JP2009187971A - Solar battery, concentrating solar photovoltaic module, and production process of solar battery - Google Patents

Solar battery, concentrating solar photovoltaic module, and production process of solar battery Download PDF

Info

Publication number
JP2009187971A
JP2009187971A JP2008023021A JP2008023021A JP2009187971A JP 2009187971 A JP2009187971 A JP 2009187971A JP 2008023021 A JP2008023021 A JP 2008023021A JP 2008023021 A JP2008023021 A JP 2008023021A JP 2009187971 A JP2009187971 A JP 2009187971A
Authority
JP
Japan
Prior art keywords
solar cell
sunlight
optical
cell element
optical member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008023021A
Other languages
Japanese (ja)
Other versions
JP4986875B2 (en
Inventor
Chikao Okamoto
親扶 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2008023021A priority Critical patent/JP4986875B2/en
Priority to US12/865,230 priority patent/US20100326494A1/en
Priority to AU2009208410A priority patent/AU2009208410B2/en
Priority to EP09705223A priority patent/EP2246900A1/en
Priority to PCT/JP2009/050762 priority patent/WO2009096267A1/en
Priority to CN2009801116604A priority patent/CN101981707A/en
Publication of JP2009187971A publication Critical patent/JP2009187971A/en
Application granted granted Critical
Publication of JP4986875B2 publication Critical patent/JP4986875B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar battery improving condensation characteristics and heat radiation properties, improving power generation efficiency and power output, and exhibiting high heat resistance, reliability and weatherability, and to provide a concentrating solar photovoltaic module and a production process of a solar battery. <P>SOLUTION: A solar battery 10 comprises a solar battery element 11 performing photoelectric conversion of sunlight Ls condensed with a condenser lens 42, a receiver substrate 20 mounting the solar battery element 11, a resin sealing portion 73 of the solar battery element 11, a columnar optical member 70 constituting a light guide for guiding the sunlight Ls condensed on an incident surface 70f to the solar battery element 11, and an optical holding portion 72 having a wall 72w for holding the columnar optical member 70 and mounted on the receiver substrate 20 to cover the resin sealing portion 73. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、集光レンズにより集光された太陽光を光電変換する太陽電池素子と集光された太陽光を導光する導光路とを備える太陽電池、そのような太陽電池を備えた集光型太陽光発電モジュール、およびそのような太陽電池を製造する太陽電池製造方法に関する。   The present invention relates to a solar cell that includes a solar cell element that photoelectrically converts sunlight collected by a condenser lens and a light guide that guides the collected sunlight, and a light collector that includes such a solar cell. The present invention relates to a solar photovoltaic module and a solar cell manufacturing method for manufacturing such a solar cell.

太陽光発電装置としては、太陽電池素子を隙間無く敷き詰めて構成した太陽光発電モジュールを屋根の上などに設置した非集光固定型の平板式構造が一般的である。これに対し、太陽光発電装置を構成する部材(部品)の中で価格が高い太陽電池素子の使用量を減らす技術が提案されている。   As a solar power generation device, a non-condensing fixed type flat plate structure in which a solar power generation module configured by laying solar cell elements without gaps is installed on a roof or the like is common. On the other hand, a technique for reducing the amount of high-priced solar cell elements among members (parts) constituting the solar power generation apparatus has been proposed.

つまり、光学レンズや反射鏡などを用いて太陽光を集光し、集光した太陽光を小面積の太陽電池素子に照射することで、太陽電池素子の単位面積あたりの発電電力を大きくし、太陽電池素子のコスト(つまり、太陽光発電装置のコスト)を削減することが提案されている。   In other words, by collecting sunlight using an optical lens or a reflecting mirror, and irradiating the collected sunlight to a small area solar cell element, the generated power per unit area of the solar cell element is increased, It has been proposed to reduce the cost of the solar cell element (that is, the cost of the solar power generation device).

一般に集光倍率を上げるほど太陽電池素子の光電変換効率は向上する。しかし、太陽電池素子の位置を固定したままでは太陽光が斜光となって入射することが多くなり、太陽光を有効に利用することができない。したがって、太陽を追尾して太陽光を常に正面で受光するように構成した高集光倍率の追尾集光型太陽光発電装置が提案されている(例えば、特許文献1ないし特許文献5参照。)。   In general, the photoelectric conversion efficiency of the solar cell element is improved as the concentration factor is increased. However, if the position of the solar cell element is fixed, sunlight often enters as oblique light, and sunlight cannot be used effectively. Therefore, a tracking and concentrating solar power generation device with high condensing magnification configured to track the sun and always receive sunlight in front has been proposed (see, for example, Patent Document 1 to Patent Document 5).

図6は、従来の追尾集光型太陽光発電装置に適用される集光型太陽光発電モジュールの構成を示す断面図である。   FIG. 6 is a cross-sectional view showing a configuration of a concentrating solar power generation module applied to a conventional tracking concentrating solar power generation apparatus.

従来例に係る集光型太陽光発電モジュール140mは、光軸Laxと平行に入射面に対して垂直に入射する太陽光Lsv(太陽光Ls)を受光して集光する集光レンズ142と、集光レンズ142により集光された太陽光Ls(太陽光Lsa)を光電変換する太陽電池110とを備える。また、太陽電池110は、集光レンズ142により焦点位置FPへ集光された太陽光Lsaを光電変換する太陽電池素子111と、太陽電池素子111が載置されたレシーバ基板120とを備える。   The concentrating solar power generation module 140m according to the conventional example includes a condensing lens 142 that receives and collects sunlight Lsv (sunlight Ls) incident in parallel to the optical axis Lax and perpendicular to the incident surface, A solar cell 110 that photoelectrically converts sunlight Ls (sunlight Lsa) collected by the condenser lens 142. Further, the solar cell 110 includes a solar cell element 111 that photoelectrically converts sunlight Lsa collected by the condenser lens 142 to the focal position FP, and a receiver substrate 120 on which the solar cell element 111 is placed.

従来の追尾集光型太陽光発電装置は、集光レンズ142の作用により高集光倍率とした集光型太陽光発電モジュール140mを適用していた。   The conventional tracking concentrating solar power generation apparatus has applied the concentrating solar power generation module 140m having a high condensing magnification by the action of the condensing lens 142.

高集光倍率の追尾集光型太陽光発電装置では、一般的に集光レンズ142を適用して集光を行なう。しかし、集光レンズ142による屈折は、太陽光Lsが含む幅広い波長の各波長に対してそれぞれわずかに異なることから、波長領域(太陽電池素子111の感度波長領域の内で、特に短波長領域の波長)によっては、屈折状態が通常の場合と大きく異なって太陽電池素子111に集光されない太陽光Ls(太陽光Lsb)を生じる場合がある。   In a tracking and concentrating solar power generation device with a high condensing magnification, in general, condensing is performed by applying a condensing lens 142. However, since the refraction by the condenser lens 142 is slightly different for each of a wide range of wavelengths included in the sunlight Ls, the wavelength region (in the sensitivity wavelength region of the solar cell element 111, particularly in the short wavelength region). Depending on the wavelength, there is a case where sunlight Ls (sunlight Lsb) that is not condensed on the solar cell element 111 is generated, which is greatly different from the normal state.

また、集光レンズ142と太陽電池素子111とのアライメント誤差、太陽光発電モジュール140mを構成する部材の温度特性の差による位置ズレなどが生じることから、屈折状態が異なる場合と同様に太陽電池素子111以外の領域に位置ズレをした集光されない太陽光Ls(太陽光Lss)が生じる場合がある。   In addition, the alignment error between the condenser lens 142 and the solar cell element 111, the positional deviation due to the difference in the temperature characteristics of the members constituting the solar power generation module 140m, and the like occur. There is a case where sunlight Ls (sunlight Lss) that is not condensed and that is misaligned in a region other than 111 is generated.

したがって、波長領域による屈折状態の相違、各構成部材間の位置ズレなどを原因として太陽電池素子111への集光がされない太陽光Ls(太陽光Lsb、Lss)は、太陽電池素子111に対する実質的な入射光量を減少することとなり、太陽電池素子111の発電電力(出力)を低下させて損失を生じるという問題がある。   Therefore, the sunlight Ls (sunlight Lsb, Lss) that is not condensed on the solar cell element 111 due to the difference in the refraction state depending on the wavelength region, the positional deviation between the constituent members, and the like is substantially equal to the solar cell element 111. Therefore, there is a problem in that the amount of incident light is reduced and the generated power (output) of the solar cell element 111 is reduced to cause a loss.

また、太陽電池素子111以外の領域に位置ズレをした太陽光Lssが照射されると、位置ズレした太陽光Lssの熱エネルギーにより照射部分の部材(例えば、レシーバ基板120上の絶縁膜、配線など)が高温になり、場合によっては焼損(破損)することがあるという問題があった。   Further, when the misaligned sunlight Lss is irradiated to a region other than the solar cell element 111, a member (for example, an insulating film on the receiver substrate 120, a wiring, or the like) is irradiated by the thermal energy of the misaligned sunlight Lss. ) Becomes high temperature, and in some cases, there is a problem that it may be burned out (broken).

また、太陽電池素子111は、集光された太陽光Lsaによって発熱し、その結果発電電力(出力)が低下するという問題があった。
特開2002−289896号公報 特開2002−289897号公報 特開2002−289898号公報 特開2006−278581号公報 特開2007−201109号公報
Further, the solar cell element 111 generates heat due to the concentrated sunlight Lsa, and as a result, there is a problem that the generated power (output) decreases.
JP 2002-289896 A JP 2002-289897 A JP 2002-289898 A JP 2006-275881 A JP 2007-201109 A

本発明はこのような状況に鑑みてなされたものであり、集光レンズにより集光された太陽光を無駄なく太陽電池素子に照射する柱状光学部材と、レシーバ基板に載置され柱状光学部材を保持する光学保持部とを備えることによって、集光特性および放熱性を向上させ、発電効率および発電電力を向上させた耐熱性、信頼性、耐候性の高い太陽電池を提供することを目的とする。   The present invention has been made in view of such a situation. A columnar optical member that irradiates solar cell elements with sunlight collected by a condensing lens without waste, and a columnar optical member placed on a receiver substrate. An object of the present invention is to provide a solar cell with high heat resistance, high reliability, and high weather resistance that has improved light-collecting characteristics and heat dissipation and improved power generation efficiency and power generation by including an optical holding unit for holding. .

また、本発明は、集光レンズにより集光された太陽光を光電変換する太陽電池を備える集光型太陽光発電モジュールであって、集光特性および放熱性を向上させた太陽電池を備えることによって、発電効率および発電電力を向上させた耐熱性、信頼性、耐候性の高い集光型太陽光発電モジュールを提供することを他の目的とする。   Moreover, this invention is a concentrating solar power generation module provided with the solar cell which photoelectrically converts the sunlight condensed with the condensing lens, Comprising: The solar cell which improved the condensing characteristic and heat dissipation is provided. Accordingly, another object is to provide a concentrating solar power generation module with improved heat generation efficiency and power generation and having high heat resistance, reliability, and weather resistance.

また、本発明は、集光レンズにより集光された太陽光を無駄なく太陽電池素子に照射する柱状光学部材と、レシーバ基板に載置され柱状光学部材を保持壁で保持する光学保持部とを備える太陽電池を製造する太陽電池製造方法であって、光学保持部(保持壁)およびレシーバ基板が構成する空間に樹脂封止部を形成する封止樹脂を注入する樹脂注入工程と、保持壁に柱状光学部材を載置する光学部材載置工程とを備えることによって、光学保持部および柱状光学部材を簡単な工程で高精度に位置決めして集光特性および放熱性を向上させ、発電効率および発電電力を向上させた耐熱性、信頼性、耐候性の高い太陽電池を生産性良く安価に製造することを他の目的とする。   The present invention also includes a columnar optical member that irradiates the solar cell element with sunlight collected by the condenser lens without waste, and an optical holding unit that is placed on the receiver substrate and holds the columnar optical member with a holding wall. A solar cell manufacturing method for manufacturing a solar cell comprising: a resin injection step of injecting a sealing resin that forms a resin sealing portion in a space formed by an optical holding portion (holding wall) and a receiver substrate; and a holding wall An optical member mounting step for mounting the columnar optical member, thereby positioning the optical holder and the columnar optical member with high accuracy by a simple process to improve the light collecting characteristics and heat dissipation, and to improve the power generation efficiency and power generation. Another object is to manufacture a solar cell with improved heat resistance, high reliability, and high weather resistance at low cost with high productivity.

本発明に係る太陽電池は、集光レンズにより集光された太陽光を光電変換する太陽電池素子と、該太陽電池素子が載置されたレシーバ基板と、前記太陽電池素子を樹脂封止する樹脂封止部とを備える太陽電池であって、集光された太陽光を前記太陽電池素子へ導光する導光路を構成する柱状光学部材と、該柱状光学部材を保持する保持壁を有し前記樹脂封止部を覆って前記レシーバ基板に載置された光学保持部とを備えることを特徴とする。   The solar cell according to the present invention includes a solar cell element that photoelectrically converts sunlight condensed by a condenser lens, a receiver substrate on which the solar cell element is placed, and a resin that encapsulates the solar cell element. A solar cell comprising a sealing portion, the columnar optical member constituting a light guide for guiding the concentrated sunlight to the solar cell element, and a holding wall for holding the columnar optical member And an optical holding portion placed on the receiver substrate so as to cover the resin sealing portion.

この構成により、高い位置精度と安定性を有する導光路を確保して広い波長領域で太陽光を高精度に集光できる集光特性が得られることから、集光特性および放熱性を向上させ、集光された太陽光の位置ズレによって生じる発電効率の低減および温度上昇を防止して発電効率および発電電力を向上させた耐熱性、信頼性、耐候性の高い太陽電池とすることが可能となる。   With this configuration, it is possible to secure a light guide with high positional accuracy and stability, and to obtain a light condensing characteristic that can condense sunlight with high accuracy in a wide wavelength region. It becomes possible to obtain a solar cell with high heat resistance, high reliability, and high weather resistance in which power generation efficiency and generated power are improved by reducing power generation efficiency and temperature rise caused by misalignment of the concentrated sunlight. .

また、本発明に係る太陽電池では、前記柱状光学部材は、太陽光を前記太陽電池素子に集光する光路傾斜面を有し、前記保持壁は、前記光路傾斜面に整合させた保持傾斜面としてあることを特徴とする。   Further, in the solar cell according to the present invention, the columnar optical member has an optical path inclined surface for collecting sunlight on the solar cell element, and the holding wall is a holding inclined surface aligned with the optical path inclined surface. It is characterized by being.

この構成により、柱状光学部材を光学保持部に対して自己整合的に位置合わせすることが可能となり、柱状光学部材を保持壁によって高精度に保持することができるので、導光路を高精度に位置決めし、集光特性を向上させることができる。   With this configuration, the columnar optical member can be aligned with the optical holding portion in a self-aligning manner, and the columnar optical member can be held with high accuracy by the holding wall, so that the light guide path is positioned with high accuracy. In addition, the light condensing characteristics can be improved.

また、本発明に係る太陽電池では、前記光学保持部は、前記レシーバ基板が有する金属のベース基台に当接させてあることを特徴とする。   In the solar cell according to the present invention, the optical holding portion is in contact with a metal base base included in the receiver substrate.

この構成により、レシーバ基板と光学保持部との間の熱抵抗を低減して、太陽電池素子からレシーバ基板へ熱伝導された熱を効率的に放熱することが可能となり、発電効率および信頼性を向上させることができる。   With this configuration, it is possible to reduce the thermal resistance between the receiver substrate and the optical holder, and to efficiently dissipate the heat conducted from the solar cell element to the receiver substrate, thereby improving power generation efficiency and reliability. Can be improved.

また、本発明に係る太陽電池では、前記光学保持部は、外周側面に櫛の歯状のフィンを備えることを特徴とする。   Moreover, in the solar cell according to the present invention, the optical holding portion includes comb-shaped fins on an outer peripheral side surface.

この構成により、放熱特性をさらに向上させることが可能となり、発電効率および信頼性をさらに向上させることができる。   With this configuration, the heat dissipation characteristics can be further improved, and the power generation efficiency and reliability can be further improved.

また、本発明に係る太陽電池では、前記柱状光学部材は、四角柱としてあり、前記光学保持部は、前記四角柱の軸方向角部を包囲する溝状の切り欠き部を備えることを特徴とする。   Moreover, in the solar cell according to the present invention, the columnar optical member is a quadrangular column, and the optical holding unit includes a groove-shaped notch that surrounds an axial corner of the quadrangular column. To do.

この構成により、柱状光学部材の軸方向角部での光学保持部による損傷を防止し、光学保持部に対して柱状光学部材を確実かつ高精度に載置することが可能となり、また、柱状光学部材と光学保持部の間に充填される封止樹脂の脱泡と充填を確実に行なうことが可能となることから、導光路を高精度に画定(位置決め)することができる。   With this configuration, it is possible to prevent damage by the optical holding portion at the corners in the axial direction of the columnar optical member, and it is possible to place the columnar optical member on the optical holding portion reliably and with high accuracy. Since the defoaming and filling of the sealing resin filled between the member and the optical holding unit can be performed reliably, the light guide path can be defined (positioned) with high accuracy.

また、本発明に係る太陽電池では、前記樹脂封止部は、前記柱状光学部材と前記太陽電池素子との間で周囲領域より薄くしてあることを特徴とする。   Moreover, in the solar cell which concerns on this invention, the said resin sealing part is made thinner than the surrounding area between the said columnar optical member and the said solar cell element, It is characterized by the above-mentioned.

この構成により、柱状光学部材の太陽電池素子に対向する面(照射面)を太陽電池素子に確実に近接させることが可能となることから、柱状光学部材によって集光された太陽光を効果的に太陽電池素子へ照射することができる。また、周囲領域でのレシーバ基板の温度上昇を抑制することが可能となることから、耐熱性を向上させて信頼性と耐候性の高い太陽電池とすることができる。   With this configuration, the surface (irradiation surface) facing the solar cell element of the columnar optical member can be reliably brought close to the solar cell element, so that the sunlight collected by the columnar optical member is effectively collected. The solar cell element can be irradiated. Moreover, since it becomes possible to suppress the temperature rise of the receiver board | substrate in a surrounding area, it can be set as a solar cell with improved heat resistance and high reliability and a weather resistance.

また、本発明に係る集光型太陽光発電モジュールは、太陽光を集光する集光レンズと、該集光レンズにより集光された太陽光を光電変換する太陽電池とを備える集光型太陽光発電モジュールであって、前記太陽電池は、本発明に係る太陽電池であることを特徴とする。   Moreover, the concentrating solar power generation module according to the present invention includes a concentrating solar comprising a condensing lens that condenses sunlight and a solar cell that photoelectrically converts the sunlight condensed by the condensing lens. A photovoltaic module, wherein the solar cell is a solar cell according to the present invention.

この構成により、高い位置精度と安定性を有する導光路を確保して広い波長領域で太陽光を高精度に集光できる集光特性が得られることから、集光特性および放熱性を向上させ、集光された太陽光の位置ズレによって生じる発電効率の低減および温度上昇を防止して発電効率および発電電力を向上させた耐熱性、信頼性、耐候性の高い集光型太陽光発電モジュールとすることが可能となる。   With this configuration, it is possible to secure a light guide with high positional accuracy and stability, and to obtain a light condensing characteristic that can condense sunlight with high accuracy in a wide wavelength region. A concentrated solar photovoltaic module with high heat resistance, reliability, and weather resistance that improves power generation efficiency and power generation by reducing power generation efficiency and temperature rise caused by misalignment of the concentrated sunlight. It becomes possible.

また、本発明に係る太陽電池製造方法は、集光レンズにより集光された太陽光を光電変換する太陽電池素子と、該太陽電池素子が載置されたレシーバ基板と、前記太陽電池素子を樹脂封止する樹脂封止部と、集光された太陽光を前記太陽電池素子へ導光する導光路を構成する柱状光学部材と、該柱状光学部材を保持する保持壁を有し前記樹脂封止部を覆って前記レシーバ基板に載置された光学保持部とを備える太陽電池を製造する太陽電池製造方法であって、金属を成形加工して前記光学保持部を準備する光学保持部準備工程と、前記光学保持部を前記太陽電池素子の外周で前記レシーバ基板に当接させて配置する光学保持部配置工程と、前記光学保持部および前記レシーバ基板が構成する空間に前記樹脂封止部を形成する封止樹脂を注入する樹脂注入工程と、前記保持壁に前記柱状光学部材を載置する光学部材載置工程とを備えることを特徴とする。   The solar cell manufacturing method according to the present invention includes a solar cell element that photoelectrically converts sunlight condensed by a condenser lens, a receiver substrate on which the solar cell element is placed, and the solar cell element as a resin. A resin sealing portion that seals, a columnar optical member that constitutes a light guide path that guides the concentrated sunlight to the solar cell element, and a holding wall that holds the columnar optical member; A solar cell manufacturing method for manufacturing a solar cell including an optical holding unit placed on the receiver substrate so as to cover a part, and forming an optical holding unit by forming a metal to prepare the optical holding unit; An optical holding part arranging step of placing the optical holding part in contact with the receiver substrate on an outer periphery of the solar cell element, and forming the resin sealing part in a space formed by the optical holding part and the receiver substrate Inject sealing resin A resin injection step, characterized in that it comprises an optical member placement step of placing the columnar optical member on the holding wall.

この構成により、光学保持部および柱状光学部材を簡単な工程で高精度に位置決めすることが可能となり、太陽光を高精度で効果的に導光する導光路および光学保持部を容易に形成することができるので、集光特性および放熱性を向上させ、集光された太陽光の位置ズレによって生じる発電効率の低減および温度上昇を防止して発電効率および発電電力を向上させた耐熱性、信頼性、耐候性の高い太陽電池を生産性良く安価に製造することが可能となる。   With this configuration, the optical holding unit and the columnar optical member can be positioned with high accuracy by a simple process, and a light guide and an optical holding unit for effectively guiding sunlight with high accuracy can be easily formed. Therefore, heat collection characteristics and heat dissipation are improved, heat generation efficiency and power generation efficiency are improved by reducing power generation efficiency and preventing temperature rise caused by misalignment of the concentrated sunlight. Therefore, it becomes possible to manufacture a solar cell having high weather resistance at low cost with good productivity.

本発明に係る太陽電池によれば、集光レンズにより集光された太陽光を光電変換する太陽電池素子と、太陽電池素子が載置されたレシーバ基板と、太陽電池素子を樹脂封止する樹脂封止部とを備え、集光された太陽光を太陽電池素子へ導光する導光路を構成する柱状光学部材と、柱状光学部材を保持する保持壁を有し樹脂封止部を覆ってレシーバ基板に載置された光学保持部とを備えることから、高い位置精度と安定性を有する導光路を確保して広い波長領域で太陽光を高精度に集光できる集光特性が得られ、集光特性および放熱性を向上させ、集光された太陽光の位置ズレによって生じる発電効率の低減および温度上昇を防止して発電効率および発電電力を向上させた耐熱性、信頼性、耐候性を向上させることができるという効果を奏する。   According to the solar cell of the present invention, a solar cell element that photoelectrically converts sunlight collected by the condenser lens, a receiver substrate on which the solar cell element is placed, and a resin that encapsulates the solar cell element A columnar optical member that constitutes a light guide path that guides the collected sunlight to the solar cell element, and a holding wall that holds the columnar optical member and covers the resin sealing unit. Since the optical holding unit placed on the substrate is provided, a light collecting path with high positional accuracy and stability can be secured to obtain a light collecting characteristic capable of collecting sunlight with high accuracy in a wide wavelength region. Improved heat characteristics, improved heat resistance, improved heat generation efficiency and power generation by improving light characteristics and heat dissipation, preventing power generation efficiency reduction and temperature rise caused by misalignment of concentrated sunlight There is an effect that can be

また、本発明に係る集光型太陽光発電モジュールによれば、太陽光を集光する集光レンズと、集光レンズにより集光された太陽光を光電変換する太陽電池とを備え、太陽電池は、本発明に係る太陽電池とすることから、高い位置精度と安定性を有する導光路を確保して広い波長領域で太陽光を高精度に集光できる集光特性が得られ、集光特性および放熱性を向上させ、集光された太陽光の位置ズレによって生じる発電効率の低減および温度上昇を防止して発電効率および発電電力を向上させ、耐熱性、信頼性、耐候性を向上させることができるという効果を奏する。   The concentrating solar power generation module according to the present invention includes a condensing lens that condenses sunlight, and a solar cell that photoelectrically converts the sunlight collected by the condensing lens. Is a solar cell according to the present invention, so that a light condensing characteristic capable of concentrating sunlight with high accuracy in a wide wavelength region by securing a light guide having high positional accuracy and stability is obtained. And improve heat dissipation, improve heat generation efficiency and power generation, reduce heat generation efficiency and prevent temperature rise caused by misalignment of the concentrated sunlight, and improve heat resistance, reliability, and weather resistance There is an effect that can be.

本発明に係る太陽電池製造方法によれば、集光レンズにより集光された太陽光を光電変換する太陽電池素子と、太陽電池素子が載置されたレシーバ基板と、太陽電池素子を樹脂封止する樹脂封止部と、集光された太陽光を太陽電池素子へ導光する導光路を構成する柱状光学部材と、柱状光学部材を保持する保持壁を有し樹脂封止部を覆ってレシーバ基板に載置された光学保持部とを備える太陽電池を製造する太陽電池製造方法であって、金属を成形加工して光学保持部を準備する光学保持部準備工程と、光学保持部を太陽電池素子の外周でレシーバ基板に当接させて配置する光学保持部配置工程と、光学保持部およびレシーバ基板が構成する空間に樹脂封止部を形成する封止樹脂を注入する樹脂注入工程と、保持壁に柱状光学部材を載置する光学部材載置工程とを備えることから、光学保持部および柱状光学部材を簡単な工程で高精度に位置決めすることが可能となり、太陽光を高精度で効果的に導光する導光路および光学保持部を容易に形成することができるので、集光特性および放熱性を向上させ、集光された太陽光の位置ズレによって生じる発電効率の低減および温度上昇を防止して発電効率および発電電力を向上させた耐熱性、信頼性、耐候性の高い太陽電池を生産性良く安価に製造することが可能となるという効果を奏する。   According to the solar cell manufacturing method of the present invention, a solar cell element that photoelectrically converts sunlight collected by the condenser lens, a receiver substrate on which the solar cell element is placed, and the solar cell element are resin-sealed A resin sealing portion, a columnar optical member that constitutes a light guide for guiding the condensed sunlight to the solar cell element, and a holding wall that holds the columnar optical member, covering the resin sealing portion, and a receiver A solar cell manufacturing method for manufacturing a solar cell including an optical holding unit placed on a substrate, wherein an optical holding unit preparing step of preparing an optical holding unit by molding a metal, and the optical holding unit as a solar cell An optical holder placement step for placing the optical holder in contact with the receiver substrate at the outer periphery of the element, a resin injection step for injecting a sealing resin to form a resin sealing portion in the space formed by the optical holder and the receiver substrate, and holding Place the columnar optical member on the wall It is possible to position the optical holding part and the columnar optical member with high accuracy in a simple process, and to guide the sunlight effectively with high accuracy. Can be formed easily, improving the light collection efficiency and heat dissipation, and improving the power generation efficiency and power generation by reducing the power generation efficiency and preventing the temperature rise caused by the misalignment of the concentrated sunlight Thus, it is possible to produce a solar cell having high heat resistance, reliability, and weather resistance with high productivity and low cost.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<実施の形態1>
図1ないし図3に基づいて、本実施の形態に係る太陽電池および集光型太陽光発電モジュールについて説明する。
<Embodiment 1>
A solar cell and a concentrating solar power generation module according to the present embodiment will be described with reference to FIGS.

図1は、本発明の実施の形態1に係る太陽電池および集光型太陽光発電モジュールを示す断面図である。図2は、図1に示した太陽電池を集光レンズの側から拡大して見た状態を示す拡大平面図である。図3は、図2の矢符Y−Y方向での断面を示す拡大断面図である。なお、図1での太陽電池の断面図は、図2の矢符X−X方向での断面である。   1 is a cross-sectional view showing a solar cell and a concentrating solar power generation module according to Embodiment 1 of the present invention. FIG. 2 is an enlarged plan view showing a state in which the solar cell shown in FIG. 1 is enlarged from the condenser lens side. FIG. 3 is an enlarged cross-sectional view showing a cross section in the direction of arrows Y-Y in FIG. Note that the cross-sectional view of the solar cell in FIG. 1 is a cross-section in the direction of arrows XX in FIG.

本実施の形態に係る太陽電池10は、集光レンズ42により集光された太陽光Ls(太陽光Lsa、太陽光Lsb)を光電変換する太陽電池素子11と、太陽電池素子11が載置されたレシーバ基板20と、太陽電池素子11を樹脂封止する樹脂封止部73とを備える太陽電池10である。   In solar cell 10 according to the present embodiment, solar cell element 11 that photoelectrically converts sunlight Ls (sunlight Lsa, sunlight Lsb) collected by condenser lens 42 and solar cell element 11 are placed. It is the solar cell 10 provided with the receiver board | substrate 20 and the resin sealing part 73 which resin-seal the solar cell element 11. FIG.

なお、太陽光Lsaは、集光レンズ42によって正常に集光され、直接に太陽電池素子11へ入射する太陽光である。また、太陽光Lsbは、集光レンズ42によって集光されたが、レンズ端部、波長領域(特に短波長領域)などの影響を受けて太陽電池素子11へ直接入射することはできず、柱状光学部材70の入射面70f(集光領域Af)へ集光されたことによって、導光路(柱状光学部材70)の内部で反射しながら進行して太陽電池素子11へ照射される太陽光である。つまり、太陽光Lsbは、従来の技術では損失となっていた太陽光である。   The sunlight Lsa is sunlight that is normally condensed by the condenser lens 42 and directly incident on the solar cell element 11. Further, the sunlight Lsb is condensed by the condenser lens 42, but cannot be directly incident on the solar cell element 11 due to the influence of the lens end portion, the wavelength region (particularly, the short wavelength region), and the like. It is the sunlight that travels while being reflected inside the light guide path (columnar optical member 70) and is applied to the solar cell element 11 by being condensed on the incident surface 70f (condensing region Af) of the optical member 70. . That is, the sunlight Lsb is sunlight that has been a loss in the prior art.

また、太陽電池10は、集光された太陽光Lsを太陽電池素子11へ導光する導光路を構成する柱状光学部材70と、柱状光学部材70を保持する保持壁72wを有し樹脂封止部73を覆ってレシーバ基板20に載置された光学保持部72とを備える。   Further, the solar cell 10 includes a columnar optical member 70 that constitutes a light guide path that guides the concentrated sunlight Ls to the solar cell element 11, and a holding wall 72w that holds the columnar optical member 70. And an optical holding part 72 placed on the receiver substrate 20 so as to cover the part 73.

したがって、高い位置精度と安定性を有する導光路(柱状光学部材70)を確保して広い波長領域で太陽光Lsを高精度に集光できる集光特性が得られることから、集光特性および放熱性を向上させ、集光された太陽光Lsの位置ズレによって生じる発電効率の低減および温度上昇を防止して発電効率および発電電力を向上させた耐熱性、信頼性、耐候性の高い太陽電池10とすることが可能となる。   Therefore, a light collecting path (columnar optical member 70) having high positional accuracy and stability is obtained, and a light collecting characteristic capable of collecting sunlight Ls with high accuracy in a wide wavelength region is obtained. The solar cell 10 having high heat resistance, high reliability, and high weather resistance, which improves power generation efficiency and power generation power by reducing the power generation efficiency and preventing temperature rise caused by the positional deviation of the concentrated sunlight Ls. It becomes possible.

レシーバ基板20は、例えばアルミニウム板、銅板などの金属のベース基台に適宜の絶縁層を介して所望の配線(太陽電池素子11の電極(不図示)に接続され、外部への取り出しを行なう接続パターン。また、太陽電池10相互間を直列、あるいは並列に接続するための接続パターン。不図示)が形成してある。   The receiver substrate 20 is connected to a desired wiring (electrode (not shown) of the solar cell element 11) via an appropriate insulating layer on a metal base base such as an aluminum plate or a copper plate, and is connected to the outside. In addition, a connection pattern (not shown) for connecting the solar cells 10 in series or in parallel is formed.

つまり、太陽電池素子11が発生した電流はレシーバ基板20に形成された配線により太陽電池10の外部へ適宜取り出す構成としてある。レシーバ基板20に形成された配線は、信頼性の高い絶縁性を確保する必要があることから、例えば、銅箔で形成された接続パターンを有機材料などの絶縁膜で被覆して絶縁する構成としてある。   That is, the current generated by the solar cell element 11 is appropriately extracted to the outside of the solar cell 10 by the wiring formed on the receiver substrate 20. Since the wiring formed on the receiver substrate 20 needs to ensure highly reliable insulation, for example, a connection pattern formed of copper foil is insulated by covering it with an insulating film such as an organic material. is there.

また、柱状光学部材70は、太陽光Lsを太陽電池素子11に集光する光路傾斜面70sを有し、保持壁72wは、光路傾斜面70sに整合させた保持傾斜面としてある。   Further, the columnar optical member 70 has an optical path inclined surface 70s for condensing sunlight Ls on the solar cell element 11, and the holding wall 72w is a holding inclined surface aligned with the optical path inclined surface 70s.

したがって、柱状光学部材70を光学保持部72に対して自己整合的に位置合わせすることが可能となり、柱状光学部材70を保持壁72wによって高精度に保持することができるので、導光路(柱状光学部材70)を高精度に位置決めし、集光特性を向上させることができる。   Therefore, the columnar optical member 70 can be aligned with the optical holding portion 72 in a self-aligning manner, and the columnar optical member 70 can be held with high accuracy by the holding wall 72w. The member 70) can be positioned with high accuracy, and the light collecting characteristics can be improved.

柱状光学部材70は、例えば耐熱性のあるガラスで形成してあり、例えば1.5程度の屈折率を有している。太陽光Lsが集光される柱状光学部材70の入射面70f(集光領域Af)の広さは、集光レンズ42の端部で屈折された太陽光Lsbの中で最も屈折する短波長光である約400nmの太陽光を入射することができる大きさに構成してある。   The columnar optical member 70 is made of, for example, heat resistant glass and has a refractive index of about 1.5, for example. The width of the incident surface 70f (condensing region Af) of the columnar optical member 70 on which the sunlight Ls is condensed is the short wavelength light most refracted among the sunlight Lsb refracted at the end of the condenser lens 42. The size is such that about 400 nm of sunlight can be incident.

また、太陽光Lsが太陽電池素子11へ照射される導光路(柱状光学部材70)の照射面70rは、太陽電池10への照射を効率よく実行できるように太陽電池素子11の有効受光面領域と同程度の大きさに形成してある。したがって、柱状光学部材70は、入射面70fから照射面70rにかけて先細りとなる光路傾斜面70sを備える。   Moreover, the irradiation surface 70r of the light guide (columnar optical member 70) on which the solar light Ls is irradiated to the solar cell element 11 is an effective light receiving surface region of the solar cell element 11 so that the irradiation to the solar cell 10 can be performed efficiently. It is formed in the same size as. Accordingly, the columnar optical member 70 includes an optical path inclined surface 70s that tapers from the incident surface 70f to the irradiation surface 70r.

光学保持部72(保持壁72w)のレシーバ基板20に対する角度は45°以上としてあり、入射した太陽光Lsbを全反射させて太陽電池素子11への照射が可能となる。また、柱状光学部材70のレシーバ基板20からの高さHpは、光学保持部72の斜面の角度、太陽電池素子11の面積(有効受光面領域)に対応する照射面70rの面積の大きさ、柱状光学部材70の入射面70fの大きさによって決定することが可能である。   The angle of the optical holding part 72 (holding wall 72w) with respect to the receiver substrate 20 is 45 ° or more, and the incident solar light Lsb is totally reflected, so that the solar cell element 11 can be irradiated. Further, the height Hp of the columnar optical member 70 from the receiver substrate 20 is the angle of the inclined surface of the optical holding portion 72, the size of the area of the irradiation surface 70r corresponding to the area of the solar cell element 11 (effective light receiving surface region), It can be determined by the size of the incident surface 70 f of the columnar optical member 70.

したがって、柱状光学部材70のサイズは、太陽光Lsを損失なく入射する入射面70fの面積、太陽光Lsを全反射させて太陽電池素子11へ照射させる光学保持部72の保持壁72w(保持傾斜面)のレシーバ基板20からの角度、照射面70rの面積によって適宜に決定することができる。   Therefore, the size of the columnar optical member 70 is the area of the incident surface 70f on which the sunlight Ls is incident without loss, the holding wall 72w (holding slope) of the optical holder 72 that totally reflects the sunlight Ls and irradiates the solar cell element 11. Surface) from the receiver substrate 20 and the area of the irradiation surface 70r.

また、光学保持部72に対する関係で柱状光学部材70での全反射が利用できない場合は、柱状光学部材70の光路傾斜面70sに、Al、Ag、Niなどの金属膜を真空蒸着法、スパッタ法などによって形成した反射面を設けてもよい。   Further, when total reflection at the columnar optical member 70 cannot be used due to the relationship with the optical holding unit 72, a metal film such as Al, Ag, or Ni is vacuum-deposited or sputtered on the optical path inclined surface 70s of the columnar optical member 70. You may provide the reflective surface formed by the above.

上述したとおり、本実施の形態に係る柱状光学部材70は、集光レンズ42によって正常に集光された太陽光Lsaを太陽電池素子11に直接入射させ、集光レンズ42によって入射面70fに集光された太陽光Lsbを導光路(柱状光学部材70)を多重反射させながら進行させて太陽電池素子11に入射させることが可能となり、太陽電池10の発電効率を高効率化することができる。   As described above, the columnar optical member 70 according to the present embodiment causes the sunlight Lsa normally collected by the condenser lens 42 to be directly incident on the solar cell element 11 and collected on the incident surface 70f by the condenser lens 42. The sunlight Lsb that has been emitted can be allowed to travel while being reflected by the light guide path (columnar optical member 70) and incident on the solar cell element 11, and the power generation efficiency of the solar cell 10 can be increased.

また、光学保持部72は、レシーバ基板20が有する金属のベース基台(不図示)に当接させ、接着部21によってレシーバ基板20に接着してある。つまり、光学保持部72は、レシーバ基板20(ベース基台)に対して適宜の接触面積を確保した状態で直接接着してある。   The optical holding unit 72 is brought into contact with a metal base (not shown) of the receiver substrate 20 and is bonded to the receiver substrate 20 by the bonding unit 21. That is, the optical holding part 72 is directly bonded to the receiver substrate 20 (base base) in a state where an appropriate contact area is secured.

したがって、集光された太陽光Lsに起因してレシーバ基板20(太陽電池素子11)で発生した熱を金属で形成した光学保持部72へ効率よく熱伝導することができ、また、光学保持部72に伝導した熱は、放熱面積を増加させたフィン72hによって効果的に放熱されるので、太陽電池素子11へ集光された太陽光Lsに起因する熱を効率よく放熱することが可能となり、太陽電池10の発電効率および信頼性を向上させることができる。   Therefore, heat generated in the receiver substrate 20 (solar cell element 11) due to the concentrated sunlight Ls can be efficiently conducted to the optical holding unit 72 formed of metal, and the optical holding unit Since the heat conducted to 72 is effectively radiated by the fins 72h having an increased heat radiation area, it is possible to efficiently radiate the heat caused by the sunlight Ls collected on the solar cell element 11, The power generation efficiency and reliability of the solar cell 10 can be improved.

なお、光学保持部72は、例えば金属で形成してあることが望ましい。金属で形成することによって、優れた放熱性を有する光学保持部72を容易かつ安価に量産性良く形成することができる。   Note that the optical holding portion 72 is preferably formed of, for example, metal. By forming it with metal, the optical holding part 72 having excellent heat dissipation can be easily and inexpensively formed with good mass productivity.

光学保持部72は、例えば外周側面に櫛の歯状のフィン72hを備える。したがって、放熱特性をさらに向上させることが可能となり、発電効率および信頼性をさらに向上させることができる。なお、フィン72hは、根元から先端へかけてレシーバ基板20から離れる方向(上向き)へ傾斜を有する形状としてあり、放熱性をさらに向上させてある。   The optical holding unit 72 includes, for example, comb-shaped fins 72h on the outer peripheral side surface. Therefore, it is possible to further improve the heat dissipation characteristics, and it is possible to further improve the power generation efficiency and reliability. The fin 72h has a shape that is inclined in the direction away from the receiver substrate 20 from the base to the tip (upward), and further improves heat dissipation.

柱状光学部材70は、四角柱としてあり、光学保持部72は、四角柱の軸方向角部70cを包囲する溝状の切り欠き部72gを備える。したがって、柱状光学部材70の軸方向角部70cでの光学保持部72による損傷を防止し、光学保持部72に対して柱状光学部材70を確実かつ高精度に載置することが可能となる。   The columnar optical member 70 is a quadrangular column, and the optical holding unit 72 includes a groove-shaped notch 72g that surrounds the axial corner 70c of the quadrangular column. Therefore, it is possible to prevent the optical holding portion 72 from being damaged at the axial corner portion 70 c of the columnar optical member 70, and to place the columnar optical member 70 on the optical holding portion 72 reliably and with high accuracy.

また、切り欠き部72gによって、柱状光学部材70と光学保持部72の間に充填される封止樹脂73r(図4C参照)の脱泡と充填を確実に行なうことが可能となることから、導光路(柱状光学部材70)を高精度に画定(位置決め)し、光路傾斜面70sと保持壁72wとの間、あるいは樹脂封止部73での気泡の混入が生じない高品質の導光路とすることができる。   Further, the notched portion 72g can surely degas and fill the sealing resin 73r (see FIG. 4C) filled between the columnar optical member 70 and the optical holding portion 72. The optical path (columnar optical member 70) is defined (positioned) with high accuracy, and a high-quality light guide path in which bubbles are not mixed between the optical path inclined surface 70s and the holding wall 72w or in the resin sealing portion 73 is obtained. be able to.

なお、光学保持部72は、レシーバ基板20からの高さHhが柱状光学部材70の重心位置Wbより高くなるように形成してあることが望ましい。この構成によって、柱状光学部材70の重心を光学保持部72によって安定性良く確実に保持することが可能となる。したがって、光学保持部72によって柱状光学部材70の揺れあるいは転倒を防止し、集光した太陽光Lsの揺れを抑制して信頼性の高い発電を行なうことが可能となり、太陽電池10の信頼性を向上させることができる。   The optical holding portion 72 is preferably formed such that the height Hh from the receiver substrate 20 is higher than the center of gravity position Wb of the columnar optical member 70. With this configuration, the center of gravity of the columnar optical member 70 can be reliably and reliably held by the optical holding portion 72. Therefore, it is possible to prevent the columnar optical member 70 from shaking or falling by the optical holding portion 72, and to suppress the shaking of the concentrated sunlight Ls and to perform highly reliable power generation, thereby improving the reliability of the solar cell 10. Can be improved.

また、封止樹脂73rを介在させることによって、光学保持部72に対して柱状光学部材70を密着させることが可能となり、光学保持部72に対する柱状光学部材70の載置を安定して行なうことが可能となることから、生産性を向上させることができる。   Further, by interposing the sealing resin 73r, the columnar optical member 70 can be brought into close contact with the optical holding portion 72, and the columnar optical member 70 can be stably placed on the optical holding portion 72. Since it becomes possible, productivity can be improved.

樹脂封止部73は、太陽電池素子11と光学保持部72との間に充填された絶縁性の封止樹脂73rで構成してあり、例えば透明なシリコーン樹脂を適用することによって、柱状光学部材70を透過した太陽光Lsが太陽電池素子11に照射できる構成としてある。   The resin sealing portion 73 is composed of an insulating sealing resin 73r filled between the solar cell element 11 and the optical holding portion 72. For example, by applying a transparent silicone resin, a columnar optical member is formed. The solar cell element 11 can be irradiated with sunlight Ls that has passed through 70.

樹脂封止部73は、柱状光学部材70と太陽電池素子11との間で周囲領域より薄くしてある。つまり、柱状光学部材70と太陽電池素子11との間の厚さTsに対して、周囲領域での厚さTrを厚くなるように形成してある。   The resin sealing portion 73 is thinner than the surrounding region between the columnar optical member 70 and the solar cell element 11. That is, the thickness Tr in the surrounding region is formed to be thicker than the thickness Ts between the columnar optical member 70 and the solar cell element 11.

したがって、柱状光学部材70の太陽電池素子11に対向する面(照射面70r)を太陽電池素子11(有効受光面領域)に確実に近接させることが可能となることから、柱状光学部材70によって集光された太陽光Lsを効果的に太陽電池素子11へ照射することができる。   Therefore, since the surface (irradiation surface 70r) facing the solar cell element 11 of the columnar optical member 70 can be surely brought close to the solar cell element 11 (effective light receiving surface region), the columnar optical member 70 collects the columnar optical member 70. The illuminated sunlight Ls can be effectively applied to the solar cell element 11.

また、太陽電池素子11の周囲領域でのレシーバ基板20の温度上昇を抑制することが可能となることから、耐熱性を向上させて信頼性と耐候性の高い太陽電池10とすることができる。   Moreover, since it becomes possible to suppress the temperature rise of the receiver board | substrate 20 in the surrounding area | region of the solar cell element 11, heat resistance can be improved and it can be set as the solar cell 10 with high reliability and weather resistance.

太陽光Lsは、追尾機構により太陽電池素子11に集光される構成としてあるが、例えば、追尾誤差の発生あるいは光学系のアライメント誤差により位置ズレを生じ集光スポットがずれることがある。つまり、位置ズレした太陽光Lssを太陽電池10へ照射することがある。なお、以下では、追尾誤差、アライメント誤差、光強度のバラツキなどによる集光スポットのズレを単に追尾誤差(追尾誤差など)によるものとして記載することがある。   The sunlight Ls is configured to be collected on the solar cell element 11 by the tracking mechanism. For example, the sunlight Ls may be misaligned due to the occurrence of a tracking error or an alignment error of the optical system. That is, the solar cell 10 may be irradiated with the misaligned sunlight Lss. In the following, the deviation of the focused spot due to tracking error, alignment error, variation in light intensity, etc. may be described simply as tracking error (such as tracking error).

光学保持部72は、太陽電池素子11(有効受光面領域)に向けて集光された太陽光Ls(太陽光Lsa、太陽光Lsb)に対して設定された集光領域Af(柱状光学部材70)の外側に配置してあることから、仮に太陽光Lssが生じた場合には、太陽光Lssを反射することが可能となる。   The optical holding part 72 is a condensing region Af (columnar optical member 70) set for sunlight Ls (sunlight Lsa, sunlight Lsb) collected toward the solar cell element 11 (effective light receiving surface region). ), The sunlight Lss can be reflected when the sunlight Lss is generated.

したがって、集光された太陽光Lsが例えば追尾誤差などにより位置ずれを生じ、太陽電池素子11の位置(有効受光面領域)からずれた位置を太陽光Lssが照射することとなった場合でも、レシーバ基板20への太陽光Lssの照射を防止することが可能となる。   Therefore, even when the concentrated sunlight Ls is displaced due to, for example, a tracking error, and the sunlight Lss irradiates a position shifted from the position of the solar cell element 11 (effective light receiving surface region), Irradiation of sunlight Lss to the receiver substrate 20 can be prevented.

上述したとおり、レシーバ基板20の表面に形成してある配線は、耐熱性の低い有機部材などで構成してあることから、仮に太陽光Lssが照射されると有機部材の損傷、ひいては配線の損傷を生じ、また、太陽電池10の信頼性を低下させる恐れがある。しかし、光学保持部72(および樹脂封止部73)によって太陽電池素子11の周囲のレシーバ基板20を被覆していることから、太陽光Lssがレシーバ基板20(配線)に直接照射されることを防止し、配線の損傷などを回避することが可能となることから、レシーバ基板20の表面の温度上昇を抑制してレシーバ基板20の表面に配置された部材(配線、絶縁膜など)の焼損を防止することができる。   As described above, the wiring formed on the surface of the receiver substrate 20 is composed of an organic member having low heat resistance. Therefore, if sunlight Lss is irradiated, the organic member is damaged, and thus the wiring is damaged. And the reliability of the solar cell 10 may be reduced. However, since the receiver substrate 20 around the solar cell element 11 is covered by the optical holding portion 72 (and the resin sealing portion 73), the sunlight Lss is directly irradiated onto the receiver substrate 20 (wiring). Therefore, it is possible to prevent damage to the wiring and the like, so that the temperature rise on the surface of the receiver substrate 20 is suppressed, and the members (wiring, insulating film, etc.) disposed on the surface of the receiver substrate 20 are burned out. Can be prevented.

つまり、太陽電池素子11の外周領域で光学保持部72をレシーバ基板20に配置することにより、例えば600SUN(1SUN=100mW/cm2)以上の高集光倍率の場合でも、レシーバ基板20の配線(有機部材)などの焦げを防ぐことが可能となり、耐熱性を向上させた信頼性、耐候性の良い高効率で安価な太陽電池10とすることができる。 That is, by disposing the optical holder 72 on the receiver substrate 20 in the outer peripheral region of the solar cell element 11, the wiring (organic member) of the receiver substrate 20 can be obtained even in the case of a high condensing magnification of 600 SUN (1 SUN = 100 mW / cm 2 ) or more. ) And the like, and it is possible to obtain a highly efficient and inexpensive solar cell 10 with improved heat resistance, good reliability and weather resistance.

また、光学保持部72は、上述したとおり、例えば金属とすることにより、太陽光Lssを効果的に反射することが可能となる。   Moreover, as above-mentioned, the optical holding | maintenance part 72 can reflect sunlight Lss effectively by using, for example as a metal.

太陽電池素子11は、例えばSi、GaAs、CuInGaSe、CdTeなどの無機材料で構成してある。また、太陽電池素子11の構造は、単一接合型太陽電池素子、モノリシック多接合型太陽電池素子、波長感度領域の異なる種々の太陽電池太陽電池素子を接続したメカニカルスタック型など種々の形態の構造を適用することが可能である。   The solar cell element 11 is made of an inorganic material such as Si, GaAs, CuInGaSe, CdTe, for example. Further, the solar cell element 11 has various structures such as a single junction solar cell element, a monolithic multi-junction solar cell element, and a mechanical stack type in which various solar cell solar cell elements having different wavelength sensitivity regions are connected. It is possible to apply.

なお、太陽電池素子11の外形サイズは、使用する太陽電池材料の削減、加工の安さ、工程の容易性、簡略化などの観点から、数mm程度から20mm程度までとすることが望ましい。   Note that the outer size of the solar cell element 11 is preferably about several mm to about 20 mm from the viewpoints of reduction of solar cell materials to be used, ease of processing, ease of process, simplification, and the like.

また、太陽電池素子11の感度波長領域での光反射率を低減するために、太陽電池素子11の表面に適当な反射防止膜などを設けても良い。さらに、太陽電池素子11の感度波長領域以外の波長を有する太陽光を反射するUV反射膜、赤外線反射膜などを設けても良い。   In order to reduce the light reflectance in the sensitivity wavelength region of the solar cell element 11, an appropriate antireflection film or the like may be provided on the surface of the solar cell element 11. Furthermore, a UV reflection film, an infrared reflection film, or the like that reflects sunlight having a wavelength other than the sensitivity wavelength region of the solar cell element 11 may be provided.

本実施の形態に係る集光型太陽光発電モジュール40mは、太陽光Ls(太陽光Lsv)を集光する集光レンズ42と、集光レンズ42により集光された太陽光Ls(太陽光Lsa、太陽光Lsb)を光電変換する太陽電池10(太陽電池素子11)とを備える。   The concentrating solar power generation module 40m according to the present embodiment includes a condensing lens 42 that condenses sunlight Ls (sunlight Lsv), and sunlight Ls (sunlight Lsa) collected by the condensing lens 42. The solar cell 10 (solar cell element 11) that photoelectrically converts sunlight Lsb).

集光レンズ42は、追尾機構(不図示)の作用により太陽に正対する構成としてある。したがって、太陽光Lsvは、集光レンズ42の入射面に対して垂直方向に入射する。また、集光レンズ42は、太陽光Lsvを屈折させて太陽電池素子11(本実施の形態では、集光領域Afとしての入射面70f)に集光する構成としてある。   The condensing lens 42 is configured to face the sun by the action of a tracking mechanism (not shown). Therefore, the sunlight Lsv is incident in a direction perpendicular to the incident surface of the condenser lens 42. The condensing lens 42 is configured to refract the sunlight Lsv and condense it on the solar cell element 11 (in this embodiment, the incident surface 70f as the condensing region Af).

太陽電池10では、高い位置精度と安定性を有する導光路(柱状光学部材70)を確保して短波長領域の波長を含む広い波長領域での太陽光Lsを高精度に集光できる集光特性が得られることから、集光特性を向上させ、集光された太陽光Lsの位置ズレによって生じる発電効率の低減および温度上昇を防止して耐熱性を向上させることが可能となるので、発電効率および発電電力を向上させた信頼性、耐候性の高い集光型太陽光発電モジュール40mとすることができる。   In the solar cell 10, a light collecting characteristic capable of concentrating sunlight Ls in a wide wavelength region including a wavelength in a short wavelength region with high accuracy by securing a light guide (columnar optical member 70) having high positional accuracy and stability. Therefore, it is possible to improve the heat collecting property by improving the condensing characteristics and reducing the power generating efficiency and preventing the temperature rise caused by the positional deviation of the concentrated sunlight Ls. In addition, it is possible to obtain a concentrating solar power generation module 40m with improved reliability and high weather resistance with improved generated power.

なお、集光型太陽光発電モジュール40mに適用する太陽電池素子11としては、高効率性、実用性が特に求められることから、InGaP/GaAs/Geで構成した3接合型太陽電池素子、AlGaAs/Siで構成した太陽電池素子、モノリシック多接合型太陽電池素子を使用することが望ましい。   The solar cell element 11 applied to the concentrating solar power generation module 40m is particularly required to have high efficiency and practicality. Therefore, a three-junction solar cell element composed of InGaP / GaAs / Ge, AlGaAs / It is desirable to use a solar cell element made of Si or a monolithic multi-junction solar cell element.

集光レンズ42による集光を効果的に行なうために、太陽光Lsを光電変換する太陽電池素子11の表面は平坦で、集光レンズ42の入射面、柱状光学部材70の入射面70f、照射面70rと平行に配置してある。   In order to effectively collect light by the condensing lens 42, the surface of the solar cell element 11 that photoelectrically converts sunlight Ls is flat, the incident surface of the condensing lens 42, the incident surface 70f of the columnar optical member 70, irradiation It is arranged parallel to the surface 70r.

集光レンズ42としては、両凸レンズ、平凸レンズ、フレネルレンズなどが挙げられる。重量・コスト・使用環境での扱い易さなどの観点から、太陽光Lsを受光する入射面が平坦で、太陽光Lsを太陽電池素子11に照射する出射面が略三角断面を有するフレネルレンズの形状としてあることが望ましい。なお、集光レンズ42は、同じ光学系を複数並べて一体に成形したアレイ状(図5参照)とすることも可能である。   Examples of the condenser lens 42 include a biconvex lens, a plano-convex lens, and a Fresnel lens. From the viewpoint of weight, cost, ease of handling in the usage environment, etc., the Fresnel lens has a flat entrance surface for receiving sunlight Ls and an exit surface for irradiating solar cell element 11 with sunlight Ls having a substantially triangular cross section. It is desirable to have a shape. In addition, the condensing lens 42 can also be made into the array form (refer FIG. 5) which shape | molded and integrated the same optical system.

集光レンズ42の材質としては、太陽電池素子11の感度波長光での透過率が高く、耐候性を有するものが良い。例えば、通常の太陽電池モジュール(太陽光発電システム)などに一般的に使用される薄板ガラス、耐候性グレードのアクリル、ポリカーボネートなどを適用することが可能である。なお、集光レンズ42の材料は、これらに限定されるものではなく、これら材料を複層構成としたものでも良い。また、これら材料に、集光レンズ42自体やその他の部材の紫外線劣化を防ぐ目的で、適当な紫外線吸収剤を添加することも可能である。   As a material of the condensing lens 42, the thing with the high transmittance | permeability with the sensitivity wavelength light of the solar cell element 11 and a weather resistance is good. For example, it is possible to apply a thin glass generally used for a normal solar cell module (solar power generation system), weather resistant grade acrylic, polycarbonate, or the like. In addition, the material of the condensing lens 42 is not limited to these, You may make these materials into the multilayer structure. In addition, an appropriate ultraviolet absorber can be added to these materials for the purpose of preventing ultraviolet degradation of the condenser lens 42 itself and other members.

<実施の形態2>
図4Aないし図4Dに基づいて、本実施の形態に係る太陽電池製造方法について説明する。なお、本実施の形態に係る太陽電池製造方法で製造する太陽電池は実施の形態1に係る太陽電池10であるので、実施の形態1での符号をそのまま適用する。
<Embodiment 2>
Based on FIG. 4A thru | or FIG. 4D, the solar cell manufacturing method which concerns on this Embodiment is demonstrated. In addition, since the solar cell manufactured with the solar cell manufacturing method which concerns on this Embodiment is the solar cell 10 which concerns on Embodiment 1, the code | symbol in Embodiment 1 is applied as it is.

図4Aの工程(太陽電池素子実装工程)とは別に、まず、金属を成形加工して光学保持部72を準備する(光学保持部準備工程)。なお、光学保持部72の形状は実施の形態1で説明したとおりであるので適宜説明を省略する。   Apart from the process of FIG. 4A (solar cell element mounting process), first, the metal is molded to prepare the optical holding part 72 (optical holding part preparing process). Note that the shape of the optical holding portion 72 is as described in the first embodiment, and thus the description thereof is omitted as appropriate.

つまり、柱状光学部材70の光路傾斜面70sに対応させての光路傾斜面70sと同一の傾斜角を有する保持壁72w(保持傾斜面)を金属ブロックの内側に形成する。また、柱状光学部材70が有する軸方向角部70cに対応させて切り欠き部72gを形成する。併せて、樹脂封止部73を覆う空間をレシーバ基板20に当接する面に隣接させて形成する。また、フィン72hを光学保持部72の外周に形成する。   That is, the holding wall 72w (holding inclined surface) having the same inclination angle as the optical path inclined surface 70s corresponding to the optical path inclined surface 70s of the columnar optical member 70 is formed inside the metal block. In addition, a notch 72g is formed corresponding to the axial corner 70c of the columnar optical member 70. In addition, a space that covers the resin sealing portion 73 is formed adjacent to the surface that contacts the receiver substrate 20. Further, the fin 72 h is formed on the outer periphery of the optical holding portion 72.

なお、光学保持部72の製造方法としては、高精度な加工ができるダイキャスティング方法、または、金属ブロックを切削して製作する方法がある。   In addition, as a manufacturing method of the optical holding | maintenance part 72, there exists the die casting method which can process with high precision, or the method of cutting and manufacturing a metal block.

図4Aは、本発明の実施の形態2に係る太陽電池製造方法を説明する工程図であり、レシーバ基板に太陽電池素子を載置した状態を図2の矢符X−X方向での断面で示す。   FIG. 4A is a process diagram for explaining a solar cell manufacturing method according to Embodiment 2 of the present invention, and shows a state in which a solar cell element is placed on a receiver substrate in a cross section in the direction of arrows XX in FIG. Show.

光学保持部準備工程とは別に、レシーバ基板20に太陽電池素子11を実装する(太陽電池素子実装工程)。   Separately from the optical holder preparation step, the solar cell element 11 is mounted on the receiver substrate 20 (solar cell element mounting step).

図4Bは、本発明の実施の形態2に係る太陽電池製造方法を説明する工程図であり、レシーバ基板に光学保持部を載置した状態を図2の矢符X−X方向での断面で示す。   FIG. 4B is a process diagram for explaining the solar cell manufacturing method according to Embodiment 2 of the present invention, and shows a state in which the optical holding unit is placed on the receiver substrate in a cross section in the direction of arrows XX in FIG. Show.

レシーバ基板20に太陽電池素子11を実装した後、太陽電池素子11の外周で光学保持部72を配置する位置に対応させて接着部21をレシーバ基板20に形成する(接着部形成工程)。接着部21は、例えば金属枠やプラスチック枠を形成し配置することも可能であるが光学保持部72を接着できる樹脂や接着剤を適宜配置することが望ましい。   After mounting the solar cell element 11 on the receiver substrate 20, the bonding portion 21 is formed on the receiver substrate 20 in correspondence with the position where the optical holding portion 72 is disposed on the outer periphery of the solar cell element 11 (bonding portion forming step). For example, a metal frame or a plastic frame can be formed and disposed as the bonding portion 21, but it is desirable to appropriately arrange a resin or an adhesive that can bond the optical holding portion 72.

接着部21は、レシーバ基板20が有するベース基台に(不図示)に直接光学保持部72を当接できるように、光学保持部72の側面で光学保持部72をレシーバ基板20に接着するように配置される。なお、熱伝導性の高い接着剤を適用した場合などには、レシーバ基板20と光学保持部72との間に接着部21を介挿する形態とすることも可能である。   The bonding unit 21 bonds the optical holding unit 72 to the receiver substrate 20 on the side surface of the optical holding unit 72 so that the optical holding unit 72 can be brought into direct contact with a base base (not shown) of the receiver substrate 20. Placed in. In the case where an adhesive having high thermal conductivity is applied, the adhesive portion 21 may be inserted between the receiver substrate 20 and the optical holding portion 72.

接着部21を形成した後、接着部21に位置合わせして光学保持部72をレシーバ基板20に当接して配置する(光学保持部配置工程)。このとき、保持壁72wが構成する光学保持部72の中心位置(照射面70rの中心位置に対応)と太陽電池素子11(有効受光面領域)の中心を一致させるように光学保持部72を載置する。   After forming the bonding part 21, the optical holding part 72 is placed in contact with the receiver substrate 20 in alignment with the bonding part 21 (optical holding part arranging step). At this time, the optical holder 72 is mounted so that the center position of the optical holder 72 (corresponding to the center position of the irradiation surface 70r) formed by the holding wall 72w and the center of the solar cell element 11 (effective light receiving surface area) are aligned. Put.

図4Cは、本発明の実施の形態2に係る太陽電池製造方法を説明する工程図であり、光学保持部がレシーバ基板との間で構成する空間に封止樹脂を注入した状態を図2の矢符X−X方向での断面で示す。   FIG. 4C is a process diagram for explaining the solar cell manufacturing method according to Embodiment 2 of the present invention, in which the sealing resin is injected into the space formed between the optical holder and the receiver substrate in FIG. Shown in cross section in the direction of arrow XX.

保持壁72wが構成する空間を介して、光学保持部72およびレシーバ基板20が構成する空間(樹脂封止部73を構成する空間および柱状光学部材70が配置される空間の一部)へ太陽電池素子11を保護する封止樹脂73rを注入する(樹脂注入工程)。   Through the space formed by the holding wall 72w, to the space formed by the optical holding portion 72 and the receiver substrate 20 (the space forming the resin sealing portion 73 and part of the space where the columnar optical member 70 is disposed). A sealing resin 73r for protecting the element 11 is injected (resin injection step).

封止樹脂73rの注入量は、柱状光学部材70を載置した場合に封止樹脂73rが柱状光学部材70と光学保持部72との間の隙間を充填し、光学保持部72(切り欠き部72g)から漏れない程度であれば良く、予め求めた適宜の量を注入する。   The injection amount of the sealing resin 73r is such that when the columnar optical member 70 is placed, the sealing resin 73r fills the gap between the columnar optical member 70 and the optical holding portion 72, and the optical holding portion 72 (notch portion) 72 g), and an appropriate amount obtained in advance is injected.

図4Dは、本発明の実施の形態2に係る太陽電池製造方法を説明する工程図であり、光学保持部に柱状光学部材を載置した状態を図2の矢符X−X方向での断面で示す。   FIG. 4D is a process diagram illustrating the solar cell manufacturing method according to Embodiment 2 of the present invention, and shows a state in which the columnar optical member is placed on the optical holding portion in the direction of arrows XX in FIG. It shows with.

注入した封止樹脂73rが硬化する前に、光学保持部72(保持壁72w)に柱状光学部材70を載置し(光学部材載置工程)、真空チャンバーに収納して脱泡を行なう(気泡脱泡工程)。光学保持部72に形成してある切り欠き部72gが気泡の排出路となることから、簡単な工程で信頼性の良い脱泡を行なうことができる。   Before the injected sealing resin 73r is cured, the columnar optical member 70 is placed on the optical holding portion 72 (holding wall 72w) (optical member placement step), and is stored in a vacuum chamber for defoaming (bubbles) Defoaming step). Since the cutout portion 72g formed in the optical holding portion 72 serves as a bubble discharge path, reliable defoaming can be performed by a simple process.

気泡脱泡工程で脱泡を行なうことによって封止樹脂73rの圧力が低下することから、柱状光学部材70は、自重で保持壁72wに押圧され、高精度に太陽電池素子11の側へ自己整合的に移動挿入される。また、封止樹脂73rは、柱状光学部材70と光学保持部72との間に充填され潤滑材として作用することから、柱状光学部材70と光学保持部72との間の摩擦抵抗を低減して柱状光学部材70の表面を保護すると共に、より円滑に光学保持部72に載置(結合)することが可能となる。   Since the pressure of the sealing resin 73r is reduced by performing defoaming in the bubble defoaming step, the columnar optical member 70 is pressed against the holding wall 72w by its own weight and is self-aligned to the solar cell element 11 side with high accuracy. Inserted. Further, since the sealing resin 73r is filled between the columnar optical member 70 and the optical holding portion 72 and acts as a lubricant, the frictional resistance between the columnar optical member 70 and the optical holding portion 72 is reduced. While protecting the surface of the columnar optical member 70, it becomes possible to mount (couple) the optical holding unit 72 more smoothly.

気泡脱泡工程の後、封止樹脂73rを硬化して樹脂封止部73を形成し、柱状光学部材70と光学保持部72とを密着させて固定する(樹脂硬化工程/柱状光学部材固定工程)。   After the bubble defoaming step, the sealing resin 73r is hardened to form the resin sealing portion 73, and the columnar optical member 70 and the optical holding portion 72 are adhered and fixed (resin curing step / columnar optical member fixing step). ).

上述したとおり、本実施の形態に係る太陽電池製造方法は、集光レンズ42により集光された太陽光Lsを光電変換する太陽電池素子11と、太陽電池素子11が載置されたレシーバ基板20と、太陽電池素子11を樹脂封止する樹脂封止部73と、集光された太陽光Lsを太陽電池素子11へ導光する導光路を構成する柱状光学部材70と、柱状光学部材70を保持する保持壁72wを有し樹脂封止部73を覆ってレシーバ基板20に載置された光学保持部72とを備える太陽電池10を製造する太陽電池製造方法に関する。   As described above, in the solar cell manufacturing method according to the present embodiment, the solar cell element 11 that photoelectrically converts the sunlight Ls collected by the condenser lens 42 and the receiver substrate 20 on which the solar cell element 11 is placed. A resin sealing portion 73 for resin-sealing the solar cell element 11, a columnar optical member 70 that constitutes a light guide for guiding the concentrated sunlight Ls to the solar cell element 11, and a columnar optical member 70. The present invention relates to a solar cell manufacturing method for manufacturing a solar cell 10 that includes a holding wall 72 w to hold and an optical holding portion 72 that covers a resin sealing portion 73 and is placed on a receiver substrate 20.

また、本実施の形態に係る太陽電池製造方法は、金属を成形加工して光学保持部72を準備する光学保持部準備工程と、光学保持部72を太陽電池素子11の外周でレシーバ基板20に当接させて配置する光学保持部配置工程と、光学保持部72およびレシーバ基板20が構成する空間に樹脂封止部73を形成する封止樹脂73rを注入する樹脂注入工程と、保持壁72wに柱状光学部材70を載置する光学部材載置工程とを備える。   In addition, the solar cell manufacturing method according to the present embodiment includes an optical holding unit preparing step of forming a metal to prepare the optical holding unit 72, and the optical holding unit 72 on the receiver substrate 20 on the outer periphery of the solar cell element 11. An optical holding part placement step for placing the resin in contact with each other, a resin injection step for injecting a sealing resin 73r for forming the resin sealing portion 73 into the space formed by the optical holding part 72 and the receiver substrate 20, and a holding wall 72w An optical member placing step for placing the columnar optical member 70.

したがって、光学保持部72および柱状光学部材70を簡単な工程で高精度に位置決めすることが可能となり、太陽光Lsを高精度で効果的に導光する導光路(柱状光学部材70)および光学保持部72を容易に形成することができるので、集光特性および放熱性を向上させ、集光された太陽光Lsの位置ズレによって生じる発電効率の低減および温度上昇を防止して発電効率および発電電力を向上させた耐熱性、信頼性、耐候性の高い太陽電池10を生産性良く安価に製造することが可能となる。   Therefore, the optical holding part 72 and the columnar optical member 70 can be positioned with high accuracy by a simple process, and the light guide (columnar optical member 70) and the optical holding for effectively guiding the sunlight Ls with high accuracy. Since the portion 72 can be easily formed, the light collection efficiency and the generated power are improved by improving the light collecting characteristics and heat dissipation, and preventing the power generation efficiency from being reduced and the temperature rise caused by the positional deviation of the concentrated sunlight Ls. It is possible to manufacture the solar cell 10 with improved heat resistance, reliability, and weather resistance at low cost with high productivity.

<実施の形態3>
図5に基づいて、本実施の形態に係る集光型太陽光発電ユニットについて説明する。なお、本実施の形態に係る集光型太陽光発電ユニットは実施の形態1で説明した太陽電池10を備える集光型太陽光発電モジュール40mを複数配置して構成してあるので、実施の形態1での符号をそのまま適用する。
<Embodiment 3>
Based on FIG. 5, the concentrating solar power generation unit according to the present embodiment will be described. The concentrating solar power generation unit according to the present embodiment is configured by arranging a plurality of concentrating solar power generation modules 40m including the solar cell 10 described in the first embodiment. The code at 1 is applied as it is.

図5は、本発明の実施の形態3に係る集光型太陽光発電ユニットの構成を概略的に示す斜視図である。   FIG. 5 is a perspective view schematically showing a configuration of a concentrating solar power generation unit according to Embodiment 3 of the present invention.

本実施の形態に係る集光型太陽光発電ユニット40は、長尺状フレーム44と、長尺状フレーム44に沿って配置された複数の太陽電池モジュール40mとを備える。なお、集光型太陽光発電モジュール40mは、長尺状フレーム44とは異なる個別のフレームに配置することによりそれぞれ独立した形態とすることも可能である。   The concentrating solar power generation unit 40 according to the present embodiment includes a long frame 44 and a plurality of solar cell modules 40 m arranged along the long frame 44. Note that the concentrating solar power generation module 40m can be configured in an independent manner by being arranged in a separate frame different from the long frame 44.

したがって、高い位置精度と安定性を有する導光路(柱状光学部材70)を確保して短波長領域の波長を含む広い波長領域での太陽光Lsを高精度に集光できる集光特性が得られることから、集光特性および放熱性を向上させ、集光された太陽光Lsの位置ズレによって生じる発電効率の低減および温度上昇を防止して発電効率および発電電力を向上させた耐熱性、信頼性、耐候性の高い集光型太陽光発電ユニット40とすることが可能となる。   Therefore, it is possible to secure a light guide path (columnar optical member 70) having high positional accuracy and stability and to obtain a light condensing characteristic capable of condensing sunlight Ls in a wide wavelength region including a wavelength in a short wavelength region with high accuracy. Therefore, heat resistance and reliability have been improved by improving the light collection efficiency and heat dissipation, improving the power generation efficiency and power generation by reducing the power generation efficiency and preventing the temperature rise caused by the misalignment of the concentrated sunlight Ls Thus, it is possible to obtain a concentrating solar power generation unit 40 with high weather resistance.

集光型太陽光発電モジュール40mは、例えば30cm角程度の集光レンズ42を備え、集光型太陽光発電ユニット40は、例えば5×1個(5個)の集光型太陽光発電モジュール40mを備える構成とすることが可能である。このとき、集光型太陽光発電ユニット40は、例えば30cm×150cm程度の受光面を構成することとなる。   The concentrating solar power generation module 40m includes, for example, a concentrating lens 42 of about 30 cm square, and the concentrating solar power generation unit 40 includes, for example, 5 × 1 (five) concentrating solar power generation modules 40m. It is possible to make it the structure provided with. At this time, the concentrating solar power generation unit 40 constitutes a light receiving surface of about 30 cm × 150 cm, for example.

また、集光型太陽光発電モジュール40mは、必要な電力を発電するために、適宜の数で直列または並列に接続してある。本実施の形態では、例えば、集光型太陽光発電ユニット40を7個並置して集光型太陽光発電システム(集光型太陽光発電装置)を構成した形態としてある。   Further, the concentrating solar power generation module 40m is connected in series or in parallel with an appropriate number in order to generate necessary power. In the present embodiment, for example, seven concentrating solar power generation units 40 are juxtaposed to form a concentrating solar power generation system (concentrating solar power generation device).

複数の集光型太陽光発電ユニット40で構成された集光型太陽光発電システム(集光型太陽光発電装置)は、支柱81に支持されて、追尾機構部(不図示)により水平方向の回転Roth、垂直方向の回転Rotvにより太陽を追尾する方向へ自動的に駆動され、集光型太陽光発電モジュール40mの表面に配置された集光レンズ42(入射面)を太陽光Lsvに対して垂直方向へ向ける構成としてある。   A concentrating solar power generation system (concentrating solar power generation device) configured by a plurality of concentrating solar power generation units 40 is supported by a support column 81 and is horizontally moved by a tracking mechanism unit (not shown). The condensing lens 42 (incident surface), which is automatically driven in the direction of tracking the sun by the rotation Roth and the rotation Rotv in the vertical direction, is disposed on the surface of the concentrating solar power generation module 40m with respect to the sunlight Lsv. The configuration is oriented in the vertical direction.

したがって、本実施の形態に係る集光型太陽光発電ユニット40は、高集光倍率の集光型太陽光発電システムに適用できる。つまり、本発明に係る集光型太陽光発電モジュール40mは信頼性・耐候性のよい高効率で安価な追尾集光型太陽光発電システムを構成することが可能となる。   Therefore, the concentrating solar power generation unit 40 according to the present embodiment can be applied to a concentrating solar power generation system having a high concentration magnification. That is, the concentrating solar power generation module 40m according to the present invention can constitute a highly efficient and inexpensive tracking concentrating solar power generation system with good reliability and weather resistance.

また、追尾誤差などによる追尾不良が発生した場合でも、太陽電池10を焼損する恐れがなく、信頼性の高い、追尾集光型太陽光発電システムとすることが可能である。   Further, even when a tracking failure due to a tracking error or the like occurs, the solar cell 10 is not likely to be burned, and a highly reliable tracking and concentrating solar power generation system can be obtained.

なお、追尾機構部(追尾駆動システム)は、太陽の方位に集光レンズ42(入射面)を向けるための方位軸と、太陽の高度に集光レンズ42(入射面)を傾けるための傾倒軸との2軸別々の追尾駆動装置によって構成されていることから、太陽を高精度に追尾することが可能となる。   The tracking mechanism (tracking drive system) includes an azimuth axis for directing the condenser lens 42 (incident surface) toward the azimuth of the sun and an inclination axis for tilting the condenser lens 42 (incident surface) at the altitude of the sun. Therefore, it is possible to track the sun with high accuracy.

追尾駆動システムの動力系としては、モーターと減速機を用いてギヤを所定の回転数回転させて所定の方向に駆動させる方法、油圧ポンプと油圧シリンダーを用いて所定の長さにシリンダーを調節することにより所定の方向に駆動させるといった方法があり、どちらの方法を用いても良い。   As a power system of the tracking drive system, a motor and a speed reducer are used to rotate a gear at a predetermined rotational speed to drive in a predetermined direction, and a hydraulic pump and a hydraulic cylinder are used to adjust the cylinder to a predetermined length. There is a method of driving in a predetermined direction, and either method may be used.

追尾駆動システムの動作を制御する追尾駆動システムの内部に搭載された時計によって、予め太陽の軌道を計算し、太陽の向きに集光型太陽光発電モジュール40m(集光型太陽光発電ユニット40)を向かせるように制御する方法、追尾駆動システムにホトダイオードなどからなる太陽センサーを取り付けて太陽方向を随時モニターし制御する方法などが太陽光追尾方法として知られており、いずれの方法を用いても良い。   The solar trajectory is calculated in advance by a clock mounted inside the tracking drive system that controls the operation of the tracking drive system, and the concentrating solar power generation module 40m (concentrating solar power generation unit 40) is oriented in the direction of the sun. Are known as solar tracking methods, such as a method for controlling the sun to be directed, and a method for monitoring and controlling the sun direction as needed by attaching a solar sensor such as a photodiode to the tracking drive system. good.

上述したとおり、本実施の形態に係る集光型太陽光発電ユニット40は、長尺状フレーム44に沿って配置された複数の太陽電池モジュール40mを備える。集光特性および放熱性を向上させた太陽電池モジュール40mを備えることによって、発電効率および発電電力を向上させた耐熱性、信頼性、耐候性の高い集光型太陽光発電ユニット40を提供する。   As described above, the concentrating solar power generation unit 40 according to the present embodiment includes a plurality of solar cell modules 40 m arranged along the long frame 44. By providing the solar cell module 40m with improved condensing characteristics and heat dissipation, there is provided a concentrating solar power generation unit 40 with improved heat generation efficiency and power generation and improved heat resistance, reliability, and weather resistance.

つまり、高い位置精度と安定性を有する導光路を確保して広い波長領域で太陽光Lsを高精度に集光できる集光特性が得られることから、集光特性および放熱性を向上させ、集光された太陽光Lsの位置ズレによって生じる発電効率の低減および温度上昇を防止して発電効率および発電電力を向上させた耐熱性、信頼性、耐候性の高い集光型太陽光発電ユニット40とすることが可能となる。   In other words, a light condensing characteristic capable of concentrating sunlight Ls with high accuracy in a wide wavelength region by securing a light guide having high positional accuracy and stability can be obtained. A concentrating solar power generation unit 40 with high heat resistance, reliability, and weather resistance, which is improved in power generation efficiency and power generation by preventing reduction in power generation efficiency and temperature rise caused by misalignment of the illuminated sunlight Ls; It becomes possible to do.

また、本発明に係る集光型太陽光発電ユニット40によれば、長尺状フレーム44と、長尺状フレーム44に沿って配置された複数の太陽電池モジュール40mとを備えることから、高い位置精度と安定性を有する導光路を確保して広い波長領域で太陽光Lsを高精度に集光できる集光特性が得られ、集光特性および放熱性を向上させ、集光された太陽光Lsの位置ズレによって生じる発電効率の低減および温度上昇を防止して発電効率および発電電力を向上させ、耐熱性、信頼性、耐候性を向上させることができるという効果を奏する。   In addition, according to the concentrating solar power generation unit 40 according to the present invention, since the long frame 44 and the plurality of solar cell modules 40m arranged along the long frame 44 are provided, a high position is provided. A condensing characteristic capable of concentrating sunlight Ls with high accuracy in a wide wavelength region by securing a light guide having accuracy and stability is obtained, improving condensing characteristics and heat dissipation, and concentrating sunlight Ls. It is possible to improve the power generation efficiency and power generation by reducing the power generation efficiency and the temperature rise caused by the displacement of the position, thereby improving the heat resistance, reliability, and weather resistance.

本発明の実施の形態1に係る太陽電池および集光型太陽光発電モジュールを示す断面図である。It is sectional drawing which shows the solar cell and concentrating solar power generation module which concern on Embodiment 1 of this invention. 図2は、図1に示した太陽電池を集光レンズの側から拡大して見た状態を示す拡大平面図である。FIG. 2 is an enlarged plan view showing a state in which the solar cell shown in FIG. 1 is enlarged from the condenser lens side. 図2の矢符Y−Y方向での断面を示す拡大断面図である。It is an expanded sectional view which shows the cross section in the arrow YY direction of FIG. 本発明の実施の形態2に係る太陽電池製造方法を説明する工程図であり、レシーバ基板に太陽電池素子を載置した状態を図2の矢符X−X方向での断面で示す。It is process drawing explaining the solar cell manufacturing method which concerns on Embodiment 2 of this invention, and shows the state which mounted the solar cell element in the receiver board | substrate with the cross section in the arrow XX direction of FIG. 本発明の実施の形態2に係る太陽電池製造方法を説明する工程図であり、レシーバ基板に光学保持部を載置した状態を図2の矢符X−X方向での断面で示す。It is process drawing explaining the solar cell manufacturing method which concerns on Embodiment 2 of this invention, and shows the state which mounted the optical holding | maintenance part in the receiver board | substrate with the cross section in the arrow XX direction of FIG. 本発明の実施の形態2に係る太陽電池製造方法を説明する工程図であり、光学保持部がレシーバ基板との間で構成する空間に封止樹脂を注入した状態を図2の矢符X−X方向での断面で示す。It is process drawing explaining the solar cell manufacturing method which concerns on Embodiment 2 of this invention, and shows the state which inject | poured sealing resin into the space which an optical holding part comprises between a receiver board | substrate with arrow X- of FIG. Shown in cross section in X direction. 本発明の実施の形態2に係る太陽電池製造方法を説明する工程図であり、光学保持部に柱状光学部材を載置した状態を図2の矢符X−X方向での断面で示す。It is process drawing explaining the solar cell manufacturing method which concerns on Embodiment 2 of this invention, and shows the state which mounted the columnar optical member in the optical holding part in the cross section in the arrow XX direction of FIG. 本発明の実施の形態3に係る集光型太陽光発電ユニットの構成を概略的に示す斜視図である。It is a perspective view which shows roughly the structure of the concentrating photovoltaic power generation unit which concerns on Embodiment 3 of this invention. 従来の追尾集光型太陽光発電装置に適用される集光型太陽光発電モジュールの構成を示す断面図である。It is sectional drawing which shows the structure of the concentrating photovoltaic power generation module applied to the conventional tracking concentrating photovoltaic power generation apparatus.

符号の説明Explanation of symbols

10 太陽電池
11 太陽電池素子
20 レシーバ基板
21 接着部
40 集光型太陽光発電ユニット
40m 集光型太陽光発電モジュール
42 集光レンズ
44 長尺状フレーム
70 柱状光学部材(導光路)
70c 軸方向角部
70f 入射面
70r 照射面
70s 光路傾斜面
72 光学保持部
72g 切り欠き部
72h フィン
72w 保持壁(保持傾斜面)
73 樹脂封止部
73r 封止樹脂
Af 集光領域
Hh、Hp 高さ
Lax 光軸
Ls、Lsa、Lsb、Lss 太陽光
Roth 水平方向回転
Rotv 垂直方向回転
Tr、Ts 厚さ
Wb 重心位置
DESCRIPTION OF SYMBOLS 10 Solar cell 11 Solar cell element 20 Receiver board | substrate 21 Adhesion part 40 Concentration type photovoltaic power generation unit 40m Concentration type photovoltaic power generation module 42 Condensing lens 44 Long frame 70 Columnar optical member (light guide path)
70c Axial corner portion 70f Incident surface 70r Irradiation surface 70s Optical path inclined surface 72 Optical holding portion 72g Notch portion 72h Fin 72w Holding wall (holding inclined surface)
73 Resin sealing portion 73r Sealing resin Af Condensing region Hh, Hp Height Lax Optical axis Ls, Lsa, Lsb, Lss Sunlight Roth Horizontal rotation Rotv Vertical rotation Tr, Ts Thickness Wb Center of gravity position

Claims (8)

集光レンズにより集光された太陽光を光電変換する太陽電池素子と、該太陽電池素子が載置されたレシーバ基板と、前記太陽電池素子を樹脂封止する樹脂封止部とを備える太陽電池であって、
集光された太陽光を前記太陽電池素子へ導光する導光路を構成する柱状光学部材と、
該柱状光学部材を保持する保持壁を有し前記樹脂封止部を覆って前記レシーバ基板に載置された光学保持部とを備えること
を特徴とする太陽電池。
A solar cell comprising a solar cell element that photoelectrically converts sunlight condensed by a condenser lens, a receiver substrate on which the solar cell element is placed, and a resin sealing portion that resin-seals the solar cell element Because
A columnar optical member constituting a light guide for guiding the condensed sunlight to the solar cell element;
A solar cell comprising: a holding wall that holds the columnar optical member; and an optical holding portion that covers the resin sealing portion and is placed on the receiver substrate.
請求項1に記載の太陽電池であって、
前記柱状光学部材は、太陽光を前記太陽電池素子に集光する光路傾斜面を有し、前記保持壁は、前記光路傾斜面に整合させた保持傾斜面としてあること
を特徴とする太陽電池。
The solar cell according to claim 1,
The columnar optical member has an optical path inclined surface for collecting sunlight on the solar cell element, and the holding wall is a holding inclined surface aligned with the optical path inclined surface.
請求項1または請求項2に記載の太陽電池であって、
前記光学保持部は、前記レシーバ基板が有する金属のベース基台に当接させてあること
を特徴とする太陽電池。
The solar cell according to claim 1 or 2, wherein
The solar cell according to claim 1, wherein the optical holding unit is in contact with a metal base base of the receiver substrate.
請求項1ないし請求項3のいずれか一つに記載の太陽電池であって、
前記光学保持部は、外周側面に櫛の歯状のフィンを備えること
を特徴とする太陽電池。
A solar cell according to any one of claims 1 to 3,
The optical holding unit includes comb-shaped fins on an outer peripheral side surface.
請求項1ないし請求項4のいずれか一つに記載の太陽電池であって、
前記柱状光学部材は、四角柱としてあり、前記光学保持部は、前記四角柱の軸方向角部を包囲する溝状の切り欠き部を備えること
を特徴とする太陽電池。
It is a solar cell as described in any one of Claim 1 thru | or 4, Comprising:
The columnar optical member is a quadrangular column, and the optical holding unit includes a groove-shaped notch that surrounds an axial corner of the square column.
請求項1ないし請求項5のいずれか一つに記載の太陽電池であって、
前記樹脂封止部は、前記柱状光学部材と前記太陽電池素子との間で周囲領域より薄くしてあること
を特徴とする太陽電池。
A solar cell according to any one of claims 1 to 5,
The said resin sealing part is made thinner than the surrounding area between the said columnar optical member and the said solar cell element. The solar cell characterized by the above-mentioned.
太陽光を集光する集光レンズと、該集光レンズにより集光された太陽光を光電変換する太陽電池とを備える集光型太陽光発電モジュールであって、
前記太陽電池は、請求項1ないし請求項6のいずれか一つに記載の太陽電池であることを特徴とする集光型太陽光発電モジュール。
A concentrating solar power generation module comprising a condensing lens that condenses sunlight and a solar cell that photoelectrically converts sunlight collected by the condensing lens,
The said solar cell is a solar cell as described in any one of Claim 1 thru | or 6, The concentrating solar power generation module characterized by the above-mentioned.
集光レンズにより集光された太陽光を光電変換する太陽電池素子と、該太陽電池素子が載置されたレシーバ基板と、前記太陽電池素子を樹脂封止する樹脂封止部と、集光された太陽光を前記太陽電池素子へ導光する導光路を構成する柱状光学部材と、該柱状光学部材を保持する保持壁を有し前記樹脂封止部を覆って前記レシーバ基板に載置された光学保持部とを備える太陽電池を製造する太陽電池製造方法であって、
金属を成形加工して前記光学保持部を準備する光学保持部準備工程と、
前記光学保持部を前記太陽電池素子の外周で前記レシーバ基板に当接させて配置する光学保持部配置工程と、
前記光学保持部および前記レシーバ基板が構成する空間に前記樹脂封止部を形成する封止樹脂を注入する樹脂注入工程と、
前記保持壁に前記柱状光学部材を載置する光学部材載置工程とを備えること
を特徴とする太陽電池製造方法。
A solar cell element that photoelectrically converts sunlight collected by the condenser lens, a receiver substrate on which the solar cell element is placed, a resin sealing portion that resin-seals the solar cell element, and is condensed A columnar optical member that constitutes a light guide for guiding sunlight to the solar cell element, and a holding wall that holds the columnar optical member, and is placed on the receiver substrate so as to cover the resin sealing portion A solar cell manufacturing method for manufacturing a solar cell comprising an optical holding unit,
An optical holding part preparing step of forming a metal and preparing the optical holding part;
An optical holder placement step of placing the optical holder in contact with the receiver substrate on the outer periphery of the solar cell element; and
A resin injection step of injecting a sealing resin for forming the resin sealing portion into the space formed by the optical holding portion and the receiver substrate;
An optical member placing step of placing the columnar optical member on the holding wall.
JP2008023021A 2008-02-01 2008-02-01 Solar cell and concentrating solar power generation module Expired - Fee Related JP4986875B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008023021A JP4986875B2 (en) 2008-02-01 2008-02-01 Solar cell and concentrating solar power generation module
US12/865,230 US20100326494A1 (en) 2008-02-01 2009-01-20 Solar cell, concentrating solar power generation module, and solar cell manufacturing method
AU2009208410A AU2009208410B2 (en) 2008-02-01 2009-01-20 Solar cell, concentrating solar power generation module, and solar cell manufacturing method
EP09705223A EP2246900A1 (en) 2008-02-01 2009-01-20 Solar battery, light collection type solar power generating module and solar battery manufacturing method
PCT/JP2009/050762 WO2009096267A1 (en) 2008-02-01 2009-01-20 Solar battery, light collection type solar power generating module and solar battery manufacturing method
CN2009801116604A CN101981707A (en) 2008-02-01 2009-01-20 Solar battery, light collection type solar power generating module and solar battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008023021A JP4986875B2 (en) 2008-02-01 2008-02-01 Solar cell and concentrating solar power generation module

Publications (2)

Publication Number Publication Date
JP2009187971A true JP2009187971A (en) 2009-08-20
JP4986875B2 JP4986875B2 (en) 2012-07-25

Family

ID=41070967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008023021A Expired - Fee Related JP4986875B2 (en) 2008-02-01 2008-02-01 Solar cell and concentrating solar power generation module

Country Status (1)

Country Link
JP (1) JP4986875B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049370A (en) * 2009-08-27 2011-03-10 Kyocera Corp Photoelectric converter and photoelectric conversion module
JP2011159792A (en) * 2010-02-01 2011-08-18 Kyocera Corp Photoelectric converter and photoelectric conversion module
JP2012094596A (en) * 2010-10-25 2012-05-17 Kanai Educational Institution Light condensing power generator
WO2012038015A3 (en) * 2010-09-22 2012-06-07 Sew-Eurodrive Gmbh & Co. Kg Arrangement for conducting light through a wall, in particular a housing wall, electronic device and use of the arrangement
JP2013153125A (en) * 2011-12-26 2013-08-08 Kyocera Corp Photoelectric conversion device, photoelectric conversion module, and components for photoelectric conversion device
WO2013179564A1 (en) 2012-05-28 2013-12-05 パナソニック株式会社 Solar cell and method for manufacturing same
WO2014137020A1 (en) * 2013-03-08 2014-09-12 주식회사 애니캐스팅 Light-focusing solar cell module
US9362437B1 (en) * 2010-06-14 2016-06-07 Amkor Technology, Inc. Concentrated photovoltaic receiver module with improved optical light guide assembly
TWI549419B (en) * 2015-10-30 2016-09-11 財團法人工業技術研究院 Apparatus and method of light guiding with electricity generating
CN107608394A (en) * 2017-10-26 2018-01-19 黄山睿基新能源股份有限公司 A kind of solar photovoltaic tracking support array

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280595A (en) * 2001-03-22 2002-09-27 Canon Inc Solar light condenser
JP2002289898A (en) * 2001-03-23 2002-10-04 Canon Inc Concentrating solar cell module and concentrating photovoltaic power generation system
JP2003258291A (en) * 2001-12-27 2003-09-12 Daido Steel Co Ltd Light condensing photovoltaic power generator
JP2005217171A (en) * 2004-01-29 2005-08-11 Daido Steel Co Ltd Method for adjusting angle of reflector in condensation type photovoltaic power generation apparatus
JP2006313810A (en) * 2005-05-09 2006-11-16 Daido Steel Co Ltd Light condensing solar power generator
WO2007036199A2 (en) * 2005-09-30 2007-04-05 Solartec Ag Concentrator photovoltaic device, photovoltaic device for use therein and production method therefor
JP2007201109A (en) * 2006-01-25 2007-08-09 Daido Steel Co Ltd Concentrating sunlight power generation unit and its pillar-shaped optical glass member

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280595A (en) * 2001-03-22 2002-09-27 Canon Inc Solar light condenser
JP2002289898A (en) * 2001-03-23 2002-10-04 Canon Inc Concentrating solar cell module and concentrating photovoltaic power generation system
JP2003258291A (en) * 2001-12-27 2003-09-12 Daido Steel Co Ltd Light condensing photovoltaic power generator
JP2005217171A (en) * 2004-01-29 2005-08-11 Daido Steel Co Ltd Method for adjusting angle of reflector in condensation type photovoltaic power generation apparatus
JP2006313810A (en) * 2005-05-09 2006-11-16 Daido Steel Co Ltd Light condensing solar power generator
WO2007036199A2 (en) * 2005-09-30 2007-04-05 Solartec Ag Concentrator photovoltaic device, photovoltaic device for use therein and production method therefor
JP2007201109A (en) * 2006-01-25 2007-08-09 Daido Steel Co Ltd Concentrating sunlight power generation unit and its pillar-shaped optical glass member

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049370A (en) * 2009-08-27 2011-03-10 Kyocera Corp Photoelectric converter and photoelectric conversion module
JP2011159792A (en) * 2010-02-01 2011-08-18 Kyocera Corp Photoelectric converter and photoelectric conversion module
US9362437B1 (en) * 2010-06-14 2016-06-07 Amkor Technology, Inc. Concentrated photovoltaic receiver module with improved optical light guide assembly
WO2012038015A3 (en) * 2010-09-22 2012-06-07 Sew-Eurodrive Gmbh & Co. Kg Arrangement for conducting light through a wall, in particular a housing wall, electronic device and use of the arrangement
JP2012094596A (en) * 2010-10-25 2012-05-17 Kanai Educational Institution Light condensing power generator
JP2013153125A (en) * 2011-12-26 2013-08-08 Kyocera Corp Photoelectric conversion device, photoelectric conversion module, and components for photoelectric conversion device
WO2013179564A1 (en) 2012-05-28 2013-12-05 パナソニック株式会社 Solar cell and method for manufacturing same
WO2014137020A1 (en) * 2013-03-08 2014-09-12 주식회사 애니캐스팅 Light-focusing solar cell module
TWI549419B (en) * 2015-10-30 2016-09-11 財團法人工業技術研究院 Apparatus and method of light guiding with electricity generating
CN107608394A (en) * 2017-10-26 2018-01-19 黄山睿基新能源股份有限公司 A kind of solar photovoltaic tracking support array
CN107608394B (en) * 2017-10-26 2023-05-02 黄山睿基新能源股份有限公司 Solar photovoltaic tracking bracket array

Also Published As

Publication number Publication date
JP4986875B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP4986875B2 (en) Solar cell and concentrating solar power generation module
WO2009096267A1 (en) Solar battery, light collection type solar power generating module and solar battery manufacturing method
AU2008305083B2 (en) Solar cell, concentrating photovoltaic power generation module, concentrating photovoltaic power generation unit and solar cell manufacturing method
AU2007303511B2 (en) Solar cell, concentrating solar power generation module, concentrating solar power generation unit, method of manufacturing solar cell, and solar cell manufacturing apparatus
JP4732015B2 (en) Concentrating solar power generation unit and concentrating solar power generation device
WO2006132265A1 (en) Condensing photovoltaic power generation unit and condensing photovoltaic power generation system, and condensing lens, condensing lens structure, and production method of condensing lens structure
JPWO2009066720A1 (en) Solar cell module and solar power generation unit
JP5013684B2 (en) Condensing lens, condensing lens structure, concentrating solar power generation device, and manufacturing method of condensing lens structure
JP5179944B2 (en) Solar cell manufacturing method
JP4749401B2 (en) Solar cell, concentrating solar power generation module, concentrating solar power generation unit, and solar cell manufacturing method
WO2010027083A1 (en) Solar cells, concentrating solar generator modules, and solar cell manufacturing method
WO2012160994A1 (en) Concentrator solar cell and method for manufacturing same
JP4454666B2 (en) Solar cell, concentrating solar power generation module, concentrating solar power generation unit, and solar cell manufacturing method
JP4693793B2 (en) Solar cell, concentrating solar power generation module, concentrating solar power generation unit, and solar cell manufacturing method
JP2013084985A (en) Solar cell and concentrating photovoltaic power generation module
JP4666405B2 (en) Manufacturing method of solar cell
US20210021230A1 (en) Photovoltaic microcell array with multi-stage concentrating optics
JP2011210890A (en) Photovoltaic power generator
WO2019159554A1 (en) Concentrator photovoltaic module and concentrator photovoltaic device
WO2019171935A1 (en) Light-receiving part for concentrated solar power generation unit, concentrated solar power generation module, and light-receiving part production method
US20150030283A1 (en) Concentrating Thin Film Absorber Device and Method of Manufacture
KR101351251B1 (en) Solar Cell package with lens and Manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees