JP2009192249A - Method and device for measuring transmission wave front aberration of test lens - Google Patents

Method and device for measuring transmission wave front aberration of test lens Download PDF

Info

Publication number
JP2009192249A
JP2009192249A JP2008030489A JP2008030489A JP2009192249A JP 2009192249 A JP2009192249 A JP 2009192249A JP 2008030489 A JP2008030489 A JP 2008030489A JP 2008030489 A JP2008030489 A JP 2008030489A JP 2009192249 A JP2009192249 A JP 2009192249A
Authority
JP
Japan
Prior art keywords
test lens
interferometer
lens
measuring
wavefront aberration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008030489A
Other languages
Japanese (ja)
Inventor
Kenji Harada
賢二 原田
Masayuki Okada
雅之 岡田
Hiroyuki Sasagawa
裕之 笹川
Shinji Kimura
伸司 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2008030489A priority Critical patent/JP2009192249A/en
Publication of JP2009192249A publication Critical patent/JP2009192249A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device capable of making the optical axis of a test lens coincide with the axis of the interferometer with the circular plane part (R2 plane part), in mounting the test lens as a reference, and thereafter measuring the transmission wave front aberrations with the interferometer, in a measuring method of wave front aberration which measures the wave front aberrations of the test lens, having circular plane parts, respectively at the plane periphery edges of the front and rear lens surface. <P>SOLUTION: A transmission wave front aberration measuring method comprises: a step where in the front and rear circular plane parts of an test lens mounted on a sample base, inclined measuring light is made incident to a mount reference circular planar part which abuts against a lens holder, when the test lens is mounted to detect the inclination amount, from the optical axis of the interferometer of the test lens by the reflection light of the inclination measuring light from the test lens; a step for adjusting the inclination of the sample base, based on the inclination detection amount to coincide the optical axis of the test lens with the optical axis of the interferometer; and a step for measuring the wave front aberrations by the interferometer, in the condition where the optical axes coincide. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、被検レンズの透過波面収差を測定する方法及び装置に関する。   The present invention relates to a method and apparatus for measuring transmitted wavefront aberration of a lens to be examined.

例えば、光ピックアップの対物レンズ(被検レンズ)の諸収差は、干渉計を用いて、該対物レンズの透過光と基準面からの反射光による干渉縞を観察することで透過波面収差として測定されている。被検対物レンズは一般に、表裏のレンズ面R1、R2の周縁にそれぞれ光軸と直交するように設計された互いに平行をなす環状平面部を備えており、実際の装置に実装するときには、表裏のいずれか一方の載置基準環状平面部(R2面平面部)をレンズホルダに当接させる。一方、干渉計による透過波面収差の測定時には、R2面平面部を試料台に当接させ、その反対側の面(R1面平面部)の反射光を観察して被検対物レンズの光軸を干渉計光軸に一致させる調整を行っている。
特許第3581702号公報 特開平10-116438号公報 特開2001-34991号公報
For example, various aberrations of the objective lens (test lens) of the optical pickup are measured as transmitted wavefront aberration by observing interference fringes caused by the transmitted light of the objective lens and the reflected light from the reference surface using an interferometer. ing. In general, the objective lens to be examined is provided with annular plane portions parallel to each other designed to be orthogonal to the optical axis at the periphery of the lens surfaces R1 and R2 on the front and back sides. Either one of the mounting reference annular plane portions (R2 plane portion) is brought into contact with the lens holder. On the other hand, when measuring the transmitted wavefront aberration with an interferometer, the R2 plane plane part is brought into contact with the sample stage, the reflected light on the opposite side (R1 plane plane part) is observed, and the optical axis of the objective lens to be examined is adjusted. Adjustments are made to match the optical axis of the interferometer.
Japanese Patent No. 3581702 JP-A-10-116438 JP 2001-34991 A

しかしながら、この従来の測定方法では、被検対物レンズのR2平面部に微細なごみが付着していたり、R2平面部に成形時のバリが存在すると、R2平面部が試料台の支持面に密着せず、測定した透過波面収差は不正確なものとなる。つまり、従来方法は、R2平面部を試料台に置くと、被検対物レンズの光軸と試料台光軸が一致するとの前提(期待)の元に成り立っており、この関係が成立しない状態では、被検対物レンズ固有の正しい透過波面収差を測定することができなかった。また、R1平面部とR2平面部は、ともに光軸と直交する互いに平行な面として設計製造されているが、製造工程で両平面部間にチルト(楔)が発生すると、同様に正しい透過波面収差を測定することができない。   However, in this conventional measuring method, if fine dust adheres to the R2 plane part of the objective lens to be examined or burrs are formed on the R2 plane part, the R2 plane part is brought into close contact with the support surface of the sample stage. Therefore, the measured transmitted wavefront aberration is inaccurate. In other words, the conventional method is based on the premise (expectation) that when the R2 plane portion is placed on the sample stage, the optical axis of the objective lens to be examined and the sample stage optical axis coincide with each other. The correct transmitted wavefront aberration specific to the objective lens to be examined could not be measured. The R1 plane portion and the R2 plane portion are both designed and manufactured as surfaces parallel to each other perpendicular to the optical axis, but if a tilt (wedge) occurs between the two plane portions in the manufacturing process, the correct transmitted wavefront is similarly obtained. Aberration cannot be measured.

従って本発明は、被検レンズを実装するときの環状平面部(R2平面部)を基準にして、被検レンズの光軸を干渉計光軸と一致させ、その後に干渉計による透過波面収差の測定ができる方法及び装置を得ることを目的とする。   Therefore, according to the present invention, the optical axis of the test lens is made to coincide with the optical axis of the interferometer with reference to the annular flat surface portion (R2 flat surface portion) when the test lens is mounted. The object is to obtain a method and apparatus capable of measurement.

本発明は、表裏のレンズ面周縁にそれぞれ環状平面部を有する被検レンズの波面収差を干渉計により測定する波面収差測定方法の態様においては、試料台に載置した被検レンズの表裏の環状平面部のうち、該被検レンズを実装するときにレンズホルダに当接させる載置基準環状平面部に向けて傾き測定光を入射させ、該傾き測定光の被検レンズからの反射光により被検レンズの干渉計光軸からの傾き量を検知するステップと;この傾き検知量に基づき、上記試料台の傾きを調整し、被検レンズ光軸を干渉計光軸に一致させるステップと;この光軸一致状態で上記干渉計による波面収差測定を行うステップと;を有することを特徴としている。   In the aspect of the wavefront aberration measuring method for measuring the wavefront aberration of the test lens having the annular flat portions on the front and back lens surface peripheries with the interferometer, the present invention provides a front and back ring of the test lens placed on the sample stage. Inclination measurement light is made incident on the flat reference portion of the flat surface portion that is in contact with the lens holder when the lens to be tested is mounted, and is reflected by the reflected light from the lens to be measured. Detecting the tilt amount of the test lens from the interferometer optical axis; adjusting the tilt of the sample stage based on the tilt detection amount and matching the test lens optical axis with the interferometer optical axis; And measuring the wavefront aberration by the interferometer in a state where the optical axes coincide with each other.

干渉計は、具体的には、被検レンズに向けて干渉縞測定光を発する干渉光光源と、この干渉光光源から出射され該被検レンズを透過した干渉縞測定光を元の光路に反射する凹反射面を有する反射手段と、該反射手段上のカバーガラスと、上記被検レンズの環状平面部で反射した干渉縞測定直接反射光及び上記反射手段で反射し被検レンズを透過した干渉縞測定透過反射光を入射させて干渉縞を観察する干渉縞観察撮像装置と、を備えており、被検レンズの傾きを検知するステップの前に、干渉計の反射手段とカバーガラスを被検レンズの傾き測定光の光路から退避させるステップを含む。   Specifically, the interferometer reflects an interference light source that emits interference fringe measurement light toward the lens to be examined, and the interference fringe measurement light emitted from the interference light source and transmitted through the test lens to the original optical path. Reflecting means having a concave reflecting surface, a cover glass on the reflecting means, interference fringe measurement direct reflected light reflected by the annular flat surface portion of the test lens, and interference reflected by the reflecting means and transmitted through the test lens An interference fringe observation imaging device for observing the interference fringes by making the fringe measurement transmitted reflected light incident, and before the step of detecting the inclination of the lens to be examined, the reflection means of the interferometer and the cover glass are examined. A step of retracting from the optical path of the lens tilt measurement light.

干渉計の反射手段とカバーガラスは一体であっても別体で個別に移動可能でも本発明は対応できる。一体型の場合には、カバーガラスの干渉計光軸から傾きを検知し反射手段とカバーガラスの傾きを修正するステップを含ませることができ、個別に移動可能な場合には、カバーガラスの干渉計光軸から傾きを検知し修正するステップを含ませることができる。   The present invention can deal with the case where the reflecting means and the cover glass of the interferometer are integrated or can be moved separately. In the case of the integrated type, a step of detecting the tilt from the optical axis of the cover glass interferometer and correcting the tilt of the reflecting means and the cover glass can be included. A step of detecting and correcting tilt from the metering optical axis can be included.

あるいは、干渉計の反射手段及びカバーガラスの径を、被検レンズの傾き量検知装置の傾き測定光の径及び干渉計の干渉縞測定光の径より小径とし、該反射手段及びカバーガラスを移動させることなく、試料台に載置した被検レンズの干渉計光軸からの傾き量を検知するステップを実行させることができる。   Alternatively, the diameter of the reflection means and the cover glass of the interferometer is made smaller than the diameter of the tilt measurement light of the lens tilt amount detection device and the interference fringe measurement light of the interferometer, and the reflection means and the cover glass are moved. The step of detecting the tilt amount from the interferometer optical axis of the lens to be tested placed on the sample stage can be executed without doing so.

本発明は、表裏のレンズ面周縁にそれぞれ環状平面部を有する対物レンズの波面収差を干渉計により測定する被検レンズの波面収差測定装置の態様においては、被検レンズを載置する試料台と;試料台に載置した被検レンズの表裏の環状平面部のうち、該被検レンズを実装するときの載置面側の載置基準環状平面部に向けて傾き測定光を入射させる傾き光検知光源と、その反射光を検知する撮像装置とを有する被検レンズの傾き量検知装置と;試料台の傾きを調整するαβステージと;を備え、被検レンズの傾き量検知装置による被検レンズの傾き量に基づき、αβステージにより試料台の傾きを調整して該試料台上の被検レンズ光軸を上記干渉計光軸に一致させ、この光軸一致状態で該干渉計による波面収差測定を行うことを特徴としている。   In the aspect of the wavefront aberration measuring apparatus for a test lens for measuring the wavefront aberration of an objective lens having an annular flat portion on each of the front and back lens surface peripheral edges by an interferometer, a sample table on which the test lens is placed, Tilt light that causes tilt measurement light to be incident on the mounting reference annular plane portion on the mounting surface side when the lens to be tested is mounted among the annular plane portions on the front and back of the lens to be tested placed on the sample stage. A test lens tilt amount detection device having a detection light source and an imaging device for detecting the reflected light; and an αβ stage for adjusting the tilt of the sample stage. Based on the amount of tilt of the lens, the tilt of the sample stage is adjusted by the αβ stage so that the optical axis of the lens on the sample stage coincides with the optical axis of the interferometer. It is characterized by taking measurements

干渉計は、具体的には、被検レンズに向けて干渉縞測定光を発する干渉光光源と、この干渉光光源から出射され該被検レンズを透過した干渉縞測定光を元の光路に反射する凹反射面を有する反射手段と、該反射手段上のカバーガラスと、上記被検レンズの環状平面部で反射した干渉縞測定直接反射光及び上記反射手段で反射し被検レンズを透過した干渉縞測定透過反射光を入射させて干渉縞を観察する干渉縞観察撮像装置と、を備えており、さらに、この干渉計の反射手段とカバーガラスを、被検レンズの傾き量検知装置による被検レンズの傾き検知時に、該被検レンズ傾き検知装置の傾き光検知光路から退避させる退避機構を備えることができる。   Specifically, the interferometer reflects an interference light source that emits interference fringe measurement light toward the lens to be examined, and the interference fringe measurement light emitted from the interference light source and transmitted through the test lens to the original optical path. Reflecting means having a concave reflecting surface, a cover glass on the reflecting means, interference fringe measurement direct reflected light reflected by the annular flat surface portion of the test lens, and interference reflected by the reflecting means and transmitted through the test lens And an interference fringe observation imaging device for observing the interference fringes by making the fringe measurement transmitted reflected light incident thereon. Further, the reflection means of the interferometer and the cover glass are inspected by the inclination detecting device of the lens to be inspected. When detecting the tilt of the lens, a retracting mechanism for retracting from the tilt light detection optical path of the lens tilt detecting device to be detected can be provided.

干渉計の反射手段とカバーガラスを一体とする態様では、試料台に、カバーガラスでの反射光が透過する貫通穴を設けることができる。   In the aspect in which the reflection means of the interferometer and the cover glass are integrated, a through hole through which the reflected light from the cover glass is transmitted can be provided in the sample table.

干渉計の反射手段とカバーガラスは、個別に移動可能としてもよい。このとき、カバーガラスの傾きを調整するαβステージを備えるのがよい。   The reflection means and the cover glass of the interferometer may be individually movable. At this time, an αβ stage for adjusting the inclination of the cover glass is preferably provided.

干渉計の反射手段及びカバーガラスの径は、被検レンズの傾き量検知装置の傾き測定光の径及び干渉計の干渉縞測定光の径より小径に設定すると、反射手段及びカバーガラスの退避機構は不要である。   When the diameter of the reflection means and the cover glass of the interferometer is set to be smaller than the diameter of the tilt measurement light of the lens tilt amount detection device and the interference fringe measurement light of the interferometer, the reflection means and the cover glass retracting mechanism Is unnecessary.

本発明の被検レンズの透過波面収差測定方法及び装置は、被検レンズを実装するときの環状平面部(R2平面部)を基準に該被検レンズの傾きを検出して、被検レンズの光軸を干渉計光軸と一致させ、その後に干渉計による透過波面収差の測定を行うので、被検レンズ固有の諸収差を正確に測定することができる。   The method and apparatus for measuring the transmitted wavefront aberration of a test lens according to the present invention detects the inclination of the test lens with reference to the annular flat surface portion (R2 flat surface portion) when the test lens is mounted. Since the optical axis is made coincident with the optical axis of the interferometer, and then the transmitted wavefront aberration is measured by the interferometer, various aberrations specific to the lens to be measured can be accurately measured.

図1ないし図7は、本発明による被検レンズの透過波面収差測定方法及び装置の第一の実施形態を示すもので、図6は、本発明の対象とする被検レンズとして示した、光ピックアップ用被検対物レンズLの形状例を示している。この被検対物レンズLは、表裏のレンズ面の周縁に、それぞれ光軸と直交するように設計された互いに平行をなす環状のR1平面部と、R2平面部を備えている。R2平面部は、実際の装置(光ピックアップ)に実装するときに該装置のレンズホルダに当接させて光学的基準とする基準面である。   1 to 7 show a first embodiment of a method and apparatus for measuring transmitted wavefront aberration of a test lens according to the present invention, and FIG. 6 shows a light shown as a test lens as a subject of the present invention. An example of the shape of the pickup objective lens L is shown. The objective lens L to be tested includes an annular R1 plane portion and an R2 plane portion that are parallel to each other and are designed to be orthogonal to the optical axis at the periphery of the front and back lens surfaces. The R2 plane portion is a reference surface that is brought into contact with the lens holder of the apparatus when mounted on an actual apparatus (optical pickup) and serves as an optical reference.

まず、通常の干渉計(透過波面測定装置)の要素を説明する。干渉計は、干渉光光源としての半導体レーザ光源(LD)11の光路上に順に、コリメートレンズ12、干渉縞観察用ハーフミラー13、基準平面板14、点像観察用ハーフミラー15、試料台(αβXYZステージ)16、及びカバーガラス17Cを有する凹面反射鏡17を備えている。   First, the elements of a normal interferometer (transmitted wavefront measuring apparatus) will be described. The interferometer has a collimator lens 12, an interference fringe observation half mirror 13, a reference plane plate 14, a point image observation half mirror 15, a sample stage (in order) on the optical path of a semiconductor laser light source (LD) 11 as an interference light source. An αβXYZ stage) 16 and a concave reflecting mirror 17 having a cover glass 17C are provided.

干渉縞観察用ハーフミラー13からの分岐光路上には、干渉縞観察用撮像装置18とそのモニタ(干渉縞観察モニタ)18Mが配置され、点像観察用ハーフミラー15からの分岐光路上には点像観察用撮像装置19とそのモニタ(点像観察モニタ)19Mが配置されている。試料台16は、被検対物レンズL等を載置するものであり、載置要素の光軸に対する傾き、光軸直交平面内での平面位置及び光軸方向位置を調整する(ことができる)。このようなステージは周知であり、厳密には被検対物レンズL等の載置部と調整部(αβステージ及びXYZステージ)は別構成である。αβステージは、光軸に対する傾きを調整する(ことができる)ステージ、XYZステージは光軸直交平面内での平面位置及び光軸方向位置を調整する(ことができる)ステージである。   An interference fringe observation imaging device 18 and its monitor (interference fringe observation monitor) 18M are arranged on the branch optical path from the interference fringe observation half mirror 13, and on the branch optical path from the point image observation half mirror 15. A point image observation imaging device 19 and a monitor (point image observation monitor) 19M are arranged. The sample stage 16 is used to place the objective lens L to be tested and the like, and can adjust the inclination of the mounting element with respect to the optical axis, the plane position in the plane orthogonal to the optical axis, and the position in the optical axis direction. . Such a stage is well known. Strictly speaking, the placement unit such as the objective lens L to be tested and the adjustment unit (αβ stage and XYZ stage) have different configurations. The αβ stage is a stage that can adjust the tilt with respect to the optical axis, and the XYZ stage is a stage that can adjust the plane position and the optical axis direction position in the optical axis orthogonal plane.

本実施形態は、以上の通常の干渉計の要素に加えて、試料台16に載置した被検対物レンズLのR1平面部とR2平面部のうち、R2平面部に向けて傾き測定レーザを投光する半導体レーザ光源(LD)(傾き光検知光源)21と、その反射光を検知するR2面点像用撮像装置22とを有している。R2面点像用撮像装置22にはモニタ(R2面点像観察用モニタ)22Mが接続されている。加えて、凹面反射鏡17は、αβステージ17Aによる傾き調整のみならず、凹面鏡退避ステージ17Bによる干渉計主光軸方向または光軸垂直方向への退避運動(試料台16に接離する方向の移動)が可能である。凹面反射鏡17が凹面鏡退避ステージ17Bにより光軸方向または光軸垂直方向に移動できる点は従来干渉計にはない構成である。   In the present embodiment, in addition to the above-described elements of a normal interferometer, an inclination measuring laser is directed toward the R2 plane portion of the R1 plane portion and the R2 plane portion of the objective lens L placed on the sample stage 16. A semiconductor laser light source (LD) (tilt light detection light source) 21 for projecting light and an R2 surface point image pickup device 22 for detecting the reflected light are provided. The R2 plane point image capturing device 22 is connected to a monitor (R2 plane point image observation monitor) 22M. In addition, the concave reflecting mirror 17 is not only tilt-adjusted by the αβ stage 17A, but also retracted in the direction of the main optical axis of the interferometer or in the direction perpendicular to the optical axis by the concave mirror retracting stage 17B Is possible. The point that the concave reflecting mirror 17 can be moved in the optical axis direction or the optical axis vertical direction by the concave mirror retracting stage 17B is a configuration that the conventional interferometer does not have.

また試料台16には、図7に模式的に示すように、被検対物レンズLのレンズ面を落とし込む円形貫通穴16Hと、その周囲のR2平面部載置面が形成されており、この載置面に、R2平面部より径が大きい不連続な貫通穴16Rが形成されている。この不連続貫通穴16Rは、半導体レーザ光源21からのレーザ光を通過させてR2平面部に照射し、かつ凹面反射鏡17のカバーガラス17Cからの反射光を通過させる作用を有する。カバーガラス17Cは、光ピックアップ装置の記録メディアの光透過保護層に相当する光学要素であり、被検対物レンズLの光学性能は、カバーガラス17Cとの合成性能として測定される。凹面反射鏡17は、凹反射面を有する反射手段として、半球鏡に置き換えることができる。   Further, as schematically shown in FIG. 7, the sample stage 16 is formed with a circular through hole 16H into which the lens surface of the objective lens L to be tested is dropped and a surrounding R2 plane portion mounting surface. A discontinuous through hole 16R having a diameter larger than that of the R2 plane portion is formed on the mounting surface. The discontinuous through-hole 16R has an effect of allowing the laser light from the semiconductor laser light source 21 to pass through and irradiating the R2 plane portion and allowing the reflected light from the cover glass 17C of the concave reflecting mirror 17 to pass. The cover glass 17C is an optical element corresponding to the light transmission protective layer of the recording medium of the optical pickup device, and the optical performance of the test objective lens L is measured as a composite performance with the cover glass 17C. The concave reflecting mirror 17 can be replaced with a hemispherical mirror as reflecting means having a concave reflecting surface.

以上の構成の被検対物レンズの透過波面収差測定装置を利用して、本実施形態では被検対物レンズの透過波面収差の測定を次のステップで行う。   In the present embodiment, the transmission wavefront aberration of the test objective lens is measured in the following steps using the transmission wavefront aberration measurement apparatus for the test objective lens having the above configuration.

干渉計基準点決定ステップ
図1に示すように、試料台16上にコーナキューブプリズム31を置き、半導体LD光源11からレーザ光(干渉縞測定光)を発する。すると、同レーザ光は、基準平面板14で反射して干渉縞観察用ハーフミラー13を介して干渉縞観察用撮像装置18に入射すると同時に、コーナキューブプリズム31に入射して同光路を戻り、干渉縞観察用ハーフミラー13を介して干渉縞観察用撮像装置18に入射するため、干渉縞観察モニタ18Mによって干渉縞を観測することができる。そして、この干渉縞がワンカラーになるよう基準平面板14の傾きを調整し、このときの点像観察モニタ19M上の点像位置を基準点Iと
して記録する。
Interferometer Reference Point Determination Step As shown in FIG. 1, a corner cube prism 31 is placed on the sample stage 16, and laser light (interference fringe measurement light) is emitted from the semiconductor LD light source 11. Then, the laser beam is reflected by the reference plane plate 14 and enters the interference fringe observation imaging device 18 via the interference fringe observation half mirror 13, and at the same time enters the corner cube prism 31 and returns through the optical path. Since the light is incident on the interference fringe observation imaging device 18 via the interference fringe observation half mirror 13, the interference fringe observation monitor 18M can observe the interference fringes. Then, the inclination of the reference plane plate 14 is adjusted so that the interference fringes become one color, and the point image position on the point image observation monitor 19M at this time is recorded as the reference point I.

R2面側基準点決定ステップ
図2に示すように、試料台16上に、コーナキューブプリズム31に代えてオプチカルパラレル32を載置し、オプチカルパラレル32による反射光の点像位置が、点像観察モニタ19M上で基準点Iに一致するように、試料台16
を調整する。あるいは、干渉縞観察モニタ18Mによって観察される干渉縞がワンカラーになるように、試料台16の傾きを調整する。この調整で、オプチカルパラレル32平面(試料台16のレンズ載置面)は干渉計光軸と直交する。
R2-plane-side reference point determination step As shown in FIG. 2, an optical parallel 32 is placed on the sample stage 16 instead of the corner cube prism 31, and the point image position of the reflected light by the optical parallel 32 is point image observation. The sample stage 16 is aligned with the reference point I on the monitor 19M.
Adjust. Alternatively, the inclination of the sample stage 16 is adjusted so that the interference fringe observed by the interference fringe observation monitor 18M becomes one color. By this adjustment, the optical parallel 32 plane (the lens mounting surface of the sample stage 16) is orthogonal to the interferometer optical axis.

次に、図3に示すように、試料台16(オプチカルパラレル32)から凹面反射鏡17を退避させ、半導体レーザ光源21によるオプチカルパラレル32へのレーザ光(傾き測定光)の照射を可能とする。そして、半導体レーザ光源21からオプチカルパラレル32裏面へレーザ光を照射すると、その反射光がR2面点像用撮像装置22に入射し、R2面点像観察用モニタ22Mで点像が観察される。このR2面点像観察用モニタ22M上の点像位置を基準点IIとし
て記録する。この基準点は、干渉計光軸と直交するオプチカルパラレル32(試料台16のレンズ載置面)に対応している。
Next, as shown in FIG. 3, the concave reflecting mirror 17 is retracted from the sample stage 16 (optical parallel 32), and laser light (tilt measurement light) can be irradiated onto the optical parallel 32 by the semiconductor laser light source 21. . When laser light is irradiated from the semiconductor laser light source 21 to the back surface of the optical parallel 32, the reflected light enters the R2 plane point image capturing device 22, and a point image is observed on the R2 plane point image observation monitor 22M. The point image position on the R2 plane point image observation monitor 22M is recorded as the reference point II. This reference point corresponds to an optical parallel 32 (lens mounting surface of the sample stage 16) orthogonal to the interferometer optical axis.

測定レンズ傾き調整ステップ
図4に示すように、凹面反射鏡17を退避させたまま、オプチカルパラレル32に代えて、R2平面部を下方に向けた被検対物レンズLを試料台16上に載置する。この状態で、試料台16の不連続貫通穴16Rを介して、被検対物レンズLのR2平面部に半導体レーザ光源21からの傾き測定光を入射させ、R2面点像観察用モニタ22Mで観察される点像を観察し、同点像が基準点IIに重なるように、試料台16を調整する。この調整が終了すると、被検対物レンズLのR2平面部と試料台16のレンズ載置面との間に、ゴミが挟まっていたり、R2平面部に成形バリが生じていたとしても、被検対物レンズLの光軸は干渉計光軸と一致することになる。
Measurement Lens Tilt Adjustment Step As shown in FIG. 4, with the concave reflecting mirror 17 retracted, the objective lens L to be examined is placed on the sample stage 16 with the R2 plane portion facing downward instead of the optical parallel 32. To do. In this state, the tilt measuring light from the semiconductor laser light source 21 is incident on the R2 plane portion of the objective lens L through the discontinuous through hole 16R of the sample stage 16, and observed by the R2 plane point image observation monitor 22M. The sample stage 16 is adjusted so that the point image overlaps the reference point II. When this adjustment is completed, even if dust is sandwiched between the R2 plane portion of the objective lens L to be tested and the lens mounting surface of the sample stage 16, or a molding burr is generated on the R2 plane portion, The optical axis of the objective lens L coincides with the interferometer optical axis.

カバーガラス傾き調整ステップ
図5に示すように、凹面反射鏡17を元の観察位置に戻し、半導体LD光源11による点像観察モニタ19Mの点像位置を観察し、凹面反射鏡17のカバーガラス17Cからの反射点像の位置が基準点Iと一致するように調整する
。この調整で干渉計側の調整が終了する。
As shown in FIG. 5, the concave reflecting mirror 17 is returned to the original observation position, the point image position of the point image observation monitor 19M by the semiconductor LD light source 11 is observed, and the cover glass 17C of the concave reflecting mirror 17 is observed. Is adjusted so that the position of the reflection point image from the reference point I coincides with the reference point I. This adjustment ends the adjustment on the interferometer side.

透過波面収差測定ステップ
試料台16により被検対物レンズLをオートコリメーションにし、透過波面計測を行なう。すなわち、半導体LD光源11からのレーザ光(干渉縞測定光)を被検対物レンズLに入射させると、被検対物レンズLを透過し凹面反射鏡17で反射して元の光路を戻る干渉縞測定透過反射光が干渉縞観察用撮像装置18に入射し、同時に、基準平面板14で反射された反射光が干渉縞観察用撮像装置18に入射する。干渉縞観察モニタ18Mで、この両光で発生した干渉縞を観察することにより、被検対物レンズLの正しい波面収差、つまり、被検対物レンズLの光軸を正しく干渉計光軸と一致させた状態での波面収差を測定することができる。縞解析の手法は周知である。
Transmitted wavefront aberration measurement step The test objective lens L is auto-collimated by the sample stage 16, and transmitted wavefront measurement is performed. That is, when the laser light (interference fringe measurement light) from the semiconductor LD light source 11 is incident on the test objective lens L, the interference fringes that pass through the test objective lens L, are reflected by the concave reflecting mirror 17, and return to the original optical path. The measured transmitted reflected light enters the interference fringe observation imaging device 18, and at the same time, the reflected light reflected by the reference plane plate 14 enters the interference fringe observation imaging device 18. By observing the interference fringes generated by both the lights with the interference fringe observation monitor 18M, the correct wavefront aberration of the objective lens L, that is, the optical axis of the objective lens L to be correctly matched with the optical axis of the interferometer. It is possible to measure wavefront aberration in a state where The method of fringe analysis is well known.

図8から図12は、本発明による被検対物レンズLの透過波面収差測定方法及び装置の第二の実施形態を示すもので、図8、図9、図10、図11及び図12はそれぞれ、図1、図2、図3、図4及び図5に対応している。この実施形態は、図1ないし図5の装置構成の上下を逆転させ、試料台16上のレンズ載置面に、被検対物レンズLのR1平面部を当接させ、半導体レーザ光源21によるR2平面部への照射を試料台16の不連続貫通穴16Rを介することなく行うようにした実施形態である。つまり、被検対物レンズLのR2平面部は、試料台16上に載置されたとき、上を向いていて開放されており、半導体レーザ光源21による傾き測定光はこのR2平面部に照射される。試料台16の不連続貫通穴16Rは、カバーガラス17Cの傾き検出調整の際に、該カバーガラス17Cに半導体LD光源11からのレーザ光を与えて反射光を点像観察用撮像装置18に戻すために用いられる(図12)。この他の構成及び各調整測定ステップは、第一の実施形態と同様である。     FIGS. 8 to 12 show a second embodiment of the method and apparatus for measuring the transmitted wavefront aberration of the objective lens L according to the present invention. FIGS. 8, 9, 10, 11 and 12 are respectively shown in FIGS. 1, 2, 3, 4, and 5. In this embodiment, the apparatus configuration of FIGS. 1 to 5 is turned upside down, the R1 plane portion of the objective lens L to be in contact with the lens mounting surface on the sample stage 16, and R2 by the semiconductor laser light source 21. In this embodiment, the flat surface is irradiated without passing through the discontinuous through holes 16R of the sample stage 16. That is, the R2 plane part of the objective lens L to be examined is opened upward when it is placed on the sample stage 16, and the R2 plane part is irradiated with the tilt measuring light from the semiconductor laser light source 21. The The discontinuous through-hole 16R of the sample stage 16 gives the laser light from the semiconductor LD light source 11 to the cover glass 17C and returns the reflected light to the point image observation imaging device 18 when adjusting the inclination detection of the cover glass 17C. (Fig. 12). Other configurations and adjustment measurement steps are the same as those in the first embodiment.

図13から図18は、本発明による被検対物レンズLの透過波面収差測定方法及び装置の第三の実施形態を示している。この実施形態は、凹面反射鏡17のカバーガラス17Cを反射鏡本体部17Xとは独立して移動調整可能とした点、及びカバーガラス17Cの傾き検出を半導体レーザ光源21とR2面点像用撮像装置22(R2面点像観察用モニタ22M)で行うことができるようにした点が第一の実施形態と異なる。すなわち、カバーガラス17Cは、図13ないし図15に示すように反射鏡本体部17Xと一体に移動することだけでなく、図17に示すように、反射鏡本体部17Xとは離れて移動することができ、単独でその傾きを調整することができる(αβステージ上に載っている)。     FIGS. 13 to 18 show a third embodiment of the method and apparatus for measuring the transmitted wavefront aberration of the objective lens L to be tested according to the present invention. In this embodiment, the cover glass 17C of the concave reflecting mirror 17 can be moved and adjusted independently of the reflecting mirror main body portion 17X, and the tilt detection of the cover glass 17C is performed for imaging the semiconductor laser light source 21 and the R2 plane point image. It differs from the first embodiment in that it can be performed by the device 22 (R2 plane point image observation monitor 22M). That is, the cover glass 17C not only moves integrally with the reflector body 17X as shown in FIGS. 13 to 15, but also moves away from the reflector body 17X as shown in FIG. And the inclination can be adjusted independently (it is on the αβ stage).

この実施形態では、図13、図14、図15、図16及び図18はそれぞれ、図1、図2、図3、図4及び図5に対応している。図17は、カバーガラス17Cが単独で(反射鏡本体部17Xから離れて)、試料台16に接近した干渉計測位置にあるとき(反射鏡本体部17Xのみを退避させたとき)、半導体レーザ光源21によりカバーガラス17Cに傾き測定光を入射させ、その反射光をR2面点像用撮像装置22で受光した状態を示している。R2面点像観察用モニタ22Mで観察されるカバーガラス17Cの反射光の点像位置が、オプチカルパラレル32の反射光のR2面点像観察用モニタ22M上での点像位置(基準位置II)に一致するように調整することで、カバーガラス17Cを干渉計光軸と直交させることができる。   In this embodiment, FIGS. 13, 14, 15, 16, and 18 correspond to FIGS. 1, 2, 3, 4, and 5, respectively. FIG. 17 shows a semiconductor laser light source when the cover glass 17C is alone (away from the reflector main body portion 17X) and at the interference measurement position close to the sample table 16 (when only the reflector main body portion 17X is retracted). 21 shows a state in which tilt measurement light is incident on the cover glass 17C by 21 and the reflected light is received by the R2 plane point image pickup device 22. The point image position of the reflected light of the cover glass 17C observed by the R2 surface point image observation monitor 22M is the point image position (reference position II) of the reflected light of the optical parallel 32 on the R2 surface point image observation monitor 22M. The cover glass 17C can be made orthogonal to the optical axis of the interferometer by adjusting so as to coincide with.

図19から図24は、本発明による被検対物レンズLの透過波面収差測定方法及び装置の第四の実施形態を示すもので、図19、図20、図21、図22、図23及び図24はそれぞれ、図13、図14、図15、図16、図17及び図18に対応している。この実施形態は、図13ないし図18の装置構成の上下を逆転させ、試料台16上のレンズ載置面に、被検対物レンズLのR1平面部を当接させ、半導体レーザ光源21によるR2平面部への照射を試料台16の不連続貫通穴16Rを介することなく行うようにした実施形態である。第三と第四の実施形態の関係は、第一と第二の実施形態の関係と対応しており、基本的な構成及び各調整測定ステップは、第三の実施形態と同様である。     FIGS. 19 to 24 show a fourth embodiment of the method and apparatus for measuring the transmitted wavefront aberration of the objective lens L according to the present invention. FIGS. 19, 20, 21, 22, 23 and 23 are shown in FIGS. Reference numeral 24 corresponds to FIGS. 13, 14, 15, 16, 17, and 18, respectively. In this embodiment, the configuration of the apparatus shown in FIGS. 13 to 18 is turned upside down, the R1 plane portion of the objective lens L to be in contact with the lens mounting surface on the sample stage 16, and R2 by the semiconductor laser light source 21. In this embodiment, the flat surface is irradiated without passing through the discontinuous through holes 16R of the sample stage 16. The relationship between the third and fourth embodiments corresponds to the relationship between the first and second embodiments, and the basic configuration and each adjustment measurement step are the same as those of the third embodiment.

図25から図29は、本発明による被検対物レンズLの透過波面収差測定方法及び装置の第五の実施形態を示している。この実施形態では、凹面反射鏡17及びカバーガラス17Cの径を被検対物レンズLの径より十分小さくして不動とし、半導体レーザ光源21を干渉計光軸上に位置させて半導体LD光源11の反対側に配置し、試料台16と半導体レーザ光源21の間に、キューブハーフミラー23を配置し、このキューブハーフミラー23の分岐光軸上に、R2面点像用撮像装置22を配置している。図25、図26、図27、図28及び図29はそれぞれ、図1、図2、図3、図4及び図5に対応している。   25 to 29 show a fifth embodiment of the method and apparatus for measuring transmitted wavefront aberration of the objective lens L to be tested according to the present invention. In this embodiment, the diameters of the concave reflecting mirror 17 and the cover glass 17C are made sufficiently smaller than the diameter of the objective lens L to be fixed, the semiconductor laser light source 21 is positioned on the interferometer optical axis, and the semiconductor LD light source 11 is fixed. The cube half mirror 23 is disposed between the sample stage 16 and the semiconductor laser light source 21 on the opposite side, and the R2 plane point image pickup device 22 is disposed on the branch optical axis of the cube half mirror 23. Yes. 25, 26, 27, 28, and 29 correspond to FIGS. 1, 2, 3, 4, and 5, respectively.

この実施形態において、図25と図26のステップは、図1と図2のステップと同じである。これに対し、図27のステップでは、凹面反射鏡17及びカバーガラス17Cの径を被検対物レンズLより十分小径にしているため、凹面反射鏡17とカバーガラス17Cを光軸から退避させることなく、R2面点像用撮像装置22からのレーザ光(傾き測定光)を干渉計光軸上に照射することができる。同傾き測定光は、試料台16の不連続貫通穴16Rを介して、前のステップで干渉計光軸に垂直に配置されたオプチカルパラレル32に照射されるから、その反射点像をR2面点像観察用モニタ22Mに基準点IIとして記憶
することができる。以下の図28と図29のステップは、図4と図5のステップと同様である。
In this embodiment, the steps of FIGS. 25 and 26 are the same as the steps of FIGS. On the other hand, in the step of FIG. 27, since the diameters of the concave reflecting mirror 17 and the cover glass 17C are made sufficiently smaller than the objective lens L, the concave reflecting mirror 17 and the cover glass 17C are not retracted from the optical axis. The laser beam (tilt measurement light) from the R2 plane point image pickup device 22 can be irradiated onto the interferometer optical axis. The tilt measurement light is irradiated to the optical parallel 32 arranged perpendicularly to the interferometer optical axis in the previous step through the discontinuous through hole 16R of the sample stage 16, so that the reflection point image is represented by the R2 plane point. The reference point II can be stored in the image observation monitor 22M. The following steps of FIG. 28 and FIG. 29 are the same as the steps of FIG. 4 and FIG.

本発明による被検レンズの透過波面収差測定方法及び装置の第一の実施形態を示す光学配置図である。1 is an optical layout diagram showing a first embodiment of a method and apparatus for measuring transmitted wavefront aberration of a lens to be tested according to the present invention. 同第一の実施形態の次のステップの光学配置図である。It is an optical layout diagram of the next step of the first embodiment. 同第一の実施形態の次のステップの光学配置図である。It is an optical layout diagram of the next step of the first embodiment. 同第一の実施形態の次のステップの光学配置図である。It is an optical layout diagram of the next step of the first embodiment. 同第一の実施形態の次のステップの光学配置図である。It is an optical layout diagram of the next step of the first embodiment. 本発明による被検レンズの透過波面収差測定方法及び装置が対象とする被検レンズの形状例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the example of a shape of the test lens which the transmission wavefront aberration measuring method and apparatus of the test lens by this invention make object. 同被検レンズを載置する試料台の形状例を示す平面図である。It is a top view which shows the example of a shape of the sample stand which mounts the said test lens. 本発明による被検レンズの透過波面収差測定方法及び装置の第二の実施形態を示す光学配置図である。It is an optical arrangement | positioning figure which shows 2nd embodiment of the transmitted wavefront aberration measuring method and apparatus of the test lens by this invention. 同第二の実施形態の次のステップの光学配置図である。It is an optical layout diagram of the next step of the second embodiment. 同第二の実施形態の次のステップの光学配置図である。It is an optical layout diagram of the next step of the second embodiment. 同第二の実施形態の次のステップの光学配置図である。It is an optical layout diagram of the next step of the second embodiment. 同第二の実施形態の次のステップの光学配置図である。It is an optical layout diagram of the next step of the second embodiment. 本発明による被検レンズの透過波面収差測定方法及び装置の第三の実施形態を示す光学配置図である。FIG. 6 is an optical layout diagram showing a third embodiment of a method and apparatus for measuring transmitted wavefront aberration of a test lens according to the present invention. 同第三の実施形態の次のステップの光学配置図である。It is an optical layout diagram of the next step of the third embodiment. 同第三の実施形態の次のステップの光学配置図である。It is an optical layout diagram of the next step of the third embodiment. 同第三の実施形態の次のステップの光学配置図である。It is an optical layout diagram of the next step of the third embodiment. 同第三の実施形態の次のステップの光学配置図である。It is an optical layout diagram of the next step of the third embodiment. 同第三の実施形態の次のステップの光学配置図である。It is an optical layout diagram of the next step of the third embodiment. 本発明による被検レンズの透過波面収差測定方法及び装置の第四の実施形態を示す光学配置図である。FIG. 7 is an optical layout diagram showing a fourth embodiment of a method and apparatus for measuring transmitted wavefront aberration of a lens to be tested according to the present invention. 同第四の実施形態の次のステップの光学配置図である。It is an optical layout diagram of the next step of the fourth embodiment. 同第四の実施形態の次のステップの光学配置図である。It is an optical layout diagram of the next step of the fourth embodiment. 同第四の実施形態の次のステップの光学配置図である。It is an optical layout diagram of the next step of the fourth embodiment. 同第四の実施形態の次のステップの光学配置図である。It is an optical layout diagram of the next step of the fourth embodiment. 同第四の実施形態の次のステップの光学配置図である。It is an optical layout diagram of the next step of the fourth embodiment. 本発明による被検レンズの透過波面収差測定方法及び装置の第五の実施形態を示す光学配置図である。FIG. 6 is an optical layout diagram showing a fifth embodiment of a method and apparatus for measuring transmitted wavefront aberration of a test lens according to the present invention. 同第五の実施形態の次のステップの光学配置図である。It is an optical layout diagram of the next step of the fifth embodiment. 同第五の実施形態の次のステップの光学配置図である。It is an optical layout diagram of the next step of the fifth embodiment. 同第五の実施形態の次のステップの光学配置図である。It is an optical layout diagram of the next step of the fifth embodiment. 同第五の実施形態の次のステップの光学配置図である。It is an optical layout diagram of the next step of the fifth embodiment.

符号の説明Explanation of symbols

L 被検対物レンズ(被検レンズ)
R1 環状平面部
R2 載置基準環状平面部
11 半導体LD光源(干渉縞観察用)
12 コリメートレンズ
13 干渉縞観察用ハーフミラー
14 基準平面板
15 点像観察用ハーフミラー
16 試料台(αβXYZステージ)
17 凹面反射鏡
17C カバーガラス
17A αβステージ
17B 凹面鏡退避ステージ
17X 反射鏡本体部
18 干渉縞観察用撮像装置
18M 干渉縞観察モニタ
19 点像観察用撮像装置
19M 点像観察モニタ
21 半導体レーザ光源(傾き検出用)
22 R2面点像用撮像装置
キューブハーフミラー23
31 コーナキューブプリズム
32 オプチカルパラレル
L Objective lens (test lens)
R1 annular plane part R2 mounting reference annular plane part 11 semiconductor LD light source (for interference fringe observation)
12 Collimator lens 13 Interference fringe observation half mirror 14 Reference plane plate 15 Point image observation half mirror 16 Sample stage (αβXYZ stage)
17 Concave mirror 17C Cover glass 17A αβ stage 17B Concave mirror retracting stage 17X Reflector main body 18 Interference fringe observation imaging device 18M Interference fringe observation monitor 19 Point image observation imaging device 19M Point image observation monitor 21 Semiconductor laser light source (tilt detection) for)
22 R2 surface image capturing device cube half mirror 23
31 Corner cube prism 32 Optical parallel

Claims (12)

表裏のレンズ面周縁にそれぞれ環状平面部を有する被検レンズの波面収差を干渉計により測定する波面収差測定方法において、
試料台に載置した被検レンズの表裏の環状平面部のうち、該被検レンズを実装するときにレンズホルダに当接させる載置基準環状平面部に向けて傾き測定光を入射させ、該傾き測定光の被検レンズからの反射光により被検レンズの干渉計光軸からの傾き量を検知するステップと;
この傾き検知量に基づき、上記試料台の傾きを調整し、被検レンズ光軸を干渉計光軸に一致させるステップと;
この光軸一致状態で上記干渉計による波面収差測定を行うステップと;
を有することを特徴とする被検レンズの透過波面収差測定方法。
In the wavefront aberration measuring method for measuring the wavefront aberration of the test lens having the annular flat portions on the front and back lens surface peripheral edges with an interferometer,
Inclination measurement light is incident on the mounting reference annular flat surface portion that comes into contact with the lens holder when mounting the test lens, out of the annular flat surface portions of the front and back surfaces of the test lens placed on the sample table, Detecting the amount of inclination of the test lens from the optical axis of the interferometer from the reflected light of the test light from the test lens;
Adjusting the tilt of the sample stage based on the tilt detection amount, and aligning the optical axis of the lens to be tested with the optical axis of the interferometer;
Performing wavefront aberration measurement with the interferometer in the optical axis coincidence state;
A method for measuring a transmitted wavefront aberration of a lens to be measured, comprising:
請求項1記載の被検レンズの透過波面収差測定方法において、上記干渉計は、被検レンズに向けて干渉縞測定光を発する干渉光光源と、この干渉光光源から出射され該被検レンズを透過した干渉縞測定光を元の光路に反射する凹反射面を有する反射手段と、該反射手段上のカバーガラスと、上記被検レンズの環状平面部で反射した干渉縞測定直接反射光及び上記反射手段で反射し被検レンズを透過した干渉縞測定透過反射光を入射させて干渉縞を観察する干渉縞観察撮像装置と、を備えており、
上記被検レンズの傾きを検知するステップの前に、干渉計の上記反射手段とカバーガラスを被検レンズの傾き測定光の光路から退避させるステップを含む被検レンズの透過波面収差測定方法。
2. The transmitted wavefront aberration measurement method for a test lens according to claim 1, wherein the interferometer includes an interference light source that emits interference fringe measurement light toward the test lens, and the test light emitted from the interference light source. Reflecting means having a concave reflecting surface for reflecting the transmitted interference fringe measuring light to the original optical path, a cover glass on the reflecting means, the interference fringe measuring directly reflected light reflected by the annular plane portion of the lens to be tested, and the above An interference fringe observation imaging device for observing the interference fringes by entering the interference fringe measurement transmission reflected light reflected by the reflecting means and transmitted through the test lens;
A method for measuring a transmitted wavefront aberration of a test lens, comprising the step of retracting the reflecting means and the cover glass of the interferometer from the optical path of the tilt measurement light of the test lens before the step of detecting the tilt of the test lens.
請求項2記載の被検レンズの透過波面収差測定方法において、干渉計の上記反射手段とカバーガラスは一体であり、カバーガラスの干渉計光軸から傾きを検知し上記反射手段とカバーガラスの傾きを修正するステップを含む被検レンズの透過波面収差測定方法。 3. The method for measuring transmitted wavefront aberration of a test lens according to claim 2, wherein the reflecting means of the interferometer and the cover glass are integrated, and an inclination is detected from an optical axis of the interferometer of the cover glass to detect the inclination of the reflecting means and the cover glass. A method for measuring a transmitted wavefront aberration of a lens to be examined, including the step of correcting 請求項2記載の被検レンズの透過波面収差測定方法において、干渉計の上記反射手段とカバーガラスは、個別に移動可能であり、さらに、カバーガラスの干渉計光軸から傾きを検知し修正するステップを含む被検レンズの透過波面収差測定方法。 3. The method of measuring transmitted wavefront aberration of a test lens according to claim 2, wherein the reflecting means of the interferometer and the cover glass are individually movable, and further, the inclination is detected and corrected from the optical axis of the interferometer of the cover glass. A method for measuring a transmitted wavefront aberration of a lens to be tested including a step. 請求項1記載の被検レンズの透過波面収差測定装置において、干渉計の上記反射手段及びカバーガラスの径は、被検レンズの傾き量検知装置の傾き測定光の径及び干渉計の干渉縞測定光の径より小径であり、該反射手段及びカバーガラスを移動させることなく、試料台に載置した被検レンズの干渉計光軸からの傾き量を検知する上記ステップが実行される透過波面収差測定方法。 2. The transmitted wavefront aberration measuring apparatus for a test lens according to claim 1, wherein the reflecting means of the interferometer and the diameter of the cover glass are the diameter of the tilt measuring light of the tilt amount detecting device of the test lens and the interference fringe measurement of the interferometer. Transmitted wavefront aberration that is smaller than the diameter of the light and that performs the above-described step of detecting the amount of inclination of the test lens placed on the sample stage from the interferometer optical axis without moving the reflecting means and the cover glass Measuring method. 表裏のレンズ面周縁にそれぞれ環状平面部を有する対物レンズの波面収差を干渉計により測定する被検レンズの波面収差測定装置において、
上記被検レンズを載置する試料台と;
上記試料台に載置した被検レンズの表裏の環状平面部のうち、該被検レンズを実装するときの載置面側の載置基準環状平面部に向けて傾き測定光を入射させる傾き光検知光源と、その反射光を検知する撮像装置とを有する被検レンズの傾き量検知装置と;
上記試料台の傾きを調整するαβステージと;
を備え、
上記被検レンズの傾き量検知装置による被検レンズの傾き量に基づき、αβステージにより試料台の傾きを調整して該試料台上の被検レンズ光軸を上記干渉計光軸に一致させ、この光軸一致状態で該干渉計による波面収差測定を行うことを特徴とする被検レンズの透過波面収差測定装置。
In the wavefront aberration measuring device for the lens to be measured for measuring the wavefront aberration of the objective lens having the annular flat portions on the front and back lens surface peripheral edges by an interferometer,
A sample stage on which the test lens is placed;
Inclined light for inclining measurement light incident on the mounting reference annular flat surface portion on the mounting surface side when mounting the test lens among the front and back annular flat surface portions of the test lens mounted on the sample stage. A tilt amount detection device for a lens to be tested, which includes a detection light source and an imaging device for detecting the reflected light;
An αβ stage for adjusting the inclination of the sample stage;
With
Based on the tilt amount of the test lens by the tilt amount detector of the test lens, the tilt of the sample stage is adjusted by the αβ stage so that the test lens optical axis on the sample stage matches the interferometer optical axis, An apparatus for measuring a transmitted wavefront aberration of a lens to be measured, wherein wavefront aberration is measured by the interferometer in a state where the optical axes coincide with each other.
請求項6記載の被検レンズの透過波面収差測定装置において、上記干渉計は、被検レンズに向けて干渉縞測定光を発する干渉光光源と、この干渉光光源から出射され該被検レンズを透過した干渉縞測定光を元の光路に反射する凹反射面を有する反射手段と、該反射手段上のカバーガラスと、上記被検レンズの環状平面部で反射した干渉縞測定直接反射光及び上記反射手段で反射し被検レンズを透過した干渉縞測定透過反射光を入射させて干渉縞を観察する干渉縞観察撮像装置と、を備え、さらに、この干渉計の上記反射手段とカバーガラスを、上記被検レンズの傾き量検知装置による被検レンズの傾き検知時に、該被検レンズ傾き検知装置の傾き光検知光路から退避させる退避機構を備えている被検レンズの透過波面収差測定装置。 7. The apparatus for measuring transmitted wavefront aberration of a test lens according to claim 6, wherein the interferometer includes an interference light source that emits interference fringe measurement light toward the test lens, and the test light emitted from the interference light source. Reflecting means having a concave reflecting surface for reflecting the transmitted interference fringe measuring light to the original optical path, a cover glass on the reflecting means, the interference fringe measuring directly reflected light reflected by the annular plane portion of the lens to be tested, and the above An interference fringe observation imaging device that observes the interference fringes by making the interference fringe measurement transmitted reflected light reflected by the reflecting means and transmitted through the test lens, and further, the reflecting means and the cover glass of the interferometer, An apparatus for measuring transmitted wavefront aberration of a test lens, comprising: a retraction mechanism for retreating from the tilt light detection optical path of the test lens tilt detection device when the tilt detection device detects the tilt of the test lens. 請求項6記載の被検レンズの透過波面収差測定装置において、干渉計の上記反射手段とカバーガラスは一体である被検レンズの透過波面収差測定装置。 7. A transmission wavefront aberration measuring apparatus for a test lens according to claim 6, wherein the reflecting means of the interferometer and the cover glass are integrated. 請求項8記載の被検レンズの透過波面収差測定装置において、上記試料台は、カバーガラスでの反射光が透過する貫通穴を備えている被検レンズの透過波面収差測定装置。 9. The transmitted wavefront aberration measuring apparatus for a test lens according to claim 8, wherein the sample stage includes a through hole through which reflected light from the cover glass is transmitted. 請求項7記載の被検レンズの透過波面収差測定方法において、干渉計の上記反射手段とカバーガラスは個別に移動可能である被検レンズの透過波面収差測定装置。 8. The transmitted wavefront aberration measuring apparatus for a test lens according to claim 7, wherein the reflecting means and the cover glass of the interferometer are individually movable. 請求項10記載の被検レンズの透過波面収差測定装置において、さらに上記カバーガラスの傾きを調整するαβステージが備えられている透過波面収差測定装置。 The transmitted wavefront aberration measuring apparatus for a test lens according to claim 10, further comprising an αβ stage for adjusting the inclination of the cover glass. 請求項6ないし11のいずれか1項記載の被検レンズの透過波面収差測定装置において、干渉計の上記反射手段及びカバーガラスの径は、被検レンズの傾き量検知装置の傾き測定光の径及び干渉計の干渉縞測定光の径より小径に設定されている透過波面収差測定装置。 12. The transmitted wavefront aberration measuring apparatus for a test lens according to claim 6, wherein the reflecting means of the interferometer and the diameter of the cover glass are the diameters of the tilt measuring light of the tilt amount detecting device of the test lens. And a transmitted wavefront aberration measuring apparatus set to a diameter smaller than the diameter of the interference fringe measurement light of the interferometer.
JP2008030489A 2008-02-12 2008-02-12 Method and device for measuring transmission wave front aberration of test lens Pending JP2009192249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008030489A JP2009192249A (en) 2008-02-12 2008-02-12 Method and device for measuring transmission wave front aberration of test lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008030489A JP2009192249A (en) 2008-02-12 2008-02-12 Method and device for measuring transmission wave front aberration of test lens

Publications (1)

Publication Number Publication Date
JP2009192249A true JP2009192249A (en) 2009-08-27

Family

ID=41074413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008030489A Pending JP2009192249A (en) 2008-02-12 2008-02-12 Method and device for measuring transmission wave front aberration of test lens

Country Status (1)

Country Link
JP (1) JP2009192249A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042395A (en) * 2010-08-20 2012-03-01 Hoya Corp Transmitted wave front measuring apparatus for lens
JP2013050319A (en) * 2011-08-30 2013-03-14 Katsura Opto Systems:Kk Lens eccentricity measurement device and lens eccentricity measurement method
JP2014126514A (en) * 2012-12-27 2014-07-07 Kiyohara Optics Inc Apparatus and method for adjusting optical performance of lenses
CN109211934A (en) * 2018-08-29 2019-01-15 南京理工大学 Based on interference micro- microballoon planar defect detection device and its detection method
CN111044259A (en) * 2019-12-12 2020-04-21 中国科学院苏州生物医学工程技术研究所 Distance, eccentricity and wavefront aberration integrated measuring system of optical lens
CN111442909A (en) * 2020-05-20 2020-07-24 北京理工大学 Phase-shifting interference transmission wavefront measuring device and method for large-caliber workbench
CN113624456A (en) * 2021-08-05 2021-11-09 苏州维纳仪器有限责任公司 Multi-wavelength laser interference device
JP2022541602A (en) * 2019-07-23 2022-09-26 ケーエルエー コーポレイション Imaging of internal cracks in semiconductor devices using a combination of transmitted and reflected light

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116438A (en) * 1996-08-22 1998-05-06 Asahi Optical Co Ltd Optical system for tilt adjustment of objective lens
JPH11237311A (en) * 1998-02-23 1999-08-31 Canon Inc Method and apparatus for measurement of wave front
JP2001174217A (en) * 1999-12-16 2001-06-29 Matsushita Electric Ind Co Ltd Alignment method for optical inspection equipment and mechanism for the same
JP2004271191A (en) * 2003-03-05 2004-09-30 Pentax Corp Wave aberration measuring device and wave aberration measuring method
JP2004279075A (en) * 2003-03-13 2004-10-07 Minolta Co Ltd Lens eccentricity measuring method and measuring device
JP2007205905A (en) * 2006-02-02 2007-08-16 Matsushita Electric Ind Co Ltd Method of measuring and manufacturing lens, and optical pick up
JP2008151680A (en) * 2006-12-19 2008-07-03 Matsushita Electric Ind Co Ltd Lens measuring device and aperture for measuring lens

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116438A (en) * 1996-08-22 1998-05-06 Asahi Optical Co Ltd Optical system for tilt adjustment of objective lens
JPH11237311A (en) * 1998-02-23 1999-08-31 Canon Inc Method and apparatus for measurement of wave front
JP2001174217A (en) * 1999-12-16 2001-06-29 Matsushita Electric Ind Co Ltd Alignment method for optical inspection equipment and mechanism for the same
JP2004271191A (en) * 2003-03-05 2004-09-30 Pentax Corp Wave aberration measuring device and wave aberration measuring method
JP2004279075A (en) * 2003-03-13 2004-10-07 Minolta Co Ltd Lens eccentricity measuring method and measuring device
JP2007205905A (en) * 2006-02-02 2007-08-16 Matsushita Electric Ind Co Ltd Method of measuring and manufacturing lens, and optical pick up
JP2008151680A (en) * 2006-12-19 2008-07-03 Matsushita Electric Ind Co Ltd Lens measuring device and aperture for measuring lens

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042395A (en) * 2010-08-20 2012-03-01 Hoya Corp Transmitted wave front measuring apparatus for lens
JP2013050319A (en) * 2011-08-30 2013-03-14 Katsura Opto Systems:Kk Lens eccentricity measurement device and lens eccentricity measurement method
JP2014126514A (en) * 2012-12-27 2014-07-07 Kiyohara Optics Inc Apparatus and method for adjusting optical performance of lenses
CN109211934A (en) * 2018-08-29 2019-01-15 南京理工大学 Based on interference micro- microballoon planar defect detection device and its detection method
CN109211934B (en) * 2018-08-29 2021-01-26 南京理工大学 Micro-sphere surface defect detection device and method based on interference microscopy
JP2022541602A (en) * 2019-07-23 2022-09-26 ケーエルエー コーポレイション Imaging of internal cracks in semiconductor devices using a combination of transmitted and reflected light
JP7373644B2 (en) 2019-07-23 2023-11-02 ケーエルエー コーポレイション Imaging internal cracks in semiconductor devices using a combination of transmitted and reflected light
CN111044259A (en) * 2019-12-12 2020-04-21 中国科学院苏州生物医学工程技术研究所 Distance, eccentricity and wavefront aberration integrated measuring system of optical lens
CN111442909A (en) * 2020-05-20 2020-07-24 北京理工大学 Phase-shifting interference transmission wavefront measuring device and method for large-caliber workbench
CN113624456A (en) * 2021-08-05 2021-11-09 苏州维纳仪器有限责任公司 Multi-wavelength laser interference device

Similar Documents

Publication Publication Date Title
JP2009192249A (en) Method and device for measuring transmission wave front aberration of test lens
JP5087186B1 (en) Iso-optical path interferometer
JP2002071513A (en) Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective
JP2009162539A (en) Light wave interferometer apparatus
US8593623B2 (en) Instrument and method for characterising an optical system
JP2008089356A (en) Aspheric surface measuring element, lightwave interference measuring device and method using the aspheric surface measuring element, aspheric surface shape correction method, and system error correction method
JP2004528910A (en) Wavefront aberration measuring method and measuring apparatus
WO2024094230A1 (en) Measurement device and measurement method for transmittance and numerical aperture of optical fiber
CN220708334U (en) Optical detection device, detection equipment and probe station
JP4694331B2 (en) Optical system for adjusting the tilt of the objective lens
TW201621290A (en) Optical evaluation of lenses and lens molds
JP2000241128A (en) Plane-to-plane space measuring apparatus
JP2007093339A (en) Inspection device
JP2008026049A (en) Flange focal distance measuring instrument
JP2005201703A (en) Interference measuring method and system
JP5759270B2 (en) Interferometer
JP2010216825A (en) Method and device for measuring transmission wavefront aberration of lens to be inspected
KR102056908B1 (en) Non-contacted axial resolution measuring apparatus of objective lens for confocal endo-microscope
JP2007010516A (en) Wave aberration measuring device, wave aberration measuring method and inspection lens holding adjusting mechanism
JP2006003489A (en) Lens eccentricity adjusting connector
JP2004271191A (en) Wave aberration measuring device and wave aberration measuring method
JP2006284233A (en) Apparatus for measuring system error and interferometer system for wavefront measurement equipped with the same
CN117053728B (en) Optical detection device, detection equipment, probe station and method thereof
CN108663124B (en) Detection device and method of wavefront sensor
CN212567516U (en) Detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120903

A131 Notification of reasons for refusal

Effective date: 20130402

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140225