JPH1131614A - High-temperature superconducting coil - Google Patents

High-temperature superconducting coil

Info

Publication number
JPH1131614A
JPH1131614A JP18495397A JP18495397A JPH1131614A JP H1131614 A JPH1131614 A JP H1131614A JP 18495397 A JP18495397 A JP 18495397A JP 18495397 A JP18495397 A JP 18495397A JP H1131614 A JPH1131614 A JP H1131614A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
magnetic field
coil
field distribution
temperature superconducting
high
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18495397A
Other languages
Japanese (ja)
Inventor
Takaaki Bono
Kiyoshi Takita
敬昭 坊野
清 滝田
Original Assignee
Fuji Electric Co Ltd
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PROBLEM TO BE SOLVED: To reduce a vertical magnetic field element applied to a tape conductor, to restrain temperature rise due to AC loss and to reduce magnetic field applied to a lead connection part by arranging a magnetic field distribution adjustment member, formed of a ferromagnetic substance in both side end parts in an axial direction of a bobbin through a supporting member formed of a low heat conductivity material. SOLUTION: Magnetic field distribution adjustment members 10, each of which is supported by a supporting member 11, are arranged in both side end parts in an axial direction of a solenoid-like coil 13 mounted and constituted on a bobbin 5. The field distribution adjustment member 10 is formed by using a silicon steel plate, etc., which is a ferromagnetic substance. The supporting member 11 is formed of stainless steel or fiber reinforcement plastic material, etc., which is a low heat conductivity material. A plurality of supporting members 11 can be formed columnar or tubular and arranged in positions, which divide a circumference equally. The supporting member 11 can be formed to a tube, whose diameter is almost equal to the magnetic field distribution adjustment member 10. The magnetic field distribution adjustment member 10 has a slit 12 in the circumferential direction and prevents eddy currents which are generated in the magnetic field distribution adjustment member 10 by the slit 12.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、液体窒素温度で超電導状態に保持される高温超電導導体を用いて構成される高温超電導コイルに関する。 The present invention relates to relates to a high temperature superconducting coil constructed of a high temperature superconductor that is kept in a superconducting state at the liquid nitrogen temperature.

【0002】 [0002]

【従来の技術】高温超電導コイルにおいては、例えばビスマス系やイットリウム系等の高温超電導体の粉末を銀パイプ中に充填し、線引き、圧延して形成されたテープ状の高温超電導導体が一般に用いられている。 BACKGROUND OF THE INVENTION HTS coils, for example, a powder of the high temperature superconductor bismuth-based or yttrium-based or the like packed in a silver pipe, drawing, rolling and tape-shaped high-temperature superconducting conductors formed by the generally used ing. 図3は、 Fig. 3,
従来の一般的な高温超電導コイルの基本構成を示す断面図である。 It is a sectional view showing a basic structure of a conventional high temperature superconducting coil. 図に見られるように、本高温超電導コイルは、テープ状の高温超電導導体1をコイル巻枠3にパンケーキ状に捲線し、内径側の層間に接続部を持たない2 As can be seen, the high temperature superconducting coil, and winding the pancake the HTS conductor 1 tape shape coil bobbin 3, no connecting portion between layers of the inner diameter side 2
層で一対のパンケーキコイル2を形成し、このように形成した複数のパンケーキコイル2をボビン5に積層して装着し、隣接する2個のパンケーキコイル2の間をコイル接続部4により導電接続して構成されている。 Forming a pair of pancake coils 2 with a layer, thus a plurality of pancake coils 2 formed attached by laminating the bobbin 5, between two adjacent pancake coil 2 by the coil connection unit 4 It is configured by conductive connection.

【0003】 [0003]

【発明が解決しようとする課題】ところで、高温超電導コイルの巻線に用いられるテープ状の高温超電導導体1 [SUMMARY OF THE INVENTION Incidentally, tape-shaped high-temperature superconductor 1 to be used in the winding of the high-temperature superconducting coil
の臨界電流、すなわち超電導状態を保持する許容最大電流は、テープ導体の温度ならびにテープ導体に加わる磁界の強さに依存するのみならず、磁界の向きにも大きく依存することが知られている。 Of the critical current, i.e. the allowable maximum current for holding the superconducting state is not only dependent on the temperature and intensity of the magnetic field applied to the tape conductor stripline, are known to depend largely in the direction of the magnetic field. 図4は、温度が 77 Figure 4, the temperature is 77
〔K〕のときのビスマス系高温超電導導体の臨界電流の磁界の強さおよび方向に対する依存性を示す特性図である。 It is a characteristic diagram showing the dependence of the critical current of the bismuth-based high temperature superconductors for the strength and direction of the magnetic field when the [K]. 図において縦軸は磁界がゼロのときの値を1として表示した臨界電流の相対値、横軸は磁界強度であり、図中にで表示の特性は、磁界がテープ導体の幅広面に平行に加わったときの特性、またで表示の特性は、磁界がテープ導体の幅広面に垂直に加わったときの特性である。 The relative values ​​of the critical current and the vertical axis the magnetic field is displayed the value at zero as 1 in the figure, the horizontal axis represents the magnetic field strength, characteristic of the display in the in the figure, the magnetic field is parallel to the wide surface of the tape conductor characteristics of the display applied characteristics of time, also in a characteristic when the magnetic field is applied perpendicular to the wide surface of the tape conductor. 図に見られるように、磁界の方向がテープ導体の幅広面に平行である場合には磁界の増大に伴う臨界電流の低下は比較的小さいが、磁界の方向がテープ導体の幅広面に垂直に加わる場合には臨界電流は磁界の増大とともに大幅に低下し、例えば 0.04 〔T〕においては、磁界の方向が平行の場合の臨界電流の約 50 %となる。 As can be seen, but a relatively small decrease of the critical current with increasing magnetic field when the direction of the magnetic field is parallel to the wide surface of the tape conductor, perpendicular to the wide surface of the direction the tape conductor of the magnetic field critical current when applied is greatly reduced with increasing magnetic field, in the example 0.04 [T], the direction of the magnetic field is about 50% of the critical current in the case of parallel.

【0004】一方、図3のごとくパンケーキコイルを積層して構成した高温超電導コイルでは、テープ導体に直流電流を通電すると図5に模式的に示したごとき磁束7 On the other hand, in the high-temperature superconducting coil formed by stacking a pancake coil as in Figure 3, the magnetic flux 7 such as shown schematically in Figure 5 is energized a direct current to the tape conductor
を生じることとなる。 So that the cause. すなわち、コイルの内部には、主として軸方向、したがってテープ導体の幅広面に平行な方向の磁束が生じる。 That is, the inside of the coil, predominantly axially, thus the magnetic flux in a direction parallel to the wide surface of the tape conductor is caused. このうち、コイル積層方向中央部では軸方向の成分のみとなり、磁束密度の絶対値は図中にAで表示したテープ導体の内接部分において最大となる。 Among them, becomes only the component in the axial direction in the coil stacking direction central portion, the absolute value of the magnetic flux density becomes maximum at the inscribed portion of the tape conductors labeled A in FIG. コイルの内部を中央部から端部へと向かうにしたがって磁束が発散するので、磁束密度の絶対値は減少するが、一方、中心軸より隔たるにしたがい、径方向、したがってテープ導体の幅広面に垂直な方向成分の大きな磁束が生じることとなり、特に積層方向の両端のB部に位置するパンケーキコイルでは幅広面に垂直な成分が大きくなる。 Since the magnetic flux toward the interior of the coil from the center portion to the edge portions diverge, but decreases the absolute value of the magnetic flux density, whereas, according spaced from the central axis, the radial direction, thus the wide surface of the tape conductor becomes a large magnetic flux in the direction perpendicular component occurs, the component perpendicular to the wide surface becomes large in the pancake coils especially located in part B of both ends in the stacking direction.

【0005】臨界電流値の磁界角度依存性のない超電導導体においては、コイルの導体の臨界電流値は磁束密度の絶対値が最大となる点、すなわち上記の点Aにおける磁束密度で定まるので、この値を考慮して形成すれば良い。 [0005] In the magnetic field angle-independent superconductor critical current values, the critical current value of the conductor of the coil that the absolute value of the magnetic flux density is maximum, that is determined by the magnetic flux density at the point A described above, the it may be formed by taking into account the value. しかしながら、上述のごとく高温超電導コイルに用いられるテープ導体では磁界角度依存性があり、テープ導体の幅広面に垂直な成分が増大すると臨界電流値は大幅に低下するので、これらのテープ導体を用いた従来の高温超電導コイルにおいては、最大磁界での臨界電流値は十分余裕があるにもかかわらず、積層方向の両端のB However, the tape conductor to be used in high-temperature superconducting coil as described above has a magnetic field angle dependence, since the critical current value when the vertical component increases the wide face of the tape conductor is greatly reduced, with these stripline in the conventional high-temperature superconducting coil, the critical current value at the maximum magnetic field even though there is sufficient margin, at both ends in the stacking direction B
部に位置するパンケーキコイルで、幅広面に垂直な磁界成分が増大し臨界電流値に達することによってクエンチ、すなわち超電導状態から常電導状態への移行を生じ、所定の性能が得られない場合がしばしば経験された。 Pancake coil located parts, quenched by the vertical magnetic field component in the wide surface increases reaches the critical current value, i.e. caused the transition to the normal conducting state from the superconducting state, when the predetermined performance can not be obtained often they experienced. また、常温空間と連結された電流リードにテープ導体を接続してコイルに電流を通電するためのリード接続部においても、パンケーキコイルから引き出されるテープ導体が、上記のごとき幅広面に垂直な成分をもつ磁界を受けることによって常電導状態へと移行し、コイルのクエンチを引き起こす場合があった。 Also in the lead connecting portion for passing a current to the coil by connecting a tape conductor linked current lead normal temperature space, the tape conductor drawn from pancake coil, component perpendicular to such wide surface of the transitions to the normal conducting state by receiving a magnetic field with, there may cause quenching of the coil.

【0006】これらのうち、前者の両端のパンケーキコイルでテープ導体の幅広面に垂直な磁界成分により生じるクエンチを回避する方法としては、ボビンの両端のフランジを強磁性体で構成して、パンケーキコイルのテープ導体の幅広面に垂直に加わる磁界成分を軽減してクエンチを防止する方法が特開平7-142245号公報に開示されており、本構成とすれば、直流電流を通電する高温超電導コイルにおいては効果的にクエンチが防止される。 [0006] Of these, as a method of avoiding quenched caused by the vertical magnetic field component in the wide surface of the tape conductor at the former across pancake coil, constitute the ends of the flanges of the bobbin with ferromagnetic, bread how to prevent the quench to reduce the magnetic field component applied to the perpendicular to the wide surface of the tape conductor cake coil is disclosed in JP-a-7-142245, if this configuration, high-temperature superconducting passing a direct current effectively quench can be prevented in the coil. しかしながら本構成を用いても、交流電流を通電する高温超電導コイルにおいては、強磁性体で構成されたボビンの両端のフランジが交流損失により加熱され、このフランジにより挟持されているパンケーキコイルが伝導熱により温度上昇して臨界電流値が低下し、クエンチに至るという難点がある。 However, even with this configuration, in the high-temperature superconducting coil to be energized with alternating current, both ends of the flanges of the bobbin made of a ferromagnetic material is heated by the AC loss, pancake coil is sandwiched by the flange conductivity critical current value is decreased by the temperature rise by the heat, there is a disadvantage that lead to quenching.

【0007】本発明は、上記のごとき従来技術の問題点を考慮してなされたもので、その目的は、交流電流を通電するものにあっても、巻回するテープ導体に加わる垂直方向の磁界成分が低減され、かつ交流損失による温度上昇が抑制され、また通電用の電流リードに接続するリード接続部に加わる磁界が低減され、超電導状態に安定して保持して運転できる高温超電導コイルを提供することにある。 [0007] The present invention has been made in consideration of the above problems of such prior art, an object of, even in those that energizing the alternating current, the vertical magnetic field applied to the tape conductor winding component is reduced, and the temperature rise is suppressed by the AC loss and reduced magnetic field applied to the lead connecting portions to be connected to a current lead for energization, provide high temperature superconducting coil which can be operated and held stably in the superconducting state It is to.

【0008】 [0008]

【課題を解決するための手段】上記の目的を達成するために、本発明においては、 (1)液体窒素温度で超電導状態に保持される高温超電導材を用いた導体を巻回し、ボビンに支持してソレノイド状コイルとし、交流電流を通電して用いる交流用の高温超電導コイルにおいて、上記のボビンの軸方向の両側端部に、低熱伝導性材料からなる支持部材を介して、例えば巻回されたソレノイド状コイルの外径および内径とほぼ同一の外径および内径を備えた、強磁性体からなる磁界分布調整部材を配することとする。 To achieve the above object, according to the solution to ## in the present invention, winding the conductor with a high temperature superconducting material to be maintained in the superconducting state (1) the liquid nitrogen temperature, supporting the bobbin in and a solenoidal coil, high-temperature superconducting coil for alternating current used by energizing the alternating current, the both ends of the axial direction of the bobbin, through a supporting member made of a low thermal conductivity material, for example, wound with substantially the same outer diameter and inner diameter as the outer and inner diameters of the solenoidal coil, and placing the magnetic field distribution adjusting member made of a ferromagnetic material. また、上記の構成において、磁界分布調整部材が周方向にスリットを有してなるものとする。 Further, in the above configuration, it is assumed that the magnetic field distribution adjusting member is a slit in the circumferential direction.

【0009】(2)また、液体窒素温度で超電導状態に保持される高温超電導材を用いた導体を巻回し、ボビンに支持してソレノイド状コイルとし、直流電流あるいは交流電流を通電して用いる高温超電導コイルにおいて、 [0009] (2), winding a conductor with a high temperature superconducting material to be maintained in the superconducting state at the liquid nitrogen temperature, high temperature and solenoidal coil supported on the bobbin, used by energizing a direct current or alternating current in the superconducting coil,
コイルに通電電流を供給するための電流供給端子部の周囲に、強磁性体からなる磁界シールド部材を配することとする。 Around the current supply terminal for supplying the energizing current to the coil, and placing a magnetic field shield member made of a ferromagnetic material.

【0010】上記の(1)のごとく、ボビンの軸方向の両側端部に強磁性体からなる磁界分布調整部材を配すれば、端部の磁束はこの磁界分布調整部材に集中して分布するので、ソレノイド状コイルのテープ導体の幅広面に垂直に加わる磁界成分が軽減され、クエンチが回避される。 [0010] As indicated above in (1), if Haisure magnetic field distribution adjusting member made of a ferromagnetic material on both ends of the axial direction of the bobbin, the magnetic flux of the end portion is distributed concentrating on the magnetic field distribution adjusting member because, the magnetic field component applied to the perpendicular to the wide surface of the tape conductor solenoidal coil is reduced, quenching are avoided. また、この磁界分布調整部材を低熱伝導性材料からなる支持部材を介して備えることとしているので、交流電流を通電し交流損失が伴うものにおいても、巻線部分への熱の侵入が抑制され、安定して通電できることとなる。 Moreover, since a further comprising via a support member made of the magnetic field distribution adjusting member from low thermal conductivity material, in which energizing the alternating current accompanied by ac loss, heat penetration into the winding portions is suppressed, the ability to stably energized. また、磁界分布調整部材が周方向にスリットを有してなるものとすれば、磁界分布調整部材に発生する渦電流が防止される。 Further, if that magnetic field distribution adjusting member is a slit in the circumferential direction, eddy current generated in the magnetic field distribution adjusting member is prevented.

【0011】また、上記の(2)のごとく、電流供給端子部の周囲に、強磁性体からなる磁界シールド部材を配すれば、電流供給端子部のテープ導体の引出し部へ加わる磁界がほぼゼロとなり、従来見られたようなテープ導体に加わる磁界成分による通電電流の低下が回避され、 Further, as described above in (2), a current around the supply terminal portion, if Haisure a magnetic field shield member made of a ferromagnetic material, the magnetic field is substantially zero applied to the lead-out portions of the tape conductor current supply terminal portion next, lowering of electric current by the magnetic field component applied to the tape conductor as seen conventionally is avoided,
安定して通電できることとなる。 The ability to stably energized.

【0012】 [0012]

【発明の実施の形態】以下、図面に基づいて本発明の実施例を説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of the present invention will be described with reference to the drawings. 図1の(a)は、本発明による高温超電導コイルの第1の実施例の基本構成を示す断面図であり、(b)は(a)のC矢視図である。 In Figure 1 (a) is a sectional view showing a basic configuration of a first embodiment of a high temperature superconducting coil according to the present invention, is a view seen in the arrow C of (b) is (a). 図において図3 Figure 3
に示した従来例と同一機能を有する構成部品には同一符号を付し、重複する説明は省略する。 The same reference numerals are given to the conventional example components having the same functions shown in, and the overlapping explanation will be omitted. 本実施例の特徴は、ボビン5に装着して構成したソレノイド状コイル1 This embodiment is characterized in solenoidal coil 1 constituted by mounting the bobbin 5
3の軸方向の両側端部に、それぞれ支持部材11によって支持された磁界分布調整部材10が配されていることにある。 Side end portions in the axial direction of the three, in that the magnetic field distribution adjusting member 10 supported by the respective supporting members 11 are arranged. 磁界分布調整部材10は強磁性体である珪素鋼板等を用いて形成されている。 Magnetic field distribution adjusting member 10 is formed by using a silicon steel plate or the like of a ferromagnetic material. また支持部材11は低熱伝導性材料であるステンレス鋼、あるいは繊維強化プラスチック材等よりなり、この支持部材11を円柱状、あるいは円筒状に形成して、図1のように複数個円周上等分の位置に配設してもよく、また支持部材11を磁界分布調整部材10とほぼ同じ径の円筒状としてもよい。 The support member 11 is made of stainless steel, or fiber-reinforced plastic material such as a low thermal conductivity material, to form the support member 11 in a columnar shape or a cylindrical shape, a plurality circumferential choice as shown in FIG. 1 it may be disposed in the minute position and the support member 11 may be magnetic field distribution adjusting member 10 and the generally cylindrical having the same diameter. また、図1の磁界分布調整部材10は、周方向にスリット12を有しており、このスリット12により磁界分布調整部材10に発生する渦電流を防止している。 Further, the magnetic field distribution adjusting member 10 in FIG. 1 has a slit 12 in the circumferential direction, thereby preventing the eddy current generated in the magnetic field distribution adjusting member 10 by the slit 12.

【0013】本構成においては、磁界分布調整部材10 [0013] In this configuration, the magnetic field distribution adjusting member 10
がソレノイド状コイル13とほぼ同等の内径と外径を備えて配されており、ソレノイド状コイル13に通電することにより生じた磁束は、軸方向の両側端部において磁界分布調整部材10に集中して分布する。 There are arranged comprise approximately equal inner and outer diameters with solenoidal coil 13, magnetic flux generated by energizing the solenoid-shaped coil 13 is concentrated in the magnetic field distribution adjusting member 10 at the both ends of the axial direction distributed Te. したがって、 Therefore,
その近傍に位置し、従来の構成においてクエンチを生じていたコイルの端部においても、クエンチを引き起こす要因となっていたテープ導体の幅広面に垂直な方向の磁界が大幅に低下し、臨界電流が高くなるので、クエンチを生じることなく安定して通電できることとなる。 Located in the vicinity thereof, even at the end of the coil which occurs the quenching in the conventional structure, the magnetic field in the direction perpendicular to the wide surface of the tape conductor which has been a factor causing quenching is significantly reduced, the critical current since higher, and it can be stably energized without causing quenching. なお、図1ではソレノイド状コイル13が単層構造の場合の構成が示されているが、多層構造の場合でも本発明の適用は可能である。 Although solenoidal coil 13 is shown in FIG. 1 is configured in the case of a single-layer structure, the application of the present invention, even if a multilayer structure is possible.

【0014】図2は、本発明による高温超電導コイルの第2の実施例の説明図で、(a)は基本構成を示す断面図、(b)は(a)のA部の拡大斜視図である。 [0014] Figure 2 is an explanatory view of a second embodiment of the high temperature superconducting coil according to the present invention, (a) is a sectional view showing a basic structure, (b) is an enlarged perspective view of A part of (a) is there. 本図においても、図3に示した従来例と同一機能を有する構成部品には同一符号を付し、重複する説明は省略する。 In this diagram, the same reference numerals are given to components having the conventional same functions shown in FIG. 3, and redundant description will be omitted. 本実施例の特徴は、ソレノイド状に形成したコイルに通電するために、テープ導体の端末部を引出し、常温空間に他端を配した電流リードへ接続するための電流供給端子部の構成にある。 The feature of this embodiment, in order to energize the coil formed in a solenoid shape, pull the terminal portion of the tape conductor, in the configuration of the current supply terminal portion for connection to current leads arranged at the other end to a normal temperature space . すなわち、本実施例の構成においては、図2(b)に示したように、コイルの端部の外側終端より引き出された高温超電導導体22を銅あるいは銅合金のごとき良導電性金属材料よりなる電気導体21に接合して形成したリード接続部20の周囲に、強磁性体よりなる磁界シールド部材30を配している。 That is, in the configuration of the present embodiment, as shown in FIG. 2 (b), becomes a high-temperature superconducting conductor 22 led out from the outer end of the end portion of the coil than highly conductive metal material such as copper or a copper alloy around the lead connecting portion 20 which is formed by joining the electrical conductors 21, are arranged magnetic field shield member 30 made of ferromagnetic material.

【0015】本構成においては、磁界シールド部材30 [0015] In this configuration, the magnetic field shield member 30
によってリード接続部20に加わる磁界がシールドされ、ほぼ皆無となるので、従来のごとき磁界、特にテープ状導体の幅広面に垂直に加わる磁界による高温超電導導体22の常電導移行に伴うコイルのクエンチが防止され、高温超電導コイルが安定して通電できる。 By the magnetic field shielding applied to the lead connecting portion 20, so almost completely eliminated, conventional such magnetic field, the quenching of the coil, especially due to the normal conducting transition of the high-temperature superconductor 22 by a magnetic field applied perpendicular to the wide surface of the tape-like conductor is prevented, the high temperature superconducting coil can be energized stably. なお、上述の第1の実施例における、高温超電導コイルの軸方向の両側端部に支持部材によって支持された磁界分布調整部材を配設するという構成、および第2の実施例における、高温超電導コイルの端部のリード接続部の周囲に強磁性体よりなる磁界シールド部材を配設するという構成は、いずれも、従来の図3に示されるようなパンケーキコイルを積層して構成される高温超電導コイルにも適用することが可能である。 Incidentally, in the first embodiment described above, the configuration of disposing the magnetic field distribution adjusting member supported by the support member side end portions in the axial direction of the high temperature superconducting coil, and in the second embodiment, the high temperature superconducting coil HTS configuration of arranging the magnetic field shield member made of a ferromagnetic material around the edge of the lead connecting portions is composed of both, it is stacked pancake coils such as shown in prior art FIG. 3 It can be applied to the coil.

【0016】 [0016]

【発明の効果】上述のように、本発明においては、 (1)液体窒素温度で超電導状態に保持される高温超電導材を用いた導体を巻回し、ボビンに支持してソレノイド状コイルとし、交流電流を通電して用いる交流用の高温超電導コイルにおいて、上記のボビンの軸方向の両側端部に、低熱伝導性材料からなる支持部材を介して、例えば巻回されたソレノイド状コイルの外径および内径とほぼ同一の外径および内径を備えた、強磁性体からなる磁界分布調整部材を配することとしたので、巻回するテープ導体に加わる垂直方向の磁界成分が低減されてクエンチが抑制され、かつ交流電流を通電するものにあっても交流損失による温度上昇が抑制されて、超電導状態に安定に保持して運転できる高温超電導コイルが得られることとなる。 [Effect of the Invention] As described above, in the present invention, (1) winding a conductor with a high temperature superconducting material to be maintained in the superconducting state at the liquid nitrogen temperature, and a solenoid-shaped coil support the bobbin, AC in high-temperature superconducting coil for alternating current used by passing current through, the both ends of the axial direction of the bobbin, through a supporting member made of a low thermal conductivity material, for example, the outer diameter of the wound solenoidal coils and with substantially the same outer and inner diameters as the inner diameter, since the placing of the magnetic field distribution adjusting member made of a ferromagnetic material, the vertical magnetic field component applied to the tape conductor is reduced quench the winding is suppressed and the temperature rise due to the AC loss even in those energizing the alternating current is suppressed, so that the high temperature superconducting coil can be operated stably held in the superconducting state is obtained. また、磁界分布調整部材が周方向にスリットを有してなるものとすれば、磁界分布調整部材に発生する渦電流を防止できるので、渦電流による熱の発生を防止することが可能となる。 Further, if that magnetic field distribution adjusting member is a slit in the circumferential direction, it is possible to prevent the eddy current generated in the magnetic field distribution adjusting member, it is possible to prevent the generation of heat due to eddy currents.

【0017】(2)また、液体窒素温度で超電導状態に保持される高温超電導材を用いた導体を巻回し、ボビンに支持してソレノイド状コイルとし、直流電流あるいは交流電流を通電して用いる高温超電導コイルにおいて、 [0017] (2), winding a conductor with a high temperature superconducting material to be maintained in the superconducting state at the liquid nitrogen temperature, high temperature and solenoidal coil supported on the bobbin, used by energizing a direct current or alternating current in the superconducting coil,
コイルに通電電流を供給するための電流供給端子部の周囲に、強磁性体からなる磁界シールド部材を配することとすれば、通電用の電流リードに接続するリード接続部に加わる磁界が低減され、リード接続部のテープ導体が安定して超電導状態に保持されるので、リード接続部の発熱により加熱されることなく、超電導状態に安定して保持して運転できる高温超電導コイルが得られることとなる。 Around the current supply terminal for supplying the energizing current to the coil, if placing the magnetic field shield member made of a ferromagnetic material, the magnetic field applied to the lead connecting portions to be connected to a current lead for energization is reduced since the tape conductor of the lead connecting portion is held stably and the superconducting state, that without being heated by the heat generation of the lead connecting portions, the high-temperature superconducting coil which can be operated and held stably in the superconducting state is obtained and Become.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】(a)は本発明による高温超電導コイルの第1 [1] (a) a first high temperature superconducting coil according to the present invention
の実施例の基本構成を示す断面図、(b)は(a)のC Sectional view showing a basic configuration of the embodiment for example, C of (b) is (a)
矢視図 Arrow view

【図2】本発明による高温超電導コイルの第2の実施例の説明図で、(a)は基本構成を示す断面図、(b)は(a)のD部の拡大斜視図 [2] an explanatory view of a second embodiment of a high temperature superconducting coil according to the present invention, (a) is a cross-sectional view showing a basic structure, (b) is an enlarged perspective view of a D portion of (a)

【図3】従来の一般的なソレノイド状の高温超電導コイルの基本構成を示す断面図 3 is a cross-sectional view showing a basic structure of a conventional solenoid-shaped high-temperature superconducting coil

【図4】77 〔K〕におけるビスマス系高温超電導導体の臨界電流の磁界の強さおよび磁界の向きに対する依存性を示す特性図 [4] 77 characteristic diagram showing the dependence on the strength and the magnetic field orientation of the magnetic field of the critical current of the bismuth-based high temperature superconductor in [K]

【図5】ソレノイド状コイルの生じる磁束分布を模式的に示した特性図 [5] characteristic diagram of the magnetic flux distribution of occurrence of the solenoid-shaped coil shown schematically

【符号の説明】 DESCRIPTION OF SYMBOLS

1 高温超電導導体 2 パンケーキコイル 3 コイル巻枠 4 コイル接続部 5 ボビン 10 磁界分布調整部材 11 支持部材 12 スリット 13 ソレノイド状コイル 20 リード接続部 21 電気導体 22 高温超電導導体 30 磁界シールド部材 1 HTS conductor 2 pancake coil 3 coil winding frame 4 coil connection portion 5 bobbin 10 field distribution adjusting member 11 support member 12 slit 13 solenoidal coil 20 lead connecting portion 21 electrically conductive elements 22 HTS conductor 30 a magnetic field shield member

Claims (4)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】液体窒素温度で超電導状態に保持される高温超電導材を用いた導体を巻回し、ボビンに支持してソレノイド状コイルとし、交流電流を通電して用いる交流用の高温超電導コイルにおいて、前記のボビンの軸方向の両側端部に、低熱伝導性材料からなる支持部材を介して、強磁性体からなる磁界分布調整部材が配されていることを特徴とする高温超電導コイル。 1. A wound conductor with a high temperature superconducting material to be held at the liquid nitrogen temperature to the superconducting state, a solenoidal coil supported on the bobbin, the high-temperature superconducting coil for alternating current used by energizing the alternating current , the both ends of the axial direction of the bobbin, through a supporting member made of a low thermal conductivity material, the high temperature superconducting coil, wherein a magnetic field distribution adjusting member made of a ferromagnetic material is arranged.
  2. 【請求項2】前記の磁界分布調整部材が、巻回されたソレノイド状コイルの外径および内径とほぼ同一の外径および内径を備えてなることを特徴とする請求項1に記載の高温超電導コイル。 Wherein said magnetic field distribution adjusting member, HTS according to claim 1, characterized in that it comprises substantially the same outer diameter and inner diameter as the outer and inner diameters of the wound solenoidal coil coil.
  3. 【請求項3】前記の磁界分布調整部材が、周方向にスリットを有してなることを特徴とする請求項2に記載の高温超電導コイル。 3. A high temperature superconducting coil according to claim 2, wherein the magnetic field distribution adjusting member, characterized by comprising a slit in the circumferential direction.
  4. 【請求項4】液体窒素温度で超電導状態に保持される高温超電導材を用いた導体を巻回し、ボビンに支持してソレノイド状コイルとし、直流電流あるいは交流電流を通電して用いる高温超電導コイルにおいて、コイルに通電電流を供給するための電流供給端子部の周囲に、強磁性体からなる磁界シールド部材が配されていることを特徴とする高温超電導コイル。 4. A wound conductor with a high temperature superconducting material to be held at the liquid nitrogen temperature to the superconducting state, a solenoidal coil supported on the bobbin, the high-temperature superconducting coil used in energizing a direct current or alternating current , high-temperature superconducting coil, characterized in that the periphery of the current supply terminals for supplying the energizing current to the coil, the magnetic field shield member made of a ferromagnetic material is arranged.
JP18495397A 1997-07-10 1997-07-10 High-temperature superconducting coil Pending JPH1131614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18495397A JPH1131614A (en) 1997-07-10 1997-07-10 High-temperature superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18495397A JPH1131614A (en) 1997-07-10 1997-07-10 High-temperature superconducting coil

Publications (1)

Publication Number Publication Date
JPH1131614A true true JPH1131614A (en) 1999-02-02

Family

ID=16162246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18495397A Pending JPH1131614A (en) 1997-07-10 1997-07-10 High-temperature superconducting coil

Country Status (1)

Country Link
JP (1) JPH1131614A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043759A (en) * 2007-08-06 2009-02-26 Kobe Steel Ltd Superconducting electromagnet
JPWO2007080820A1 (en) * 2006-01-12 2009-06-11 株式会社東芝 Power receiving apparatus and the electronic apparatus and the non-contact charging device using the same
JP2010263721A (en) * 2009-05-08 2010-11-18 Sumitomo Electric Ind Ltd Superconducting coil, superconducting apparatus, rotor and stator
US8354907B2 (en) 2008-08-06 2013-01-15 Ihi Corporation Superconducting coil assembly and magnetic field generating equipment
WO2014041768A1 (en) * 2012-09-11 2014-03-20 川崎重工業株式会社 Superconducting field-pole magnet
JP2015500625A (en) * 2011-12-16 2015-01-05 ヘロン エナジー ピーティーイー リミテッド High-speed turbine
JP2015162495A (en) * 2014-02-26 2015-09-07 株式会社東芝 High-temperature superconducting coil
US9762094B2 (en) 2011-05-17 2017-09-12 Heron Energy Pte Ltd Low speed electromagnetic turbine

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007080820A1 (en) * 2006-01-12 2009-06-11 株式会社東芝 Power receiving apparatus and the electronic apparatus and the non-contact charging device using the same
JP2012169633A (en) * 2006-01-12 2012-09-06 Toshiba Corp Electronic apparatus using power reception device and non contact charger
US8283888B2 (en) 2006-01-12 2012-10-09 Kabushiki Kaisha Toshiba Power receiver, and electronic apparatus and non-contact charger using same
JP2009043759A (en) * 2007-08-06 2009-02-26 Kobe Steel Ltd Superconducting electromagnet
US8354907B2 (en) 2008-08-06 2013-01-15 Ihi Corporation Superconducting coil assembly and magnetic field generating equipment
JP2010263721A (en) * 2009-05-08 2010-11-18 Sumitomo Electric Ind Ltd Superconducting coil, superconducting apparatus, rotor and stator
US9762094B2 (en) 2011-05-17 2017-09-12 Heron Energy Pte Ltd Low speed electromagnetic turbine
US9866097B2 (en) 2011-12-16 2018-01-09 Heron Energy Pte Ltd High speed turbine
JP2015500625A (en) * 2011-12-16 2015-01-05 ヘロン エナジー ピーティーイー リミテッド High-speed turbine
JP2014057396A (en) * 2012-09-11 2014-03-27 Kawasaki Heavy Ind Ltd Superconducting field magnetic pole
US9768652B2 (en) 2012-09-11 2017-09-19 Kawasaki Jukogyo Kabushiki Kaisha Superconducting field pole
WO2014041768A1 (en) * 2012-09-11 2014-03-20 川崎重工業株式会社 Superconducting field-pole magnet
JP2015162495A (en) * 2014-02-26 2015-09-07 株式会社東芝 High-temperature superconducting coil

Similar Documents

Publication Publication Date Title
US5581220A (en) Variable profile superconducting magnetic coil
US6489701B1 (en) Superconducting rotating machines
US5650903A (en) Superconducting-magnet electrical circuit having voltage and quench protection
US6809910B1 (en) Method and apparatus to trigger superconductors in current limiting devices
US5659277A (en) Superconducting magnetic coil
US7701677B2 (en) Inductive quench for magnet protection
US5539367A (en) Superconducting gradient shields in magnetic resonance imaging magnets
US4935714A (en) Low thermal conductance support for a radiation shield in a MR magnet
US3559128A (en) Superconducting magnet for persistent operation
EP0350267A1 (en) Superconductive magnetic resonance magnet
US5600522A (en) High temperature superconducting fault current limiter
US5038127A (en) Process for reducing eddy currents in a superconductor strip, and a superconductor arrangement
US5379020A (en) High-temperature superconductor and its use
JPH07142245A (en) High-temperature superconducting magnet, its designing method, its operating method, and manufacture of high-temperature superconducting tape material
US5093645A (en) Superconductive switch for conduction cooled superconductive magnet
US6795282B2 (en) Superconducting device with inductive current limiter using a high-tc superconducting material
US5394130A (en) Persistent superconducting switch for conduction-cooled superconducting magnet
JPH11186025A (en) Superconducting coil
US5604473A (en) Shaped superconducting magnetic coil
US6153825A (en) Superconducting current lead
US4931735A (en) Superconductive magnet system comprising superconductive cylinders
JP2000277322A (en) High-temperature superconducting coil, high-temperature superconducting magnet using the same, and high- temperature superconducting magnet system
US4270112A (en) Normal conductive or superconductive magnet coil
US20060077025A1 (en) Superconducting wire and superconducting coil employing it
US6163241A (en) Coil and method for magnetizing an article