JP2009188064A - Superconductive magnet device - Google Patents
Superconductive magnet device Download PDFInfo
- Publication number
- JP2009188064A JP2009188064A JP2008024490A JP2008024490A JP2009188064A JP 2009188064 A JP2009188064 A JP 2009188064A JP 2008024490 A JP2008024490 A JP 2008024490A JP 2008024490 A JP2008024490 A JP 2008024490A JP 2009188064 A JP2009188064 A JP 2009188064A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- superconducting
- coil
- tape
- superconducting coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
Description
本発明は、超電導マグネット装置に関し、詳しくは、テープからなる超電導線を巻回した超電導コイルを空間をあけて対向配置した超電導マグネット装置において、前記空間内でテープ面に対して垂直方向に発生する漏れ磁場により短絡が発生するのを抑制するものである。 The present invention relates to a superconducting magnet device, and more specifically, in a superconducting magnet device in which a superconducting coil wound with a superconducting wire made of a tape is disposed opposite to each other with a space therebetween, the superconducting magnet device is generated in a direction perpendicular to the tape surface in the space. This prevents a short circuit from occurring due to a leakage magnetic field.
従来、テープ状の超電導線を巻回して形成した種々の超電導コイルが提供されている。
例えば、特開2002−110416号公報(特許文献1)で提供されている超電導コイル1は、図6に示すように、テープ状の超電導線2を所謂フラットワイズ巻きしたコイル部1aを軸線方向に積層して円筒形状としている。該超電導コイル1では、中空部1bを囲む超電導コイル2のテープ面2aは中心軸線0を挟んで平行配置されている。
(図面に1bを追記ください)→追記しました。
Conventionally, various superconducting coils formed by winding a tape-shaped superconducting wire have been provided.
For example, as shown in FIG. 6, the
(Please add 1b to the drawing.) → Added.
このような超電導コイルの応用例として、近年、超電導マグネット装置が提供されている。例えば、図7に示す超電導マグネット装置は、C型鉄心8の両側部8a−A、8a−Bにそれぞれ超電導コイル1A、1Bを巻き付けて対向配置している。
この場合、超電導コイル1Aが巻かれた一方の鉄心の先端8b−Aから他方の鉄心の先端8b−Bに向かう磁場6が発生する。同時に、空間を挟んで対向する両側の超電導コイル1A、1Bのテープ面に垂直方向の成分を備える磁場、いわゆる漏れ磁場7が発生する。
In recent years, a superconducting magnet device has been provided as an application example of such a superconducting coil. For example, the superconducting magnet apparatus shown in FIG. 7 has
In this case, a
超電導コイルの超電導線に、テープ面に対して垂直方向の磁場成分である漏れ磁場が発生すると、超電導コイルの臨界電流が低下する。
図8(A)は、超電導線のテープ面に対して垂直方向の磁場を加えた場合の臨界電流を示し、図8(B)は、超電導線のテープ面と磁場方向が平行である場合の臨界電流を示す。このグラフからわかるように、磁場の大きさや冷却温度の条件を変えても、いずれの場合もテープ面に垂直方向の磁場を加えた超電導線は、テープ面を磁場の方向と平行とした超電導線よりも臨界電流が小さくなる。なお、図8のグラフの縦軸の数値は、磁束密度0ステラ(T)、温度77ケルビン(K)の状態で超電導線に通電した場合の臨界電流を1としたときの臨界電流の大きさを示す。
When a leakage magnetic field, which is a magnetic field component perpendicular to the tape surface, is generated in the superconducting wire of the superconducting coil, the critical current of the superconducting coil is lowered.
FIG. 8A shows the critical current when a magnetic field perpendicular to the tape surface of the superconducting wire is applied, and FIG. 8B shows the case where the tape surface of the superconducting wire and the magnetic field direction are parallel. Indicates critical current. As can be seen from this graph, the superconducting wire with a magnetic field perpendicular to the tape surface in any case is a superconducting wire with the tape surface parallel to the direction of the magnetic field, regardless of the magnitude of the magnetic field and the cooling temperature conditions. The critical current is smaller than that. The numerical value on the vertical axis of the graph of FIG. 8 indicates the magnitude of the critical current when the critical current is 1 when the superconducting wire is energized in a state where the magnetic flux density is 0 stella (T) and the temperature is 77 Kelvin (K). Indicates.
このように、複数の超電導コイル間で磁場を発生させる場合、超電導コイルのテープ面に垂直方向の成分の漏れ磁場により、臨界電流が低下し超電導コイルの性能が低下してしまう問題がある。 As described above, when a magnetic field is generated between a plurality of superconducting coils, there is a problem that the critical current is lowered and the performance of the superconducting coil is lowered due to the leakage magnetic field of the component perpendicular to the tape surface of the superconducting coil.
本発明は、前記問題に鑑みてなされたもので、複数の超電導コイル間で磁場を発生させる場合において、超電導コイルの軸線方向の両端位置の超電導線に加わる磁場のうち超電導線のテープ面に対して垂直方向の成分を抑制して臨界電流の低下を防ぎ、超電導コイルの特性を効率良く発揮することを課題としている。 The present invention has been made in view of the above problems, and in the case where a magnetic field is generated between a plurality of superconducting coils, the magnetic field applied to the superconducting wires at both end positions in the axial direction of the superconducting coils with respect to the tape surface of the superconducting wires. Therefore, it is an object to suppress the vertical component to prevent the critical current from being lowered and to efficiently exhibit the characteristics of the superconducting coil.
前記課題を解決するため、本発明は、テープからなる超電導線を巻回した超電導コイルが、テープ面に対して垂直方向の空間をあけて対向配置され、これら超電導コイルの軸線方向の端部間で磁束を発生させる超電導マグネット装置であって、
前記超電導コイルの対向するテープ面間の空間に、該テープ面に対して垂直方向に発生する磁場成分によりテープ面間で磁束の短絡を防止する磁場遮蔽材が配置されていることを特徴とする超電導マグネット装置を提供している。
In order to solve the above-mentioned problems, the present invention provides a superconducting coil in which a superconducting wire made of a tape is wound so as to be opposed to each other with a space in a direction perpendicular to the tape surface, and between the ends in the axial direction of these superconducting coils. A superconducting magnet device that generates magnetic flux at
A magnetic field shielding material for preventing a short circuit of magnetic flux between the tape surfaces by a magnetic field component generated in a direction perpendicular to the tape surface is disposed in a space between the opposing tape surfaces of the superconducting coil. A superconducting magnet device is provided.
複数の超電導コイルに電流を流して各超電導コイルの軸線方向の端部間で磁束を発生させる場合に、同時に、超電導コイルの対向するテープ面間の空間に、超電導コイルのテープ面に対して垂直方向の漏れ磁場が発生する。
このため、超電導コイルの対向するテープ面間の空間に磁場遮蔽材を配置し、該磁場遮蔽材に漏れ磁場を打ち消す方向にキャンセル磁場を発生させることで、超電導線のテープ面に対して垂直方向の成分が少なくなり、臨界電流の低下を防いで超電導コイルの特性を向上させることができる。
When current is passed through multiple superconducting coils to generate magnetic flux between the axial ends of each superconducting coil, at the same time, the space between the opposing tape surfaces of the superconducting coils is perpendicular to the tape surface of the superconducting coils. Directional leakage magnetic field is generated.
For this reason, a magnetic field shielding material is arranged in the space between the opposing tape surfaces of the superconducting coil, and a canceling magnetic field is generated in the direction to cancel the leakage magnetic field in the magnetic field shielding material, thereby making the direction perpendicular to the tape surface of the superconducting wire. Thus, the critical current can be prevented from being lowered and the characteristics of the superconducting coil can be improved.
前記超電導コイルは、C型鉄心の両側部にそれぞれ巻き付ける一対の超電導コイルからなり、該C型鉄心の開口側の前記空間に前記磁場遮蔽材が配置されていることが好ましい。 The superconducting coil is preferably composed of a pair of superconducting coils wound around both sides of the C-type iron core, and the magnetic field shielding material is disposed in the space on the opening side of the C-type iron core.
一対の超電導コイルをC型鉄心に巻きつけて電流を流した場合でも、一方の超電導コイルの軸線方向の先端からC型鉄心の開口側の前記空間を通って他方の超電導コイルの先端に向かう磁場が発生し、同時に、C型鉄心の開口側の前記空間には超電導線のテープ面に対して垂直方向の成分を備えた漏れ磁場が発生する。
このため、該C型鉄心の開口側の前記空間に前記磁場遮蔽材を配置することで、超電導線のテープ面に対して垂直方向の成分が少なくなり、臨界電流の低下を防いで超電導コイルの特性を向上させることができる。
Even when a pair of superconducting coils are wound around a C-type iron core and a current flows, the magnetic field from the tip in the axial direction of one superconducting coil to the tip of the other superconducting coil through the space on the opening side of the C-type iron core At the same time, a leakage magnetic field having a component perpendicular to the tape surface of the superconducting wire is generated in the space on the opening side of the C-type iron core.
For this reason, by arranging the magnetic field shielding material in the space on the opening side of the C-type iron core, the component in the direction perpendicular to the tape surface of the superconducting wire is reduced, and the reduction of the critical current is prevented to prevent the superconducting coil. The characteristics can be improved.
なお、この場合、一方の超電導コイルのC型鉄心の開口側と反対側の軸線方向の端部からは、C型鉄心の両側部を連結する基部を通って他方の超電導コイルに向かう磁場が発生するが、鉄心を通るため漏れ磁場の発生は少ない。このため、該C型鉄心の開口側と反対側の空間に磁場遮蔽材を配置する必要はない。 In this case, a magnetic field directed toward the other superconducting coil is generated from the end in the axial direction opposite to the opening side of the C-type core of one superconducting coil through the base connecting both sides of the C-type core. However, since it passes through the iron core, there is little leakage magnetic field. For this reason, it is not necessary to arrange a magnetic shielding material in the space opposite to the opening side of the C-type iron core.
前記超電導コイルは、空間を空けて並行配置する一対の直線状の鉄心にそれぞれ巻き付ける超電導コイルからなり、前記一対の鉄心の長さ方向の両端の空間にそれぞれ前記磁場遮蔽材が配置されているものであってもよい。 The superconducting coil is composed of a superconducting coil wound around a pair of linear iron cores arranged parallel to each other with a space therebetween, and the magnetic field shielding material is arranged in the space at both ends in the length direction of the pair of iron cores. It may be.
前記構成によれば、並行配置した一対の鉄心と、該鉄心の長さ方向の両端の開口側を通って一周する磁場が発生する。即ち、一対の鉄心の長さ方向の一端から鉄心の開口側を通って他方の鉄心の一端に向かう磁場が発生し、他方の鉄心の長さ方向の他端から一方の鉄心の他端に、前記磁場と逆向きの磁場が発生する。
同時に、一対の鉄心の長さ方向の一端の空間には超電導線のテープ面に対して垂直方向の成分を備えた漏れ磁場が発生し、鉄心の長さ方向の一端の空間には、前記漏れ磁場と逆向きの漏れ磁場が発生する。
このため、該鉄心の両端の空間に前記磁場遮蔽材を配置することで、該磁場遮蔽材に漏れ磁場を打ち消す方向にキャンセル磁場が発生し、超電導線のテープ面に対して垂直方向の成分が少なくなり、臨界電流の低下を防いで超電導コイルの特性を向上させることができる。
According to the said structure, the magnetic field which goes around through a pair of iron core arranged in parallel and the opening side of the both ends of the length direction of this iron core generate | occur | produces. That is, a magnetic field is generated from one end in the length direction of a pair of iron cores to one end of the other iron core through the opening side of the iron core, and from the other end in the length direction of the other iron core to the other end of one iron core, A magnetic field opposite to the magnetic field is generated.
At the same time, a leakage magnetic field having a component perpendicular to the tape surface of the superconducting wire is generated in the space at one end in the length direction of the pair of iron cores, and the leakage in the space at one end in the length direction of the iron core. A leakage magnetic field opposite to the magnetic field is generated.
For this reason, by arranging the magnetic field shielding material in the space at both ends of the iron core, a cancellation magnetic field is generated in the direction to cancel the leakage magnetic field in the magnetic field shielding material, and the component in the direction perpendicular to the tape surface of the superconducting wire is generated. As a result, the characteristics of the superconducting coil can be improved by preventing the critical current from decreasing.
前記磁場遮蔽材は短絡させた超電導コイルまたは電源と接続された超電導コイルからなり、前記超電導コイルの軸線方向を前記テープ面に対して垂直方向に配置して、前記テープ面に発生する垂直方向の磁場成分を減衰させる磁場を発生させていることが好ましい。 The magnetic field shielding material is a short-circuited superconducting coil or a superconducting coil connected to a power source, and the axial direction of the superconducting coil is arranged in a direction perpendicular to the tape surface, and a vertical direction generated on the tape surface. It is preferable to generate a magnetic field that attenuates the magnetic field component.
磁場遮蔽材を短絡させた超電導コイルとした場合、磁場遮蔽材は、電磁誘導により、超電導コイルが発生するテープ面に対して垂直方向の漏れ磁場を打ち消す方向にキャンセル磁場を発生する。このため、超電導コイルのテープ面に発生する垂直方向の磁場成分が減衰し、臨界電流の低下を防ぐことができる。 When a superconducting coil in which the magnetic field shielding material is short-circuited, the magnetic field shielding material generates a canceling magnetic field in a direction that cancels out the leakage magnetic field perpendicular to the tape surface generated by the superconducting coil by electromagnetic induction. For this reason, the perpendicular magnetic field component generated on the tape surface of the superconducting coil is attenuated, and the reduction of the critical current can be prevented.
磁場遮蔽材を電源と接続された超電導コイルとした場合、磁場遮蔽材に電流を流して、超電導コイルのテープ面に対して垂直方向の漏れ磁場を打ち消す方向にキャンセル磁場を発生させる。このため、超電導コイルのテープ面に発生する垂直方向の漏れ磁場成分が減衰し、臨界電流の低下を防ぐことができる。 When the magnetic field shielding material is a superconducting coil connected to a power source, a current is passed through the magnetic field shielding material to generate a canceling magnetic field in a direction that cancels out the leakage magnetic field perpendicular to the tape surface of the superconducting coil. For this reason, the leakage magnetic field component in the vertical direction generated on the tape surface of the superconducting coil is attenuated, and a reduction in critical current can be prevented.
前記磁場遮蔽材はバルク超電導体からなり、該バルク超電導体は前記テープ面間の空間から磁束経路側へと突出させて配置され、前記テープ面に発生する垂直方向の磁場成分を前記磁束経路側へと誘導していてもよい。 The magnetic field shielding material is made of a bulk superconductor, and the bulk superconductor is disposed so as to protrude from the space between the tape surfaces to the magnetic flux path side, and a vertical magnetic field component generated on the tape surface is arranged on the magnetic flux path side. You may be guided to.
バルク超電導体とは一塊(バルク状)の酸化物超電導体である。バルク超電導体を超電導コイルのテープ面間の空間から磁束経路側へと突出させて配置しており、かつ、マイスナー効果によりバルク超電導体には磁場は侵入しないので、超電導コイルのテープ面に発生する垂直方向の漏れ磁場成分はバルク超電導体を通過せずに磁束経路側へと誘導される。
このため、超電導コイルのテープ面に発生する垂直方向の漏れ磁場成分が減衰し、臨界電流の低下を防ぐことができる。
A bulk superconductor is a lump (bulk) oxide superconductor. The bulk superconductor protrudes from the space between the tape surfaces of the superconducting coil to the magnetic flux path side, and the magnetic field does not enter the bulk superconductor due to the Meissner effect, so it occurs on the tape surface of the superconducting coil. The leakage magnetic field component in the vertical direction is induced to the magnetic flux path side without passing through the bulk superconductor.
For this reason, the leakage magnetic field component in the vertical direction generated on the tape surface of the superconducting coil is attenuated, and a reduction in critical current can be prevented.
前述したように、本発明の超電導マグネット装置によれば、複数の超電導コイルに電流を流して各超電導コイルの軸線方向の端部間で磁束を発生させる場合に、同時に、超電導コイルの対向するテープ面間の空間に、超電導コイルのテープ面に対して垂直方向の漏れ磁場が発生するが、超電導コイルの対向するテープ面間の空間に磁場遮蔽材を配置し、該磁場遮蔽材に漏れ磁場を打ち消す方向にキャンセル磁場を発生させることで、臨界電流の低下を防いで超電導コイルの特性を向上させることができる。 As described above, according to the superconducting magnet device of the present invention, when a current is passed through a plurality of superconducting coils to generate magnetic flux between the end portions in the axial direction of each superconducting coil, the tapes facing the superconducting coils are simultaneously used. A leakage magnetic field perpendicular to the tape surface of the superconducting coil is generated in the space between the surfaces, but a magnetic shielding material is disposed in the space between the opposing tape surfaces of the superconducting coil, and the leakage magnetic field is applied to the magnetic shielding material. By generating a canceling magnetic field in the direction of cancellation, the critical current can be prevented from being lowered and the characteristics of the superconducting coil can be improved.
本発明の実施形態を図面を参照して説明する。
図1に本発明の第1実施形態を示す。
本発明の超電導マグネット装置10は、図1に示すように、C型鉄心20と、テープからなる超電導線30aを巻回して該C型鉄心20に巻き付けた一対の超電導コイル30と、磁場遮蔽材を構成する磁気遮蔽コイル40からなる。
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a first embodiment of the present invention.
As shown in FIG. 1, a
C型鉄心20は、断面矩形状とした基部20aと、基部20aの両端から同方向に突出した一対の直線状の両側部20b−A、20b−Bから形成している。該両側部20b−A、20b−Bに一対の超電導コイル30A、30Bを巻き付けており、両側部20bの開口側先端20cが超電導コイル30の軸線方向Yの開口側端部30bよりも突出するようにしている。
対向配置された一対の超電導コイル30A、30Bの間には、超電導線30aのテープ面30dに対して垂直方向Xに空間50が形成される。
なお、基部20a及び両側部20b−A、20b−Bは断面矩形状に限定されず、断面円状であってもよい。
The C-
A
The
磁気遮蔽コイル40は、該C型鉄心20の開口側の超電導コイル30A、30Bの対向するテープ面30d間の空間50であって、C型鉄心20の両側部20b間の中間位置で、かつ、C型鉄心20の両側部20bの開口側の先端20cから突出しないか、少し突出した位置に配置している。
磁気遮蔽コイル40は超電導コイルからなり、テープからなる超電導線40aを円筒状の巻枠にフラットワイズ巻きし、超電導線40aの両端を溶接、ハンダ付けまたは銀蝋付けして短絡している。
磁気遮蔽コイル40の超電導コイルの軸線方向Zが、C型鉄心20に巻き付けた超電導コイル30のテープ面30dに対して垂直方向Xとなるように配置している。磁気遮蔽コイル40の内径はC型鉄心20に巻き付けた超電導コイルの軸線方向Yの長さの5%〜50%が好ましく、本実施形態では20%としている。巻き数は遮蔽すべき磁場の量を勘案して定められる。
The
The
The
C型鉄心20に巻き付けた超電導コイル30は、シングルパンケーキコイル30cを軸線方向Yに複数積層して形成しており、シングルパンケーキコイル30cは、テープからなる超電導線30aを円筒状の巻枠にフラットワイズ巻きしている。複数のシングルパンケーキコイル30cの軸線方向Yの端面同士を重ね合わせ、隣接するパンケーキコイルの超電導線30aを夫々溶接して接続し、一つの超電導コイル30としている。両端のパンケーキコイルの超電導線30aの端面をリード線(図示せず)を介して電源(図示せず)と接続している。
The superconducting coil 30 wound around the C-
なお、超電導コイル30としてダブルパンケーキコイルを用いてもよい。
また、磁気遮蔽コイル40もC型鉄心20に巻き付けた超電導コイル30と同様に、シングルパンケーキコイルを軸線方向Yに複数積層してもよい。
なお、図1では、超電導コイル30及び磁気遮蔽コイル40の超電導線30a、40aに介在される絶縁材の図示を省略しているが、超電導線30a、40aを巻回する際には超電導線30a、40aにテープ状の絶縁材を重ね合わせて、該絶縁材を超電導線30a、40aと共に巻回し、隣接する超電導線30a、40a同士が接触しないようにしている。
Note that a double pancake coil may be used as the superconducting coil 30.
Also, the
In FIG. 1, the illustration of the insulating material interposed between the
超電導コイル30、磁気遮蔽コイル40は冷却容器(図示せず)にそれぞれ収容し、液体窒素で冷却して超電導状態としている。磁気遮蔽コイル40の冷却容器を超電導マグネット装置10の収容ケース(図示せず)に固定することで、磁気遮蔽コイル40を前記C型鉄心20の開口側の空間50に支持固定している。
The superconducting coil 30 and the
次に、磁気遮蔽コイル40により、超電導コイル30のテープ面30dに発生する垂直方向Xの磁場成分である漏れ磁場φ2を減衰させる方法について説明する。
超電導コイル30に電流を流すと、図1のように、C型鉄心20の一方の側部20b−Aの先端20c−Aから他方の側部20b−Bの先端20c−Bの方向に磁場φ1が発生する。同時に、側部20b−Aに巻回された超電導コイル30Aのテープ面30d−Aから側部20b−Bに巻回された超電導コイル30Bのテープ面30d−Bの方向に、超電導コイル30のテープ面30dと垂直方向Xの漏れ磁場φ2が発生する。
Next, a method of attenuating the leakage magnetic field φ2 that is the magnetic field component in the vertical direction X generated on the
When a current is passed through the superconducting coil 30, as shown in FIG. 1, the magnetic field φ1 extends in the direction from the
漏れ磁場φ2が磁気遮蔽コイル40を通過すると、磁気遮蔽コイル40には電磁誘導により電流が流れ、漏れ磁場φ2と逆向きの方向であって、該テープ面30dに対して垂直方向Xに発生するキャンセル磁場φ3を発生する。このため、超電導コイル30のテープ面30dに発生する漏れ磁場φ2は打ち消されて減少する。
When the leakage magnetic field φ2 passes through the
C型鉄心20の側部20b−Aの先端20c−Aから側部20b−Bの先端20c−Bに向けて発生した磁場φ1は、C型鉄心20の側部20b−B、基部20aを通って側部20b−Aまで戻る。このため、両側部20b−A、20b−Bの基部20a側の端部においては、漏れ磁場φ2の発生は少なく、磁気遮蔽コイル40は必要がない。
The magnetic field φ1 generated from the
本実施形態においては、超電導コイル30に流す電流は交流電流としている。交流電流の場合、漏れ磁場φ2の大きさ及び方向が時間により変化するため、磁気遮蔽コイル40も漏れ磁場φ2に合わせてキャンセル磁場φ3を発生する。
なお、超電導コイル30に流す電流を直流電流としてもよい。この場合、磁気遮蔽コイル40にいったん電流が流れると該電流は継続して流れ続け、キャンセル磁場φ3を発生し続ける。なお、該電流は、超電導コイル30とリード線等との接触部の抵抗等により少しずつ減衰していくが、特に流れる電流が比較的大きい超電導コイル30及び磁気遮蔽コイル40の場合、電流が減衰するまでに数日を要し、かつ、磁気遮蔽コイル40に流れる電流が減衰するよりも早く超電導コイル30に流す電流のオンオフを行うことが多いため、1年程度連続して電流を流し続けるような超電導コイルでない限り、該電流の減衰は問題とはならない。
In the present embodiment, the current flowing through the superconducting coil 30 is an alternating current. In the case of an alternating current, since the magnitude and direction of the leakage magnetic field φ2 change with time, the
Note that the current flowing through the superconducting coil 30 may be a direct current. In this case, once a current flows through the
本発明によれば、超電導コイル30の対向するテープ面30d間の空間50に、超電導コイル30からなる磁気遮蔽コイル40を配置することで、超電導線30aのテープ面30dに対して垂直方向Xの漏れ磁場φ2成分が少なくなり、臨界電流の低下を防いで超電導コイル30の特性を向上させることができる。
According to the present invention, by arranging the
図2に本発明の第2実施形態を示す。
第2実施形態では、超電導コイルからなる磁気遮蔽コイル40の超電導線40aの両端を短絡せず、電源装置60に接続している。
該電源装置60は、C型鉄心20に巻き付けた超電導コイル30A、30Bを励磁するコイル用電源装置61と接続しており、コイル用電源装置61が超電導コイル30に流す電流の向きを検知している。該電流の向きにより漏れ磁場φ2の向きが定まるので、電源装置60は磁気遮蔽コイル40が該漏れ磁場φ2と逆向きの磁場φ1であるキャンセル磁場φ3を発生するように磁気遮蔽コイル40に電流を流している。
FIG. 2 shows a second embodiment of the present invention.
In 2nd Embodiment, the both ends of the
The
本発明であっても、超電導コイル30の超電導線30aのテープ面30dに対して垂直方向Xの漏れ磁束φ2成分が少なくなるので、臨界電流の低下を防いで超電導コイル30の特性を向上させることができる。
なお、他の構成および作用効果は第1実施形態と同様のため、同一の符号を付して説明を省略する。
Even in the present invention, the leakage magnetic flux φ2 component in the vertical direction X with respect to the
In addition, since another structure and an effect are the same as that of 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.
図3は本発明の第3実施形態を示す。
本実施形態ではC型鉄心20ではなく、断面矩形状の一対の直線状の鉄心21としている。空間50を空けて並行配置した鉄心21A、21Bにそれぞれ超電導コイル30A、30Bを巻き付けている。
磁気遮蔽コイル40A、40Bは、一対の鉄心21の長さ方向の両端21c側の空間50A、50Bにそれぞれ配置している。
FIG. 3 shows a third embodiment of the present invention.
In this embodiment, a pair of linear iron cores 21 having a rectangular cross section are used instead of the C-
The magnetic shielding coils 40 </ b> A and 40 </ b> B are respectively disposed in the
超電導コイル30A、30Bに電流を流すと、図3のように、鉄心21Aの先端20c−AAから鉄心21Bの先端20c−BAの方向に磁場φ1Aが発生する。また、鉄心21Bの先端20c−BBから鉄心21Aの先端20c−ABの方向に磁場φ1Bが発生する。
一対の鉄心21は両端21cが開口しているため、超電導コイル30に電流が流れると、鉄心21の長さ方向の一方の開口側の空間50Aには、鉄心21Aに巻回された超電導コイル30Aのテープ面30d−Aから鉄心21Bに巻回された超電導コイル30Bのテープ面30d−Bの方向に、超電導コイル30のテープ面30dと垂直方向Xの漏れ磁場φ2Aが発生する。また、鉄心21の長さ方向の他方の開口側の空間50Bには、一方の空間50とは逆方向に漏れ磁場φ2Bが発生する。
When a current is passed through the
Since both ends 21c of the pair of iron cores 21 are open, when a current flows through the superconducting coil 30, the
このため、磁気遮蔽コイル40を空間50A、50Bにそれぞれ配置することにより、それぞれの漏れ磁場φ2と逆向きのキャンセル磁場φ3を発生させ、超電導コイル30の両端のテープ面30dに発生する垂直方向Xの磁場成分である漏れ磁場φ2を少なくすることができる。
なお、他の構成および作用効果は第1実施形態と同様のため、同一の符号を付して説明を省略する。
Therefore, by arranging the
In addition, since another structure and an effect are the same as that of 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.
図4は本発明の第4実施形態を示す。
本実施形態では磁場遮蔽材を直方体形状のバルク超電導体41で構成している。バルク超電導体41とは一塊(バルク状)の酸化物超電導体を意味しており、溶融法で作られたY−123(イットリウム123)に代表されるRE−123(RE:希土類)を材料としている。
図4に示すように、該バルク超電導体41の端部41aが、超電導コイル30の端部30bよりC型鉄心20の開口側となるように配置している。すなわち、バルク超電導体41の端部41aは、超電導コイル30の対向するテープ面30d間の空間50から磁場φ1による磁束の経路側に突出している。
FIG. 4 shows a fourth embodiment of the present invention.
In this embodiment, the magnetic field shielding material is composed of a rectangular
As shown in FIG. 4, the
超電導コイル30の対向するテープ面30d間の空間50に超電導コイル30のテープ面30dと垂直方向Xの漏れ磁場φ4が発生すると、バルク超電導体41はマイスナー効果により漏れ磁場φ4を通さないため、漏れ磁場φ4は磁場φ1による磁束経路側へと誘導される。該誘導により、漏れ磁場φ4は超電導コイル30のテープ面30d―Aからテープ面30d―Bに垂直方向Xに向かうのではなく、磁場φ1の磁束経路側を通ってC型鉄心20の側部20b−Bの先端20c−Bに向かう。また、漏れ磁場φ4がテープ面30d―Bに向かう場合もあるが、垂直方向Xの成分が抑制された角度でテープ面30d―Bに向かう。
When a leakage magnetic field φ4 perpendicular to the
このように、磁場遮蔽材をバルク超電導体41とすることで、テープ面30dに発生する垂直方向Xの磁場成分である漏れ磁場φ4の方向を変化させて、超電導コイル30の両端のテープ面30dに垂直方向Xに発生する漏れ磁場φ4を少なくすることができる。
なお、他の構成および作用効果は第1実施形態と同様のため、同一の符号を付して説明を省略する。
Thus, by using the
In addition, since another structure and an effect are the same as that of 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.
図5は本発明の第5実施形態を示す。
第3実施形態の一対の直線状の鉄心21A、21Bに超電導コイル30A、30Bを巻回している場合において、磁場遮蔽材を第4実施形態と同様の直方体形状のバルク超電導体41A、41Bとしている。また、バルク超電導体41の端部41cを、一対の鉄心21の長さ方向の両端の空間50A、50Bから、磁場φ1A、φ1Bによる磁束の経路側に突出するようにそれぞれ配置している。
前記構成であっても、漏れ磁場φ4の方向を変化させて、超電導コイル30の両端のテープ面30dに発生する垂直方向Xの漏れ磁場φ4を少なくすることができる。
なお、他の構成および作用効果は第3実施形態と同様のため、同一の符号を付して説明を省略する。
FIG. 5 shows a fifth embodiment of the present invention.
When the
Even in the above configuration, the leakage magnetic field φ4 in the vertical direction X generated on the tape surfaces 30d at both ends of the superconducting coil 30 can be reduced by changing the direction of the leakage magnetic field φ4.
In addition, since another structure and an effect are the same as that of 3rd Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.
なお、本発明は前記実施形態に限定されず、本発明の特許請求の範囲内の種々の形態が含まれるものである。 In addition, this invention is not limited to the said embodiment, The various form within the claim of this invention is included.
本発明の超電導マグネット装置を備えた超電導機器は、導電性あるいは磁性を持つ流体を制御するために用いられるものであり、例えば鉄鋼用の電磁攪拌に用いられる。 The superconducting device provided with the superconducting magnet device of the present invention is used for controlling a fluid having conductivity or magnetism, and is used for, for example, electromagnetic stirring for steel.
10 超電導マグネット装置
20 C型鉄心
20a 基部
20b−A、20b−B 両側部
20c 開口側先端
21 直線状の鉄心
30(30A、30B) 超電導コイル
30a 超電導線
30b 開口側端部
30d テープ面
40 磁気遮蔽コイル
40a 超電導線
41 バルク超電導体
50 テープ面に対して垂直方向の空間
60 電源装置
φ1 磁場
φ2、φ4 漏れ磁場
φ3 キャンセル磁場
DESCRIPTION OF
Claims (5)
前記超電導コイルの対向するテープ面間の空間に、該テープ面に対して垂直方向に発生する磁場成分によりテープ面間で磁束の短絡を防止する磁場遮蔽材が配置されていることを特徴とする超電導マグネット装置。 A superconducting magnet device in which a superconducting coil wound with a superconducting wire made of a tape is arranged to face the tape surface with a space in a direction perpendicular to the tape surface, and generates a magnetic flux between axial ends of these superconducting coils. ,
A magnetic field shielding material for preventing a short circuit of magnetic flux between the tape surfaces by a magnetic field component generated in a direction perpendicular to the tape surface is disposed in a space between the opposing tape surfaces of the superconducting coil. Superconducting magnet device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008024490A JP2009188064A (en) | 2008-02-04 | 2008-02-04 | Superconductive magnet device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008024490A JP2009188064A (en) | 2008-02-04 | 2008-02-04 | Superconductive magnet device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009188064A true JP2009188064A (en) | 2009-08-20 |
Family
ID=41071039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008024490A Withdrawn JP2009188064A (en) | 2008-02-04 | 2008-02-04 | Superconductive magnet device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009188064A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101823763B1 (en) * | 2016-06-02 | 2018-03-14 | 창원대학교 산학협력단 | Single structure type superconducting dc induction heating apparatus |
-
2008
- 2008-02-04 JP JP2008024490A patent/JP2009188064A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101823763B1 (en) * | 2016-06-02 | 2018-03-14 | 창원대학교 산학협력단 | Single structure type superconducting dc induction heating apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7777602B2 (en) | Superconducting wire and superconducting coil made therewith | |
JP6270175B2 (en) | Superconducting cable | |
KR20090129979A (en) | Superconducting coil and superconductor used for the same | |
JP2001244109A (en) | High-temperature superconducting coil device | |
JP5656734B2 (en) | Superconducting magnet having parallel winding and superconducting magnet system | |
US20180152016A1 (en) | Superconductive wire and current limiter | |
US20160365183A1 (en) | Superconducting magnet | |
US11257611B2 (en) | Superconducting wire rod and superconducting coil | |
US20210327629A1 (en) | Common mode choke coil | |
JP2009188064A (en) | Superconductive magnet device | |
JP2007227771A (en) | Superconductive coil device | |
JPH1131614A (en) | High-temperature superconducting coil | |
WO2014199962A1 (en) | Magnetic field generation device | |
KR101945686B1 (en) | Inductor | |
JP4897608B2 (en) | Superconducting magnet | |
JP2014157939A (en) | Superconductive magnetic shield equipment | |
JP2011124252A (en) | Iron-core superconducting reactor including gap | |
JP2008047563A (en) | Superconducting coil and superconducting apparatus equipped with superconducting coil | |
CN116711037A (en) | Superconducting electromagnet device and cooling method for superconducting electromagnet device | |
JP2008034598A (en) | Inverter transformer | |
JP2003197436A (en) | Core for magnetic element, magnetic element using the same, manufacturing method of the magnetic element and switching power supply using the magnetic element | |
JP2014099440A (en) | Permanent current switch, and superconducting magnet device with permanent current switch | |
WO2021171872A1 (en) | Superconducting magnet, superconducting wire, and method for producing superconducting magnet | |
JP2021019104A (en) | Reactor device | |
JP2009176989A (en) | Transformer unit for resonance type switching power supply circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20110405 |