereof that can be performed at the same time to simplify the inspection method and shorten the inspection time.

かかる目的を達成するために、本発明に係る外観検査方法は、外形が円形をした被検査物の両端面に円周方向に沿ってレーザ光を照射し、各端面からの反射光を検出して各端面の変位を求め、この変位値に基づいて被検査物の長さ寸法及び端面の表面粗さを検査することを特徴とする。   In order to achieve such an object, the visual inspection method according to the present invention irradiates laser light along the circumferential direction to both end faces of an inspection object having a circular outer shape, and detects reflected light from each end face. Thus, the displacement of each end face is obtained, and the length dimension of the object to be inspected and the surface roughness of the end face are inspected based on the displacement value.

また、本発明に係る他の外観検査方法は、外形が円形をした被検査物の両端面に円周方向に沿ってレーザ光を照射すると共に、被検査物の両端面の周縁部に直径方向に沿ってレーザ光を照射し、各端面からの反射光を検出して各端面の変位を求め、この変位値に基づいて被検査物の長さ寸法、端面の表面粗さ及び端面形状を検査することを特徴とする。   In addition, another visual inspection method according to the present invention irradiates laser light along the circumferential direction on both end faces of a test object having a circular outer shape, and diametrically applies to peripheral edges of both end faces of the test object. Irradiate laser light along the line, detect the reflected light from each end face, determine the displacement of each end face, and inspect the length dimension, end surface roughness, and end face shape of the inspected object based on this displacement value It is characterized by doing.

また、本発明に係る外観検査装置は、外形が円形をした被検査物を定位置で回転させる駆動手段と、前記被検査物の軸方向の両側に配置され、前記被検査物の両端面にそれぞれレーザ光を照射しその反射光を検出する一対の変位計と、前記変位計から得られた各端面の変位値に基づいて被検査物の長さ寸法及び端面の表面粗さを検査する検査手段とを備えることを特徴とする。   Further, an appearance inspection apparatus according to the present invention is arranged on both sides in the axial direction of the inspection object, driving means for rotating the inspection object having a circular outer shape at a fixed position, and on both end surfaces of the inspection object. A pair of displacement meters each irradiating laser light and detecting the reflected light, and an inspection for inspecting the length dimension of the object to be inspected and the surface roughness of the end surface based on the displacement value of each end surface obtained from the displacement meter Means.

また、本発明に係る他の外観検査装置は、外形が円形をした被検査物を定位置で回転させる駆動手段と、前記被検査物の軸方向の両側に配置され、前記被検査物の両端面にそれぞれレーザ光を照射しその反射光を検出する一対の変位計と、前記変位計から得られた各端面の変位値に基づいて被検査物の長さ寸法、端面の表面粗さ及び端面形状を検査する検査手段とを備えることを特徴とする。   Further, another appearance inspection apparatus according to the present invention includes a driving means for rotating an inspection object having a circular outer shape at a fixed position, and both ends of the inspection object in the axial direction, and both ends of the inspection object. A pair of displacement meters that irradiate the surface with laser light and detect the reflected light, and the length dimension of the object to be inspected, the surface roughness of the end surface, and the end surface based on the displacement value of each end surface obtained from the displacement meter Inspecting means for inspecting the shape is provided.

本発明の外観検査方法は、被検査物の外観検査、特に外形が円形である被検査物の長さ寸法及び各端面の表面粗さなど複数の外観検査を一回の操作で行うことができるので、検査方法の簡素化と検査時間の短縮が図れるようになった。   The appearance inspection method of the present invention is capable of performing a plurality of appearance inspections such as a length dimension of an inspection object having a circular outer shape and a surface roughness of each end surface in one operation. Therefore, the inspection method can be simplified and the inspection time can be shortened.

また、本発明の外観検査装置は、上記外観検査方法を極めて簡易な手段で実行することができるといった効果を奏する。   In addition, the appearance inspection apparatus of the present invention has an effect that the appearance inspection method can be executed by an extremely simple means.

以下、添付図面に基づいて、本発明に係る外観検査方法及びその装置の実施形態を詳細に説明する。図1乃至図4には本発明に係る外観検査装置の主要部である検査ユニットが示されている。この検査ユニットは、外形が円形をした被検査物(この例では円筒管1)を定位置で回転させる駆動手段2と、前記円筒管1の軸方向の両側に配置される一対の変位計3と、この変位計3から得られた円筒管1の各端面4の変位データに基づいて円筒管1の長さ寸法及び端面4の表面粗さ等が予め設定された検査条件に合致するか否かを比較判定する検査手段としての制御装置5とを備える。   Embodiments of an appearance inspection method and apparatus according to the present invention will be described below in detail with reference to the accompanying drawings. 1 to 4 show an inspection unit which is a main part of the appearance inspection apparatus according to the present invention. This inspection unit includes a driving means 2 for rotating an object to be inspected having a circular outer shape (in this example, a cylindrical tube 1) at a fixed position, and a pair of displacement meters 3 disposed on both sides of the cylindrical tube 1 in the axial direction. Based on the displacement data of each end face 4 of the cylindrical tube 1 obtained from the displacement meter 3, whether or not the length dimension of the cylindrical tube 1 and the surface roughness of the end face 4 meet preset inspection conditions. And a control device 5 as inspection means for comparing and determining whether or not.

前記円筒管1は、前記検査ユニットにセットされる前工程において、所定の形状に加工される。例えば、長い棒状の円筒管素材を所定寸法ごとに切断し、その切断した円筒管1の端面4をバイトによって切削して端面4の外周縁及び筒孔6の内周縁に面取り部7a,7bを形成したものである。このように加工された円筒管1は、例えば図3及び図4に示したようなワーク供給部10を介して検査ユニットに供給される。ワーク供給部10ではは、半円筒状のハーフパイプで形成されたフィーダ11によって円筒管1を漸次移動し、フィーダ11から繰り出し部12に一個ずつ送り出す。繰り出し部12は、上下2段の載置部13,14を備え、前記フィーダ11の先端から下段の載置部13に送り出された円筒管1は規制板15に当たって位置決めされた後、上段の載置部14に繰り出される。上段の載置部14ではその脇に配置されたエアー噴射装置16から円筒管1の筒孔6に向けてエアーが噴射され、筒孔6の内周面や両端面4に付着しているバイト滓が吹き飛ばされる。その後、円筒管1は上段の載置部14から前記検査ユニットに繰り出され、所定位置にセットされて検査が開始される。なお、前記フィーダ11はハーフパイプによって形成されているために、円筒管1を整列させながら漸次移動させることができる。即ち、フィーダ11のワーク載置面17が円弧状に形成されているために、円筒管1はワーク載置面17の最下点17aで安定した姿勢をとり、図4に示されるように、フィーダ11上の円筒管1は左右方向の位置ズレがほとんどない状態で整列される。なお、フィーダ11は、ワーク載置面17が円弧状に形成されていれば、この実施形態のようなハーフパイプである必要はない。   The cylindrical tube 1 is processed into a predetermined shape in a pre-process that is set in the inspection unit. For example, a long rod-shaped cylindrical tube material is cut into predetermined dimensions, the end surface 4 of the cut cylindrical tube 1 is cut with a cutting tool, and chamfered portions 7 a and 7 b are formed on the outer peripheral edge of the end surface 4 and the inner peripheral edge of the cylindrical hole 6. Formed. The cylindrical tube 1 processed in this way is supplied to the inspection unit via a workpiece supply unit 10 as shown in FIGS. 3 and 4, for example. In the workpiece supply unit 10, the cylindrical tube 1 is gradually moved by a feeder 11 formed of a semi-cylindrical half pipe, and is fed one by one from the feeder 11 to the feeding unit 12. The feeding unit 12 includes two upper and lower mounting units 13 and 14, and the cylindrical tube 1 fed from the tip of the feeder 11 to the lower mounting unit 13 is positioned against the restriction plate 15 and then positioned on the upper stage. It is drawn out to the placement unit 14. In the upper stage mounting portion 14, air is jetted from the air jet device 16 disposed on the side toward the cylindrical hole 6 of the cylindrical tube 1, and the bite attached to the inner peripheral surface and both end surfaces 4 of the cylindrical hole 6. The kite is blown away. Thereafter, the cylindrical tube 1 is fed out from the upper mounting portion 14 to the inspection unit, set at a predetermined position, and inspection is started. Since the feeder 11 is formed by a half pipe, the cylindrical tube 1 can be gradually moved while being aligned. That is, since the workpiece placement surface 17 of the feeder 11 is formed in an arc shape, the cylindrical tube 1 takes a stable posture at the lowest point 17a of the workpiece placement surface 17, and as shown in FIG. The cylindrical tubes 1 on the feeder 11 are aligned with almost no positional deviation in the left-right direction. The feeder 11 does not need to be a half pipe as in this embodiment as long as the workpiece placement surface 17 is formed in an arc shape.

検査ユニットでは、円筒管1の長さ寸法が所定の許容範囲内に入っているかどうか、また、円筒管1の端面4の表面粗さが所定の粗さ以下であるかどうか、さらには端面4に形成した面取り部7a,7bの大きさが所定の許容範囲内にあるかどうかなどを検査する。前記制御装置5は変位計3でサンプリングした形状データを処理して変位値を演算し、この変位値が予め入力してある検査条件としての公差内にあるかどうかを比較して良否を判定する比較判定回路を備える他、検査条件などを設定するためのコントロールパネルや表示パネルなどを備えている。   In the inspection unit, whether the length dimension of the cylindrical tube 1 is within a predetermined allowable range, whether the surface roughness of the end surface 4 of the cylindrical tube 1 is equal to or less than the predetermined roughness, and further, the end surface 4 Whether the size of the chamfered portions 7a and 7b formed in the above is within a predetermined allowable range is inspected. The control device 5 processes the shape data sampled by the displacement meter 3 to calculate a displacement value, and determines whether the displacement value is within a tolerance as an inspection condition inputted in advance or not. In addition to a comparison / determination circuit, a control panel and a display panel for setting inspection conditions and the like are also provided.

前記円筒管1を定位置で回転させるための駆動手段2は、円筒管1が検査ユニットにセットされた時に円筒管1の下面2箇所を支持する一対の下部ローラ20a,20bと、一方の下部ローラ20aに回転力を付与するモータ21と、円筒管1の上面1箇所を支持する上部ローラ22とを備える。前記下部ローラ20a,20bは、前記繰り出し部12から繰り出された円筒管1を検査ユニットに導くための傾斜ガイド板23の下側に配置され、その一部が傾斜ガイド板23に開設された孔部24から上方に突出している。一方、上部ローラ22は、下部ローラ20a,20bに支持された円筒管1の鉛直線上に位置し、回転時には円筒管1の最上点に接触する。上部ローラ22は両端部がホルダ27によって支持され、また、ホルダ27には上部ローラ22を上下動するリフト装置の腕部28が連結されている。このように、円筒管1は回転時には一対の下部ローラ20a,20b及び上部ローラ22で三点支持されるが、更に、円筒管1を確実に支持するために、孔部24の前端上方には上下動可能なストッパ板25が配置されている。このストッパ板25は、円筒管1の検査時には孔部24の近傍位置まで下降し、円筒管1の前方近傍を遮蔽することで円筒管1が上記ローラ20,20b、22から外れるのを防止する。   The driving means 2 for rotating the cylindrical tube 1 at a fixed position includes a pair of lower rollers 20a and 20b that support two lower surfaces of the cylindrical tube 1 when the cylindrical tube 1 is set in the inspection unit, and one lower portion. A motor 21 for applying a rotational force to the roller 20a and an upper roller 22 for supporting one place on the upper surface of the cylindrical tube 1 are provided. The lower rollers 20a and 20b are disposed below the inclined guide plate 23 for guiding the cylindrical tube 1 drawn out from the feeding portion 12 to the inspection unit, and a part of the lower rollers 20a and 20b is formed in the inclined guide plate 23. Projecting upward from the portion 24. On the other hand, the upper roller 22 is located on the vertical line of the cylindrical tube 1 supported by the lower rollers 20a and 20b, and contacts the uppermost point of the cylindrical tube 1 when rotating. Both ends of the upper roller 22 are supported by holders 27, and an arm portion 28 of a lift device that moves the upper roller 22 up and down is connected to the holder 27. As described above, the cylindrical tube 1 is supported at three points by the pair of lower rollers 20a and 20b and the upper roller 22 at the time of rotation. Further, in order to securely support the cylindrical tube 1, the cylindrical tube 1 is disposed above the front end of the hole 24. A stopper plate 25 that can move up and down is disposed. This stopper plate 25 descends to a position near the hole 24 when the cylindrical tube 1 is inspected, and shields the vicinity of the front of the cylindrical tube 1 to prevent the cylindrical tube 1 from coming off from the rollers 20, 20 b and 22. .

したがって、前記繰り出し部12から傾斜ガイド板23の上面に繰り出された円筒管1は、手前側の下部ローラ20bを乗り越え、図1及び図3に示したように、一対の下部ローラ20a,20bの間に載置される。次いで、上部ローラ22が下降して円筒管1の最上部に接触する。このようにして、円筒管1は下部ローラ20a,20bと上部ローラ22とによって支持されると共に、ストッパ板25が定位置まで下降する。次いで、モータ21の駆動によって下部ローラ20aが回転し、円筒管1に回転力が付与される。円筒管1から他方の下部ローラ20b及び上部ローラ22に回転力が付与されることで、円筒管1には安定した回転が得られる。このようにして、円筒管1は。検査時には図3に矢印で示した方向に一定スピードで回転し続ける。なお、図3図において、符号29は検査終了後に円筒管1を下部ローラ20a,20bの間から排出するための突き上げ棒である。   Therefore, the cylindrical tube 1 fed from the feeding portion 12 to the upper surface of the inclined guide plate 23 gets over the lower roller 20b on the near side, and as shown in FIGS. 1 and 3, the pair of lower rollers 20a and 20b Placed in between. Next, the upper roller 22 descends and comes into contact with the uppermost part of the cylindrical tube 1. In this way, the cylindrical tube 1 is supported by the lower rollers 20a and 20b and the upper roller 22, and the stopper plate 25 is lowered to a fixed position. Next, the lower roller 20 a is rotated by driving the motor 21, and a rotational force is applied to the cylindrical tube 1. By applying a rotational force from the cylindrical tube 1 to the other lower roller 20b and the upper roller 22, the cylindrical tube 1 can be stably rotated. In this way, the cylindrical tube 1 is. At the time of inspection, it continues to rotate at a constant speed in the direction indicated by the arrow in FIG. In FIG. 3, reference numeral 29 denotes a push-up bar for discharging the cylindrical tube 1 from between the lower rollers 20a and 20b after the inspection is completed.

前記円筒管1の軸方向の両側には、前記円筒管1の両方の端面4にそれぞれレーザ光を照射しその反射光を検出する一対の変位計3が配置される。この変位計3は、円筒管1の各端面4に対向する面にそれぞれ投光部30と受光部31とを備えており、投光部30から円筒管1の端面4に向けてレーザ光を照射すると共に、各端面4から受光部31に戻ってくる反射光を検出して各端面の変位を求めるものである。また、この変位計3は、図2に示したように、左右方向(A方向)及び上下方向(B方向)に移動可能となるよう設置されている。変位計3は、円筒管1の長さに応じて左右方向に調整され、円筒管1の太さに応じて上下方向に調整される。また、円筒管1の端面4に形成された面取り部7a,7bの形状を検査する際には変位計3を上下方向に移動させながら検出する。   On both sides of the cylindrical tube 1 in the axial direction, a pair of displacement meters 3 for irradiating both end surfaces 4 of the cylindrical tube 1 with laser light and detecting the reflected light are arranged. The displacement meter 3 includes a light projecting unit 30 and a light receiving unit 31 on the surface facing each end surface 4 of the cylindrical tube 1, and emits laser light from the light projecting unit 30 toward the end surface 4 of the cylindrical tube 1. While irradiating, the reflected light which returns to each light receiving part 31 from each end surface 4 is detected, and the displacement of each end surface is calculated | required. Further, as shown in FIG. 2, the displacement meter 3 is installed so as to be movable in the left-right direction (A direction) and the up-down direction (B direction). The displacement meter 3 is adjusted in the left-right direction according to the length of the cylindrical tube 1 and is adjusted in the vertical direction according to the thickness of the cylindrical tube 1. Further, when inspecting the shape of the chamfered portions 7a and 7b formed on the end face 4 of the cylindrical tube 1, the displacement gauge 3 is detected while being moved in the vertical direction.

次に、図5に基づいて、前記変位計3の検出原理を簡単に説明する。この図に示されるように、変位計3の検出原理は、変位計3の投光部30から射出するレーザ光32を被検査体34に照射し、その時に戻ってくる反射光33を受光部31で検出するものである。先ず、被検査体34を基準位置P1で検査した時の受光部31での受光位置をQ1とする。次に、被検査体34が基準位置P1からP2に変位した時の受光部31での受光位置をQ2する。このように、被検査体34が基準位置P1からP2に変位したことに対応して受光部21では受光位置がQ1からQ2に距離bだけずれて検出されるので、このずれ量bに基づいて被検査体24の基準位置P1からP2への変位量aを求めることができる。そして、ここで求めた変位量aと予め設定された検査条件としての公差とを比較し、前記変位量aが検査条件の公差内、即ち許容された変位量の範囲内にあるかどうかの判定が行われる。   Next, the detection principle of the displacement meter 3 will be briefly described with reference to FIG. As shown in this figure, the principle of detection of the displacement meter 3 is that a laser beam 32 emitted from a light projecting unit 30 of the displacement meter 3 is irradiated to an object to be inspected 34, and reflected light 33 returned at that time is received by a light receiving unit. 31 is detected. First, the light receiving position at the light receiving unit 31 when the inspection object 34 is inspected at the reference position P1 is defined as Q1. Next, the light receiving position at the light receiving unit 31 when the inspection object 34 is displaced from the reference position P1 to P2 is Q2. In this way, the light receiving unit 21 detects the light receiving position shifted from Q1 to Q2 by the distance b in response to the displacement of the inspection object 34 from the reference position P1 to P2. A displacement amount a of the inspection object 24 from the reference position P1 to P2 can be obtained. Then, the displacement amount a obtained here is compared with a tolerance as a preset inspection condition, and it is determined whether or not the displacement amount a is within the tolerance of the inspection condition, that is, within the allowable displacement range. Is done.

図6は上述した変位計3の検出原理に基づいて、円筒管1の長さ寸法を検査する場合を示したものである。L1は左右に配設された変位計3の間の距離を示し、L2は予め設定された円筒管1の基準長さ寸法を示す。各変位計3と円筒管1の各端面4までの距離をl1,l2とする。各変位計3は固定しておき、円筒体1を定位置で回転させながらレーザ光32を円筒管1の端面4に照射し、円筒管1を一回転させたときの端面形状のデータをサンプリングする。端面4に照射するレーザ光32の位置は特に制約を受けないが、好ましくは端面4の中心付近である。また、サンプリングの回数は適宜である。そして、このサンプリングした形状データを処理して変位量を演算し、その変位量が予め設定してある公差内にあるかどうかを比較し、公差内にあれば円筒管1の基準長さ寸法L2の許容範囲内にあるとして良品として判定され、逆に公差外であれば円筒管1の基準長さ寸法L2より長すぎるか又は短すぎるとして不良品として判定される。具体的にはサンプリングした複数の測長データから測長の平均値を求め、この測長平均値と基準長さ寸法L2との差分が予め入力した公差の範囲内にあるか否かで判定する。なお、円筒管1を回転させながら測定するために、円筒管1が左右方向に多少横ぶれする恐れがあるが、それに伴う変位を左右の変位計3が相対的な変位として検出するために、その変位を相殺する補正回路を設けることで対応することができる。   FIG. 6 shows a case where the length dimension of the cylindrical tube 1 is inspected based on the detection principle of the displacement meter 3 described above. L1 indicates the distance between the displacement gauges 3 disposed on the left and right, and L2 indicates a preset reference length dimension of the cylindrical tube 1. The distance between each displacement meter 3 and each end face 4 of the cylindrical tube 1 is defined as l1 and l2. Each displacement meter 3 is fixed, the end surface 4 of the cylindrical tube 1 is irradiated with the laser beam 32 while rotating the cylindrical body 1 at a fixed position, and end face shape data when the cylindrical tube 1 is rotated once is sampled. To do. The position of the laser beam 32 applied to the end face 4 is not particularly limited, but is preferably near the center of the end face 4. The number of samplings is appropriate. Then, the sampled shape data is processed to calculate a displacement amount, and whether or not the displacement amount is within a preset tolerance is compared. If it is within the tolerance, the reference length dimension L2 of the cylindrical tube 1 is compared. If it is outside the tolerance, it is determined as a defective product because it is too long or too short than the reference length L2 of the cylindrical tube 1. Specifically, an average value of the length measurement is obtained from a plurality of sampled length measurement data, and it is determined whether or not the difference between the length measurement average value and the reference length dimension L2 is within a tolerance range input in advance. . In order to measure while rotating the cylindrical tube 1, the cylindrical tube 1 may be slightly displaced in the left-right direction. However, in order for the left and right displacement gauges 3 to detect the displacement as a relative displacement, This can be dealt with by providing a correction circuit that cancels the displacement.

また、前記でサンプリングした円筒管1の端面形状のデータに基づいて、端面4の表面粗さについての検査も同時に行うことができる。即ち、円筒管1の端面4に凹凸があった場合、それらは変位計3で測定した時の変位量として検出されるので、これらの変位量が予め設定されている検査条件の公差内にあるかどうかを比較し、公差内にあれば端面4が平滑であるとして判定される。具体的には前記複数の測長データの各々が予め入力した公差の範囲内に入っている割合(%)で判定する。この割合は、製品に求める精度との関係で個別に設定することができる。また、前記表面粗さの公差の許容値も、製品に求める精度との関係で、前記長さ寸法の公差の許容値と同一範囲とすることも、異なる範囲とすることもできる。端面4の表面粗さの検査は、円筒管1の端面4全体について形状データをサンプリングする必要はない。図7(a)にレーザ光の軌跡T1で示したように、円筒管1の端面4の中心付近を一周サンプリングすることで端面4の全体傾向が分かるので、上記の検査方法で判定しても実質上は問題がない。勿論、図7(b)にレーザ光の軌跡T2で示したように、端面4の内側付近から外側付近に螺旋を描くようにして形状データをサンプリングしてもよい。   Further, based on the end face shape data of the cylindrical tube 1 sampled as described above, the surface roughness of the end face 4 can be inspected at the same time. That is, when the end face 4 of the cylindrical tube 1 has irregularities, they are detected as displacement amounts when measured by the displacement meter 3, so these displacement amounts are within the tolerance of the preset inspection conditions. If it is within the tolerance, it is determined that the end face 4 is smooth. Specifically, the determination is made based on a ratio (%) in which each of the plurality of length measurement data falls within a tolerance range input in advance. This ratio can be set individually in relation to the accuracy required for the product. Further, the tolerance value of the tolerance of the surface roughness can be the same range as the tolerance value of the tolerance of the length dimension or a different range depending on the accuracy required for the product. The inspection of the surface roughness of the end surface 4 does not require sampling of shape data for the entire end surface 4 of the cylindrical tube 1. As shown by the laser beam trajectory T1 in FIG. 7A, the entire tendency of the end face 4 can be found by sampling the vicinity of the center of the end face 4 of the cylindrical tube 1 once. There is virtually no problem. Needless to say, the shape data may be sampled by drawing a spiral from the inner side of the end face 4 to the outer side as indicated by the locus T2 of the laser beam in FIG.

図8は円筒管1の端面4の外周縁および内周縁に形成された一対の面取り部7a,7bの形状検査について説明したものである。図8に示される外周縁の面取り部7aの検査では、面取り部7aの所定角度θが正確に出ているか否かを、面取り部7aの深さ寸法dを測定することで判定している。この場合には円筒管1の回転を停止した状態で変位計3を端面4と平行に円筒管1の外側に向かって移動させ、面取り部7aの形状データをサンプリングし、そのサンプリングした形状データを処理して変位を演算し、その変位量と予め設定してある検査条件としての公差とを比較し、変位が公差内にあれば面取り部7aの深さが適正であり、結局面取り部7aの所定角度θが正確に出ているとして判定される。前記面取り部7a,7bは、チャックした円筒管1にバイトを当てて円筒管1を回転させながら一定角度で切削して形成するために、全周に亘ってほぼ一定の角度で面取りされる。したがって、上述したように、一箇所を検査すれば面取り部7a,7bの全体の傾向が分かるので、実質上は上記の検査方法で問題がない。なお、内周縁の面取り部7bの検査も同様の手段で行うことができる。   FIG. 8 illustrates the shape inspection of the pair of chamfered portions 7a and 7b formed on the outer peripheral edge and the inner peripheral edge of the end surface 4 of the cylindrical tube 1. FIG. In the inspection of the chamfered portion 7a at the outer periphery shown in FIG. 8, it is determined by measuring the depth dimension d of the chamfered portion 7a whether or not the predetermined angle θ of the chamfered portion 7a is accurately obtained. In this case, while the rotation of the cylindrical tube 1 is stopped, the displacement meter 3 is moved toward the outside of the cylindrical tube 1 in parallel with the end face 4, the shape data of the chamfered portion 7a is sampled, and the sampled shape data is obtained. Displacement is calculated by processing, and the amount of displacement is compared with a preset tolerance as an inspection condition. If the displacement is within the tolerance, the depth of the chamfered portion 7a is appropriate. It is determined that the predetermined angle θ is accurately output. The chamfered portions 7a and 7b are chamfered at a substantially constant angle over the entire circumference in order to form the chamfered portions 7a and 7b by cutting at a constant angle while rotating the cylindrical tube 1 by applying a cutting tool to the chucked cylindrical tube 1. Accordingly, as described above, if one place is inspected, the overall tendency of the chamfered portions 7a and 7b can be understood, so that the above inspection method is substantially free from problems. In addition, the inspection of the chamfered portion 7b on the inner peripheral edge can be performed by the same means.

図9は上述した外観検査装置を用いて円筒管1の端面4の形状を検査する場合のフローチャートを示したものである。先ず、外観検査装置の電源を投入して装置を初期化した後、検査条件を入力する。この検査条件は円筒管1の長さ寸法の公差、端面4の表面凹凸寸法の公差、端面4の外周縁及び内周縁に形成される面取り部7a,7bの深さ寸法の公差などである。次いで、変位計3を検査開始位置に移動したのち、前記検査条件の追加もしくは変更等があればメニュー操作を行う。前記の検査開始位置は、例えば円筒管1の筒孔6内において面取り部7bに近い位置に設定される。   FIG. 9 shows a flowchart for inspecting the shape of the end face 4 of the cylindrical tube 1 using the above-described appearance inspection apparatus. First, the visual inspection apparatus is turned on to initialize the apparatus, and then the inspection conditions are input. The inspection conditions include a tolerance of the length of the cylindrical tube 1, a tolerance of the surface unevenness of the end face 4, a tolerance of a depth dimension of the chamfered portions 7 a and 7 b formed on the outer peripheral edge and the inner peripheral edge of the end face 4. Next, after the displacement meter 3 is moved to the inspection start position, a menu operation is performed if the inspection conditions are added or changed. The inspection start position is set, for example, at a position close to the chamfered portion 7 b in the cylindrical hole 6 of the cylindrical tube 1.

次に、シーケンサから円筒管1の位置決め信号が入ることで変位計3が前記検査開始位置から円筒管1の端面4の中心位置(図6において符号Sで示した位置)に向かって移動を開始する。その際、円筒管1は検査ユニットの所定位置で駆動手段2(駆動ローラ2及び従動ローラ12a,12b)とストッパ板15によって位置決めされているが、回転を停止した状態で検査される。変位計3の移動に伴って円筒管1の面取り部7aの形状データをサンプリングし、その形状データを処理して面取り部形状の変位を演算する。そして、その変位値が検査条件として入力した公差内にあるかどうかの比較を行い、公差内であれば次の検査に進み、公差から外れている場合には不良品であると判定して不良信号を出力し、図9中(イ)の位置に戻る。その際、不良信号の出力に基づいて検査ユニットの上部ローラ22を円筒管1から離間すると共に、ストッパ板25を引き上げ、さらに突き上げ棒29で円筒管1を押し上げて下部ローラ20aを乗り越えさせ、傾斜ガイド板23上に転がり落とす。転がり落ちた円筒管1は不良品として回収される。   Next, when the positioning signal of the cylindrical tube 1 is input from the sequencer, the displacement meter 3 starts to move from the inspection start position toward the center position of the end surface 4 of the cylindrical tube 1 (the position indicated by symbol S in FIG. 6). To do. At that time, the cylindrical tube 1 is positioned by the driving means 2 (the driving roller 2 and the driven rollers 12a and 12b) and the stopper plate 15 at a predetermined position of the inspection unit, but is inspected in a state where the rotation is stopped. As the displacement meter 3 moves, the shape data of the chamfered portion 7a of the cylindrical tube 1 is sampled, and the shape data is processed to calculate the displacement of the chamfered portion shape. Then, it is compared whether the displacement value is within the tolerance entered as the inspection condition. If it is within the tolerance, it proceeds to the next inspection, and if it is outside the tolerance, it is judged as a defective product and defective. The signal is output, and the position returns to the position (a) in FIG. At that time, the upper roller 22 of the inspection unit is separated from the cylindrical tube 1 based on the output of the failure signal, the stopper plate 25 is pulled up, and the cylindrical tube 1 is pushed up by the push-up rod 29 to get over the lower roller 20a, Roll down on the guide plate 23. The rolled cylindrical tube 1 is collected as a defective product.

前記検査をパスした円筒管1には駆動手段2によって回転力が付与される。変位計3は、定位置で回転する円筒管1の端面4のほぼ中心位置を照射しながら円周上に沿って一周分の形状データのサンプリングし、その形状データを処理して端面4の凹凸形状の変位を演算する。そして、前記と同様、その変位値が検査条件として入力した公差内にあるかどうかの比較を行い、公差内であれば次の検査に進み、公差から外れている場合には不良品であると判定して不良信号を出力し再び(イ)の位置に戻る。ここでの判定は、円筒管1の長さ寸法が所定の公差内に収まっているかどうか、端面4の表面粗さが所定の公差内に収まっているかどうかの2項目について行うことになる。いずれか一方が公差内であっても、他方が外れていれば不良品として判定される。   A rotational force is applied to the cylindrical tube 1 that has passed the inspection by the driving means 2. The displacement meter 3 samples the shape data for one round along the circumference while irradiating the substantially center position of the end face 4 of the cylindrical tube 1 rotating at a fixed position, and processes the shape data to generate irregularities on the end face 4. Calculate the displacement of the shape. Then, as described above, whether the displacement value is within the tolerance input as the inspection condition is compared, and if it is within the tolerance, the process proceeds to the next inspection, and if it is outside the tolerance, it is a defective product. It judges and outputs a defect signal and returns to the position (a) again. The determination here is performed for two items: whether the length of the cylindrical tube 1 is within a predetermined tolerance, and whether the surface roughness of the end face 4 is within a predetermined tolerance. Even if either one is within the tolerance, if the other is out, it is determined as a defective product.

次の検査では、モータ21を停止して円筒管1の回転を止めた状態で行う。その状態で変位計3を円筒管1の端面4の中心位置から外側に向けて移動させ、端面4の外周縁に形成された面取り部7aの形状を検査する。内周縁の面取り部7bと同様、面取り部7aの形状データをサンプリングすると共に、その形状データを処理して面取り部形状の変位を演算する。そして、その変位値が検査条件として入力した公差内にあるか否かの比較を行い、そのデータが検査条件の公差内にあるか否かの判定を行い、公差内にあれば良品信号を出力し、公差から外れていれば不良品信号を出力する。この検査で一つの円筒管1に対する一連の検査が終了するので、良品信号及び不良信号のいずれを問わずフローチャートの(イ)の位置に戻る。また、検査の終わった円筒管1は、上記と同様、上部ローラ22が離間され、ストッパ板25が引き上げられると共に突き上げ棒29によって下部ローラ20aを乗り越え、傾斜ガイド板23から転がり落ちて良品と不良品とに仕分けられる。   In the next inspection, the motor 21 is stopped and the rotation of the cylindrical tube 1 is stopped. In this state, the displacement meter 3 is moved outward from the center position of the end face 4 of the cylindrical tube 1 to inspect the shape of the chamfered portion 7 a formed on the outer peripheral edge of the end face 4. Similar to the chamfered portion 7b on the inner periphery, the shape data of the chamfered portion 7a is sampled, and the shape data is processed to calculate the displacement of the chamfered portion shape. Then, it compares whether the displacement value is within the tolerance entered as the inspection condition, determines whether the data is within the tolerance of the inspection condition, and outputs a good product signal if it is within the tolerance. If it is out of tolerance, a defective product signal is output. Since a series of inspections for one cylindrical tube 1 is completed in this inspection, the process returns to the position (a) in the flowchart regardless of whether the signal is a good product or a failure signal. In addition, the cylindrical tube 1 that has been inspected is separated from the upper roller 22, the stopper plate 25 is pulled up, and the lower roller 20 a is moved over by the push-up rod 29, and rolls off the inclined guide plate 23 to be non-defective. Sorted into good products.

なお、上記の実施形態では円筒管1の検査方法について説明したが、本発明は円柱状のワークについても同様の検査を行うことができる。また、上記の実施形態では端面形状として面取り部の形状について説明したが、本発明は面取り部に限定されないことは勿論である。   In addition, although said embodiment demonstrated the inspection method of the cylindrical tube 1, this invention can perform the same test | inspection also about a column-shaped workpiece | work. In the above embodiment, the shape of the chamfered portion has been described as the end surface shape, but the present invention is not limited to the chamfered portion.

本発明に係る外観検査装置の検査ユニットを示す斜視図である。It is a perspective view which shows the inspection unit of the external appearance inspection apparatus which concerns on this invention. 上記検査ユニットの正面図である。It is a front view of the said inspection unit. 本発明に係る外観検査装置の側面図である。1 is a side view of an appearance inspection apparatus according to the present invention. 本発明に係る外観検査装置のワーク供給部を示す平面図である。It is a top view which shows the workpiece | work supply part of the external appearance inspection apparatus which concerns on this invention. 本発明に係る外観検査方法の変位計による検出原理を示す説明図である。It is explanatory drawing which shows the detection principle by the displacement meter of the external appearance inspection method which concerns on this invention. 本発明に係る外観検査方法を示す概念図である。It is a conceptual diagram which shows the external appearance inspection method which concerns on this invention. 円筒管の端面におけるレーザ光の軌跡を示す説明図である。It is explanatory drawing which shows the locus | trajectory of the laser beam in the end surface of a cylindrical tube. 本発明に係る外観検査方法において円筒管の面取り部の検査方法を示す概念図である。It is a conceptual diagram which shows the inspection method of the chamfering part of a cylindrical tube in the external appearance inspection method which concerns on this invention. 本発明に係る外観検査方法のフローチャート図である。It is a flowchart figure of the external appearance inspection method which concerns on this invention.

符号の説明Explanation of symbols

1 円筒管
2 駆動手段
3 変位計
4 端面
5 制御装置(検査手段)
7a,7b 面取り部
11 フィーダ
17 ワーク載置面
20a,20b 下部ローラ
22 上部ローラ
25 ストッパ板
30 投光部
31 受光部
32 レーザ光
33 反射光
DESCRIPTION OF SYMBOLS 1 Cylindrical tube 2 Drive means 3 Displacement meter 4 End surface 5 Control apparatus (inspection means)
7a, 7b Chamfered portion 11 Feeder 17 Work placement surface 20a, 20b Lower roller 22 Upper roller 25 Stopper plate 30 Light projecting portion 31 Light receiving portion 32 Laser light 33 Reflected light

Claims (13)

外形が円形をした被検査物の両端面に円周方向に沿ってレーザ光を照射し、各端面からの反射光を検出して各端面の変位を求め、この変位値に基づいて被検査物の長さ寸法及び端面の表面粗さを検査することを特徴とする外観検査方法。 Laser light is irradiated along the circumferential direction to both end faces of the inspection object having a circular outer shape, and the reflected light from each end face is detected to determine the displacement of each end face, and the inspection object is based on this displacement value. An inspection method for inspecting the length dimension and the surface roughness of the end face. 外形が円形をした被検査物の両端面に円周方向に沿ってレーザ光を照射すると共に、被検査物の両端面の周縁部に直径方向に沿ってレーザ光を照射し、各端面からの反射光を検出して各端面の変位を求め、この変位値に基づいて被検査物の長さ寸法、端面の表面粗さ及び端面形状を検査することを特徴とする外観検査方法。 Laser light is irradiated along the circumferential direction to both end faces of the inspection object having a circular outer shape, and laser light is irradiated along the diameter direction to the peripheral edge portions of both end faces of the inspection object. A visual inspection method characterized by detecting the reflected light to determine the displacement of each end face, and inspecting the length dimension, the surface roughness and the end face shape of the object to be inspected based on the displacement value. 請求項1又は2記載の外観検査方法において、前記被検査物が円筒体又は円柱体であることを特徴とする外観検査方法。 3. The appearance inspection method according to claim 1, wherein the object to be inspected is a cylindrical body or a columnar body. 請求項1又は2記載の外観検査方法において、前記被検査物を回転させながら両端面にレーザ光を照射することを特徴とする外観検査方法。 3. The appearance inspection method according to claim 1, wherein laser light is irradiated to both end faces while rotating the inspection object. 請求項2記載の外観検査方法において、前記被検査物の両端面の周縁部に直径方向にレーザ光を移動させながら照射することを特徴とする外観検査方法。 3. The appearance inspection method according to claim 2, wherein the laser beam is irradiated while moving the laser beam in the diametrical direction to the peripheral portions of both end faces of the inspection object. 請求項2記載の外観検査方法において、前記被検査物の端面形状が端面の周縁部に形成された面取り部の形状であることを特徴とする外観検査方法。 3. The appearance inspection method according to claim 2, wherein an end face shape of the inspection object is a shape of a chamfered portion formed at a peripheral edge portion of the end face. 請求項1又は2記載の外観検査方法において、レーザ光の照射によって求められた各端面の変位と予め設定された公差とを比較することで被検査物の良否を判定することを特徴とする外観検査方法。 3. The appearance inspection method according to claim 1, wherein the quality of the object to be inspected is determined by comparing the displacement of each end face obtained by laser light irradiation with a preset tolerance. Inspection method. 外形が円形をした被検査物を定位置で回転させる駆動手段と、
前記被検査物の軸方向の両側に配置され、前記被検査物の両端面にそれぞれレーザ光を照射しその反射光を検出する一対の変位計と、
前記変位計から得られた各端面の変位に基づいて被検査物の長さ寸法及び端面の表面粗さを検査する検査手段とを備えることを特徴とする外観検査装置。
Driving means for rotating the inspection object having a circular outer shape at a fixed position;
A pair of displacement meters that are arranged on both sides in the axial direction of the object to be inspected, irradiate both end faces of the object to be inspected with laser light and detect the reflected light;
An appearance inspection apparatus comprising: inspection means for inspecting the length dimension of the object to be inspected and the surface roughness of the end face based on the displacement of each end face obtained from the displacement meter.
外形が円形をした被検査物を定位置で回転させる駆動手段と、
前記被検査物の軸方向の両側に配置され、前記被検査物の両端面にそれぞれレーザ光を照射しその反射光を検出する一対の変位計と、
前記変位計から得られた各端面の変位に基づいて被検査物の長さ寸法、端面の表面粗さ及び端面形状を検査する検査手段とを備えることを特徴とする外観検査装置。
Driving means for rotating the inspection object having a circular outer shape at a fixed position;
A pair of displacement meters that are arranged on both sides in the axial direction of the object to be inspected, irradiate both end faces of the object to be inspected with laser light and detect the reflected light;
An appearance inspection apparatus comprising: inspection means for inspecting the length dimension, the surface roughness and the end surface shape of the object to be inspected based on the displacement of each end surface obtained from the displacement meter.
請求項8又は9記載の外観検査装置において、前記検査手段が、前記変位計から得られた各端面の変位と、予め設定された公差とを比較して被検査物の良否を判定する比較判定回路を備えることを特徴とする外観検査装置。 10. The visual inspection apparatus according to claim 8, wherein the inspection means compares the displacement of each end face obtained from the displacement meter with a preset tolerance to determine whether the inspection object is good or bad. An appearance inspection apparatus comprising a circuit. 請求項9記載の外観検査装置において、前記変位計は被検査物の直径方向に移動可能に設置されていることを特徴とする外観検査装置。 10. The appearance inspection apparatus according to claim 9, wherein the displacement meter is installed so as to be movable in the diameter direction of the object to be inspected. 請求項8又は9記載の外観検査装置において、被検査物を定位置に供給するためのフィーダが、円弧状の載置面を有することを特徴とする外観検査装置。 10. The appearance inspection apparatus according to claim 8, wherein the feeder for supplying the inspection object to a fixed position has an arcuate placement surface. 請求項12記載の外観検査装置において、フィーダが半円筒状のハーフパイプによって形成されていることを特徴とする外観検査装置。 13. The appearance inspection apparatus according to claim 12, wherein the feeder is formed by a semi-cylindrical half pipe.
JP2005188114A 2005-06-28 2005-06-28 Method and device for inspecting appearance Pending JP2007010336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005188114A JP2007010336A (en) 2005-06-28 2005-06-28 Method and device for inspecting appearance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005188114A JP2007010336A (en) 2005-06-28 2005-06-28 Method and device for inspecting appearance

Publications (1)

Publication Number Publication Date
JP2007010336A true JP2007010336A (en) 2007-01-18

Family

ID=37749072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005188114A Pending JP2007010336A (en) 2005-06-28 2005-06-28 Method and device for inspecting appearance

Country Status (1)

Country Link
JP (1) JP2007010336A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011180056A (en) * 2010-03-03 2011-09-15 Bridgestone Corp Inspection device and inspection method for application object
WO2013065565A1 (en) * 2011-11-04 2013-05-10 Ntn株式会社 Defect inspection device and defect inspection method for resin retention apparatus
JP2014020908A (en) * 2012-07-18 2014-02-03 Kawasaki Heavy Ind Ltd Measurement device
CN110542400A (en) * 2019-09-10 2019-12-06 广东职业技术学院 long pipe inner wall roughness measuring device based on test metering technology and measuring method thereof
CN116642829A (en) * 2023-07-26 2023-08-25 合肥金星智控科技股份有限公司 Steel pipe end face detection device and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59114406A (en) * 1982-12-21 1984-07-02 Nippon Steel Corp Automatic measurement of shape of tube end
JPS62232507A (en) * 1986-04-01 1987-10-13 Kobe Steel Ltd Shape measuring device
JPH0872832A (en) * 1994-06-27 1996-03-19 Kyodo Printing Co Ltd Conveyor for inspection of cylindrical vessel and inspection device of cylindrical vessel by use thereof
JPH10105868A (en) * 1996-09-30 1998-04-24 Omron Corp Vehicle measuring device/method
JP2000065535A (en) * 1998-08-21 2000-03-03 Nippon Steel Corp Thickness measurement equipment and method therefor
JP2001272215A (en) * 2000-03-23 2001-10-05 Niigata Eng Co Ltd Measuring method of screw, apparatus therefor and determining apparatus for propriety of shape of screw

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59114406A (en) * 1982-12-21 1984-07-02 Nippon Steel Corp Automatic measurement of shape of tube end
JPS62232507A (en) * 1986-04-01 1987-10-13 Kobe Steel Ltd Shape measuring device
JPH0872832A (en) * 1994-06-27 1996-03-19 Kyodo Printing Co Ltd Conveyor for inspection of cylindrical vessel and inspection device of cylindrical vessel by use thereof
JPH10105868A (en) * 1996-09-30 1998-04-24 Omron Corp Vehicle measuring device/method
JP2000065535A (en) * 1998-08-21 2000-03-03 Nippon Steel Corp Thickness measurement equipment and method therefor
JP2001272215A (en) * 2000-03-23 2001-10-05 Niigata Eng Co Ltd Measuring method of screw, apparatus therefor and determining apparatus for propriety of shape of screw

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011180056A (en) * 2010-03-03 2011-09-15 Bridgestone Corp Inspection device and inspection method for application object
WO2013065565A1 (en) * 2011-11-04 2013-05-10 Ntn株式会社 Defect inspection device and defect inspection method for resin retention apparatus
JP2013096945A (en) * 2011-11-04 2013-05-20 Ntn Corp Defect inspection device and defect inspection method for resin retention apparatus
JP2014020908A (en) * 2012-07-18 2014-02-03 Kawasaki Heavy Ind Ltd Measurement device
CN110542400A (en) * 2019-09-10 2019-12-06 广东职业技术学院 long pipe inner wall roughness measuring device based on test metering technology and measuring method thereof
CN110542400B (en) * 2019-09-10 2021-03-16 广东职业技术学院 Long pipe inner wall roughness measuring device based on test metering technology and measuring method thereof
CN116642829A (en) * 2023-07-26 2023-08-25 合肥金星智控科技股份有限公司 Steel pipe end face detection device and method

Similar Documents

Publication Publication Date Title
JP4363830B2 (en) Tube shape measuring method, apparatus, tube inspection method, apparatus, tube manufacturing method and system
US20130256275A1 (en) Manufacturing method and manufacturing apparatus for uoe steel pipe or tube
JP2007010336A (en) Method and device for inspecting appearance
JPH04323543A (en) Pipe inspecting apparatus and pipe adjusting method
JP2009252644A (en) Inspection method for battery can and inspection device for the battery can
JP2013134198A (en) End shape detection method, end shape inspection method, end shape detection device, and end shape inspection device for angle steel
KR102380626B1 (en) Apparatus for measuring film edge
JP2010185763A (en) Planarity inspection apparatus and planarity inspection method of film
KR101691397B1 (en) Apparatus for Outside Diameter and Visual Inspection of Taper Roller
JP2008286791A (en) Surface defect inspection method and apparatus
JPH06508925A (en) Equipment for inspecting the surface of conical parts
JPH07311163A (en) Instrument and method for measuring x-ray reflectance
JP4930948B2 (en) Shaft body conveying device and outer diameter inspection device for large diameter portion of shaft body using the same
JP5316836B2 (en) Defect inspection method and defect inspection apparatus for glass article
JP2000146506A (en) Contacting measuring apparatus for inside diameter of pipe
JP2022001549A (en) Method and system for manufacturing glass container and glass container
KR101805730B1 (en) Pitch circle measuring apparatus of workpiece
JP2010216927A (en) Apparatus and method of measuring thickness of steel pipe
KR200377553Y1 (en) Apparatus for measuring the strip flatness with laser
JP2010197213A (en) Device for cutting and inspecting round bar material
JP2006275728A (en) Component inspection device
JP4118148B2 (en) Tube shape measuring method, tube inspection method
JP3656181B2 (en) Calibration method of ultrasonic probe and ultrasonic flaw detector
JP5485861B2 (en) Cylindrical inspection device
JP2014167429A (en) Cylindrical body inspection apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080617

A977 Report on retrieval

Effective date: 20110104

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110719