WO2014137020A1 - Light-focusing solar cell module - Google Patents
Light-focusing solar cell module Download PDFInfo
- Publication number
- WO2014137020A1 WO2014137020A1 PCT/KR2013/002427 KR2013002427W WO2014137020A1 WO 2014137020 A1 WO2014137020 A1 WO 2014137020A1 KR 2013002427 W KR2013002427 W KR 2013002427W WO 2014137020 A1 WO2014137020 A1 WO 2014137020A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- solar cell
- incident
- cell module
- optical component
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 93
- 230000002093 peripheral effect Effects 0.000 claims abstract description 37
- 238000000034 method Methods 0.000 claims description 6
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/054—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0232—Optical elements or arrangements associated with the device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/054—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
- H01L31/0543—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/054—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
- H01L31/0547—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
Definitions
- the present invention relates to a concentrating photovoltaic module, and in particular, to reduce the overall volume by reducing the thickness of the solar cell module, the efficiency of the solar cell by reducing the incident angle incident to the solar cell. It relates to a light collecting solar cell module that can be maximized.
- PV photovoltaic
- silicon solar cells are mainly used.
- Multi-junction solar cells have higher energy conversion efficiencies compared to silicon solar cells. In general, multi-junction solar cells have more than 35% energy efficiency, while silicon solar cells are about 20% efficient. Has Particularly under concentration, some multi-junction solar cells now have energy efficiency of over 40%.
- FIG. 1 is a view schematically showing a solar cell module used in a conventional condensing photovoltaic device.
- a conventional light collecting solar cell module includes a solar cell 1 for converting solar energy into electrical energy, and a primary optical element for primarily collecting light. 2) a secondary optical element 3 for collecting the light collected from the primary optical component 2 secondary to the solar cell 1.
- the secondary optical component 3 secondaryly collects the light collected from the primary optical component 2 into the solar cell 1 so that the light collected from the primary optical component 2 is collected from the solar cell. It functions as a homogenizer to distribute uniformly to 1).
- a conventional light collecting solar cell module In order to improve the efficiency of the multi-junction solar cell used in the light concentrating solar cell module, it is necessary to uniformly distribute the light incident on the solar cell 1, and this function is performed only by the primary optical component 2. Since it is difficult to design, a conventional light collecting solar cell module generally includes a secondary component 3 that functions as a homogenizer.
- the conventional condensing solar cell module needs to maintain an appropriate focal length by an optical principle such as a Fresnel lens or a mirror, which is used as a representative primary optical component.
- an optical principle such as a Fresnel lens or a mirror, which is used as a representative primary optical component.
- a problem that is ⁇ 10 times larger there is a disadvantage compared to the silicon solar cell module in the manufacturing cost, method, installation, operation of the product. Therefore, some manufacturers have attempted to reduce the focal length while maintaining the light condensation ratio of optimum efficiency by reducing the size of the primary light concentrator and the solar cell together to solve the above problems.
- the manufacturing cost increases due to the increase in the number of parts used for output.
- FIG. 3 is a view showing a light collecting solar cell module according to the prior art.
- the light collecting solar cell module includes a solar cell 4, a light collected from a TIR FL type primary optical component 5, and a primary optical component 4. And a secondary optical component 6 that refracts to focus on (4).
- the light 7 totally reflected by the primary optical component 5 and incident on the secondary optical component 6 is refracted by the secondary optical component 6 to be refracted by the solar cell ( There is a problem that the incident angle ⁇ incident to 4) becomes very large and the efficiency of the solar cell 4 is lowered.
- the technical problem to be achieved by the present invention is to reduce the focal length of the primary optical component to reduce the thickness of the solar cell module to reduce the overall volume, while reducing the angle of incidence incident to the solar cell efficiency of the solar cell It is to provide a condensing solar cell module that can be maximized.
- Concentrating solar cell module for solving the technical problem is a solar cell (solar cell); A primary optical element having a central portion for condensing incident light and a peripheral portion for reflecting or total reflection so that the incident light is deflected toward the center and outputted; And a secondary optical element having an upper surface to which light collected at the center is incident and a side to condense the light incident to the upper surface to the solar cell by total internal reflection.
- the upper surface is provided with a total reflection portion for totally reflecting the light emitted from the peripheral portion to focus on the solar cell.
- the total reflection part may be provided in the form of a groove recessed in the upper surface so as to refracting the light collected at the central portion and the light emitted from the peripheral portion to totally reflect the light incident through the side surface, in which case the side surface is the peripheral portion.
- a stepped surface stepped inwardly from the refracting surface to connect the refracting surface and the total reflection surface, and the cross section of the groove is preferably made of a curved surface that is convex downward.
- the total reflection part may be provided in the form of a protrusion protruding on the upper surface so that the incident light is concentrated at the center and refracted incident light, the light emitted from the peripheral portion is totally reflected from the opposite side, in this case the protrusion
- the cross section of consists of a curved surface which convex upwards.
- the total reflection portion provided on the upper surface of the secondary optical component is deflected toward the center at the periphery of the primary optical component so as to totally reflect the emitted light, and thus the incident angle incident to the solar cell is reduced.
- FIG. 1 is a view schematically showing a conventional light collecting solar cell module
- FIG. 2 is a diagram showing the relationship between the efficiency of solar cells and the angle of incidence of sunlight incident on the solar cells;
- FIG. 3 is a view showing a light collecting solar cell module according to the prior art
- FIG. 4 is a view showing a light collecting solar cell module according to an embodiment of the present invention.
- 6 to 9 are diagrams for describing embodiments of various types of secondary optical components according to FIG. 5;
- FIG. 10 and 11 show an embodiment of another form of the secondary optical component according to FIG. 5;
- FIG. 4 is a view showing a light collecting solar cell module according to an embodiment of the present invention.
- the light collecting solar cell module 10 may include a solar cell 12 and a primary optical component that primarily collects incident light. element 20 and a secondary optical element 30 for collecting the light collected from the primary optical component 20 secondary to the solar cell 12.
- the solar cell 12 converts solar energy into electrical energy, and a high efficiency III-V compound semiconductor multi-junction solar cell may be used.
- the primary optical component 20 includes a central portion 21 for collecting incident light and a peripheral portion 22 for reflecting or total reflection so that the incident light is deflected toward the center and output.
- the central portion 21 may include an incident surface 23 through which light is incident, and an exit surface 24 through which light incident on the incident surface 23 is emitted, and the exit surface 24 may have two incident lights. It may be provided as a spherical or aspherical surface to be focused on the upper surface of the light blocking component 30.
- the emission surface 24 may be provided in the form of an aspherical surface that is convex downward so as to focus light by refraction.
- the emission surface 24 is provided with a convex shape downward so that the function of condensing the incident light is made on the emission surface 24, the present invention is not limited thereto, and condenses the light.
- the incidence surface 23 and the outgoing surface 24 may be provided in various forms so that a function for the incidence surface 23 may be achieved.
- the central portion 21 may also be provided in the shape of a Fresnel lens for condensing the incident light to the upper surface of the secondary optical component 30.
- the peripheral portion 22 is a portion surrounding the central portion 21 and is configured to reflect or totally reflect the incident light so as to be deflected toward the center and to emit light.
- the lower end of the edge portion of the peripheral portion 22 is the secondary optical component 30. It may be located below), and in some cases may be located below the solar cell (12). Therefore, according to the light collecting solar cell module 10 according to the present invention, the focal length of the primary optical component 20 can be reduced, and thus the overall volume can be reduced by reducing the thickness of the module 10.
- the peripheral portion 22 has an incident surface 25 through which light is incident, at least one reflective surface 26 that reflects or totally reflects light incident on the incident surface 25, and a reflection from the reflective surface 26.
- an emission surface 27 through which the totally reflected light is emitted may be provided.
- the reflective surface 26 may be optically designed to totally reflect light incident on the incident surface 25, or may be formed by reflection coating to reflect the light.
- the incident surface 25, the reflecting surface 26, and the emitting surface 27 correspond to each other, that is, light incident on one incident surface 25 is one reflective surface 26.
- the primary optical component 20 according to an embodiment of the present invention may be formed in a substantially umbrella shape, the upper and lower portions of the peripheral portion 22 is provided with a discontinuous surface Can be.
- the light collecting solar cell module 10 is not limited to the specific configuration and shape of the primary optical component 20, and the primary optical component 20 is a general internal reflection type conventional lens ( Total Internal Reflection Fresnel Lens, TIR FL), and various forms of the primary optical component 20 are described in detail in the prior art (US 2008/0092879 A1). Is omitted.
- TIR FL Total Internal Reflection Fresnel Lens
- the secondary optical component 30 is provided between the primary optical component 20 and the solar cell 12 to secondaryly collect the sunlight collected from the primary optical component 20 into the solar cell 12.
- the secondary optical component 30 having this configuration functions as a homogenizer that uniformly distributes the light collected from the primary optical component 20 to the solar cell 12. Done.
- the upper surface 32 of the secondary optical component 30, the first half of the primary optical component 20 is reflected in the center direction from the peripheral portion 22 of the light emitted by the total reflection of the solar cell 12
- the sand 100 may be provided.
- the light collecting solar cell module 10 according to the present invention has an effect of further reducing the thickness of the module 10 as compared with the prior art.
- the solar cell module according to the prior art is structurally primary in that light totally reflected at the end of the primary optical component 5 is deflected toward the secondary optical component 6. The light totally reflected from the optical component 5 should be directed downward only while facing the center direction, and the position of the end of the primary optical component 5 should be located above the secondary optical component 6.
- the solar cell module 10 according to the present invention is reflected or totally reflected at the peripheral portion 22 of the primary optical component 20, the light deflected toward the center direction 32 is the upper surface 32 of the secondary optical component 30 Since it can be focused by the total reflection portion 100 provided in the solar cell 12 by total reflection, as shown in FIG. 4, the light S1 totally reflected at the edge of the peripheral portion 22 is directed toward the center direction. Even if the light is deflected upward, the light is totally reflected by the total reflection part 100 so that the solar cell 12 can be focused. Accordingly, the solar cell module 10 according to the present invention can further reduce the focal length of the primary optical component 20, and the edge of the peripheral portion 22 of the primary optical component 20 is secondary.
- the solar cell 12 Since it can be located below the optical component 30, there is an effect that can further reduce the overall thickness and volume of the solar cell module 10.
- the solar cell 12 when the light emitted from the peripheral portion 22 is totally reflected by the total reflection portion 100 provided on the upper surface 32 of the secondary optical component 30, the solar cell 12 in a state where the incident angle is small It can be condensed into, and thus will also have the effect of maximizing the efficiency of the solar cell (12).
- FIG. 5 is a view showing an embodiment of the total reflection unit according to the present invention.
- the total reflection part 100 refracts the light S4 focused at the center 21 of the primary optical component 20, and emits light from the peripheral part 22.
- the side surface 34 of the secondary optical component 30 is formed.
- Is emitted from the periphery 22 of the primary optical component 20 and the directly incident light (S1, S2, S3) is refracted into the groove 40, and incident from the central portion 21 to the upper surface 32
- the refracted light S4 and the light S1, S2, and S3 totally reflected in the groove 40 may be provided to totally reflect.
- the light incident directly on the upper surface 32 may include not only the light focused and incident from the central part 21, but also the light incident and deflected from the peripheral part 22.
- the peripheral part of the solar cell module 10 according to the present exemplary embodiment may be used.
- the light deflected and exited from the center toward the center 22 is preferably incident on the side surface 34, the light emitted and deflected toward the center from the predetermined portion of the peripheral portion 22 adjacent to the central portion 21 in the optical design is emitted.
- the side surface 34 is refracted by the upper surface 32. As it is totally reflected at the incident angle is reduced to the solar cell 12 can be focused.
- the solar cell module 10 according to the present embodiment, most of the light emitted by being deflected toward the center from the peripheral portion 22 is incident on the side surface 34 and totally reflected on the upper surface 32, and then the incident angle ⁇ . ) Is focused on the solar cell 12 in a small state, but some of the light emitted from the peripheral portion 22 may directly enter the upper surface 32, but the present invention is not limited thereto.
- the total reflection part 100 when the total reflection part 100 is provided in the form of the groove 40 recessed in the upper surface 32, the light is emitted from the peripheral part 22 of the primary optical component 20 to have a side surface 34. Light incident to the grooves 40 through) may be totally reflected on the inner surface 42 of the grooves 40 to be collected by the solar cell 12, and the inner surface 42 and the bottom surface 44 of the grooves 40. That is, light incident directly on the inner surface 46 of the groove 40 may be refracted and collected by the solar cell 12.
- 6 to 9 are diagrams illustrating embodiments of various types of secondary optical components according to FIG. 5.
- the upper surface 32 of the secondary optical component 30 may be formed as a groove 40 in which the whole is recessed.
- the upper surface 32 may be provided with a groove 40 formed at a substantially central portion, and a connection surface 33 connecting the groove 40 and the side surface 34.
- the groove 40 refracts directly incident light, totally reflects light incident through the side face 34, and the connecting surface 33 refracts directly incident light.
- the cross section of the groove 40 consists of a downwardly convex curved surface, for example, a spherical surface, a parabola, or a parabolic surface, such that the inner surface 46 has an inner surface 42 and a bottom surface. It may be formed as a continuous surface not clearly distinguished by (44), as shown in Figures 7 and 9, the cross section of the groove 40 is made flat in a straight line (inner surface 46 is the inner surface) It may be formed as a discontinuous face that is clearly divided into 42 and the bottom face 44.
- the cross-section of the secondary optical component 30 is illustrated as being rectangular, but the present invention is not limited thereto, and the cross-section of the secondary optical component 30 is triangular, polygonal or circular in shape.
- the shape of the cross section is changed in the height direction, for example, the side surface 34 may be formed in a tapered shape or a concave or convex shape.
- the bottom surface 31 of the secondary optical component 30 is preferably made to correspond to the size and shape of the solar cell 12.
- the inner surface 42 of the groove 40 is convex downward in cross section. 6 and 8
- the cross section of the groove 40 is formed of a downwardly convex curved surface such as a spherical surface, a parabola, or a parabolic, and the inner surface 46 is formed on the inner surface 42. It is preferable that the bottom surface 44 is formed of a continuous surface which is not clearly distinguished.
- FIG. 6 shows an embodiment of the secondary optical component 30 having a substantially crown shape by the groove 40 in which the entire upper surface 32 is recessed.
- the primary optical component 20 is illustrated in FIG. In the area of the total reflection part 100 for total reflection of the light emitted from the periphery 22 of the periphery (22), the shape of the secondary optical component 30 shown in FIG. It is preferable that the groove 40 is formed in the entirety of 32.
- the groove 40 is formed in the entirety of 32.
- FIG. 6 when the total reflection part 100 is provided with the groove 40 recessed in the entire upper surface 32, it is not easy to manufacture the secondary optical component 30 of such a shape. there is a problem.
- the secondary optical component 20 is preferably manufactured by glass molding because the temperature inside the solar cell module 10 is very high.
- the viscosity is higher than that of plastic injection molding, FIG.
- the total reflection portion 100 is formed in the form of the groove 40 is formed in the entire upper surface 32 to form a problem that the formation of the pointed portion 41 in the corner portion is not easy to occur do.
- the upper surface 32 is formed of the groove 40 and the connecting surface 33 because it is difficult to secure the area of the total reflection part 100.
- the area of the groove 40 which is the total reflection part 100
- the area of the groove 40 becomes wider, an area that can be totally reflected by the light emitted from the peripheral part 22 of the primary optical component 20 and incident through the side face 34
- the area of the total reflection part 100 is narrowed as much as the upper surface 32 consists of the groove
- FIG. 10 is a perspective view showing another embodiment of the secondary optical component according to FIG. 5, and FIG. 11 is a vertical cross-sectional view of the secondary optical component according to FIG. 10.
- the side surfaces 112 of the secondary optical component 110 may include light S1, S2, and the light emitted from the periphery 22 of the primary optical component 20.
- a refracting surface 114 that refracts the light S1, S2, S3 to the inner surface 42 of the groove 40 such that S3 is totally reflected at the inner surface 42 of the groove 40, and the primary optical component.
- the light S4 collected at the central portion 21 of the center 20 and incident on the upper surface 32 and the light S1, S2, and S3 totally reflected from the inner surface 42 of the groove 40 are reflected by internal reflection.
- the total reflection surface 116 condensed by the battery 12 and a stepped surface 118 stepped inward from the refractive surface 112 to connect the refractive surface 112 and the total reflection surface 116.
- the secondary optical component 110 has a groove 40 and a connection surface 33 on the upper surface 32 to facilitate manufacturing, but also the groove 40 which is the total reflection part 100.
- the upper portion of the side surface 112 is extended to the outside to increase the size of the upper surface 32.
- the light side S1, which is emitted from the peripheral portion 22, is extended to the outer side surface 112.
- S2, S3 is provided as a refractive surface 114 for refracting the inner surface 42 of the groove 40, and the size of the bottom surface 31 can be made to a size corresponding to the size of the solar cell 12 It is provided with the step surface 118 which connects the refractive surface 114 and the total reflection surface 1164 inwardly.
- the upper surface 32 has the groove 40 and the connecting surface 33, so that the glass molding can be effected. In addition to this there is an effect that can secure the area of the groove 40.
- the secondary optical component 110 according to the present exemplary embodiment having such a configuration has a screw shape having a substantially screw head because the upper portion of the side 112 is formed to extend outward. Have.
- the side surface 112 without the step surface 118 in terms of securing the area of the groove 40 while having the groove 40 and the connecting surface 33 on the upper surface 32 by increasing the size of the upper surface 32 May be inwardly inclined downward so that the bottom surface 31 may correspond to the size of the solar cell 12, but in this case, the total reflection surface 116 is incident on the upper surface 32. And it becomes difficult to design optically to totally internally reflect the light (S1, S2, S3) totally reflected from the inner surface 420 of the groove 40. Therefore, the size of the upper surface 32 is made larger.
- the side surface 112, like the secondary optical component 110 according to the present embodiment It is preferable that the stepped surface 118 be provided.
- the total reflection part 100 refracts the incident light S4 that is collected at the central portion 21 of the primary optical component 20 and is incident on the peripheral portion 22.
- the light (S1, S2, S3) emitted from the incident light may be provided in the form of a protrusion 50 protruding from the upper surface 32 of the secondary optical component 30 to be totally reflected from the opposite surface (52).
- the light S1, S2, and S3 emitted from the peripheral part 22 may be different from those of the above embodiments.
- the incident light is incident on one surface 54 of the protrusion 50 instead of the side 34 of the secondary optical component 30, and thus the light S1, S2, and the incident light is incident on the one surface 54 of the protrusion 50.
- S3 is totally reflected from the opposite surface 52 to be focused on the solar cell 12 with a small incident angle.
- the upper surface 32 The silver may be formed of a protrusion 50 in which the whole is formed, or as shown in FIG. 13, the upper surface 32 may be provided with the protrusion 50 and the connection surface 33.
- the protrusion 50 is formed in the form of a curved surface that is convex upward in cross section in terms of the optical light that is emitted from the peripheral portion 22 and incident on one surface 54 of the protrusion 50 to be totally reflected on the opposite surface 52. desirable.
- the total reflection portion provided on the upper surface of the secondary optical component is deflected toward the center from the periphery of the primary optical component to totally reflect the emitted light to the solar cell.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
The present invention relates to a light-focusing solar cell module (concentrating photovoltaic module), and more specifically relates to a light-focusing solar cell module wherein the overall volume can be decreased by reducing the thickness of the solar cell module, and the efficiency of the solar cell can be maximised by lessening the incidence angle of incidence onto the solar cell. The light-focusing solar cell module according to the present invention comprises: a solar cell; a primary optical element having a central section for focusing incident light, and having a peripheral section for total reflection or reflection of incident light such that the light emerges deflected towards the centre; and a secondary optical element having an upper surface onto which the light focused in the central section falls incident, and having a side surface for focusing, onto the solar cell by means of total internal reflection, the light that has fallen incident onto the upper surface thereof. The upper surface has a total-reflection section for totally reflecting the light emerging from the peripheral section and for focusing same onto the solar cell.
Description
본 발명은 집광형 태양전지모듈(Concentrating Photovoltaic module)에 관한 것으로서, 구체적으로는 태양전지모듈의 두께를 감소시켜 전체적인 부피를 줄일 수 있으며, 태양전지로 입사되는 입사각이 작아지도록 하여 태양전지의 효율을 극대화시킬 수 있는 집광형 태양전지모듈에 관한 것이다.The present invention relates to a concentrating photovoltaic module, and in particular, to reduce the overall volume by reducing the thickness of the solar cell module, the efficiency of the solar cell by reducing the incident angle incident to the solar cell. It relates to a light collecting solar cell module that can be maximized.
근래 태양광을 이용한 태양광 발전(Photovoltaic, PV) 장치가 많이 사용되어 지는데, 특히 실리콘 태양전지를 이용한 태양광 발전 장치가 주로 사용된다. Recently, photovoltaic (PV) devices using photovoltaic (PV) are widely used. In particular, photovoltaic devices using silicon solar cells are mainly used.
그러나 고효율 Ⅲ-Ⅴ 화합물 반도체 다중접합 태양전지(multi-junction solar cell)의 비약적인 발전으로 다중접합 태양전지에 저가의 집광장치를 사용하여 태양광을 집중시키는 방식의 집광형 태양광 발전(Concetrating Photovoltaic, CPV) 장치에 대한 연구가 활발히 진행되고 있다.However, with the rapid development of high-efficiency III-V compound semiconductor multi-junction solar cell, concentrating photovoltaic, CPV) devices are actively being researched.
다중접합 태양전지(multi-junction solar cell)는 실리콘 태양전지와 비교하여 높은 에너지 변환 효율을 가지는데, 일반적으로 다중접합 태양전지는 35%가 넘는 에너지 효율을 갖는 반면 실리콘 태양전지는 약 20% 효율을 갖는다. 특히 집광(concentration) 하에서, 현재 일부 다중접합 태양전지는 40%를 넘는 에너지 효율을 갖는다.Multi-junction solar cells have higher energy conversion efficiencies compared to silicon solar cells. In general, multi-junction solar cells have more than 35% energy efficiency, while silicon solar cells are about 20% efficient. Has Particularly under concentration, some multi-junction solar cells now have energy efficiency of over 40%.
도 1은 종래의 집광형 태양광 발전장치에 사용되는 태양전지모듈을 개략적으로 나타내는 도면이다.1 is a view schematically showing a solar cell module used in a conventional condensing photovoltaic device.
도 1을 참조하면, 종래의 집광형 태양전지모듈은 태양에너지를 전기에너지로 변환시키는 태양전지(solar cell)(1), 광을 1차적으로 집광시키는 1차광학구성요소(primary optical element)(2), 1차광학구성요소(2)로부터 집광된 광을 태양전지(1)로 2차적으로 집광시키는 2차광학구성요소(secondary optical element)(3)를 포함한다. Referring to FIG. 1, a conventional light collecting solar cell module includes a solar cell 1 for converting solar energy into electrical energy, and a primary optical element for primarily collecting light. 2) a secondary optical element 3 for collecting the light collected from the primary optical component 2 secondary to the solar cell 1.
2차광학구성요소(3)는 1차광학구성요소(2)로부터 집광된 광을 태양전지(1)로 2차적으로 집광함에 있어서 1차광학구성요소(2)로부터 집광된 광이 태양전지(1)로 균일하게 분배되도록 하는 균질기(homogenizer)로서의 기능을 수행한다.The secondary optical component 3 secondaryly collects the light collected from the primary optical component 2 into the solar cell 1 so that the light collected from the primary optical component 2 is collected from the solar cell. It functions as a homogenizer to distribute uniformly to 1).
이러한 집광형 태양전지모듈에 사용되는 다중접합 태양전지의 효율을 향상시키기 위해서는 태양전지(1)로 입사되는 광이 균일하게 분배되도록 할 필요가 있으며, 이러한 기능은 1차광학구성요소(2)만으로 설계하기가 어려우므로 종래의 집광형 태양전지모듈은 균질기(homogenizer)로서의 기능을 수행하는 2차 구성요소(3)를 포함하여 이루어지는 것이 일반적이다.In order to improve the efficiency of the multi-junction solar cell used in the light concentrating solar cell module, it is necessary to uniformly distribute the light incident on the solar cell 1, and this function is performed only by the primary optical component 2. Since it is difficult to design, a conventional light collecting solar cell module generally includes a secondary component 3 that functions as a homogenizer.
또한, 도 1 및 도 2에서 보이는 바와 같이, 태양전지(1)의 효율은 입사각(θ)의 크기에 선형적으로 비례하여 저하되기 때문에, 태양전지(1)의 효율을 극대화시키기 위해서는 태양전지(1)로 입사되는 광이 균일하게 분배되도록 할 뿐만 아니라 태양전지(1)로 입사되는 입사각(θ)이 작아지도록 할 필요가 있다.In addition, as shown in FIGS. 1 and 2, since the efficiency of the solar cell 1 decreases linearly with the magnitude of the incident angle θ, in order to maximize the efficiency of the solar cell 1, It is necessary not only to uniformly distribute the light incident on 1) but also to make the incident angle θ incident on the solar cell 1 small.
그러나, 종래의 집광형 태양전지모듈은 대표적인 1차광학구성요소로 사용되는 Fresnel Lens 또는 Mirror 등의 광학적 원리에 의해 적정 초점거리 유지가 필요한데, 이로 인해서 기존 실리콘 태양전지모듈에 비해 모듈의 부피가 5~10배 커지는 문제가 있어 제품의 제조원가 및 방법, 설치, 운영에 있어서 실리콘 태양전지모듈에 비해 불리한 점이 있다. 따라서, 일부 제조사에서는 상기와 같은 문제점을 해결하기 위하여 1차 집광장치와 태양전지의 크기를 함께 줄임으로써 최적 효율의 집광비율은 유지하는 동시에 초점거리를 줄이려는 노력을 시도하고 있으나, 이 경우 동일 모듈출력을 위해 사용되는 부품 수의 증가로 인하여 제조비용이 증가하는 문제가 있다. However, the conventional condensing solar cell module needs to maintain an appropriate focal length by an optical principle such as a Fresnel lens or a mirror, which is used as a representative primary optical component. There is a problem that is ~ 10 times larger, there is a disadvantage compared to the silicon solar cell module in the manufacturing cost, method, installation, operation of the product. Therefore, some manufacturers have attempted to reduce the focal length while maintaining the light condensation ratio of optimum efficiency by reducing the size of the primary light concentrator and the solar cell together to solve the above problems. There is a problem that the manufacturing cost increases due to the increase in the number of parts used for output.
최근에는 이러한 문제점을 해결하기 위한 것으로 초점거리를 줄임으로써 두께를 줄일 수 있도록 내부전반사형 프레즈널 렌즈(Total Internal Reflection Fresnel Lens, TIR FL)를 이용한 집광형 태양전지모듈에 대한 연구가 진행되고 있으며, 이러한 종래기술로 US 2008/0092879 A1(이하, '선행기술'이라 한다)가 개시된다. Recently, researches on concentrating solar cell modules using Total Internal Reflection Fresnel Lens (TIR FL) to reduce the thickness by reducing the focal length have been conducted. This prior art discloses US 2008/0092879 A1 (hereinafter referred to as 'prior art').
도 3은 선행기술에 따른 집광형 태양전지모듈을 나타내는 도면이다.3 is a view showing a light collecting solar cell module according to the prior art.
도 3을 참조하면, 선행기술에 따른 집광형 태양전지모듈은 태양전지(4), TIR FL 타입의 1차광학구성요소(5), 1차광학구성요소(4)로부터 집광된 광이 태양전지(4)로 집광되도록 굴절시키는 2차광학구성요소(6)를 포함한다.Referring to FIG. 3, the light collecting solar cell module according to the prior art includes a solar cell 4, a light collected from a TIR FL type primary optical component 5, and a primary optical component 4. And a secondary optical component 6 that refracts to focus on (4).
그러나, 도 3에서 보이는 바와 같이, 1차광학구성요소(5)에서 전반사되어 2차광학구성요소(6)로 입사된 광(7)은 2차광학구성요소(6)에서 굴절되어 태양전지(4)로 입사되는 입사각(θ)이 매우 커지게 되어 태양전지(4)의 효율이 저하되는 문제가 있다.However, as shown in FIG. 3, the light 7 totally reflected by the primary optical component 5 and incident on the secondary optical component 6 is refracted by the secondary optical component 6 to be refracted by the solar cell ( There is a problem that the incident angle θ incident to 4) becomes very large and the efficiency of the solar cell 4 is lowered.
따라서, 본 발명이 이루고자하는 기술적 과제는 1차광학구성요소의 초점거리를 줄임으로써 태양전지모듈의 두께를 감소시켜 전체적인 부피를 줄일 수 있으면서도 태양전지로 입사되는 입사각이 작아지도록 하여 태양전지의 효율을 극대화시킬 수 있는 집광형 태양전지모듈을 제공하는 것이다.Therefore, the technical problem to be achieved by the present invention is to reduce the focal length of the primary optical component to reduce the thickness of the solar cell module to reduce the overall volume, while reducing the angle of incidence incident to the solar cell efficiency of the solar cell It is to provide a condensing solar cell module that can be maximized.
상기 기술적 과제를 해결하기 위한 본 발명에 따른 집광형 태양전지모듈은 태양전지(solar cell); 입사된 광을 집광시키는 중심부와, 입사된 광이 중심방향으로 편향되어 출광되도록 반사 또는 전반사시키는 주변부를 구비하는 1차광학구성요소(primary optical element); 및 상기 중심부에서 집광된 광이 입사되는 상면과, 상기 상면으로 입사된 광을 내부전반사에 의해 상기 태양전지로 집광하는 측면을 구비하는 2차광학구성요소(secondary optical element);를 포함하고, 상기 상면에는 상기 주변부에서 출광된 광을 전반사시켜 상기 태양전지로 집광하는 전반사부가 구비되는 것을 특징으로 한다. Concentrating solar cell module according to the present invention for solving the technical problem is a solar cell (solar cell); A primary optical element having a central portion for condensing incident light and a peripheral portion for reflecting or total reflection so that the incident light is deflected toward the center and outputted; And a secondary optical element having an upper surface to which light collected at the center is incident and a side to condense the light incident to the upper surface to the solar cell by total internal reflection. The upper surface is provided with a total reflection portion for totally reflecting the light emitted from the peripheral portion to focus on the solar cell.
상기 전반사부는 상기 중심부에서 집광된 광은 굴절시키고 상기 주변부에서 출광되어 상기 측면을 통해 입사된 광은 전반사시키도록 상기 상면에 함몰형성된 홈의 형태로 구비될 수 있으며, 이 경우 상기 측면은, 상기 주변부에서 출광된 광이 상기 홈의 내측면에서 전반사되도록 상기 주변부에서 출광되어 입사되는 광을 상기 홈의 내측면으로 굴절시키는 굴절면; 상기 중심부에서 집광되어 상기 상면으로 입사된 광과 상기 홈의 내측면에서 전반사된 광을 내부전반사에 의해 상기 태양전지로 집광하는 전반사면; 및 상기 굴절면과 상기 전반사면을 연결하도록 상기 굴절면으로부터 내측으로 단차지는 단차면;을 포함하여 이루어지는 것이 바람직하며, 또한 상기 홈의 단면은 하방으로 볼록한 곡면으로 이루어지는 것이 바람직하다.The total reflection part may be provided in the form of a groove recessed in the upper surface so as to refracting the light collected at the central portion and the light emitted from the peripheral portion to totally reflect the light incident through the side surface, in which case the side surface is the peripheral portion. A refractive surface for refracting the light emitted from the peripheral portion to the inner side surface of the groove such that the light emitted from the side surface is totally reflected at the inner side surface of the groove; A total reflection surface for condensing the light incident at the center portion and incident on the upper surface and the light totally reflected at the inner surface of the groove to the solar cell by total internal reflection; And a stepped surface stepped inwardly from the refracting surface to connect the refracting surface and the total reflection surface, and the cross section of the groove is preferably made of a curved surface that is convex downward.
또한, 상기 전반사부는 상기 중심부에서 집광되어 입사된 광은 굴절시키고, 상기 주변부에서 출광되어 입사된 광은 반대면에서 전반사되도록 상기 상면에 돌출형성된 돌출부의 형태로도 구비될 수 있으며, 이 경우 상기 돌출부의 단면은 상방으로 볼록한 곡면으로 이루어지는 것이 바람직하다.In addition, the total reflection part may be provided in the form of a protrusion protruding on the upper surface so that the incident light is concentrated at the center and refracted incident light, the light emitted from the peripheral portion is totally reflected from the opposite side, in this case the protrusion It is preferable that the cross section of consists of a curved surface which convex upwards.
본 발명에 따른 집광형 태양전지모듈은 2차광학구성요소의 상면에 구비된 전반사부가 1차광학구성요소의 주변부에서 중심방향으로 편향되어 출광된 광을 전반사시켜 태양전지로 입사되는 입사각이 작아진 상태로 집광시킴으로써, 태양전지모듈의 두께를 더욱 줄일 수 있으면서도 태양전지의 효율을 극대화시킬 수 있는 효과가 있다. In the light collecting solar cell module according to the present invention, the total reflection portion provided on the upper surface of the secondary optical component is deflected toward the center at the periphery of the primary optical component so as to totally reflect the emitted light, and thus the incident angle incident to the solar cell is reduced. By condensing in a state, it is possible to further reduce the thickness of the solar cell module while maximizing the efficiency of the solar cell.
도 1은 종래의 집광형 태양전지모듈을 개략적으로 나타내는 도면이고, 1 is a view schematically showing a conventional light collecting solar cell module,
도 2는 태양전지의 효율과 태양전지로 입사되는 태양광의 입사각과의 관계를 나타내는 도표이고,2 is a diagram showing the relationship between the efficiency of solar cells and the angle of incidence of sunlight incident on the solar cells;
도 3은 선행기술에 따른 집광형 태양전지모듈을 나타내는 도면이고,3 is a view showing a light collecting solar cell module according to the prior art,
도 4는 본 발명의 일실시 예에 따른 집광형 태양전지모듈을 나타내는 도면이고, 4 is a view showing a light collecting solar cell module according to an embodiment of the present invention,
도 5는 본 발명에 따른 전반사부의 일실시 예를 나타내는 도면이고, 5 is a view showing an embodiment of the total reflection unit according to the present invention,
도 6 내지 도 9는 도 5에 따른 2차광학구성요소의 다양한 형태에 대한 실시 예들을 설명하기 위한 도면이고, 6 to 9 are diagrams for describing embodiments of various types of secondary optical components according to FIG. 5;
도 10 및 도 11은 도 5에 따른 2차광학구성요소의 또 다른 형태에 대한 실시예를 나타내는 도면이고,10 and 11 show an embodiment of another form of the secondary optical component according to FIG. 5;
도 12 및 도 13은 도 5에 따른 전반사부의 다른 실시예를 나타내는 도면이다.12 and 13 illustrate another embodiment of the total reflection part according to FIG. 5.
이하, 첨부된 도면을 참조하여 본 발명에 따른 실시 예들을 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명이 여러 가지 수정 및 변형을 허용하면서도, 그 특정 실시 예들이 도면들로 예시되어 나타내어지며, 이하에서 상세히 설명될 것이다. 그러나 본 발명을 개시된 특별한 형태로 한정하려는 의도는 아니며, 오히려 본 발명은 청구항들에 의해 정의된 본 발명의 사상과 합치되는 모든 수정, 균등 및 대용을 포함한다. While the invention allows for various modifications and variations, specific embodiments thereof are illustrated by way of example in the drawings and will be described in detail below. However, it is not intended to be exhaustive or to limit the invention to the precise forms disclosed, but rather the invention includes all modifications, equivalents, and alternatives consistent with the spirit of the invention as defined by the claims.
한편, 첨부 도면에서, 두께 및 크기는 명세서의 명확성을 위해 과장되어진 것이며, 따라서 본 발명은 첨부도면에 도시된 상대적인 크기나 두께에 의해 제한되지 않는다. On the other hand, in the accompanying drawings, the thickness and size are exaggerated for clarity of the specification, and thus the present invention is not limited by the relative size or thickness shown in the accompanying drawings.
도 4는 본 발명의 일실시 예에 따른 집광형 태양전지모듈을 나타내는 도면이다.4 is a view showing a light collecting solar cell module according to an embodiment of the present invention.
도 4를 참조하면, 본 발명의 일실시 예에 따른 집광형 태양전지모듈(10)은 태양전지(solar cell)(12), 입사된 광을 1차적으로 집광시키는 1차광학구성요소(primary optical element)(20) 및 1차광학구성요소(20)로부터 집광된 광을 태양전지(12)로 2차적으로 집광시키는 2차광학구성요소(secondary optical element)(30)를 포함한다. Referring to FIG. 4, the light collecting solar cell module 10 according to the exemplary embodiment may include a solar cell 12 and a primary optical component that primarily collects incident light. element 20 and a secondary optical element 30 for collecting the light collected from the primary optical component 20 secondary to the solar cell 12.
태양전지(12)는 태양에너지를 전기에너지로 변환하는 구성으로서, 고효율 Ⅲ-Ⅴ 화합물 반도체 다중접합 태양전지(multi-junction solar cell)가 사용될 수 있다. The solar cell 12 converts solar energy into electrical energy, and a high efficiency III-V compound semiconductor multi-junction solar cell may be used.
1차광학구성요소(20)는 입사된 광을 집광시키는 중심부(21)와, 입사된 광이 중심방향으로 편향되어(deflecting) 출광되도록 반사 또는 전반사시키는 주변부(22)를 포함한다. The primary optical component 20 includes a central portion 21 for collecting incident light and a peripheral portion 22 for reflecting or total reflection so that the incident light is deflected toward the center and output.
중심부(21)는 광이 입사되는 입사면(23)과, 입사면(23)으로 입사된 광이 출사되는 출사면(24)을 포함할 수 있으며, 출사면(24)은 입사된 광이 2차광학구성요소(30)의 상면에 집광될 수 있도록 구면 또는 비구면으로 구비될 수 있다. 예를 들어, 도 4에서 보이는 바와 같이, 출사면(24)은 굴절에 의해 광을 집광시킬 수 있도록 아래로 볼록한 비구면 형태로 구비될 수 있다. 또한, 도 4에는 입사된 광을 집광하는 기능이 출사면(24)에서 이루어지도록 출사면(24)이 아래로 볼록한 형태로 구비된 것이 도시되지만, 본 발명은 그에 한정되지 않으며, 광을 집광시키기 위한 기능이 입사면(23)에서 이루어질 수 있도록 입사면(23)과 출사면(24)은 다양한 형태로 구비될 수 있다. 또한, 중심부(21)는 입사된 광을 2차광학구성요소(30)의 상면으로 집광하는 프레넬 렌즈 형상으로도 구비될 수 있다.The central portion 21 may include an incident surface 23 through which light is incident, and an exit surface 24 through which light incident on the incident surface 23 is emitted, and the exit surface 24 may have two incident lights. It may be provided as a spherical or aspherical surface to be focused on the upper surface of the light blocking component 30. For example, as shown in FIG. 4, the emission surface 24 may be provided in the form of an aspherical surface that is convex downward so as to focus light by refraction. In addition, although the emission surface 24 is provided with a convex shape downward so that the function of condensing the incident light is made on the emission surface 24, the present invention is not limited thereto, and condenses the light. The incidence surface 23 and the outgoing surface 24 may be provided in various forms so that a function for the incidence surface 23 may be achieved. In addition, the central portion 21 may also be provided in the shape of a Fresnel lens for condensing the incident light to the upper surface of the secondary optical component 30.
주변부(22)는 중심부(21)를 둘러싸는 부위로서, 입사된 광을 반사 또는 전반사시켜 중심방향으로 편향되어 출광시키는 구성이며, 주변부(22)의 가장자리부분의 하단은 2차광학구성요소(30)보다 아래에 위치할 수 있으며, 경우에 따라서는 태양전지(12)보다 아래에 위치할 수도 있다. 따라서, 본 발명에 따른 집광형 태양전지모듈(10)에 의하면 1차광학구성요소(20)의 초점거리를 줄일 수 있으며 그에 따라 모듈(10)의 두께를 줄여 전체적인 부피를 감소시킬 수 있게 된다. The peripheral portion 22 is a portion surrounding the central portion 21 and is configured to reflect or totally reflect the incident light so as to be deflected toward the center and to emit light. The lower end of the edge portion of the peripheral portion 22 is the secondary optical component 30. It may be located below), and in some cases may be located below the solar cell (12). Therefore, according to the light collecting solar cell module 10 according to the present invention, the focal length of the primary optical component 20 can be reduced, and thus the overall volume can be reduced by reducing the thickness of the module 10.
주변부(22)에는 광이 입사되는 입사면(25)과, 입사면(25)으로 입사된 광을 중심방향으로 반사 또는 전반사시키는 적어도 하나 이상의 반사면(26)과, 반사면(26)에서 반사 또는 전반사된 광이 출사되는 출사면(27)이 구비될 수 있다. 반사면(26)은 입사면(25)으로 입사된 광이 전반사되도록 광학적으로 설계될 수도 있으며, 반사되도록 반사코팅되어 이루어질 수도 있다. 또한, 도 4에서 보이는 바와 같이, 입사면(25), 반사면(26) 및 출사면(27)은 서로 대응되도록 즉, 하나의 입사면(25)으로 입사된 광은 하나의 반사면(26)에서 반사 또는 전반사되며, 상기 반사면(26)에서 반사 또는 전반사된 광은 하나의 출사면(27)으로 출사되도록 구비될 수도 있다. 또한, 도 4에서 보이는 바와 같이, 본 발명의 일실시 예에 따른 1차광학구성요소(20)는 대략 우산 형태의 형상으로 이루어질 수 있으며, 주변부(22)의 상부와 하부는 불연속적인 면으로 구비될 수 있다. The peripheral portion 22 has an incident surface 25 through which light is incident, at least one reflective surface 26 that reflects or totally reflects light incident on the incident surface 25, and a reflection from the reflective surface 26. Alternatively, an emission surface 27 through which the totally reflected light is emitted may be provided. The reflective surface 26 may be optically designed to totally reflect light incident on the incident surface 25, or may be formed by reflection coating to reflect the light. In addition, as shown in FIG. 4, the incident surface 25, the reflecting surface 26, and the emitting surface 27 correspond to each other, that is, light incident on one incident surface 25 is one reflective surface 26. ) Is reflected or totally reflected, and the light reflected or totally reflected by the reflective surface 26 may be provided to be emitted to one emission surface 27. In addition, as shown in Figure 4, the primary optical component 20 according to an embodiment of the present invention may be formed in a substantially umbrella shape, the upper and lower portions of the peripheral portion 22 is provided with a discontinuous surface Can be.
다만 본 발명에 따른 집광형 태양전지모듈(10)은 1차광학구성요소(20)의 구체적인 구성 및 형상에 의해 한정되지 않으며, 1차광학구성요소(20)는 일반적인 내부전반사형 프레즈널 렌즈(Total Internal Reflection Fresnel Lens, TIR FL) 형태로 구비될 수 있으며, 이러한 1차광학구성요소(20)의 다양한 형태는 선행기술(US 2008/0092879 A1)에 상세히 기재되므로, 본 명세서에서는 그에 대한 상세한 설명은 생략한다. However, the light collecting solar cell module 10 according to the present invention is not limited to the specific configuration and shape of the primary optical component 20, and the primary optical component 20 is a general internal reflection type conventional lens ( Total Internal Reflection Fresnel Lens, TIR FL), and various forms of the primary optical component 20 are described in detail in the prior art (US 2008/0092879 A1). Is omitted.
2차광학구성요소(30)는 1차광학구성요소(20)와 태양전지(12) 사이에 구비되어 1차광학구성요소(20)로부터 집광된 태양광을 태양전지(12)로 2차적으로 집광하는 구성으로서, 중심부(21)에서 집광된 광이 입사되는 상면(32)과, 상면(32)으로 입사된 광을 내부전반사에 의해 태양전지(12)로 집광하는 측면(34)과, 2차광학구성요소(30) 내부로 입사된 광이 태양전지(12)로 출사하도록 태양전지(12)의 크기와 형상에 대응하는 크기와 형상을 가지는 저면(31)을 포함한다. 이러한 구성을 가지는 2차광학구성요소(30)는 1차광학구성요소(20)로부터 집광된 광을 태양전지(12)로 균일하게 분배하는(uniform light distribution) 균질기(homogenizer)로서의 기능을 수행하게 된다. The secondary optical component 30 is provided between the primary optical component 20 and the solar cell 12 to secondaryly collect the sunlight collected from the primary optical component 20 into the solar cell 12. As a condensing structure, the upper surface 32 to which light collected at the center 21 is incident, the side surface 34 to condense the light incident on the upper surface 32 to the solar cell 12 by total internal reflection, and 2 It includes a bottom surface 31 having a size and shape corresponding to the size and shape of the solar cell 12 so that light incident into the light-shielding optical component 30 exits the solar cell 12. The secondary optical component 30 having this configuration functions as a homogenizer that uniformly distributes the light collected from the primary optical component 20 to the solar cell 12. Done.
또한, 2차광학구성요소(30)의 상면(32)에는 1차광학구성요소(20)의 주변부(22)로부터 중심방향으로 편향되어 출광된 광을 전반사시켜 태양전지(12)로 집광하는 전반사부(100)가 구비될 수 있다. In addition, the upper surface 32 of the secondary optical component 30, the first half of the primary optical component 20 is reflected in the center direction from the peripheral portion 22 of the light emitted by the total reflection of the solar cell 12 The sand 100 may be provided.
따라서, 본 발명에 따른 집광형 태양전지모듈(10)은 선행기술과 비교하여 더욱 모듈(10)의 두께를 줄일 수 있는 효과가 있다. 상세히 설명하면, 도 3에서 보이는 바와 같이, 선행기술에 따른 태양전지모듈은 1차광학구성요소(5)의 끝단에서 전반사된 광이 2차광학구성요소(6)를 향해 편향됨에 있어서 구조상 1차광학구성요소(5)에서 전반사된 광은 중심방향을 향하면서도 하방으로만 출광되어야 하며, 1차광학구성요소(5)의 끝단의 위치는 2차광학구성요소(6)보다 위에 위치하여야 한다. 이에 반해, 본 발명에 따른 태양전지모듈(10)은 1차광학구성요소(20)의 주변부(22)에서 반사 또는 전반사되어 중심방향으로 편향된 광은 2차광학구성요소(30)의 상면(32)에 구비된 전반사부(100)에 의해 전반사됨으로써 태양전지(12)로 집광될 수 있기 때문에, 도 4에서 보이는 바와 같이 주변부(22)의 가장자리 부위에서 전반사되는 광(S1)은 중심방향을 향해 상방으로 편향되어 출광되어도 전반사부(100)에 의해 전반사됨으로써 태양전지(12)로 집광될 수 있게 된다. 따라서, 본 발명에 따른 태양전지모듈(10)은 그만큼 1차광학구성요소(20)의 초점거리를 더욱 줄일 수 있으며, 1차광학구성요소(20)의 주변부(22)의 가장자리 부분이 2차광학구성요소(30)보다 아래에 위치할 수 있기 때문에, 태양전지모듈(10)의 전체적인 두께와 부피도 더욱 줄일 수 있는 효과가 있다. 또한, 이와 같이 주변부(22)에서 출광된 광이 2차광학구성요소(30)의 상면(32)에 구비된 전반사부(100)에서 전반사되도록 하면, 입사각이 작아진 상태로 태양전지(12)로 집광될 수 있으며, 따라서 태양전지(12)의 효율을 극대화시킬 수 있는 효과도 가지게 된다.Therefore, the light collecting solar cell module 10 according to the present invention has an effect of further reducing the thickness of the module 10 as compared with the prior art. In detail, as shown in FIG. 3, the solar cell module according to the prior art is structurally primary in that light totally reflected at the end of the primary optical component 5 is deflected toward the secondary optical component 6. The light totally reflected from the optical component 5 should be directed downward only while facing the center direction, and the position of the end of the primary optical component 5 should be located above the secondary optical component 6. On the other hand, the solar cell module 10 according to the present invention is reflected or totally reflected at the peripheral portion 22 of the primary optical component 20, the light deflected toward the center direction 32 is the upper surface 32 of the secondary optical component 30 Since it can be focused by the total reflection portion 100 provided in the solar cell 12 by total reflection, as shown in FIG. 4, the light S1 totally reflected at the edge of the peripheral portion 22 is directed toward the center direction. Even if the light is deflected upward, the light is totally reflected by the total reflection part 100 so that the solar cell 12 can be focused. Accordingly, the solar cell module 10 according to the present invention can further reduce the focal length of the primary optical component 20, and the edge of the peripheral portion 22 of the primary optical component 20 is secondary. Since it can be located below the optical component 30, there is an effect that can further reduce the overall thickness and volume of the solar cell module 10. In addition, when the light emitted from the peripheral portion 22 is totally reflected by the total reflection portion 100 provided on the upper surface 32 of the secondary optical component 30, the solar cell 12 in a state where the incident angle is small It can be condensed into, and thus will also have the effect of maximizing the efficiency of the solar cell (12).
이하, 본 발명에 따른 전반사부(100)의 구체적인 구성 및 다양한 실시 예와, 이러한 전반사부(100)가 상면(32)에 구비된 2차광학구성요소(30)의 구체적인 구성 및 다양한 실시 예에 대하여 도면을 참조하여 상세히 설명한다.Hereinafter, the specific configuration and various embodiments of the total reflection part 100 according to the present invention, and the specific configuration and various embodiments of the secondary optical component 30 provided on the upper surface 32 of the total reflection part 100 It will be described in detail with reference to the drawings.
도 5는 본 발명에 따른 전반사부의 일실시 예를 나타내는 도면이다. 5 is a view showing an embodiment of the total reflection unit according to the present invention.
도 5를 참조하면, 본 발명의 일실시 예에 따른 전반사부(100)는 1차광학구성요소(20)의 중심부(21)에서 집광된 광(S4)은 굴절시키고, 주변부(22)에서 출광되어 2차광학구성요소(30)의 측면(34)을 통해 입사된 광(S1,S2,S3)은 전반사시키도록 2차광학구성요소(30)의 상면(32)에 함몰형성된 홈(40)의 형태로 구비될 수 있다. Referring to FIG. 5, the total reflection part 100 according to an embodiment of the present invention refracts the light S4 focused at the center 21 of the primary optical component 20, and emits light from the peripheral part 22. Grooves 40 recessed in the upper surface 32 of the secondary optical component 30 such that the light S1, S2, S3 incident through the side face 34 of the secondary optical component 30 is totally reflected. It may be provided in the form of.
이와 같이, 전반사부(100)가 2차광학구성요소(30)의 상면(32)에 함몰형성되는 홈(40)의 형태로 구비되는 경우에는, 2차광학구성요소(30)의 측면(34)은 1차광학구성요소(20)의 주변부(22)로부터 출광되어 직접 입사된 광(S1,S2,S3)은 홈(40)으로 굴절시키고, 중심부(21)에서 상면(32)으로 입사하여 굴절된 광(S4)과 홈(40)에서 전반사된 광(S1,S2,S3)은 전반사시키도록 구비될 수 있다. As such, when the total reflection part 100 is provided in the form of the groove 40 recessed in the upper surface 32 of the secondary optical component 30, the side surface 34 of the secondary optical component 30 is formed. ) Is emitted from the periphery 22 of the primary optical component 20 and the directly incident light (S1, S2, S3) is refracted into the groove 40, and incident from the central portion 21 to the upper surface 32 The refracted light S4 and the light S1, S2, and S3 totally reflected in the groove 40 may be provided to totally reflect.
상면(32)으로 직접 입사되는 광에는 중심부(21)로부터 집광되어 입사된 광뿐만 아니라 주변부(22)로부터 편향되어 입사된 광도 포함될 수 있는데, 본 실시 예에 따른 태양전지모듈(10)에 있어서 주변부(22)로부터 중심방향으로 편향되어 출광된 광은 측면(34)으로 입사되는 것이 바람직하지만, 광학 설계상 중심부(21)와 인접한 주변부(22)의 소정부위로부터 중심방향으로 편향되어 출광된 광은 상면(32)으로 직접 입사할 수도 있으며, 이와 같이 주변부(22)로부터 편향된 광이 측면(34)으로 입사되지 않고 상면(32)으로 입사하는 경우에는 상면(32)에서 굴절된 후 측면(34)에서 전반사되면서 입사각이 작아진 상태로 태양전지(12)로 집광될 수 있게 된다. 따라서, 본 실시 예에 따른 태양전지모듈(10)에 있어서, 주변부(22)로부터 중심방향으로 편향되어 출광된 광 중 대부분은 측면(34)으로 입사되어 상면(32)에서 전반사된 후 입사각(θ)이 작아진 상태로 태양전지(12)로 집광되지만, 주변부(22)로부터 출광된 광 중 일부는 상면(32)으로 직접 입사할 수도 있으며, 본 발명은 그에 한정되지 않는다 할 것이다.The light incident directly on the upper surface 32 may include not only the light focused and incident from the central part 21, but also the light incident and deflected from the peripheral part 22. The peripheral part of the solar cell module 10 according to the present exemplary embodiment may be used. Although the light deflected and exited from the center toward the center 22 is preferably incident on the side surface 34, the light emitted and deflected toward the center from the predetermined portion of the peripheral portion 22 adjacent to the central portion 21 in the optical design is emitted. If the light deflected from the peripheral portion 22 is incident on the upper surface 32 instead of being incident on the side surface 34, the side surface 34 is refracted by the upper surface 32. As it is totally reflected at the incident angle is reduced to the solar cell 12 can be focused. Therefore, in the solar cell module 10 according to the present embodiment, most of the light emitted by being deflected toward the center from the peripheral portion 22 is incident on the side surface 34 and totally reflected on the upper surface 32, and then the incident angle θ. ) Is focused on the solar cell 12 in a small state, but some of the light emitted from the peripheral portion 22 may directly enter the upper surface 32, but the present invention is not limited thereto.
또한, 본 실시 예와 같이, 전반사부(100)가 상면(32)에 함몰형성된 홈(40)의 형태로 구비되면, 1차광학구성요소(20)의 주변부(22)에서 출광되어 측면(34)을 통해 홈(40)으로 입사된 광은 홈(40)의 내측면(42)에서 전반사되어 태양전지(12)로 집광될 수 있으며, 홈(40)의 내측면(42)과 저면(44) 즉, 홈(40)의 내면(46)으로 직접 입사된 광은 굴절되어 태양전지(12)로 집광될 수 있게 된다. In addition, as shown in the present embodiment, when the total reflection part 100 is provided in the form of the groove 40 recessed in the upper surface 32, the light is emitted from the peripheral part 22 of the primary optical component 20 to have a side surface 34. Light incident to the grooves 40 through) may be totally reflected on the inner surface 42 of the grooves 40 to be collected by the solar cell 12, and the inner surface 42 and the bottom surface 44 of the grooves 40. That is, light incident directly on the inner surface 46 of the groove 40 may be refracted and collected by the solar cell 12.
도 6 내지 도 9는 도 5에 따른 2차광학구성요소의 다양한 형태에 대한 실시 예들을 나타내는 도면이다.6 to 9 are diagrams illustrating embodiments of various types of secondary optical components according to FIG. 5.
도 6 및 도 7에서 보이는 바와 같이, 2차광학구성요소(30)의 상면(32)은 전체가 함몰형성되는 홈(40)으로 형성될 수도 있으며, 도 8 및 도 9에서 보이는 바와 같이, 상면(32)에는 대략 중심부에 형성되는 홈(40)과, 홈(40)과 측면(34)을 연결하는 연결면(33)이 구비될 수도 있다. 홈(40)은 직접 입사되는 광은 굴절시키고 측면(34)을 통해 입사된 광은 전반사시키며, 연결면(33)은 직접 입사되는 광을 굴절시킨다.As shown in FIGS. 6 and 7, the upper surface 32 of the secondary optical component 30 may be formed as a groove 40 in which the whole is recessed. As shown in FIGS. 8 and 9, the upper surface 32 may be provided with a groove 40 formed at a substantially central portion, and a connection surface 33 connecting the groove 40 and the side surface 34. The groove 40 refracts directly incident light, totally reflects light incident through the side face 34, and the connecting surface 33 refracts directly incident light.
또한, 도 6 및 도 8에서 보이는 바와 같이, 홈(40)의 단면은 하방으로 볼록한 곡면, 예를들어 구면, 포물선 또는 파라볼릭 등과 같은 곡면으로 이루어져 내면(46)이 내측면(42)과 저면(44)으로 명확하게 구분되지 않는 연속적인 면으로 형성될 수도 있으며, 도 7 및 도 9에서 보이는 바와 같이, 홈(40)의 단면은 직선으로 플랫(flat)하게 이루어져 내면(46)이 내측면(42)과 저면(44)으로 명확하게 구분되는 불연속적인 면으로 형성될 수도 있다. 6 and 8, the cross section of the groove 40 consists of a downwardly convex curved surface, for example, a spherical surface, a parabola, or a parabolic surface, such that the inner surface 46 has an inner surface 42 and a bottom surface. It may be formed as a continuous surface not clearly distinguished by (44), as shown in Figures 7 and 9, the cross section of the groove 40 is made flat in a straight line (inner surface 46 is the inner surface) It may be formed as a discontinuous face that is clearly divided into 42 and the bottom face 44.
한편, 도 6 내지 도 9에는 2차광학구성요소(30)의 단면이 사각형인 것이 도시되지만, 본 발명은 그에 한정하지 않으며 2차광학구성요소(30)의 단면은 삼각형, 그 이상의 다각형 또는 원형으로도 이루어질 수 있으며, 특히 그 단면의 크기가 높이방향으로 변화되는 형상 예를들어, 측면(34)이 테어퍼(taper)진 형상 또는 오목하거나 볼록한 형상으로도 이루어질 수 있다. 다만, 2차광학구성요소(30)의 저면(31)은 태양전지(12)의 크기와 형상에 대응하도록 이루어짐이 바람직하다.6 to 9, the cross-section of the secondary optical component 30 is illustrated as being rectangular, but the present invention is not limited thereto, and the cross-section of the secondary optical component 30 is triangular, polygonal or circular in shape. In particular, the shape of the cross section is changed in the height direction, for example, the side surface 34 may be formed in a tapered shape or a concave or convex shape. However, the bottom surface 31 of the secondary optical component 30 is preferably made to correspond to the size and shape of the solar cell 12.
측면(34)을 통해 입사된 광을 전반사시키도록 구비되어야 하는 홈(40)의 광학적 측면에서는 측면(34)의 형태와 무관하게 홈(40)의 내측면(42)은 단면상 하방으로 볼록한 곡면의 형태로 이루어지는 것이 바람직하며, 따라서 도 6 및 도 8에서 보이는 바와 같이, 홈(40)의 단면은 구면, 포물선 또는 파라볼릭 등과 같은 하방으로 볼록한 곡면으로 이루어져 내면(46)이 내측면(42)과 저면(44)으로 명확하게 구분되지 않는 연속적인 면으로 형성되는 것이 바람직하다. In the optical aspect of the groove 40, which should be provided to totally reflect the light incident through the side surface 34, regardless of the shape of the side surface 34, the inner surface 42 of the groove 40 is convex downward in cross section. 6 and 8, the cross section of the groove 40 is formed of a downwardly convex curved surface such as a spherical surface, a parabola, or a parabolic, and the inner surface 46 is formed on the inner surface 42. It is preferable that the bottom surface 44 is formed of a continuous surface which is not clearly distinguished.
또한, 도 6에는 상면(32) 전체가 함몰형성되는 홈(40)으로 이루어져 대략 크라운(crown) 형상을 가지는 2차광학구성요소(30)의 일실시 예가 도시되는데, 1차광학구성요소(20)의 주변부(22)에서 출광되어 측면(34)을 통해 입사된 광을 전반사시키기 위한 전반사부(100)의 영역확보 측면에서는 도 6에 도시된 2차광학구성요소(30)의 형태 즉, 상면(32) 전체에 홈(40)이 형성되는 것이 바람직하다. 그러나, 도 6에서 보이는 바와 같이, 전반사부(100)가 상면(32) 전체에 함몰형성된 홈(40)으로 구비되는 경우에는 그러한 형태의 2차광학구성요소(30)를 제조하기가 용이하지 않다는 문제가 있다. In addition, FIG. 6 shows an embodiment of the secondary optical component 30 having a substantially crown shape by the groove 40 in which the entire upper surface 32 is recessed. The primary optical component 20 is illustrated in FIG. In the area of the total reflection part 100 for total reflection of the light emitted from the periphery 22 of the periphery (22), the shape of the secondary optical component 30 shown in FIG. It is preferable that the groove 40 is formed in the entirety of 32. However, as shown in FIG. 6, when the total reflection part 100 is provided with the groove 40 recessed in the entire upper surface 32, it is not easy to manufacture the secondary optical component 30 of such a shape. there is a problem.
상세히 설명하면, 2차광학구성요소(20)는 태양전지모듈(10) 내부의 온도가 매우 높기 때문에 글라스성형으로 제조됨이 바람직한데, 글라스 사출물의 경우에는 플라스틱 사출물보다 점도가 높기 때문에, 도 6에서 보이는 바와 같이, 전반사부(100)가 상면(32) 전체에 함몰형성되는 홈(40)의 형태로 구비되는 경우에 생기는 모서리부에서의 뾰족한 부분(41) 성형이 용이하지 않다는 문제가 발생하게 된다. 그렇다고 제조를 용이하게 하기 위하여 도 8에서 보이는 바와 같이, 상면(32)이 홈(40)과 연결면(33)으로 이루어지도록 하는 것은, 전반사부(100)의 영역확보가 어려워져 바람직하지 않다. 전반사부(100)인 홈(40)의 영역이 넓어지면 넓어질수록 그만큼 1차광학구성요소(20)의 주변부(22)에서 출광되어 측면(34)을 통해 입사된 광을 전반사시킬 수 있는 영역이 넓어지게 되어 바람직하지만, 도 8에서와 같이 상면(32)이 홈(40)과 연결면(33)으로 이루어지도록 하면 그만큼 전반사부(100)의 영역이 좁아지기 때문이다. In detail, the secondary optical component 20 is preferably manufactured by glass molding because the temperature inside the solar cell module 10 is very high. In the case of glass injection molding, since the viscosity is higher than that of plastic injection molding, FIG. As can be seen from the above, the total reflection portion 100 is formed in the form of the groove 40 is formed in the entire upper surface 32 to form a problem that the formation of the pointed portion 41 in the corner portion is not easy to occur do. However, as shown in FIG. 8 in order to facilitate manufacturing, it is not preferable that the upper surface 32 is formed of the groove 40 and the connecting surface 33 because it is difficult to secure the area of the total reflection part 100. As the area of the groove 40, which is the total reflection part 100, becomes wider, an area that can be totally reflected by the light emitted from the peripheral part 22 of the primary optical component 20 and incident through the side face 34 Although it is preferable to be wider, it is because the area of the total reflection part 100 is narrowed as much as the upper surface 32 consists of the groove | channel 40 and the connection surface 33 as shown in FIG.
이하 전반사부(100)인 홈(40)의 영역을 확보할 수 있으면서도 제조가 용이한 2차광학구성요소(30)의 또 다른 형태에 대한 실시 예를 도 10 및 도 11을 참조하여 상세히 설명한다.Hereinafter, an embodiment of another embodiment of the secondary optical component 30, which is easy to manufacture while securing an area of the groove 40, which is the total reflection part 100, will be described in detail with reference to FIGS. 10 and 11. .
도 10은 도 5에 따른 2차광학구성요소의 또 다른 형태에 대한 실시예를 나타내는 사시도이고, 도 11은 도 10에 따른 2차광학구성요소의 수직단면도이다. FIG. 10 is a perspective view showing another embodiment of the secondary optical component according to FIG. 5, and FIG. 11 is a vertical cross-sectional view of the secondary optical component according to FIG. 10.
도 10 및 도 11을 참조하면, 본 실시 예에 따른 2차광학구성요소(110)의 측면(112)은 1차광학구성요소(20)의 주변부(22)에서 출광된 광(S1,S2,S3)이 홈(40)의 내측면(42)에서 전반사되도록 상기 광(S1,S2,S3)을 홈(40)의 내측면(42)으로 굴절시키는 굴절면(114)과, 1차광학구성요소(20)의 중심부(21)에서 집광되어 상면(32)으로 입사된 광(S4)과 홈(40)의 내측면(42)에서 전반사된 광(S1,S2,S3)을 내부전반사에 의해 태양전지(12)로 집광하는 전반사면(116)과, 굴절면(112)과 전반사면(116)을 연결하도록 굴절면(112)으로부터 내측으로 단차지는 단차면(118)을 포함한다.10 and 11, the side surfaces 112 of the secondary optical component 110 according to the present exemplary embodiment may include light S1, S2, and the light emitted from the periphery 22 of the primary optical component 20. A refracting surface 114 that refracts the light S1, S2, S3 to the inner surface 42 of the groove 40 such that S3 is totally reflected at the inner surface 42 of the groove 40, and the primary optical component. The light S4 collected at the central portion 21 of the center 20 and incident on the upper surface 32 and the light S1, S2, and S3 totally reflected from the inner surface 42 of the groove 40 are reflected by internal reflection. The total reflection surface 116 condensed by the battery 12 and a stepped surface 118 stepped inward from the refractive surface 112 to connect the refractive surface 112 and the total reflection surface 116.
즉, 본 실시 예에 따른 2차광학구성요소(110)는 제조를 용이하게 하기 위하여 상면(32)에 홈(40)과 연결면(33)을 구비하면서도 전반사부(100)인 홈(40) 영역을 확보하기 위하여 측면(112)의 상부를 외측으로 연장시켜 상면(32)의 크기를 크게 한 것이며, 또한 이 경우 외측으로 연장된 측면(112)을 주변부(22)에서 출광된 광(S1,S2,S3)을 홈(40)의 내측면(42)으로 굴절시키는 굴절면(114)으로 구비한 것이며, 또한 저면(31)의 크기는 태양전지(12)의 크기에 대응하는 크기로 이루어질 수 있도록 내측으로 단차져 굴절면(114)과 전반사면(1164)을 연결하는 단차면(118)을 구비한 것이다. That is, the secondary optical component 110 according to the present embodiment has a groove 40 and a connection surface 33 on the upper surface 32 to facilitate manufacturing, but also the groove 40 which is the total reflection part 100. In order to secure an area, the upper portion of the side surface 112 is extended to the outside to increase the size of the upper surface 32. In this case, the light side S1, which is emitted from the peripheral portion 22, is extended to the outer side surface 112. S2, S3 is provided as a refractive surface 114 for refracting the inner surface 42 of the groove 40, and the size of the bottom surface 31 can be made to a size corresponding to the size of the solar cell 12 It is provided with the step surface 118 which connects the refractive surface 114 and the total reflection surface 1164 inwardly.
따라서, 이러한 구성을 가지는 본 실시 예에 따른 2차광학구성요소(110)에 의하면, 상면(32)에 홈(40)과 연결면(33)을 구비함으로써 글라스성형으로 제조가 가능해질 수 있는 효과가 있을 뿐만 아니라 홈(40)의 영역도 확보할 수 있다는 효과가 있게 된다. Therefore, according to the secondary optical component 110 according to the present exemplary embodiment having such a configuration, the upper surface 32 has the groove 40 and the connecting surface 33, so that the glass molding can be effected. In addition to this there is an effect that can secure the area of the groove 40.
또한, 도 9에서 보이는 바와 같이, 이러한 구성을 가지는 본 실시 예에 따른 2차광학구성요소(110)는 측면(112) 상부가 외측으로 연장된 형태로 이루어지게 되므로 대략 나사머리를 가지는 나사 형상을 가지게 된다. In addition, as shown in FIG. 9, the secondary optical component 110 according to the present exemplary embodiment having such a configuration has a screw shape having a substantially screw head because the upper portion of the side 112 is formed to extend outward. Have.
한편, 상면(32)의 크기를 크게 하여 상면(32)에 홈(40)과 연결면(33)을 구비하면서도 홈(40)의 영역을 확보한다는 측면에서, 단차면(118) 없이 측면(112)이 아래로 갈수록 내측으로 기울어지도록 하여 결국 저면(31)에서는 태양전지(12)의 크기에 대응하도록 구비될 수도 있지만, 이 경우 전반사면(116)이 상면(32)으로 입사된 광(S4)과 홈(40)의 내측면(420에서 전반사된 광(S1,S2,S3)을 동시에 내부전반사시키도록 광학 설계하는 것이 어려워지는 문제가 발생하게 된다. 따라서, 상면(32)의 크기를 크게 하여 상면(32)에 홈(40)과 연결면(33)을 구비하면서도 홈(40)의 영역을 확보하기 위해서는, 본 실시 예에 따른 2차광학구성요소(110)와 같이, 측면(112)에 단차면(118)이 구비되는 것이 바람직하다 할 것이다. On the other hand, the side surface 112 without the step surface 118 in terms of securing the area of the groove 40 while having the groove 40 and the connecting surface 33 on the upper surface 32 by increasing the size of the upper surface 32 ) May be inwardly inclined downward so that the bottom surface 31 may correspond to the size of the solar cell 12, but in this case, the total reflection surface 116 is incident on the upper surface 32. And it becomes difficult to design optically to totally internally reflect the light (S1, S2, S3) totally reflected from the inner surface 420 of the groove 40. Therefore, the size of the upper surface 32 is made larger. In order to secure the area of the groove 40 while having the groove 40 and the connection surface 33 on the upper surface 32, the side surface 112, like the secondary optical component 110 according to the present embodiment It is preferable that the stepped surface 118 be provided.
도 12 및 도 13은 도 5에 따른 전반사부의 다른 실시예를 나타내는 도면이다.12 and 13 illustrate another embodiment of the total reflection part according to FIG. 5.
도 12 및 도 13을 참조하면, 본 실시 예에 따른 전반사부(100)는 1차광학구성요소(20)의 중심부(21)에서 집광되어 입사된 광(S4)은 굴절시키고, 주변부(22)에서 출광되어 입사된 광(S1,S2,S3)은 반대면(52)에서 전반사되도록 2차광학구성요(30)의 상면(32)에 돌출형성된 돌출부(50)의 형태로 구비될 수 있다. 12 and 13, the total reflection part 100 according to the present exemplary embodiment refracts the incident light S4 that is collected at the central portion 21 of the primary optical component 20 and is incident on the peripheral portion 22. The light (S1, S2, S3) emitted from the incident light may be provided in the form of a protrusion 50 protruding from the upper surface 32 of the secondary optical component 30 to be totally reflected from the opposite surface (52).
이와 같이, 전반사부(100)가 상면(32)에 돌출형성되는 돌출부(50)의 형태로 구비되는 경우에는, 주변부(22)에서 출광된 광(S1,S2,S3)은 상기 실시 예들에서와 달리 2차광학구성요소(30)의 측면(34)이 아니라 돌출부(50)의 일면(54)으로 입사하게 되며, 이와 같이 돌출부(50)의 일면(54)으로 입사한 광(S1,S2,S3)은 반대면(52)에서 전반사되어 태양전지(12)로 입사각이 작아진 상태로 집광될 수 있게 된다.As such, when the total reflection part 100 is provided in the form of a protrusion 50 protruding from the upper surface 32, the light S1, S2, and S3 emitted from the peripheral part 22 may be different from those of the above embodiments. Otherwise, the incident light is incident on one surface 54 of the protrusion 50 instead of the side 34 of the secondary optical component 30, and thus the light S1, S2, and the incident light is incident on the one surface 54 of the protrusion 50. S3) is totally reflected from the opposite surface 52 to be focused on the solar cell 12 with a small incident angle.
또한, 전반사부(100)가 홈(40)의 형태로 구비되는 경우와 같이, 전반사부(100)가 돌출부(50)의 형태로 구비되는 경우에도, 도 12에서 보이는 바와 같이, 상면(32)은 전체가 돌출형성되는 돌출부(50)로 이루어질 수도 있으며, 또는 도 13에서 보이는 바와 같이, 상면(32)에는 돌출부(50)와 연결면(33)이 구비될 수도 있다. 또한, 돌출부(50)는 주변부(22)에서 출광되어 돌출부(50)의 일면(54)으로 입사된 광을 반대면(52)에서 전반사시켜야 하는 광학적 측면에서 단면상 상방으로 볼록한 곡면의 형태로 이루어지는 것이 바람직하다. In addition, as in the case where the total reflection portion 100 is provided in the form of the groove 40, even when the total reflection portion 100 is provided in the form of the protrusion 50, as shown in Figure 12, the upper surface 32 The silver may be formed of a protrusion 50 in which the whole is formed, or as shown in FIG. 13, the upper surface 32 may be provided with the protrusion 50 and the connection surface 33. In addition, the protrusion 50 is formed in the form of a curved surface that is convex upward in cross section in terms of the optical light that is emitted from the peripheral portion 22 and incident on one surface 54 of the protrusion 50 to be totally reflected on the opposite surface 52. desirable.
이상에서 살펴본 바와 같이, 본 발명에 따른 집광형 태양전지모듈은 2차광학구성요소의 상면에 구비된 전반사부가 1차광학구성요소의 주변부에서 중심방향으로 편향되어 출광된 광을 전반사시켜 태양전지로 입사되는 입사각이 작아진 상태로 집광시킴으로써 태양전지모듈의 두께를 더욱 줄일 수 있으면서도 태양전지의 효율을 극대화시킬 수 있도록 한 것을 특징으로 하는 것으로서, 그 실시 형태는 다양한 형태로 변경가능하다 할 것이다. 따라서 본 발명은 본 명세서에서 개시된 실시 예에 의해 한정되지 않으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 변경 가능한 모든 형태도 본 발명의 권리범위에 속한다 할 것이다.As described above, in the light collecting solar cell module according to the present invention, the total reflection portion provided on the upper surface of the secondary optical component is deflected toward the center from the periphery of the primary optical component to totally reflect the emitted light to the solar cell. By condensing the incident incident angle in a small state, it is possible to further reduce the thickness of the solar cell module while maximizing the efficiency of the solar cell, and the embodiment may be modified in various forms. Therefore, the present invention is not limited to the embodiments disclosed in the present specification, and all forms changeable by those skilled in the art to which the present invention pertains will belong to the scope of the present invention.
Claims (6)
- 태양전지(solar cell);Solar cells;입사된 광을 집광시키는 중심부와, 입사된 광이 중심방향으로 편향되어 출광되도록 반사 또는 전반사시키는 주변부를 구비하는 1차광학구성요소(primary optical element); 및A primary optical element having a central portion for condensing incident light and a peripheral portion for reflecting or total reflection so that the incident light is deflected toward the center and outputted; And상기 중심부에서 집광된 광이 입사되는 상면과, 상기 상면으로 입사된 광을 내부전반사에 의해 상기 태양전지로 집광하는 측면을 구비하는 2차광학구성요소(secondary optical element);를 포함하고, And a secondary optical element having a top surface on which the light collected at the center is incident and a side surface for condensing the light incident on the top surface to the solar cell by total internal reflection.상기 상면에는 상기 주변부에서 출광된 광을 전반사시켜 상기 태양전지로 집광하는 전반사부가 구비되는 것을 특징으로 하는 집광형 태양전지모듈.Condensing solar cell module, characterized in that the upper surface is provided with a total reflection unit for totally reflecting the light emitted from the peripheral portion to focus on the solar cell.
- 제 1 항에 있어서,The method of claim 1,상기 전반사부는 상기 중심부에서 집광된 광은 굴절시키고 상기 주변부에서 출광되어 상기 측면을 통해 입사된 광은 전반사시키도록 상기 상면에 함몰형성된 홈의 형태로 구비되는 것을 특징으로 하는 집광형 태양전지모듈.The total reflection part is a light collecting solar cell module, characterized in that provided in the form of a recess formed in the upper surface so as to be refracted light collected from the central portion and the light emitted from the peripheral portion and totally reflected through the side.
- 제 2 항에 있어서,The method of claim 2,상기 측면은, The side is,상기 주변부에서 출광된 광이 상기 홈의 내측면에서 전반사되도록 상기 주변부에서 출광되어 입사되는 광을 상기 홈의 내측면으로 굴절시키는 굴절면;A refractive surface for refracting the light emitted from the peripheral portion and incident to the inner surface of the groove such that the light emitted from the peripheral portion is totally reflected at the inner surface of the groove;상기 중심부에서 집광되어 상기 상면으로 입사된 광과 상기 홈의 내측면에서 전반사된 광을 내부전반사에 의해 상기 태양전지로 집광하는 전반사면; 및 A total reflection surface for condensing the light incident at the center portion and incident on the upper surface and the light totally reflected at the inner surface of the groove to the solar cell by total internal reflection; And상기 굴절면과 상기 전반사면을 연결하도록 상기 굴절면으로부터 내측으로 단차지는 단차면;을 포함하는 것을 특징으로 하는 집광형 태양전지모듈.And a stepped surface stepped inwardly from the refracting surface to connect the refracting surface and the total reflection surface.
- 제 3 항에 있어서,The method of claim 3, wherein상기 홈의 단면은 하방으로 볼록한 곡면으로 이루어지는 것을 특징으로 하는 집광형 태양전지모듈.Condensing solar cell module, characterized in that the cross section of the groove consists of a curved convex downward.
- 제 1 항에 있어서,The method of claim 1,상기 전반사부는 상기 중심부에서 집광되어 입사된 광은 굴절시키고, 상기 주변부에서 출광되어 입사된 광은 반대면에서 전반사되도록 상기 상면에 돌출형성된 돌출부의 형태로 구비되는 것을 특징으로 하는 구비되는 것을 특징으로 하는 집광형 태양전지모듈.The total reflection part is characterized in that it is provided in the form of a protruding portion protruding on the upper surface so as to be refracted incident light collected from the central portion, the light emitted from the peripheral portion is totally reflected from the opposite surface Condensing solar cell module.
- 제 5 항에 있어서,The method of claim 5,상기 돌출부의 단면은 상방으로 볼록한 곡면인 것을 특징으로 하는 집광형 태양전지모듈.A cross section of the protrusion is a condensing solar cell module, characterized in that the curved surface convex upwards.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130025348A KR101438130B1 (en) | 2013-03-08 | 2013-03-08 | Concentrating Photovoltaic module |
KR10-2013-0025348 | 2013-03-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014137020A1 true WO2014137020A1 (en) | 2014-09-12 |
Family
ID=51491522
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2013/002427 WO2014137020A1 (en) | 2013-03-08 | 2013-03-22 | Light-focusing solar cell module |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101438130B1 (en) |
WO (1) | WO2014137020A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101665309B1 (en) | 2015-03-18 | 2016-10-13 | 한국과학기술연구원 | Phtovoltaic-Thermoelectric hybrid generator and method for fabricating the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007201109A (en) * | 2006-01-25 | 2007-08-09 | Daido Steel Co Ltd | Concentrating sunlight power generation unit and its pillar-shaped optical glass member |
JP2009187971A (en) * | 2008-02-01 | 2009-08-20 | Sharp Corp | Solar battery, concentrating solar photovoltaic module, and production process of solar battery |
EP2169728A2 (en) * | 2008-09-26 | 2010-03-31 | Industrial Technology Research Institute | Method and system for light collection and light energy converting apparatus |
JP2012248776A (en) * | 2011-05-31 | 2012-12-13 | Dainippon Printing Co Ltd | Condensing element and solar cell system |
KR20130010375A (en) * | 2011-07-18 | 2013-01-28 | (주)애니캐스팅 | Concentrating photovoltaic device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102282679B (en) * | 2008-11-14 | 2015-05-20 | 班德加普工程有限公司 | Nanostructured devices |
KR101289341B1 (en) * | 2011-09-30 | 2013-07-29 | (주)애니캐스팅 | Concentrating Photovoltaic module |
-
2013
- 2013-03-08 KR KR1020130025348A patent/KR101438130B1/en not_active IP Right Cessation
- 2013-03-22 WO PCT/KR2013/002427 patent/WO2014137020A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007201109A (en) * | 2006-01-25 | 2007-08-09 | Daido Steel Co Ltd | Concentrating sunlight power generation unit and its pillar-shaped optical glass member |
JP2009187971A (en) * | 2008-02-01 | 2009-08-20 | Sharp Corp | Solar battery, concentrating solar photovoltaic module, and production process of solar battery |
EP2169728A2 (en) * | 2008-09-26 | 2010-03-31 | Industrial Technology Research Institute | Method and system for light collection and light energy converting apparatus |
JP2012248776A (en) * | 2011-05-31 | 2012-12-13 | Dainippon Printing Co Ltd | Condensing element and solar cell system |
KR20130010375A (en) * | 2011-07-18 | 2013-01-28 | (주)애니캐스팅 | Concentrating photovoltaic device |
Also Published As
Publication number | Publication date |
---|---|
KR101438130B1 (en) | 2014-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8371078B2 (en) | Sunlight collection system and apparatus | |
US8776783B2 (en) | Solar energy collector and solar energy module having same | |
US20100319773A1 (en) | Optics for Concentrated Photovoltaic Cell | |
WO2013002537A2 (en) | Concentrating solar cell | |
CN102544172A (en) | Focusing solar light guide module | |
WO2013180499A1 (en) | Concentrating solar cell module | |
KR101289341B1 (en) | Concentrating Photovoltaic module | |
KR101207852B1 (en) | Planar type high concentration photovoltaic power generator module and sun tracker using this module | |
WO2014137020A1 (en) | Light-focusing solar cell module | |
CN117148559A (en) | Solar fixed-focus condensing lens and photovoltaic power generation and heat collection device thereof | |
CN111725342A (en) | High-absorptivity photovoltaic module | |
KR20130085132A (en) | Fresnel lens - light pipe combined lens system for solar power generation | |
KR20200067554A (en) | A solar cell array having a prsim lens for shading removal | |
CN201937509U (en) | Condensation photovoltaic system | |
CN111869099A (en) | Light-gathering solar device | |
CN201252109Y (en) | Effective solar energy omnidirectional concentrator cell component | |
WO2011087194A1 (en) | Solar light collecting device | |
KR101295040B1 (en) | Light guide Concentrating Photovoltaic device | |
WO2013047959A1 (en) | Concentrating photovoltaic module | |
WO2012165899A2 (en) | High light concentration solar cell module | |
KR101357200B1 (en) | Thin concentrator photovoltaic module | |
TWI704764B (en) | Light-collecting lens, light-collecting module, solar cell device, and solar cell system | |
WO2017090782A1 (en) | Concentrated solar cell module using single optical system | |
CN118041223B (en) | Wide-angle high-power condensation system | |
KR101272121B1 (en) | Concentrating photovoltaic module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13877425 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13877425 Country of ref document: EP Kind code of ref document: A1 |