JP2009191594A - Heat-insulating construction method - Google Patents

Heat-insulating construction method Download PDF

Info

Publication number
JP2009191594A
JP2009191594A JP2008058648A JP2008058648A JP2009191594A JP 2009191594 A JP2009191594 A JP 2009191594A JP 2008058648 A JP2008058648 A JP 2008058648A JP 2008058648 A JP2008058648 A JP 2008058648A JP 2009191594 A JP2009191594 A JP 2009191594A
Authority
JP
Japan
Prior art keywords
air
moisture
heat insulating
ventilation
inter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008058648A
Other languages
Japanese (ja)
Other versions
JP5065103B2 (en
Inventor
Masayasu Miyazaki
政安 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008058648A priority Critical patent/JP5065103B2/en
Publication of JP2009191594A publication Critical patent/JP2009191594A/en
Application granted granted Critical
Publication of JP5065103B2 publication Critical patent/JP5065103B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-insulating construction method, which can prevent wall internal dew condensation and breathe as earth wall with high heat insulating property and connects to attainment of a 100-year or 200-year long-lived dwelling house. <P>SOLUTION: The intercolumnar heat-insulating construction method 1 having a ventilation layer 35 using ventilation passages 12 and 22 extending through a foundation 11 or a girth 21 mainly comprises: an interior facing material 51 for ensuring airtightness, the material having high moisture absorbing and releasing performance and low moisture permeation resistance; a heat insulating material 30 such as a rock wool board or glass wool board; a ventilation layer 35; and an exterior facing material 50 in order from the living room side. With respect to the relation of the interior facing material 51 and the heat insulating material 30, the interior facing material 51 is combined with the heat insulating material 30 lower in moisture permeation resistance value than the facing material 51, whereby moisture is prevented from being collected within the heating insulating material 30. According to this structure, the intercolumnar heat-insulating construction method 1 can breathe as earth wall with high heat insulating property while preventing winter-type wall internal dew condensation. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、住宅等建物の柱間断熱工法に関する。  The present invention relates to an inter-column heat insulation method for a building such as a house.

特に、人類だけが生活の快適さを得るために暖房や冷房また自動車に膨大な石油や石炭また天然ガスなどの多くのエネルギー消費し続けている。
自然災害の少ない地球に優しい環境の維持継続を考えた場合、この再生不可能な貴重な地下資源である石油や石炭また天然ガスの消費をこれからも続ければ大気汚染が進み地球温暖化が加速する。このことが生物にとって致命的な風水害や砂漠化など異常気象に伴う自然災害に見舞われる可能性が格段に高くなると言われている。
石油や石炭また天然ガスなどの貴重な地下資源は大切に利用すべきで燃料に使用するよりも生物が共栄共存し人類が豊かになるための製品を生みだすことに振り向けられるべきもので、限りある地球資源の有効利用に関し人類は基本的な指標を世界的に合意しなければならない段階にあると言ってよい。
In particular, only human beings continue to consume a lot of energy such as enormous amount of oil, coal and natural gas in heating and cooling and automobiles to get comfortable living.
Considering the maintenance of an environment friendly to the earth with few natural disasters, if we continue to consume oil, coal, and natural gas, which are valuable resources that cannot be regenerated, air pollution will increase and global warming will accelerate. . It is said that the possibility of this being hit by natural disasters associated with abnormal weather such as deadly wind and flood damage and desertification is extremely high.
Valuable underground resources such as oil, coal, and natural gas should be used with care, and rather than being used as fuel, it should be directed to creating products for the co-prosperity of coexistence and enrichment of humanity. It can be said that human beings are at a stage where basic indicators must be agreed globally regarding the effective use of global resources.

ところで近年、社会的ニーズは広範囲におよび地球温暖化の抑制に関してもその意識が高まってきている。
その中で住宅など建築物においては便利さや快適さの要求も強く、例えば・安全・安心・健康・癒し・省エネルギーに関する多くの工夫を取り入れた住宅建築工法の開発が進められている。
そして古材を再利用することや200年住宅構想など自然を大切にする住宅造りを推し進め地球温暖化の抑制を図るなどの考え方が広まって来ている。
特に、先祖の家に長く住み続けることのできる耐久性を重視した長寿命住宅構想には高いデザイン性が求められることも勿論だが高気密高断熱化による省エネルギー住宅が両立してこそ地球温暖化の抑制に結び付くと考えている。
By the way, in recent years, social needs have been widespread and awareness of global warming is increasing.
Among them, there is a strong demand for convenience and comfort in buildings such as houses, and for example, development of housing construction methods that incorporate many ingenuity related to safety, security, health, healing, and energy saving is underway.
And the idea of promoting the construction of houses that value nature, such as reusing old materials and the 200-year housing concept, has been spreading.
In particular, a long-life housing concept that emphasizes the durability of being able to live in an ancestral house for a long period of time requires high design, but of course, the combination of energy-saving housing with high air-tightness and high thermal insulation will help prevent global warming. I think it leads to suppression.

次に、現状の高気密高断熱化住宅の多くは石油系の発泡ウレタンや発泡スチロールなどを多量に用いる被覆断熱化工法が主流で、このような被覆断熱化工法では火災にも弱く、また、再生利用が難しい多くの建材を使用するなど決して地球環境に優しい住宅建築工法とは言えないのである。  Next, most of the current high-air-tightness and high-insulation houses mainly use insulation insulation methods that use a large amount of petroleum-based foamed urethane, polystyrene foam, and the like. It cannot be said that it is a home building method that is friendly to the global environment, such as using many building materials that are difficult to use.

一方、燃えない無機質の繊維系断熱材であるロックウールやグラスウールを使用する場合には壁内結露を防ぐため防湿シートで防湿工事を行う断熱工法が一般的となっている。
しかし、前記防湿工事は冬型結露には強いが反面で夏型結露を引き起こす場合もある。
それに、前記防湿工事を完全に行うことは難しく防湿シートのポリエチレンフイルムも100年また200年の耐久性を保証できるものではないし、特に防湿シートによる防湿工事により呼吸のできない住宅造りとなってしまうのである。
On the other hand, when rock wool or glass wool, which is an inorganic fiber-based heat insulating material that does not burn, is used, a heat insulating method is generally used in which a moisture-proof construction is performed with a moisture-proof sheet to prevent dew condensation in the wall.
However, the moisture-proof construction is strong against winter type condensation, but may cause summer type condensation.
In addition, it is difficult to perform the moisture-proof work completely, and the polyethylene film of the moisture-proof sheet cannot guarantee the durability of 100 years or 200 years. is there.

ところで、断熱工法の通気層の形成手段としては胴縁の取り付けが一般的で他には、例えば(特許文献1参照)等が公知となっている。
しかし、柱間断熱工法の通気層の形成手段としては利用ができない。
特許第3039924号公報
By the way, as a means for forming the air-permeable layer in the heat insulation method, the attachment of the trunk edge is generally used, and for example, (see Patent Document 1) or the like is known.
However, it cannot be used as a means for forming a ventilation layer in the inter-column heat insulation method.
Japanese Patent No. 3039924

上記の事情に鑑み、燃えない無機質の繊維系断熱材であるロックウールやグラスウールを使用する場合であっても防湿シートを使用せずに壁内結露を防ぎ高断熱で土壁のように呼吸ができる新しい断熱工法を広く普及させる必要がある。
住宅の寿命は結露対策の良し悪しで決まるといって過言ではない、壁内結露を防ぎ高断熱で土壁のように呼吸ができる100年また200年長寿命住宅の実現に結び付く断熱工法の提供。
In view of the above circumstances, even when using rock wool or glass wool, which is an inorganic fiber-based heat insulating material that does not burn, it prevents moisture condensation inside the wall without using a moisture-proof sheet and breathes like a dirt wall with high insulation. It is necessary to widely disseminate new insulation methods that can be used.
It is not an exaggeration to say that the lifespan of a house is determined by the quality of measures against condensation. Providing a thermal insulation method that prevents the condensation in the walls and enables high-insulation and 100-year or 200-year long-life houses that can breathe like a dirt wall. .

本発明は、上記目的を達成するために以下の技術的手段を講じた。
第1に、
在来工法でデザインを重視し柱や土台また胴差しを見せる真壁の柱間断熱工法において、土台また胴差しを貫通する通気路を利用した通気層を有する柱間断熱工法とした。
第2に、
土台また胴差しを貫通する通気路を通気層に利用し、
高い吸放湿性能と低い透湿抵抗を有する内装面材と、
より低い透湿抵抗の断熱材と、
外気通気用の通気層と、
外装面材とで構成した柱間断熱工法とすることで壁内結露を防ぐようにした。
第3に、
土台また胴差しを貫通する外気を通す第一通気路を第一通気層に、また床下通気を行う第二通気路を第二通気層に利用し、
内装面材と、
床下通気用の第二通気層と、
高い吸放湿性能と低い透湿抵抗を有する面材と、
より低い透湿抵抗の断熱材と、
外気通気用の第一通気層と、
外装面材とで構成した柱間断熱工法とすることで壁内結露を防ぐようにした。
In order to achieve the above object, the present invention takes the following technical means.
First,
In the wall-to-column thermal insulation method, which emphasizes design in the conventional construction method and shows columns, foundations, and torso, the inter-column insulation method has a ventilation layer using a ventilation passage that penetrates the foundation or torso.
Second,
Use the ventilation path that penetrates the base or torso as the ventilation layer,
An interior surface material having high moisture absorption / release performance and low moisture resistance,
A lower moisture resistance insulation,
A ventilation layer for venting outside air;
It was made to prevent dew condensation in the wall by adopting an inter-column heat insulation method constructed with exterior face materials.
Third,
Use the first air passage that allows outside air to pass through the base or torso as the first air layer, and the second air passage that conducts under-floor air as the second air layer.
Interior face materials,
A second ventilation layer for underfloor ventilation;
A face material having high moisture absorption / release performance and low moisture resistance,
A lower moisture resistance insulation,
A first vent layer for venting outside air;
It was made to prevent dew condensation in the wall by adopting an inter-column heat insulation method constructed with exterior face materials.

本発明で組み合わせる面材や断熱材の構成により、住宅等建物の柱間断熱工法であっても壁内結露の心配がなく半永久的で高い断熱性能を長期に保てる十分な透湿機能を有する呼吸できる断熱工法で造る長寿命住宅の提供は・安全・安心・健康・癒し・省エネルギー住宅となり地球温暖化対策にも結び付く。  With the composition of the face material and heat insulating material combined in the present invention, even with the inter-column heat insulating method for buildings such as houses, there is no worry of condensation in the wall, and it has a sufficient moisture permeability function that can maintain a long-term semi-permanent and high heat insulating performance Providing long-lived homes that can be made with a heat insulation method that can be made safe, secure, healthy, healing, and energy-saving will lead to global warming countermeasures.

以下、本発明の実施形態を図面を参照して説明する。
図1は、土台また胴差しを貫通する通気路を通気層として利用した柱間断熱工法の概略図。
図2は、図1のイラスト図。
図3は、土台また胴差しを貫通する通気路を通気層また床下通気用として利用した柱間断熱工法の概念図である。
図4は、図3の柱間断熱工法の概念を応用した概略図。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view of an inter-column heat insulation method using an air passage that penetrates a base or a trunk as an air-permeable layer.
FIG. 2 is an illustration of FIG.
FIG. 3 is a conceptual diagram of an inter-column heat insulation method using an air passage that penetrates a base or a trunk as an air layer or under-floor air.
FIG. 4 is a schematic diagram applying the concept of the inter-column heat insulation method of FIG. 3.

第一実施形態:
図1の概略図および図2のイラスト図で図示した柱間断熱工法1は、土台11また胴差し21を貫通する通気路12、22を利用して通気層35を構成した柱間断熱工法1である。
まず、柱間断熱工法1の主要な構成は居室内側から高い吸放湿性能と低い透湿抵抗を有する内装面材51で気密性を確保し、次に断熱材30のロックウールボードまたはグラスウールボード、その次に通気層35があり外装面材50とで構成した柱間断熱工法1である。
First embodiment:
The inter-column heat insulation method 1 illustrated in the schematic diagram of FIG. 1 and the illustration of FIG. 2 is an inter-column heat insulation method 1 in which a ventilation layer 35 is formed by using the air passages 12 and 22 penetrating the base 11 or the trunk 21. It is.
First, the main structure of the inter-column heat insulation method 1 is to ensure airtightness with an interior surface material 51 having high moisture absorption / release performance and low moisture permeability resistance from the room side, and then the rock wool board or glass wool board of the heat insulation material 30. Then, it is the inter-column heat insulation method 1 having the ventilation layer 35 and the exterior face material 50.

冬期の場合、このように構成した柱間断熱工法1では居室内で発生した湿気の流れはまず高い吸放湿性能と低い透湿抵抗を有する内装面材51によって居室内の調湿が適切に行われる。
この内装面材51は調湿性能として要求される高い吸放湿性能と低い透湿抵抗を有しているので、その特徴を活かし居室内で湿気を多く発生させたとしても内装面材51でまず吸湿し乾燥時は逆に適切に放湿する高い調湿性能をもつ建材である。
次に内装面材51内部に吸湿された余分な湿気は内装面材51内部から放湿され断熱材30を通過して通気層35を通じて大気に放出される。
In the winter season, in the inter-column heat insulation method 1 configured as described above, the moisture flow generated in the living room is appropriately controlled by the interior surface material 51 having high moisture absorption / release performance and low moisture permeability. Done.
Since this interior surface material 51 has high moisture absorption / release performance and low moisture permeability required as humidity control performance, even if much moisture is generated in the living room by taking advantage of the characteristics, the interior surface material 51 First of all, it is a building material with high humidity control performance that absorbs moisture and properly releases moisture when dried.
Next, excess moisture absorbed in the interior surface material 51 is released from the interior surface material 51, passes through the heat insulating material 30, and is released to the atmosphere through the ventilation layer 35.

高い調湿性能を有する内装面材51によって内部に吸湿された余分な湿気は内装面材51の透湿抵抗より低い透湿抵抗の断熱材30内部で結露を生じることなく水蒸気の状態で通過し通気層35を通じて大気に放出される柱間断熱工法1である。
透湿抵抗値から見た内装面材51と断熱材30との関係は、内装面材51よりさらに低い透湿抵抗値の断熱材30との組み合わせにより断熱材30内に湿気が溜まらないように構成した柱間断熱工法1で、この構成によって冬型壁内結露を防ぎつつ高断熱で土壁のように呼吸できる柱間断熱工法1となっている。
Excess moisture absorbed inside by the interior surface material 51 having high humidity control performance passes through the heat insulating material 30 having a moisture permeability resistance lower than the moisture resistance of the interior surface material 51 without passing through in the form of water vapor. This is an inter-column heat insulation method 1 that is released to the atmosphere through the ventilation layer 35.
The relationship between the interior surface material 51 and the heat insulating material 30 as viewed from the moisture permeation resistance value is such that moisture does not accumulate in the heat insulating material 30 by the combination with the heat insulating material 30 having a lower moisture resistance value than the interior surface material 51. The inter-column heat insulation construction method 1 is the inter-column heat insulation construction method 1 that can breathe like a dirt wall with high heat insulation while preventing dew condensation in the winter mold wall.

次に、外装面材50は高い防水性能を有している外装面材50で土台、柱、胴差しと接する全周から雨水等が入り込まないよう完全にシールされ取り付けられている。
したがって、外装面材50と断熱材30との間には土台11また胴差し21を貫通する通気路12、22を利用した外気通気用の通気層35が設けられているので室内の余分な湿気は内装面材51と断熱材30を通じて大気へ適切に放出され壁内結露が生じないようになっている。
Next, the exterior face material 50 is a highly waterproof exterior face material 50 that is completely sealed and attached so that rainwater or the like does not enter from the entire circumference in contact with the base, pillar, and trunk.
Therefore, a ventilation layer 35 for ventilating the outside air is provided between the exterior surface material 50 and the heat insulating material 30 using the ventilation paths 12 and 22 penetrating the base 11 or the trunk 21, so that excess moisture in the room Is appropriately discharged to the atmosphere through the interior face material 51 and the heat insulating material 30 so that dew condensation in the wall does not occur.

夏期の場合、居室内を冷房することにより湿気の流れは冬期の場合とは逆の流れを引き起こす。
湿気は外気から壁内へ入り込むがその水蒸気量は外気温湿度と居室内の温湿度の差により左右される。
この外気からの湿気は通気層35を通じ断熱材30を通過し内装面材51に到達する。
断熱材30と内装面材51とは面で接触していて面接触部分の境界面で湿気は内装面材51に吸湿される。
そして、前記境界面で万一結露が発生したとしても高い吸放湿性能と低い透湿抵抗を有する内装面材51によって素早く吸湿されるので夏型壁内結露を防ぐことができる構成となっている。
In the summer season, the flow of moisture causes the flow opposite to that in the winter season by cooling the room.
Humidity enters the walls from the outside air, but the amount of water vapor depends on the difference between the outside air temperature humidity and the temperature and humidity in the room.
The moisture from the outside air passes through the heat insulating material 30 through the ventilation layer 35 and reaches the interior surface material 51.
The heat insulating material 30 and the interior surface material 51 are in contact with each other on the surface, and moisture is absorbed by the interior surface material 51 at the boundary surface between the surface contact portions.
And even if dew condensation occurs on the boundary surface, it is quickly absorbed by the interior surface material 51 having high moisture absorption / release performance and low moisture permeation resistance. Yes.

次に、図1の概略図および図2のイラスト図で図示した柱間断熱工法1の土台11また胴差し21を貫通する通気路12、22の孔径また間隔は下記の考え方て加工し構成している。
まず、
▲1▼土台や胴差しの幅寸法は一般的な標準幅寸法105mmの必要強度相当分を確保した上でその外側を利用して貫通する通気路12、22を加工する。
▲2▼貫通する通気路12、22の孔径は土台や胴差しの幅寸法と外装面材50と内装面材51の板厚により決定し加工する。
▲3▼貫通する通気路12、22の間隔は湿気の吸放湿性能に支障をきたすことのない最低数とし略等間隔で加工し土台や胴差しの強度を確保する。
Next, the hole diameters and intervals of the air passages 12 and 22 penetrating the base 11 or the trunk 21 of the inter-column heat insulation method 1 shown in the schematic diagram of FIG. 1 and the illustration of FIG. ing.
First,
{Circle around (1)} The widths of the base and torso are secured to the required standard strength corresponding to a typical standard width of 105 mm, and the through passages 12 and 22 are processed using the outside.
{Circle around (2)} The hole diameters of the air passages 12 and 22 that pass therethrough are determined and processed according to the width dimensions of the base and the trunk and the plate thickness of the exterior surface material 50 and the interior surface material 51.
(3) The interval between the air passages 12 and 22 that penetrates is the minimum number that does not impede the moisture absorption and release performance, and is processed at substantially equal intervals to ensure the strength of the foundation and torso.

図1の概略図では、柱間寸法1820mmで土台11や胴差し21の幅寸法を150mmにし外装面材50を10mmとしたので通気路12、22の孔径は8mm間隔は略260mmとした。
例えば、土台11や胴差し21の柱芯から260mmの場所に通気路12、22を設け順次260mmの間隔で通気路12、22を設けている。
この通気路12、22の孔径8mmまた間隔260mmにすることで土台11や胴差し21の強度を確保しつつ吸放湿性能に支障をきたすことのない外気通気量を確保している。
In the schematic diagram of FIG. 1, since the inter-column dimension is 1820 mm, the width of the base 11 and the trunk 21 is 150 mm, and the exterior face material 50 is 10 mm, the air holes 12 and 22 have a hole diameter of 8 mm and an interval of about 260 mm.
For example, the air passages 12 and 22 are provided at a position 260 mm from the core of the base 11 and the trunk 21, and the air passages 12 and 22 are sequentially provided at an interval of 260 mm.
By setting the hole diameter of the air passages 12 and 22 to 8 mm and the interval to 260 mm, the outside air ventilation amount that does not hinder the moisture absorption and desorption performance is secured while securing the strength of the base 11 and the trunk 21.

第二実施形態:
図3は、土台61また胴差71、81を貫通する第一通気路62、72、82を利用した第一通気層35と第二通気路63、73、83を利用した第二通気層36を有する柱間断熱工法2の概念図である。
また、図4は、図3の柱間断熱工法2の概念を応用した概略図を図示している。
ここでの図3と図4の違いは図3には土台61を貫通する第二通気層36と連通する第二通気路63を設けたが図4では土台11に第二通気層36と連通する通気路を設けず一階根太40を土台11のより若干高くする方法で通気路13を確保している。
これによって第二実施形態であれば第一実施形態に比べ極寒地でも無結露住宅が実現できるので断熱施工費用は割高となるが床下通気用の第二通気層36を設けているため、この第二通気層36を温湿度管理し空気循環を行うことと第一通気層35によって極寒地でも結露しない柱間断熱工法2となっている。
Second embodiment:
FIG. 3 shows the first ventilation layer 35 using the first ventilation passages 62, 72, 82 penetrating the base 61 or the trunk differences 71, 81 and the second ventilation layer 36 using the second ventilation passages 63, 73, 83. It is a conceptual diagram of the inter-column heat insulation construction method 2 which has.
FIG. 4 shows a schematic diagram in which the concept of the inter-column heat insulation method 2 in FIG. 3 is applied.
The difference between FIG. 3 and FIG. 4 here is that in FIG. 3 a second air passage 63 communicating with the second air-permeable layer 36 penetrating the base 61 is provided, but in FIG. The air passage 13 is secured by a method in which the first floor joist 40 is slightly higher than the base 11 without providing the air passage.
As a result, in the second embodiment, a non-condensing house can be realized even in an extremely cold region compared to the first embodiment, so that the heat insulation construction cost is high, but the second ventilation layer 36 for underfloor ventilation is provided. The second ventilation layer 36 is temperature-humidity-controlled and air is circulated, and the first ventilation layer 35 is the inter-column heat insulation method 2 that does not condense even in extremely cold regions.

ここからの第二実施形態の技術説明は図3の概念図にしたがい説明する。
まず、床下壁内循環空気は湿度を低湿度、例えば50%以下で出来れば略40%に保ち内装面材51と面材52の隙間の第二通気層36を通じて床下から屋根裏へそして床下へと連続または間歇運転で空気循環させている。
この低湿度空気の循環により建物の構造体の耐久性を長く維持できる住宅建築工法となっている。
低湿度空気の循環は結露を生じさせない領域をさらに広くできるので壁内断熱部のどの場所であろうが露点温度に達しない温湿度環境をつくりだせる柱間断熱工法2となっている。
The technical description of the second embodiment from here will be described according to the conceptual diagram of FIG.
First, the circulating air in the underfloor wall is kept at a low humidity, for example, approximately 40% if it can be reduced to 50% or less, from the underfloor to the attic and under the floor through the second ventilation layer 36 in the gap between the interior face material 51 and the face material 52. Air is circulated continuously or intermittently.
This low-humidity air circulation is a residential construction method that can maintain the durability of the building structure for a long time.
The circulation of the low-humidity air can further widen the region where condensation does not occur. Therefore, the inter-column heat insulation construction method 2 is able to create a temperature and humidity environment where the dew point temperature is not reached regardless of the location of the heat insulating portion in the wall.

柱間断熱工法2の構成で冬期の場合、内装面材51は調湿効果を最大限に発揮できる高い吸放湿性能とまた適度に低い透湿抵抗を有する内装面材51である。
この内装面材51は居室内で発生する余分な水蒸気を吸湿しまた乾燥すれば放湿できる高い調湿性能を有する建材である。
そして内装面材51内部に吸湿された余分な湿気は内装面材51から第二通気層36に放出され循環している低湿度空気に拡散し混ざり第二通気層36を通じて床下から屋根裏へそして床下へと空気循環している。
したがって、基礎90と基礎パッキン91と土台61とは床下空間内部に外気が入り込まない気密構造で造られていて床下空間内には除湿冷暖房機99を備え空気循環送風機98によって低湿度空気を第二通気層36を通じて床下から屋根裏へそして床下へと空気循環させる方法となっている。
In the case of winter in the configuration of the inter-column heat insulation method 2, the interior surface material 51 is an interior surface material 51 having a high moisture absorption / release performance capable of maximizing the humidity control effect and a moderately low moisture permeability.
The interior surface material 51 is a building material having a high humidity control performance that can absorb moisture from the excess water vapor generated in the living room and release the water vapor.
Then, excess moisture absorbed inside the interior surface material 51 is released from the interior surface material 51 to the second ventilation layer 36 and diffuses and mixes with the circulating low-humidity air, through the second ventilation layer 36 from the floor to the attic and below the floor. Air circulation to
Accordingly, the foundation 90, the foundation packing 91, and the base 61 are constructed in an airtight structure that does not allow outside air to enter the underfloor space. In this method, air is circulated from below the floor to the attic and below the floor through the ventilation layer 36.

次に、第二通気層36を挟んで面材52が取り付けられている。
この面材52は内装面材51と略同等の高い吸放湿性能と低い透湿抵抗を有していて面材52で住宅の気密性を保持する重要な面材52である。
湿気に対する役割は内装面材51と面材52の両方を設けたことで2倍の吸放湿能力を確保しこのことを活かし結露に強い柱間断熱工法2となっている。
内装面材51と面材52の両方を設け2倍の吸放湿能力に加え第二通気層36の空気品質を低湿度に保つことによって極寒地でも無結露住宅を実現させることができるようになっている。
Next, the face material 52 is attached with the second ventilation layer 36 interposed therebetween.
The face material 52 is an important face material 52 that has high moisture absorption / release performance and low moisture permeation resistance substantially the same as the interior face material 51 and maintains the airtightness of the house with the face material 52.
The role against moisture is the inter-column heat insulation construction method 2 that secures twice the moisture absorption and desorption capability by providing both the interior face material 51 and the face material 52, and makes use of this to resist condensation.
By providing both the interior face material 51 and the face material 52, in addition to the double moisture absorption and release capacity, the air quality of the second ventilation layer 36 is kept at low humidity so that a non-condensing house can be realized even in extremely cold regions. It has become.

その次に、面材52の外側には断熱材30があり余分な湿気を水蒸気の状態で第一通気層35を通じて放出できるようになっている。
例えば、断熱材30がロックウールボードやグラスウールボードでその透湿抵抗値は内装面材51や面材52よりさらに低く湿気は断熱材30の内部で溜まることなく第一通気層35から放出できる柱間断熱工法2となっており壁内結露を発生することはない。
また、外装面材50は高い防水性能を有している外装面材50で土台、柱、胴差しと接する全周から雨水等が入り込まないよう完全にシールされ取り付けられている。
透湿抵抗値から見た内装面材51また面材52と断熱材30との関係は、内装面材51や面材52よりさらに低い透湿抵抗値の断熱材30との組み合わせにより断熱材30内に湿気が溜まらないように構成した柱間断熱工法2で、この構成によって冬型壁内結露を防ぎつつ高断熱で土壁のように呼吸できる柱間断熱工法2となっている。
Next, the heat insulating material 30 is provided outside the face material 52 so that excess moisture can be discharged through the first ventilation layer 35 in the state of water vapor.
For example, the heat insulating material 30 is a rock wool board or a glass wool board, and its moisture permeability resistance value is lower than that of the interior surface material 51 and the surface material 52, and moisture can be released from the first ventilation layer 35 without accumulating inside the heat insulating material 30. Inter-insulation method 2 is used, and no dew condensation occurs in the walls.
Further, the exterior face material 50 is a highly waterproof exterior face material 50 that is completely sealed and attached so that rainwater or the like does not enter from the entire circumference in contact with the base, pillar, and trunk.
The relationship between the interior face material 51 or the face material 52 and the heat insulating material 30 as seen from the moisture permeation resistance value is based on the combination of the interior surface material 51 and the heat insulating material 30 having a lower moisture resistance than the face material 52. The inter-column heat insulation method 2 is constructed so that moisture does not accumulate inside, and this structure is the inter-column heat insulation method 2 that prevents the dew condensation in the winter mold wall and can breathe like a dirt wall with high heat insulation.

また、夏期の場合にも居室内を冷房し外気との温度差が生じたとしても第二通気層36の空気品質を低湿度に保つことによって壁内結露が生じない柱間断熱工法2となっている。
したがって、第一通気層35と第二通気層36を有する柱間断熱工法2で造られた住宅は冬期と夏期との温度差が極端に違う地域であっても無結露住宅が実現できるので地球温暖化が進み気候変動が大きく温度変化も大きくなると考えられる状況下でも対応可能な柱間断熱工法2と言ってよい。
そして、冬場であろうが夏場であろうが結露を生じさせない領域を広くした柱間断熱工法2の構成は顧客の使用状況を考慮し内装面材51や面材52また断熱材30の厚みを変えるなどして個別対応するが断熱材30の最低厚みは地域区分毎の基準にしたがい施工されている。
Further, even in the summer season, even if the room is cooled and a temperature difference from the outside air occurs, the inter-column heat insulation method 2 in which dew condensation in the wall does not occur by keeping the air quality of the second ventilation layer 36 at a low humidity. ing.
Therefore, a house built by the inter-column heat insulation method 2 having the first ventilation layer 35 and the second ventilation layer 36 can realize a non-condensing house even in an area where the temperature difference between winter and summer is extremely different. It can be said that this is an inter-column heat insulation construction method 2 that can cope with the situation where global warming is progressing and climate change is large and temperature change is also large.
In addition, the structure of the inter-column heat insulation construction method 2 that widens the region that does not cause dew condensation regardless of whether it is in winter or summer, the thickness of the interior surface material 51, the surface material 52, or the heat insulation material 30 is considered in consideration of the use situation of the customer. The minimum thickness of the heat insulating material 30 is applied in accordance with the standard for each region division, although it can be individually handled by changing it.

さらに、この第二実施形態の柱間断熱工法2の優位性は第二通気層36を通じて床下から屋根裏へそして床下へと空気循環が可能なので循環空気の温湿度を一時的に高温低湿度で循環運転させることで、例えば湿度30%以下で空気循環を行い断熱材30に含まれる余分な湿気を排除する乾燥運転を行うことで常に熱伝導率値を低く保つことができる断熱材再生システムを有する柱間断熱工法2となっている。  Further, the advantage of the inter-column heat insulation method 2 of the second embodiment is that air circulation is possible from the under floor to the attic and under the floor through the second ventilation layer 36, so that the temperature and humidity of the circulating air are temporarily circulated at high temperature and low humidity. By operating, for example, it has an insulating material regeneration system that can keep the thermal conductivity value low by performing air drying at a humidity of 30% or less and performing a drying operation that eliminates excess moisture contained in the insulating material 30. It becomes the inter-column heat insulation construction method 2.

尚、本発明の実施形態に限らず以下のような変更が可能である。
本発明の第一実施形態また第二実施形態では断熱材30にロックウールボートやグラスウールボードを使用しているが、セルロースファイバー等を吹き込む断熱方法の場合にあっては断熱材30の外側に透湿シートを張り第一通気層35を通じて余分な湿気を排除することは可能であり図示し説明した前記実施形態に制約や制限されるものではない。
また、土台や胴差しを貫通する通気路の孔径8mmと間隔260mmも土台や胴差しの幅寸法をさらに太くするなど変更は可能であり前記実施形態に制約や制限されるものではない。
さらに、真壁の柱間断熱工法1、2の面材や断熱材の構成は大壁の断熱工法でも利用可能であり前記実施形態に制約や制限されるものではない。
In addition, the following modifications are possible without being limited to the embodiment of the present invention.
In the first embodiment and the second embodiment of the present invention, a rock wool boat or a glass wool board is used for the heat insulating material 30. However, in the case of a heat insulating method in which cellulose fiber or the like is blown, the outer side of the heat insulating material 30 is transparent. It is possible to apply a wet sheet and remove excess moisture through the first air-permeable layer 35, and the present invention is not limited or restricted to the embodiment shown and described.
Further, the hole diameter of 8 mm and the interval of 260 mm of the air passage penetrating through the base and the trunk can be changed such that the width of the base and the trunk is further increased, and is not limited or limited to the above embodiment.
Furthermore, the structure of the face material and the heat insulating material of the inter-column heat insulating method 1 and 2 of the true wall can be used in the heat insulating method of the large wall, and is not limited or restricted by the above embodiment.

産業上の利用の可能性Industrial applicability

本発明の柱間断熱工法1、2の構成で造られた住宅等建物は呼吸できる壁となっており壁内結露が生じない断熱工法なので構造体の耐久性を長く維持できる長寿命住宅の開発促進に結び付けることができる。
そして、高気密高断熱の長寿命住宅は・安全・安心・健康・癒し・省エネルギー住宅となり地球環境に優しくさらなる革新的な住宅建築工法の開発に結び付く。
Development of a long-life house that can maintain the durability of the structure for a long time because the building such as a house constructed by the construction of the inter-column heat insulation method 1 or 2 of the present invention has a breathable wall and does not cause condensation in the wall. Can be linked to promotion.
Highly airtight and highly heat-insulated long-life houses become safe, secure, healthy, healing and energy-saving houses, leading to the development of more innovative residential building methods that are friendly to the global environment.

図1は、土台また胴差しを貫通する通気路を通気層として利用した柱間断熱工法の概略図。FIG. 1 is a schematic view of an inter-column heat insulation method using an air passage passing through a base or a trunk as an air-permeable layer. 図2は、図1のイラスト図。FIG. 2 is an illustration of FIG. 図3は、土台また胴差しを貫通する通気路を通気層また床下通気用として利用した柱間断熱工法の概念図である。FIG. 3 is a conceptual diagram of an inter-column heat insulation method using an air passage passing through a base or a trunk as an air layer or under-floor air. 図4は、図3の柱間断熱工法の概念を応用した概略図。FIG. 4 is a schematic diagram applying the concept of the inter-column heat insulation method of FIG. 3.

符号の説明Explanation of symbols

1 柱間断熱工法
2 柱間断熱工法
11、、61 土台
12、22 通気路
21、71、81 胴差し
30 断熱材
35 通気層、第一通気層
36 第二通気層 62、72、82 第一通気路
50 外装面材 63、73、83 第二通気路
51 内装面材 98 空気循環送風機
52 面材 99 除湿冷暖房機
DESCRIPTION OF SYMBOLS 1 Inter-column heat insulation method 2 Inter-column heat insulation method 11, 61 61 Base 12, 22 Ventilation path 21, 71, 81 Trunk 30 Thermal insulation 35 Ventilation layer, 1st ventilation layer 36 2nd ventilation layer 62, 72, 82 1st Air passage 50 Exterior face material 63, 73, 83 Second air passage 51 Interior face material 98 Air circulation blower 52 Face material 99 Dehumidifying air conditioner

Claims (3)

柱間断熱工法において、
土台また胴差しを貫通する通気路を利用した通気層を有する柱間断熱工法。
In the thermal insulation method between pillars,
Insulation method between pillars with a ventilation layer that uses a ventilation passage that penetrates the base or torso.
土台また胴差しを貫通する通気路を通気層に利用し、
高い吸放湿性能と低い透湿抵抗を有する内装面材と、
より低い透湿抵抗の断熱材と、
外気通気用の通気層と、
外装面材とで構成したことを特徴とする請求項1に記載の柱間断熱工法。
Use the ventilation path that penetrates the base or torso as the ventilation layer,
An interior surface material having high moisture absorption / release performance and low moisture resistance,
A lower moisture resistance insulation,
A ventilation layer for venting outside air;
The inter-column heat insulation method according to claim 1, comprising an exterior face material.
土台また胴差しを貫通する外気を通す第一通気路を第一通気層に、また床下通気を行う第二通気路を第二通気層に利用し、
内装面材と、
床下通気用の第二通気層と、
高い吸放湿性能と低い透湿抵抗を有する面材と、
より低い透湿抵抗の断熱材と、
外気通気用の第一通気層と、
外装面材とで構成したことを特徴とする請求項1に記載の柱間断熱工法。
Use the first air passage that allows outside air to pass through the base or torso as the first air layer, and the second air passage that conducts under-floor air as the second air layer.
Interior face materials,
A second ventilation layer for underfloor ventilation;
A face material having high moisture absorption / release performance and low moisture resistance,
A lower moisture resistance insulation,
A first vent layer for venting outside air;
The inter-column heat insulation method according to claim 1, comprising an exterior face material.
JP2008058648A 2008-02-12 2008-02-12 Insulation method Expired - Fee Related JP5065103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008058648A JP5065103B2 (en) 2008-02-12 2008-02-12 Insulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008058648A JP5065103B2 (en) 2008-02-12 2008-02-12 Insulation method

Publications (2)

Publication Number Publication Date
JP2009191594A true JP2009191594A (en) 2009-08-27
JP5065103B2 JP5065103B2 (en) 2012-10-31

Family

ID=41073857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008058648A Expired - Fee Related JP5065103B2 (en) 2008-02-12 2008-02-12 Insulation method

Country Status (1)

Country Link
JP (1) JP5065103B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012021356A (en) * 2010-07-16 2012-02-02 Nihon Housng Co Ltd Wooden house

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60123644A (en) * 1983-12-06 1985-07-02 積水ハウス株式会社 Ventilation structure in wall body
JPH0356668U (en) * 1989-09-28 1991-05-30
JPH1030284A (en) * 1996-07-17 1998-02-03 Air Cycle Sangyo Kk Air cycle house having open-columned wall structure
JP2004211440A (en) * 2003-01-06 2004-07-29 Daiken Trade & Ind Co Ltd Wall structure
JP2007092362A (en) * 2005-09-28 2007-04-12 Kaneka Corp Building

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60123644A (en) * 1983-12-06 1985-07-02 積水ハウス株式会社 Ventilation structure in wall body
JPH0356668U (en) * 1989-09-28 1991-05-30
JPH1030284A (en) * 1996-07-17 1998-02-03 Air Cycle Sangyo Kk Air cycle house having open-columned wall structure
JP2004211440A (en) * 2003-01-06 2004-07-29 Daiken Trade & Ind Co Ltd Wall structure
JP2007092362A (en) * 2005-09-28 2007-04-12 Kaneka Corp Building

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012021356A (en) * 2010-07-16 2012-02-02 Nihon Housng Co Ltd Wooden house

Also Published As

Publication number Publication date
JP5065103B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
EP2021699A1 (en) Dehumidifying ventilation and regulation of airflow in enclosed structures
JP4646309B2 (en) Desiccant ventilator
JP2018524540A (en) Harvesting energy from humidity fluctuations
JP2009019788A (en) Desiccant air conditioner
JP5065103B2 (en) Insulation method
JP4462572B2 (en) Wood drying method and wood drying apparatus
CN103485447B (en) A kind of moistureproof sound-absorbing space enclosing structure with air layer
CN107725090B (en) Underground tunnel ventilation system and implementation method thereof
JP2008185324A (en) Dual air circulation system and 24-hour ventilation system
CZ17328U1 (en) Diffusion open wall structure of low-energy buildings without condensation water
JP2002089863A (en) Heat accumulating floor structure
JP6805007B2 (en) Housing
Lubeck et al. Efficiency and comfort through deep energy retrofits: Balancing energy and moisture management
JP2008063847A (en) Moisture-permeable heat-insulating airtight structure for building
KR101913514B1 (en) Insulating partition
JP2006200331A (en) Foundation packing
JP2013136877A (en) Wall structure of building
JP2010248834A (en) Wall structure of building, and building
JP2007092362A (en) Building
JP6817609B2 (en) Air conditioning system, building and air conditioning method
JP2008045325A (en) Antisweat wall structure
JP2005226421A (en) Exterior thermal insulation and ventilation system
JP4769542B2 (en) Wall repair structure
Lstiburek There is No Such Thing as a Free Thermodynamic Lunch
JP6038991B2 (en) Moisture discharge structure of building outer wall

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5065103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees