JP2012094596A - Light condensing power generator - Google Patents

Light condensing power generator Download PDF

Info

Publication number
JP2012094596A
JP2012094596A JP2010238728A JP2010238728A JP2012094596A JP 2012094596 A JP2012094596 A JP 2012094596A JP 2010238728 A JP2010238728 A JP 2010238728A JP 2010238728 A JP2010238728 A JP 2010238728A JP 2012094596 A JP2012094596 A JP 2012094596A
Authority
JP
Japan
Prior art keywords
cylindrical body
photoelectric conversion
heat transfer
conversion element
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010238728A
Other languages
Japanese (ja)
Other versions
JP5564396B2 (en
Inventor
Yoshiro Miyazaki
芳郎 宮崎
Satoshi Maeda
智 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIYO DENSHI KK
Kanai Educational Institution
Original Assignee
TAIYO DENSHI KK
Kanai Educational Institution
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIYO DENSHI KK, Kanai Educational Institution filed Critical TAIYO DENSHI KK
Priority to JP2010238728A priority Critical patent/JP5564396B2/en
Publication of JP2012094596A publication Critical patent/JP2012094596A/en
Application granted granted Critical
Publication of JP5564396B2 publication Critical patent/JP5564396B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light condensing power generator capable of increasing condensed light quantity onto a photoelectric transducer and reliably suppressing temperature rise of the photoelectric transducer due to this increase.SOLUTION: The power generator includes: a photoelectric transducer 11; and an optical lens condensing light onto a light-receiving surface 11a of the photoelectric transducer 11. A self-oscillating heat pipe 14 is attached to the photoelectric transducer 11.

Description

この発明は、光を集めて発電する集光発電装置に関する。   The present invention relates to a concentrating power generation apparatus that collects light and generates electric power.

太陽光のエネルギーを電力に変換する太陽光発電システムでは、光電変換素子が太陽光を受けて温度上昇し、その温度上昇の影響で光電変換効率が低下するという問題がある。   In a photovoltaic power generation system that converts sunlight energy into electric power, there is a problem that the photoelectric conversion element receives sunlight and rises in temperature, and the photoelectric conversion efficiency decreases due to the rise in temperature.

対策として、光電変換素子に気中放熱冷却機構を取付けた構成の集光型太陽光発電装置が知られている(例えば特許文献1)   As a countermeasure, a concentrating solar power generation apparatus having a configuration in which an air heat radiation cooling mechanism is attached to a photoelectric conversion element is known (for example, Patent Document 1).

特開2010−40940号公報JP 2010-40940 A

上記の集光型太陽光発電装置は、太陽光を受けるパラボラ反射板の焦点位置に光電変換素子を配置し、その光電変換素子に気中放熱冷却機構を取付けている。この構成では、パラボラ反射板に向かう太陽光の光路上に光電変換素子と気中放熱冷却機構およびその支持部材が存在し、それが光を遮るため、光電変換素子への集光量が少なる。   In the above concentrating solar power generation device, a photoelectric conversion element is disposed at the focal position of a parabolic reflector that receives sunlight, and an air heat radiation cooling mechanism is attached to the photoelectric conversion element. In this configuration, the photoelectric conversion element, the air heat radiation cooling mechanism, and its supporting member exist on the optical path of sunlight toward the parabolic reflector, and the light is blocked, so that the amount of light collected on the photoelectric conversion element is small.

安定した発電を行うためには、光電変換素子への集光量をできるだけ多くすることが望まれる。ただし、集光量が増えると、光電変換素子の温度上昇が大きくなって光電変換効率が低下するため、その温度上昇を抑制する対策が必要となる。   In order to perform stable power generation, it is desirable to increase the amount of light collected on the photoelectric conversion element as much as possible. However, when the amount of light collection increases, the temperature rise of the photoelectric conversion element increases and the photoelectric conversion efficiency decreases, so a measure for suppressing the temperature rise is required.

この発明の目的は、光電変換素子への集光量を多くすることができるとともに、光電変換素子の温度上昇を確実に抑制できる集光発電装置を提供することである。   An object of the present invention is to provide a condensing power generation apparatus that can increase the amount of light condensing on a photoelectric conversion element and reliably suppress the temperature rise of the photoelectric conversion element.

この発明の集光発電装置は、光電変換素子と、この光電変換素子の受光面に光を集める光学レンズと、前記光電変換素子に設けられた自励振動ヒートパイプと、を備える。   A condensing power generation device of the present invention includes a photoelectric conversion element, an optical lens that collects light on a light receiving surface of the photoelectric conversion element, and a self-excited vibration heat pipe provided in the photoelectric conversion element.

この発明によれば、光電変換素子への集光量が多くなるとともに、それに伴う光電変換素子の温度上昇を確実に抑制できる集光発電装置を提供できる。   According to this invention, while the amount of condensing to a photoelectric conversion element increases, the condensing electric power generation apparatus which can suppress reliably the temperature rise of the photoelectric conversion element accompanying it can be provided.

第1乃至第7の実施形態の外観を示す図。The figure which shows the external appearance of 1st thru | or 7th embodiment. 第1の実施形態の構成を示す図。The figure which shows the structure of 1st Embodiment. 図2における自励振動ヒートパイプの形状を上方から見た図。The figure which looked at the shape of the self-excited vibration heat pipe in FIG. 2 from upper direction. 第2の実施形態の構成を示す図。The figure which shows the structure of 2nd Embodiment. 第3の実施形態の要部の構成を示す図。The figure which shows the structure of the principal part of 3rd Embodiment. 図5における自励振動ヒートパイプの形状を上方から見た図。The figure which looked at the shape of the self-excited vibration heat pipe in FIG. 5 from upper direction. 第4の実施形態の構成を一部断面して示す図。The figure which shows the structure of 4th Embodiment in partial cross section. 図7における筒状体を斜め方向から見た図。The figure which looked at the cylindrical body in FIG. 7 from the diagonal direction. 第6の実施形態の構成を一部断面して示す図。The figure which shows the structure of 6th Embodiment in partial cross section. 第7の実施形態の要部を拡大して示す図。The figure which expands and shows the principal part of 7th Embodiment.

[1]以下、第1の実施形態について説明する。
図1に示すように、架台1の上面にブラケット2を介して基板3の下縁部が回動自在に枢支され、その基板3の下面と架台1の上面との間に支持ロッド4の先端が係止される。そして、基板3の上面に多数の集光発電装置10が縦横に配置される。ブラケット2における基板3の回動位置および基板3に対する支持ロッド4の係止位置を調節することにより、各集光発電装置10を太陽に向く最適な状態に設定することができる。
[1] The first embodiment will be described below.
As shown in FIG. 1, the lower edge of the substrate 3 is pivotally supported on the upper surface of the gantry 1 via a bracket 2, and the support rod 4 is interposed between the lower surface of the substrate 3 and the upper surface of the gantry 1. The tip is locked. A large number of concentrating power generation devices 10 are arranged vertically and horizontally on the upper surface of the substrate 3. By adjusting the rotation position of the substrate 3 in the bracket 2 and the locking position of the support rod 4 with respect to the substrate 3, each condensing power generation device 10 can be set in an optimum state facing the sun.

各集光発電装置10の構成を図2および図3に示す。
11は光電変換素子で、光が到来する方向に受光面11aを向けて配置され、受光面11aで受けた光をその受光量に対応する大きさの電力に変換して出力する。この光電変換素子11の受光面11aの上方に、その受光面11aに光を集める集光手段として、光学レンズ12が設けられる。
The configuration of each condensing power generation apparatus 10 is shown in FIGS.
A photoelectric conversion element 11 is arranged with the light receiving surface 11a facing in the direction in which light arrives, and converts the light received by the light receiving surface 11a into electric power having a magnitude corresponding to the amount of received light and outputs the converted electric power. An optical lens 12 is provided above the light receiving surface 11a of the photoelectric conversion element 11 as a light collecting means for collecting light on the light receiving surface 11a.

13は伝熱体で、熱伝導性が良好な部材たとえば銅やアルミニウムによって光電変換素子11と略同じ径を有する円柱状に形成され、軸方向端部が光電変換素子11の背面部に取付けられる。そして、伝熱体13の周面に、熱輸送性能の高い自励振動ヒートパイプ14が取付けられる。   Reference numeral 13 denotes a heat transfer member, which is formed of a member having good thermal conductivity, such as copper or aluminum, into a cylindrical shape having substantially the same diameter as the photoelectric conversion element 11, and an axial end is attached to the back surface of the photoelectric conversion element 11. . And the self-excited vibration heat pipe 14 with high heat transport performance is attached to the peripheral surface of the heat transfer body 13.

自励振動ヒートパイプ14は、1本の細管およびその細管に封入された流体とで構成される。細管は、伝熱体13の周面に接する位置とその周面から同伝熱体13の径方向に離間する位置との間を往復する状態に巻回されつつ、その巻回が伝熱体13の周方向に沿って螺旋状に繰り返される形状を有する。この細管の各巻回部分は、伝熱体13の周面に接する部分が加熱部(受熱部ともいう)、伝熱体13の周面から離間する部分が冷却部となる。細管内の流体はそれぞれ表面張力によって形成された液状体および蒸気泡からなり、これら液状体および蒸気泡が管軸方向に分布している。なお、エンドレスの細管を用いているが、両端がそれぞれ閉じた非エンドレスの細管を用いてもよい。   The self-excited vibration heat pipe 14 is composed of a single thin tube and a fluid sealed in the thin tube. The thin tube is wound so as to reciprocate between a position in contact with the peripheral surface of the heat transfer body 13 and a position spaced apart from the peripheral surface in the radial direction of the heat transfer body 13, and the winding is performed in the heat transfer body. It has a shape that repeats spirally along 13 circumferential directions. As for each winding part of this thin tube, the part which contact | connects the surrounding surface of the heat exchanger 13 becomes a heating part (it is also called heat receiving part), and the part spaced apart from the surrounding surface of the heat exchanger 13 becomes a cooling part. The fluid in the narrow tube is composed of a liquid material and vapor bubbles formed by surface tension, respectively, and these liquid material and vapor bubbles are distributed in the tube axis direction. Although endless capillaries are used, non-endless capillaries with closed ends may be used.

太陽光を受けて温度上昇する光電変換素子11の熱は、伝熱体13を介して自励振動ヒートパイプ14の加熱部に伝わり、その加熱部から蒸発潜熱として流体に伝わり、その流体を伝わって冷却部に運ばれ、凝縮潜熱となって気中に放出される。この放熱に伴い、冷却部が冷え、その冷熱が流体を伝わって加熱部に運ばれる。   The heat of the photoelectric conversion element 11 that rises in temperature upon receiving sunlight is transferred to the heating part of the self-excited vibration heat pipe 14 via the heat transfer body 13, and is transferred to the fluid as the latent heat of evaporation from the heating part, and is transferred to the fluid. Then, it is transported to the cooling section, where it is discharged into the air as latent heat of condensation. Along with this heat radiation, the cooling unit cools, and the cold heat is transferred to the fluid and conveyed to the heating unit.

このとき、自励振動ヒートパイプ14の流体には、加熱部での蒸発作用および冷却部での凝縮作用により、加熱部と冷却部との間を揺れ動く自励的な振動いわゆる自励振動が生じる。すなわち、加熱部で生じる蒸気泡は冷却部へと流れ、冷却部で生じる液状体は加熱部へと流れる。この場合、加熱部から冷却部に向かう蒸気泡の流れ方向はその加熱部から冷却部を見た一方向および他方向においてランダムであり、冷却部から加熱部に向かう液状体の流れ方向もその冷却部から加熱部を見た一方向および他方向においてランダムである。   At this time, in the fluid of the self-excited vibration heat pipe 14, self-excited vibration that swings between the heating unit and the cooling unit, so-called self-excited vibration, is generated by the evaporation operation in the heating unit and the condensing operation in the cooling unit. . That is, the vapor bubbles generated in the heating unit flow to the cooling unit, and the liquid material generated in the cooling unit flows to the heating unit. In this case, the flow direction of the steam bubbles from the heating unit to the cooling unit is random in one direction and the other direction when the cooling unit is viewed from the heating unit, and the flow direction of the liquid material from the cooling unit to the heating unit is also the cooling direction. It is random in one direction and the other direction when the heating part is seen from the part.

この流体の自励振動によって加熱部から冷却部への熱輸送が継続し、光電変換素子11の熱が効率よく気中に放出される。   Due to the self-excited vibration of the fluid, heat transport from the heating part to the cooling part continues, and the heat of the photoelectric conversion element 11 is efficiently released into the air.

以上のように、光電変換素子11の受光面11aを光が到来する方向に向け、その受光面11aの上方に集光用の光学レンズ12を設けることにより、より多くの光を光電変換素子11の受光面11aに集めることができる。これにより、光電変換素子11の出力が増大する。   As described above, by directing the light receiving surface 11a of the photoelectric conversion element 11 in the direction in which light arrives and providing the condensing optical lens 12 above the light receiving surface 11a, more light is converted into the photoelectric conversion element 11. Can be collected on the light receiving surface 11a. Thereby, the output of the photoelectric conversion element 11 increases.

集光量が増えると、それに伴って光電変換素子11の温度上昇が大きくなるが、光電変換素子11に伝熱体13を取付け、その伝熱体13に熱輸送性能の高い自励振動ヒートパイプ14を取付けているので、光電変換素子11の熱を効率よく気中に放出できる。これにより、光電変換素子11の温度上昇を確実に抑制でき、ひいては光電変換素子11の光電変換効率の低下を回避することができ、常に安定した発電が可能となる。   As the amount of collected light increases, the temperature rise of the photoelectric conversion element 11 increases accordingly. The heat transfer body 13 is attached to the photoelectric conversion element 11 and the self-excited vibration heat pipe 14 having high heat transport performance is attached to the heat transfer body 13. Is attached, the heat of the photoelectric conversion element 11 can be efficiently released into the air. Thereby, the temperature rise of the photoelectric conversion element 11 can be surely suppressed, and as a result, a decrease in the photoelectric conversion efficiency of the photoelectric conversion element 11 can be avoided, and stable power generation is always possible.

とくに、自励振動ヒートパイプ14は、伝熱体13の周面に接する位置とその周面から同伝熱体13の径方向に離間する位置との間を往復する状態に巻回されつつ、その巻回が伝熱体13の周方向に沿って螺旋状に繰り返される形状を有し、多数の巻回部分が伝熱体13の周面全体を覆うように接するとともに、それぞれの巻回部分の放熱部が互いに離れてその相互間に十分な放熱空間を確保する構成であるから、伝熱体13からの受熱効率に優れるとともに放熱部から気中への放熱効率にも優れ、もともと持っている高い熱輸送性能を最大限に発揮することができる。これにより、光電変換素子11の温度上昇に対する抑制効果がより高まる。   In particular, the self-excited vibration heat pipe 14 is wound in a state of reciprocating between a position in contact with the peripheral surface of the heat transfer body 13 and a position spaced from the peripheral surface in the radial direction of the heat transfer body 13, The winding has a shape that is spirally repeated along the circumferential direction of the heat transfer body 13, and a large number of winding portions are in contact with each other so as to cover the entire peripheral surface of the heat transfer body 13, and each winding portion Since the heat dissipating parts are separated from each other and a sufficient heat dissipating space is ensured between them, the heat receiving efficiency from the heat transfer body 13 is excellent and the heat dissipating efficiency from the heat dissipating part to the air is originally possessed. High heat transport performance can be maximized. Thereby, the suppression effect with respect to the temperature rise of the photoelectric conversion element 11 increases more.

[2]第2の実施形態について説明する。
図4に示すように、集光発電装置10が太陽に向かって傾斜状態で配置されることに対処し、自励振動ヒートパイプ14の各巻回部分のうち、加熱部が上方で冷却部が下方となる位置関係を持つ少なくとも1つの巻回部分に、逆止弁15が設けられる。
[2] A second embodiment will be described.
As shown in FIG. 4, the concentrating power generation apparatus 10 is disposed in an inclined state toward the sun, and the heating part is the upper part and the cooling part is the lower part among the winding parts of the self-excited vibration heat pipe 14. The check valve 15 is provided in at least one winding portion having the positional relationship as follows.

加熱部が上方で冷却部が下方となる位置関係を持つ巻回部分では、冷却部で凝縮して加熱部の方向(昇り方向)に向かう液状体の流れに対し、重力が加わる。この重力による液状体の落下を抑えるために逆止弁15を設けている。
他の構成、作用、効果は、第1の実施形態と同じである。よって、その説明は省略する。
In the winding part having a positional relationship in which the heating part is above and the cooling part is below, gravity is applied to the flow of the liquid material condensed in the cooling part and moving in the direction of the heating part (upward direction). A check valve 15 is provided to prevent the liquid from falling due to gravity.
Other configurations, operations, and effects are the same as those in the first embodiment. Therefore, the description is omitted.

[3]第3の実施形態について説明する。
図5および図6に示すように、伝熱体13の周面に、熱輸送性能の高い自励振動ヒートパイプ16が取付けられる。図5は要部を側方から見た図、図6は図5を上方から見た図である。
[3] A third embodiment will be described.
As shown in FIGS. 5 and 6, a self-excited vibration heat pipe 16 having high heat transport performance is attached to the peripheral surface of the heat transfer body 13. FIG. 5 is a view of the main part as viewed from the side, and FIG. 6 is a view of FIG. 5 as viewed from above.

自励振動ヒートパイプ16の細管は、伝熱体13の周面に接する位置とその周面から同伝熱体13の径方向に離間する位置との間を往復する状態に巻回されつつ、その巻回が伝熱体13の軸方向に沿って繰り返され、かつ伝熱体13の周方向における各巻回の位置がその伝熱体の周方向に沿って所定角度ずつずれる形状を有する。この細管の各巻回部分は、伝熱体13の周面の略半分を被うように接する部分が加熱部となり、伝熱体13の周面から離間する部分が冷却部となる。細管内の流体はそれぞれ表面張力によって形成された液状体および蒸気泡からなり、その液状体および蒸気泡が管軸方向に分布している。なお、エンドレスの細管を用いているが、両端がそれぞれ閉じた非エンドレスの細管を用いてもよい。   The thin tube of the self-excited vibration heat pipe 16 is wound in a state of reciprocating between a position in contact with the circumferential surface of the heat transfer body 13 and a position spaced in the radial direction of the heat transfer body 13 from the circumferential surface. The winding is repeated along the axial direction of the heat transfer body 13, and the position of each winding in the circumferential direction of the heat transfer body 13 has a shape shifted by a predetermined angle along the circumferential direction of the heat transfer body 13. As for each winding part of this thin tube, the part which touches so that substantially half of the surrounding surface of the heat exchanger 13 may be covered becomes a heating part, and the part spaced apart from the surrounding surface of the heat exchanger 13 becomes a cooling part. The fluid in the narrow tube is composed of a liquid material and vapor bubbles formed by surface tension, respectively, and the liquid material and vapor bubbles are distributed in the tube axis direction. Although endless capillaries are used, non-endless capillaries with closed ends may be used.

他の構成は、第1の実施形態に示した図1および図2と同じである。   Other configurations are the same as those in FIGS. 1 and 2 shown in the first embodiment.

光電変換素子11の受光面11aへの集光量が増えることで光電変換素子11の温度上昇が大きくなるが、光電変換素子11に伝熱体13を取付け、その伝熱体13に熱輸送性能の高い自励振動ヒートパイプ16を取付けているので、光電変換素子11の熱を効率よく気中に放出できる。これにより、光電変換素子11の温度上昇を確実に抑制でき、ひいては光電変換素子11の光電変換効率の低下を回避することができ、常に安定した発電が可能となる。   Although the temperature rise of the photoelectric conversion element 11 increases as the amount of light collected on the light receiving surface 11a of the photoelectric conversion element 11 increases, the heat transfer body 13 is attached to the photoelectric conversion element 11, and the heat transfer performance of the heat transfer body 13 is improved. Since the high self-excited vibration heat pipe 16 is attached, the heat of the photoelectric conversion element 11 can be efficiently released into the air. Thereby, the temperature rise of the photoelectric conversion element 11 can be surely suppressed, and as a result, a decrease in the photoelectric conversion efficiency of the photoelectric conversion element 11 can be avoided, and stable power generation is always possible.

とくに、自励振動ヒートパイプ16は、伝熱体13の周面に接する位置とその周面から同伝熱体13の径方向に離間する位置との間を往復する状態に巻回されつつ、その巻回が伝熱体13の周方向に沿って螺旋状に繰り返され、かつ伝熱体13の周方向における各巻回の位置がその伝熱体の周方向に沿って所定角度ずつずれる形状を有し、多数の巻回部分が伝熱体13の周面全体を覆うように接するとともに、それぞれの巻回部分の放熱部が上下および水平の両方向において互いに離れてその相互間に十分な放熱空間を確保する構成であるから、伝熱体13からの受熱効率に優れるとともに放熱部から気中への放熱効率にも優れ、もともと持っている高い熱輸送性能を最大限に発揮することができる。これにより、光電変換素子11の温度上昇に対する抑制効果がより高まる。   In particular, the self-excited vibration heat pipe 16 is wound in a state of reciprocating between a position in contact with the circumferential surface of the heat transfer body 13 and a position spaced in the radial direction of the heat transfer body 13 from the circumferential surface. The winding is repeated spirally along the circumferential direction of the heat transfer body 13, and the position of each winding in the circumferential direction of the heat transfer body 13 is shifted by a predetermined angle along the circumferential direction of the heat transfer body. And a large number of winding portions are in contact with each other so as to cover the entire peripheral surface of the heat transfer body 13, and the heat radiating portions of the respective winding portions are separated from each other in both the vertical and horizontal directions, and a sufficient heat radiation space is provided between them. Therefore, the heat receiving efficiency from the heat transfer body 13 is excellent and the heat dissipation efficiency from the heat radiating portion to the air is excellent, and the high heat transport performance originally possessed can be maximized. Thereby, the suppression effect with respect to the temperature rise of the photoelectric conversion element 11 increases more.

[4]第4の実施形態について説明する。
図7および図8に示すように、光学レンズ12と光電変換素子11との間に筒状体21が設けられる。筒状体21は、熱伝導性が良好な部材たとえば銅やアルミニウムにより円筒状に形成され、光学レンズ12を経た光が入る開口21aを軸方向一端に有する。この筒状体21の内周面の全域に、その開口21aに入る光を反射により同筒状体21の軸方向他端側に導く反射部材(ホモジナイザーともいう)22が装着される。
[4] A fourth embodiment will be described.
As shown in FIGS. 7 and 8, a cylindrical body 21 is provided between the optical lens 12 and the photoelectric conversion element 11. The cylindrical body 21 is formed in a cylindrical shape from a member having good thermal conductivity, such as copper or aluminum, and has an opening 21a into which light passing through the optical lens 12 enters at one end in the axial direction. A reflection member (also referred to as a homogenizer) 22 that guides light entering the opening 21a to the other axial end of the cylindrical body 21 by reflection is attached to the entire inner peripheral surface of the cylindrical body 21.

光電変換素子11は、筒状体21の軸方向他端に、かつ受光面11aが開口21aに向く状態に、配設される。   The photoelectric conversion element 11 is disposed at the other end in the axial direction of the cylindrical body 21 and in a state where the light receiving surface 11a faces the opening 21a.

筒状体21の開口21aに入る太陽光は、反射部材22で反射されながら筒状体21の軸方向他端側に進み、光電変換素子11の受光面11aに照射される。照射される光の強さは、反射部材22の反射を経ていることにより、受光面11aの全域において一定となる。受光面11aの一点に強い光が集中しない。   Sunlight entering the opening 21 a of the cylindrical body 21 proceeds to the other axial end of the cylindrical body 21 while being reflected by the reflecting member 22, and is irradiated on the light receiving surface 11 a of the photoelectric conversion element 11. The intensity of the irradiated light is constant throughout the light receiving surface 11a due to the reflection of the reflecting member 22. Strong light does not concentrate on one point of the light receiving surface 11a.

そして、筒状体21の周面に、熱輸送性能の高い自励振動ヒートパイプ14が取付けられる。   And the self-excited vibration heat pipe 14 with high heat transport performance is attached to the peripheral surface of the cylindrical body 21.

自励振動ヒートパイプ14の細管は、筒状体21の周面に接する位置とその周面から同筒状体21の径方向に離間する位置との間を往復する状態に巻回されつつ、その巻回が筒状体21の周方向に沿って螺旋状に繰り返される形状を有する。この細管の各巻回部分は、筒状体21の周面に接する部分が加熱部、筒状体21の周面から離間する部分が冷却部となる。この自励振動ヒートパイプ14の構成そのものは、図2および図3に示した第1の実施形態のものと同じである。   The thin tube of the self-excited vibration heat pipe 14 is wound in a state of reciprocating between a position contacting the circumferential surface of the cylindrical body 21 and a position spaced apart from the circumferential surface in the radial direction of the cylindrical body 21. The winding has a shape that is spirally repeated along the circumferential direction of the cylindrical body 21. As for each winding part of this thin tube, the part which contact | connects the surrounding surface of the cylindrical body 21 becomes a heating part, and the part spaced apart from the surrounding surface of the cylindrical body 21 becomes a cooling part. The structure of the self-excited vibration heat pipe 14 is the same as that of the first embodiment shown in FIGS.

以上のように、筒状体21および反射部材22を設けることにより、光電変換素子11の受光面11aに照射される光の強さをその受光面11aの全域において一定にすることができる。   As described above, by providing the cylindrical body 21 and the reflecting member 22, the intensity of light irradiated on the light receiving surface 11 a of the photoelectric conversion element 11 can be made constant over the entire area of the light receiving surface 11 a.

光電変換素子11は熱伝導性が良好な筒状体21に接しており、その筒状体21に熱輸送性能の高い自励振動ヒートパイプ14を取付けているので、光電変換素子11の熱を効率よく気中に放出できる。これにより、光電変換素子11の温度上昇を確実に抑制でき、ひいては光電変換素子11の光電変換効率の低下を回避することができ、常に安定した発電が可能となる。   Since the photoelectric conversion element 11 is in contact with the cylindrical body 21 having good thermal conductivity, and the self-excited vibration heat pipe 14 having high heat transport performance is attached to the cylindrical body 21, the heat of the photoelectric conversion element 11 is absorbed. It can be efficiently released into the air. Thereby, the temperature rise of the photoelectric conversion element 11 can be surely suppressed, and as a result, a decrease in the photoelectric conversion efficiency of the photoelectric conversion element 11 can be avoided, and stable power generation is always possible.

とくに、自励振動ヒートパイプ14は、筒状体21の周面に接する位置とその周面から同筒状体21の径方向に離間する位置との間を往復する状態に巻回されつつ、その巻回が筒状体21の周方向に沿って螺旋状に繰り返される形状を有し、多数の巻回部分が筒状体21の周面全体を覆うように接するとともに、それぞれの巻回部分の放熱部が互いに離れてその相互間に十分な放熱空間を確保する構成であるから、伝熱体13からの受熱効率に優れるとともに放熱部から気中への放熱効率にも優れ、もともと持っている高い熱輸送性能を最大限に発揮することができる。   In particular, the self-excited vibration heat pipe 14 is wound in a state of reciprocating between a position in contact with the circumferential surface of the cylindrical body 21 and a position spaced apart from the circumferential surface in the radial direction of the cylindrical body 21. The winding has a shape that is spirally repeated along the circumferential direction of the cylindrical body 21, and a large number of winding portions are in contact with each other so as to cover the entire circumferential surface of the cylindrical body 21, and each winding portion Since the heat dissipating parts are separated from each other and a sufficient heat dissipating space is ensured between them, the heat receiving efficiency from the heat transfer body 13 is excellent and the heat dissipating efficiency from the heat dissipating part to the air is originally possessed. High heat transport performance can be maximized.

[5]第5の実施形態について説明する。
この第5の実施形態は、図5および図6の第3の実施形態と図7および図8の第4の実施形態との組合せに相当するもので、とくに図示していないが、図7および図8に示した筒状体21に対し、自励振動ヒートパイプ14に代えて、図5および図6に示した自励振動ヒートパイプ16が取付けられる構成である。
[5] A fifth embodiment will be described.
The fifth embodiment corresponds to a combination of the third embodiment shown in FIGS. 5 and 6 and the fourth embodiment shown in FIGS. 7 and 8, and is not particularly shown. In place of the self-excited vibration heat pipe 14, the self-excited vibration heat pipe 16 illustrated in FIGS. 5 and 6 is attached to the cylindrical body 21 illustrated in FIG. 8.

この構成によれば、集光に関して第4の実施形態と同じ作用および効果が得られ、放熱に関して第3の実施形態と同じ作用および効果が得られる。   According to this configuration, the same operation and effect as in the fourth embodiment can be obtained with respect to light collection, and the same operation and effect as in the third embodiment can be obtained with respect to heat dissipation.

[6]第6の実施形態について説明する。
この第6の実施形態は、図7および図8に示した第4の実施形態の変形例であり、図9に示すように、自励振動ヒートパイプ14の各巻回部分が筒状体21の側壁に挿通される。
[6] A sixth embodiment will be described.
The sixth embodiment is a modification of the fourth embodiment shown in FIGS. 7 and 8, and as shown in FIG. 9, each winding portion of the self-excited vibration heat pipe 14 is formed of a cylindrical body 21. It is inserted through the side wall.

この構成によれば、筒状体21と自励振動ヒートパイプ14との密着度が増して両者間の伝熱性能が向上するという効果を奏する。   According to this structure, there exists an effect that the adhesiveness of the cylindrical body 21 and the self-excited vibration heat pipe 14 increases, and the heat-transfer performance between both improves.

他の構成、作用、効果は第4の実施形態と同じである。   Other configurations, operations, and effects are the same as those in the fourth embodiment.

[7]第7の実施形態について説明する。
第7の実施形態は、図7および図8に示した第4の実施形態のさらなる変形例であり、図9のように自励振動ヒートパイプ14の各巻回部分が筒状体21の側壁に挿通されるとともに、図10に示すように、筒状体21の側壁とその側壁から出る自励振動ヒートパイプ14の外周面との間にロウ付け部材23がロウ付けされる。
[7] A seventh embodiment will be described.
The seventh embodiment is a further modification of the fourth embodiment shown in FIGS. 7 and 8, and each winding portion of the self-excited vibration heat pipe 14 is formed on the side wall of the cylindrical body 21 as shown in FIG. 9. As shown in FIG. 10, the brazing member 23 is brazed between the side wall of the cylindrical body 21 and the outer peripheral surface of the self-excited vibration heat pipe 14 that comes out of the side wall.

この構成によれば、筒状体21と自励振動ヒートパイプ14との密着度がさらに増して両者間の伝熱性能が向上するという効果を奏する。   According to this structure, there exists an effect that the adhesiveness of the cylindrical body 21 and the self-excited vibration heat pipe 14 increases further, and the heat-transfer performance between both improves.

他の構成、作用、効果は第4の実施形態と同じである。   Other configurations, operations, and effects are the same as those in the fourth embodiment.

[8]なお、上記第1乃至第7の実施形態では、太陽光を光電変換する場合を例に説明したが、太陽光に限らず、照明器具の光を光電変換する場合についても同様に実施可能である。
その他、各実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、書き換え、変更を行うことができる。これら実施形態や変形は、発明の範囲は要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
[8] In the first to seventh embodiments, the case of photoelectric conversion of sunlight has been described as an example. However, the present invention is not limited to sunlight and is similarly applied to the case of photoelectric conversion of light from a lighting fixture. Is possible.
In addition, each embodiment is presented as an example and is not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, rewrites, and changes can be made without departing from the scope of the invention. In these embodiments and modifications, the scope of the invention is included in the gist, and is included in the invention described in the claims and the equivalents thereof.

1…架台、2…ブラケット、3…基板、4…支持ロッド、10…集光発電装置、11…光電変換素子、11a…受光面、12…光学レンズ、13…伝熱体、14…自励振動ヒートパイプ、15…逆止弁、16…自励振動ヒートパイプ、21…筒状体、21a…開口、22…反射部材、23…ロウ付け部材   DESCRIPTION OF SYMBOLS 1 ... Mount, 2 ... Bracket, 3 ... Board | substrate, 4 ... Support rod, 10 ... Condensing electric power generation apparatus, 11 ... Photoelectric conversion element, 11a ... Light-receiving surface, 12 ... Optical lens, 13 ... Heat-transfer body, 14 ... Self-excitation Vibrating heat pipe, 15 ... check valve, 16 ... self-excited vibrating heat pipe, 21 ... cylindrical body, 21a ... opening, 22 ... reflecting member, 23 ... brazing member

Claims (9)

光電変換素子と、
この光電変換素子の受光面に光を集める光学レンズと、
前記光電変換素子に設けられた自励振動ヒートパイプと、
を備えることを特徴とする集光発電装置。
A photoelectric conversion element;
An optical lens that collects light on the light receiving surface of the photoelectric conversion element;
A self-excited vibration heat pipe provided in the photoelectric conversion element;
A condensing power generation device comprising:
前記光電変換素子の背面部に取付けられた伝熱体、をさらに備え、
前記自励振動ヒートパイプは、前記伝熱体に取付けられる、
ことを特徴とする請求項1に記載の集光発電装置。
A heat transfer body attached to the back surface of the photoelectric conversion element,
The self-excited vibration heat pipe is attached to the heat transfer body,
The condensing power generation device according to claim 1.
前記伝熱体は、柱状に形成され、軸方向端部が光電変換素子の背面部に取付けられる、
前記自励振動ヒートパイプは、前記伝熱体の周面に接する位置とその周面から同伝熱体の径方向に離間する位置との間を往復する状態に巻回されつつ、その巻回が伝熱体の周方向に沿って螺旋状に繰り返される形状を有する、
ことを特徴とする請求項2に記載の集光発電装置。
The heat transfer body is formed in a column shape, and the axial end is attached to the back surface portion of the photoelectric conversion element.
The self-excited vibration heat pipe is wound while being reciprocated between a position in contact with the circumferential surface of the heat transfer body and a position spaced from the circumferential surface in the radial direction of the heat transfer body. Has a shape that is repeated spirally along the circumferential direction of the heat transfer body,
The concentrating power generation device according to claim 2.
前記伝熱体は、柱状に形成され、軸方向端部が光電変換素子の背面部に取付けられる、
前記自励振動ヒートパイプは、前記伝熱体の周面に接する位置とその周面から同伝熱体の径方向に離間する位置との間を往復する状態に巻回されつつ、その巻回が伝熱体の軸方向に沿って繰り返され、かつ伝熱体の周方向における各巻回の位置がその伝熱体の周方向に沿って所定角度ずつずれる形状を有する、
ことを特徴とする請求項2に記載の集光発電装置。
The heat transfer body is formed in a column shape, and the axial end is attached to the back surface portion of the photoelectric conversion element.
The self-excited vibration heat pipe is wound while being reciprocated between a position in contact with the circumferential surface of the heat transfer body and a position spaced from the circumferential surface in the radial direction of the heat transfer body. Is repeated along the axial direction of the heat transfer body, and the position of each winding in the circumferential direction of the heat transfer body has a shape shifted by a predetermined angle along the circumferential direction of the heat transfer body,
The concentrating power generation device according to claim 2.
前記光学レンズと前記光電変換素子の受光面との間に設けられ、その光学レンズを経た光が入る開口を軸方向一端に有する熱伝導性が良好な筒状体と、
この筒状体の内周面に設けられ、その筒状体の前記開口に入る光を反射により同筒状体の軸方向他端に導く反射部材と、
を備え、
前記光電変換素子は、前記筒状体の軸方向他端に設けられ、前記反射部材により導かれる光を受ける、
前記自励振動ヒートパイプは、前記筒状体に取付けられる、
ことを特徴とする請求項1に記載の集光発電装置。
A cylindrical body with good thermal conductivity, provided between the optical lens and the light receiving surface of the photoelectric conversion element, and having an opening at one end in the axial direction for receiving light passing through the optical lens;
A reflecting member that is provided on the inner peripheral surface of the cylindrical body and guides light entering the opening of the cylindrical body to the other axial end of the cylindrical body by reflection;
With
The photoelectric conversion element is provided at the other axial end of the cylindrical body and receives light guided by the reflecting member.
The self-excited vibration heat pipe is attached to the cylindrical body,
The condensing power generation device according to claim 1.
前記自励振動ヒートパイプは、前記筒状体の側壁に接する位置とその側壁から同筒状体の径方向に離間する位置との間を往復する状態に巻回されつつ、その巻回が筒状体の周方向に沿って螺旋状に繰り返される形状を有する、
ことを特徴とする請求項5に記載の集光発電装置。
The self-excited vibration heat pipe is wound in a state of reciprocating between a position contacting the side wall of the cylindrical body and a position spaced apart from the side wall in the radial direction of the cylindrical body. Having a shape that spirally repeats along the circumferential direction of the body,
The concentrating power generation device according to claim 5.
前記自励振動ヒートパイプは、前記筒状体の側壁に接する位置とその側壁から同筒状体の径方向に離間する位置との間を往復する状態に巻回されつつ、その巻回が筒状体の軸方向に沿って繰り返され、かつ筒状体の周方向における各巻回の位置がその筒状体の周方向に沿って所定角度ずつずれる形状を有する、
ことを特徴とする請求項5に記載の集光発電装置。
The self-excited vibration heat pipe is wound in a state of reciprocating between a position contacting the side wall of the cylindrical body and a position spaced apart from the side wall in the radial direction of the cylindrical body. Repeated along the axial direction of the cylindrical body, and the position of each winding in the circumferential direction of the cylindrical body has a shape shifted by a predetermined angle along the circumferential direction of the cylindrical body,
The concentrating power generation device according to claim 5.
前記自励振動ヒートパイプは、前記筒状体の側壁に挿通されている、
ことを特徴とする請求項6または請求項7に記載の集光発電装置。
The self-excited vibration heat pipe is inserted through a side wall of the cylindrical body,
The concentrating power generation device according to claim 6 or 7, wherein
前記筒状体の側壁とその側壁から出る前記自励振動ヒートパイプの外周面との間にロウ付けされるロウ付け部材、
をさらに備えることを特徴とする請求項8に記載の集光発電装置。
A brazing member brazed between a side wall of the cylindrical body and an outer peripheral surface of the self-excited vibration heat pipe coming out of the side wall;
The condensing power generation device according to claim 8, further comprising:
JP2010238728A 2010-10-25 2010-10-25 Concentrator generator Expired - Fee Related JP5564396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010238728A JP5564396B2 (en) 2010-10-25 2010-10-25 Concentrator generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010238728A JP5564396B2 (en) 2010-10-25 2010-10-25 Concentrator generator

Publications (2)

Publication Number Publication Date
JP2012094596A true JP2012094596A (en) 2012-05-17
JP5564396B2 JP5564396B2 (en) 2014-07-30

Family

ID=46387635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010238728A Expired - Fee Related JP5564396B2 (en) 2010-10-25 2010-10-25 Concentrator generator

Country Status (1)

Country Link
JP (1) JP5564396B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015145769A (en) * 2014-02-04 2015-08-13 千代田空調機器株式会社 Solar photovoltaic power generation panel cooling device and solar photovoltaic power generation device
CN116336845A (en) * 2023-04-25 2023-06-27 山东大学 Flower-type pulsating heat pipe phase-change heat storage heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120072A (en) * 1993-09-03 1995-05-12 Maruyoshi:Kk Solar light converter
WO2004042828A2 (en) * 2002-11-05 2004-05-21 Day4 Energy Inc. Cooling assembly for light concentrator photovoltaic systems
WO2006038508A1 (en) * 2004-10-06 2006-04-13 Tama-Tlo, Ltd. Solar cell system and combined heat/electricity solar cell system
JP2009187971A (en) * 2008-02-01 2009-08-20 Sharp Corp Solar battery, concentrating solar photovoltaic module, and production process of solar battery
WO2009111908A1 (en) * 2008-03-14 2009-09-17 Chen Jen-Shyan Solar cell device with high heat dissipation efficiency

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120072A (en) * 1993-09-03 1995-05-12 Maruyoshi:Kk Solar light converter
WO2004042828A2 (en) * 2002-11-05 2004-05-21 Day4 Energy Inc. Cooling assembly for light concentrator photovoltaic systems
WO2006038508A1 (en) * 2004-10-06 2006-04-13 Tama-Tlo, Ltd. Solar cell system and combined heat/electricity solar cell system
JP2009187971A (en) * 2008-02-01 2009-08-20 Sharp Corp Solar battery, concentrating solar photovoltaic module, and production process of solar battery
WO2009111908A1 (en) * 2008-03-14 2009-09-17 Chen Jen-Shyan Solar cell device with high heat dissipation efficiency

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015145769A (en) * 2014-02-04 2015-08-13 千代田空調機器株式会社 Solar photovoltaic power generation panel cooling device and solar photovoltaic power generation device
CN116336845A (en) * 2023-04-25 2023-06-27 山东大学 Flower-type pulsating heat pipe phase-change heat storage heat exchanger

Also Published As

Publication number Publication date
JP5564396B2 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
US20070089777A1 (en) Heatsink for concentrating or focusing optical/electrical energy conversion systems
US8283613B2 (en) Heat-pipe electric-power generating device
US8569616B2 (en) Method of concetrating solar energy
JP5818813B2 (en) Multi-point cooling system for solar concentrator
US8941000B2 (en) Solar concentrator cooling by vortex gas circulation
US20140376248A1 (en) Led lighting device and vehicle headlight having same
EP2360729A2 (en) Modulized led apparatus with enhanced heat dissipation
KR101567081B1 (en) Solar cell aparatus
WO2009111908A1 (en) Solar cell device with high heat dissipation efficiency
JP5564396B2 (en) Concentrator generator
JP2010144957A (en) Solar heat collection method and device
JP2010281251A (en) Solar light concentrating steam power generator
KR20100101325A (en) Heating exchanger using solar heat and heating apparatus thereof
WO2012076847A1 (en) Solar energy apparatus with a combined photovoltaic and thermal power generation system
KR100720926B1 (en) Condensing apparatus for solar photovoltaic generator
JP2006322696A (en) Heat storing and insulating device utilizing solar heat by combination of reflector with lens
JP2011103350A (en) Cooling device of photovoltaic power generator
KR101180495B1 (en) LED lighting apparatus and headlight having the same
US9512827B2 (en) Steam or vapour condensing system
WO2010004545A1 (en) Apparatus and system for collecting concentrated solar radiation
KR100779428B1 (en) Solar collector with reflector and double-sided coating to collect solar thermal
KR100920796B1 (en) Thermal storage unit using electron wave of solar radiation
KR100779547B1 (en) Solar collector with reflector and double-sided coating to collect solar thermal
JP5170538B2 (en) Heat wire transformer
KR101512060B1 (en) Solar power generating apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130930

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140616

R150 Certificate of patent or registration of utility model

Ref document number: 5564396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees