JP2009187772A - Manufacturing method of electrode foil for nonaqueous electrolyte battery, and manufacturing method of electrode plate for nonaqueous electrolyte battery - Google Patents

Manufacturing method of electrode foil for nonaqueous electrolyte battery, and manufacturing method of electrode plate for nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2009187772A
JP2009187772A JP2008026065A JP2008026065A JP2009187772A JP 2009187772 A JP2009187772 A JP 2009187772A JP 2008026065 A JP2008026065 A JP 2008026065A JP 2008026065 A JP2008026065 A JP 2008026065A JP 2009187772 A JP2009187772 A JP 2009187772A
Authority
JP
Japan
Prior art keywords
foil
graphite
coating layer
nonaqueous electrolyte
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008026065A
Other languages
Japanese (ja)
Inventor
Yozo Uchida
陽三 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008026065A priority Critical patent/JP2009187772A/en
Publication of JP2009187772A publication Critical patent/JP2009187772A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of electrode foil for a nonaqueous electrolyte battery in which generation of a film consisting of fluoride and oxide on the surface of the metal foil is prevented and resistance generated between the active material layer and the metal foil is made small. <P>SOLUTION: This is the manufacturing method of electrode foil 20 for nonaqueous electrolyte battery having the metal foil and a coated layer 40 which is arranged on the foil surfaces 31, 32 of the metal foil and in which carbon particle parts 42 having graphite structure are dispersed in scattered spot-like on an amorphous carbon film 41, and comprises a coated layer forming process in which, using a target 110 consisting of porous carbon in which a great number of pores BH are dispersed on the surface and inside, amorphous carbon film is grown on the foil surface of the metal foil using a sputter method and the carbon particle parts are dispersedly arranged to form the coating layer. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、非水電解質電池用電極箔の製造方法、及び、この電極箔を用いた非水電解質電池用電極体の製造方法に関する。   The present invention relates to a method for producing a non-aqueous electrolyte battery electrode foil and a method for producing a non-aqueous electrolyte battery electrode body using the electrode foil.

近年、携帯電話、ノート型パソコン、ビデオカムコーダなどのポータブル電子機器やハイブリッド電気自動車等の車両の普及により、これらの駆動用電源に用いられる電池の需要は増大している。このような電池として、エネルギ密度の高い非水電解質電池が挙げられる。この非水電解質電池は、非水電解液を含浸させた状態のセパレータを介して正極及び負極を積層または捲回した発電要素を電池ケース内に収容した構造である。   In recent years, with the spread of portable electronic devices such as mobile phones, notebook computers, and video camcorders and vehicles such as hybrid electric vehicles, the demand for batteries used for these driving power sources is increasing. An example of such a battery is a non-aqueous electrolyte battery having a high energy density. This non-aqueous electrolyte battery has a structure in which a power generation element in which a positive electrode and a negative electrode are laminated or wound through a separator impregnated with a non-aqueous electrolyte is contained in a battery case.

ところで、この非水電解質電池の製造時や充放電時には、正極のまたは負極を構成している電極箔(例えば、アルミニウム箔や銅箔)と非水電解液とが反応して、例えば、フッ化物、酸化物等の膜が電極箔の表面上に生じてしまう。すると、電極箔とこの表面に配置した活物質層との間の抵抗が増大するため、この非水電解質電池の内部抵抗が増大してしまう虞がある。
そこで、例えば、特許文献1では、集電体(金属箔)の表面に導電助剤及び活物質を含む組成物層を配置した非水電解質電池用集電体(金属箔)が提案されている。
By the way, at the time of manufacture or charge / discharge of this nonaqueous electrolyte battery, the electrode foil (for example, aluminum foil or copper foil) constituting the positive electrode or the negative electrode reacts with the nonaqueous electrolyte solution, for example, fluoride. A film of oxide or the like is formed on the surface of the electrode foil. Then, the resistance between the electrode foil and the active material layer disposed on the surface increases, so that the internal resistance of the nonaqueous electrolyte battery may increase.
Thus, for example, Patent Document 1 proposes a non-aqueous electrolyte battery current collector (metal foil) in which a composition layer containing a conductive additive and an active material is disposed on the surface of a current collector (metal foil). .

特開2006−286344号公報JP 2006-286344 A

しかしながら、特許文献1の非水電解質電池用集電体(金属箔)では、導電助剤によって金属箔と組成物層との間の抵抗を低減させることができるが、この導電助剤は活物質と共に金属箔上に配置されているため、金属箔に非水電解液が接触することを防止できるわけではない。このため、非水電解液によって、フッ化物、酸化物等の膜が金属箔に発生する虞がある。このようにして発生した膜が金属箔と組成物層との間の導通における抵抗体となるため、両者間の導電性を低下させてしまう可能性がある。   However, in the non-aqueous electrolyte battery current collector (metal foil) of Patent Document 1, the resistance between the metal foil and the composition layer can be reduced by the conductive assistant, but this conductive assistant is an active material. Moreover, since it is arrange | positioned on metal foil, it cannot prevent that nonaqueous electrolyte solution contacts metal foil. For this reason, there exists a possibility that films | membranes, such as a fluoride and an oxide, may generate | occur | produce on metal foil with a non-aqueous electrolyte. Since the film | membrane produced | generated in this way becomes a resistor in conduction | electrical_connection between metal foil and a composition layer, there exists a possibility of reducing the electroconductivity between both.

本発明は、かかる現状に鑑みてなされたものであって、金属箔の表面にフッ化物、酸化物からなる膜の発生を防止し、活物質層と金属箔との間に生じる抵抗を低くした非水電解質電池用電極箔の製造方法を提供することを目的とする。また、このような電極箔を用いた非水電解質電池用電極体の製造方法を提供することを目的とする。   The present invention has been made in view of the current situation, and prevents the formation of a film made of fluoride or oxide on the surface of the metal foil, and reduces the resistance generated between the active material layer and the metal foil. It aims at providing the manufacturing method of the electrode foil for nonaqueous electrolyte batteries. Moreover, it aims at providing the manufacturing method of the electrode body for nonaqueous electrolyte batteries using such an electrode foil.

そして、その解決手段は、金属箔と、上記金属箔の箔表面上に配置され、アモルファスカーボン膜にグラファイト構造を有する粒子状のカーボン粒子部が散点状に分散して配置された被覆層と、を備える非水電解質電池用電極箔の製造方法であって、表面及び内部に多数の空孔を分散して含むとともに、グラファイト構造を有するポーラスカーボンからなるターゲットを用いて、スパッタ法により、上記金属箔の上記箔表面上に、上記アモルファスカーボン膜を成長させると共に上記カーボン粒子部を分散して配置して、上記被覆層を形成する被覆層形成工程を備える非水電解質電池用電極箔の製造方法である。   And the solution means is a metal foil and a coating layer disposed on the foil surface of the metal foil, in which the particulate carbon particle parts having a graphite structure are dispersed in a dispersed manner in an amorphous carbon film, and The electrode foil for a non-aqueous electrolyte battery comprising a plurality of pores dispersed on the surface and inside, and using a target made of porous carbon having a graphite structure, by the sputtering method, Production of an electrode foil for a nonaqueous electrolyte battery comprising a coating layer forming step of growing the amorphous carbon film on the foil surface of the metal foil and dispersing and arranging the carbon particle portions to form the coating layer Is the method.

本発明の非水電解質電池用電極箔の製造方法では、ポーラスカーボンからなるターゲットを用い、スパッタ法により、被覆層を形成する被覆層形成工程を備える。ターゲットであるポーラスカーボンに電圧を印加すると、このポーラスカーボンの周囲に形成される電界が、表面に開口する空孔の周囲で集中して、例えば、アルゴンイオン等のイオンが空孔の周囲のカーボンに衝突しやすい。すると、ターゲットから、炭素原子が放出されるほか、グラファイトの結晶状態を維持したカーボン粒子のドロップレットが多数放出され、これらが金属箔の箔表面上に堆積する。かくして、金属箔上には、炭素原子が堆積して成長したアモルファスカーボン膜のほか、カーボン粒子部が散点状に分散して配置された被覆層が形成される。   The method for producing an electrode foil for a nonaqueous electrolyte battery of the present invention includes a coating layer forming step of forming a coating layer by sputtering using a target made of porous carbon. When a voltage is applied to the target porous carbon, the electric field formed around the porous carbon concentrates around the vacancies opening on the surface, and, for example, ions such as argon ions are formed around the carbon around the vacancies. Easy to collide with. Then, in addition to releasing carbon atoms from the target, many droplets of carbon particles that maintain the crystalline state of graphite are released, and these deposit on the foil surface of the metal foil. Thus, on the metal foil, in addition to the amorphous carbon film in which carbon atoms are deposited and grown, a coating layer in which the carbon particle portions are dispersed and arranged in the form of scattered dots is formed.

この被覆層のうち、アモルファスカーボン膜は、金属箔の箔表面が酸化したり、腐食したりするのを抑制する耐食膜として機能する。また、カーボン粒子部はグラファイト構造を有するカーボンからなるため、アモルファスカーボン膜に比して導電性が高く、被覆層の導電性を向上させることができる。かくして、金属箔の表面に酸化物あるいはフッ化物などの膜が生じるのを防止して、活物質層と金属箔との間に生じる抵抗の増大を抑制し、逆に両者間の導通をカーボン粒子部により良好とした非水電解質電池用電極箔を製造することができる。   Among these coating layers, the amorphous carbon film functions as a corrosion-resistant film that suppresses oxidation or corrosion of the foil surface of the metal foil. Further, since the carbon particle portion is made of carbon having a graphite structure, it has higher conductivity than the amorphous carbon film, and the conductivity of the coating layer can be improved. Thus, the formation of a film of oxide or fluoride on the surface of the metal foil is prevented, and an increase in resistance generated between the active material layer and the metal foil is suppressed, and conversely, the conduction between the two is carbon particles. An electrode foil for a nonaqueous electrolyte battery that is more favorable for the part can be produced.

なお、アモルファスカーボン膜とは、sp2混成軌道をなして結合する炭素と、sp3混成軌道をなして結合する炭素とが混在した、非晶質の炭素皮膜をいう。
また、スパッタ法としては、例えば、二極スパッタ法、三極(又は四極)スパッタ法、マグネトロンスパッタ法、高周波スパッタ法、バイアススパッタ法が挙げられる。
The amorphous carbon film refers to an amorphous carbon film in which carbon bonded through sp2 hybrid orbitals and carbon bonded through sp3 hybrid orbitals are mixed.
Examples of the sputtering method include a bipolar sputtering method, a tripolar (or quadrupolar) sputtering method, a magnetron sputtering method, a high frequency sputtering method, and a bias sputtering method.

また、ポーラスカーボンとしては、例えば、粒径1〜5mm程度の炭素粒子とスチレン粒子とを、炭素粒子:スチレン粒子=2:1の体積比で混合した後に焼成して、グラファイト構造の結晶構造を有する部分が分散して形成されたものが挙げられる。   In addition, as porous carbon, for example, carbon particles having a particle diameter of about 1 to 5 mm and styrene particles are mixed at a volume ratio of carbon particles: styrene particles = 2: 1 and then fired to obtain a crystal structure of a graphite structure. The part which the part which it has disperse | distributed and formed is mentioned.

さらに、上述の非水電解質電池用電極箔の製造方法であって、前記カーボン粒子部は、黒鉛からなる黒鉛粒子部であり、前記被覆層形成工程では、前記ポーラスカーボンに、黒鉛からなるポーラス黒鉛を用いる非水電解質電池用電極箔の製造方法とすると良い。   Furthermore, in the method for producing an electrode foil for a non-aqueous electrolyte battery described above, the carbon particle part is a graphite particle part made of graphite, and in the coating layer forming step, the porous carbon is made of porous graphite made of graphite. A method for producing a non-aqueous electrolyte battery electrode foil is preferred.

本発明の非水電解質電池用電極箔の製造方法では、ポーラスカーボンに黒鉛からなるポーラス黒鉛を用いるので、金属箔上には、ポーラス黒鉛から多数放出された黒鉛粒子のドロップレットが堆積して、黒鉛粒子部が散点状に分散された被覆層が形成される。前述のカーボン粒子部の中でも黒鉛からなる黒鉛粒子部は、導電性が良好であるため、被覆層の導電性を確実に向上させることができる。   In the method for producing an electrode foil for a non-aqueous electrolyte battery according to the present invention, porous graphite made of graphite is used as porous carbon. Therefore, a large number of graphite particle droplets released from porous graphite are deposited on the metal foil. A coating layer in which the graphite particle portions are dispersed in the form of scattered dots is formed. Among the above-described carbon particle parts, the graphite particle part made of graphite has good conductivity, and therefore can reliably improve the conductivity of the coating layer.

なお、ポーラス黒鉛としては、例えば、粒径1〜5mm程度の炭素粒子とスチレン粒子とを、炭素粒子:スチレン粒子=2:1の体積比で混合した後に、2000〜2500℃の焼成温度で焼成した、多数の空孔を含む黒鉛が挙げられる。   As porous graphite, for example, carbon particles having a particle diameter of about 1 to 5 mm and styrene particles are mixed at a volume ratio of carbon particles: styrene particles = 2: 1, and then fired at a firing temperature of 2000 to 2500 ° C. And graphite containing a large number of pores.

さらに、他の解決手段は、金属箔と、上記金属箔の箔表面上に配置され、アモルファスカーボン膜にグラファイト構造を有する粒子状のカーボン粒子部が散点状に分散して配置された被覆層と、を有する非水電解質電池用電極箔、及び、活物質を含み、上記被覆層上に担持されてなる活物質層、を備える非水電解質電池用電極体の製造方法であって、表面及び内部に多数の空孔を分散して含むとともに、グラファイト構造を有するポーラスカーボンからなるターゲットを用いて、スパッタ法により、上記金属箔の上記箔表面上に、上記アモルファスカーボン膜を成長させると共に上記カーボン粒子部を分散して配置して、上記被覆層を形成する被覆層形成工程と、上記被覆層上に、上記活物質層を担持させる担持工程と、を備える非水電解質電池用電極体の製造方法である。   Further, another solution is a metal foil and a coating layer disposed on the foil surface of the metal foil, in which particulate carbon particle parts having a graphite structure are dispersed in a dispersed manner in an amorphous carbon film. A non-aqueous electrolyte battery electrode foil, and an active material layer comprising an active material and supported on the coating layer, and a method for producing a non-aqueous electrolyte battery electrode body, the surface and The amorphous carbon film is grown on the foil surface of the metal foil by sputtering using a target made of porous carbon having a graphite structure while containing a large number of pores therein, and the carbon A nonaqueous electrolyte comprising: a coating layer forming step of dispersing and arranging the particle parts to form the coating layer; and a supporting step of supporting the active material layer on the coating layer It is a manufacturing method of the pond electrode body.

本発明の非水電解質電池用電極体の製造方法は、被覆層形成工程と担持工程とを備える。このうち、被覆層形成工程では、金属箔上に、炭素原子が堆積して成長したアモルファスカーボン膜のほか、グラファイト構造を有するカーボン粒子部が散点状に分散して配置された被覆層を形成する。このため、電極箔と担持工程で担持させた活物質層との間に生じる抵抗が低く、導通が良好となる。従って、この非水電解質電池用電極体を用いることで、内部抵抗の低い非水電解質電池を製造することができる。   The method for producing an electrode body for a nonaqueous electrolyte battery according to the present invention includes a coating layer forming step and a supporting step. Of these, in the coating layer formation process, in addition to the amorphous carbon film on which carbon atoms are deposited and grown, a coating layer in which carbon particle portions having a graphite structure are dispersed and arranged on the metal foil is formed. To do. For this reason, resistance generated between the electrode foil and the active material layer supported in the supporting step is low, and conduction is improved. Therefore, a nonaqueous electrolyte battery having a low internal resistance can be produced by using this electrode body for a nonaqueous electrolyte battery.

さらに、上述の水電解質電池用電極体の製造方法であって、前記カーボン粒子部は、黒鉛からなる黒鉛粒子部であり、前記被覆層形成工程では、前記ポーラスカーボンに、黒鉛からなるポーラス黒鉛を用いる水電解質電池用電極体の製造方法とすると良い。   Furthermore, in the above-described method for producing an electrode body for a water electrolyte battery, the carbon particle portion is a graphite particle portion made of graphite, and in the coating layer forming step, porous graphite made of graphite is added to the porous carbon. A method for producing an electrode body for a water electrolyte battery to be used is preferable.

本発明の水電解質電池用電極体の製造方法では、ポーラスカーボンに黒鉛からなるポーラス黒鉛を用いるので、金属箔上には、ポーラス黒鉛から多数放出された黒鉛粒子のドロップレットが堆積して、黒鉛粒子部が散点状に分散された被覆層が形成される。前述のカーボン粒子部の中でも黒鉛からなる黒鉛粒子部は、導電性が良好であるため、被覆層の導電性を確実に向上させることができる。   In the method for producing an electrode body for a water electrolyte battery according to the present invention, porous graphite made of graphite is used as porous carbon. Therefore, a large number of graphite particle droplets released from porous graphite are deposited on the metal foil. A coating layer in which the particle parts are dispersed in the form of scattered dots is formed. Among the above-described carbon particle parts, the graphite particle part made of graphite has good conductivity, and therefore can reliably improve the conductivity of the coating layer.

(実施形態)
次に、本発明の実施形態について、図面を参照しつつ説明する。
まず、本実施形態にかかる正電極板10について説明する。図1に正電極板10の斜視図を、図2に正電極板10の部分拡大断面図(図1中、A部)を示す。
本実施形態にかかる正電極板10は、非水電解液を有するリチウムイオン二次電池(図示しない)に用いられる。
(Embodiment)
Next, embodiments of the present invention will be described with reference to the drawings.
First, the positive electrode plate 10 according to the present embodiment will be described. FIG. 1 is a perspective view of the positive electrode plate 10, and FIG. 2 is a partially enlarged sectional view of the positive electrode plate 10 (A portion in FIG. 1).
The positive electrode plate 10 according to the present embodiment is used for a lithium ion secondary battery (not shown) having a non-aqueous electrolyte.

この正電極板10は、図1に示すように、長手方向DAに延びた長尺帯板状であり、積層方向DLに見て、正電極箔20の両面に、第1正極活物質層51及び第2正極活物質層52が積層配置されている。詳細には、第1正極活物質層51及び第2正極活物質層52が、正電極箔20の第1電極箔主面21及び第2電極箔主面22上に配置されている。   As shown in FIG. 1, the positive electrode plate 10 has a long strip shape extending in the longitudinal direction DA, and the first positive electrode active material layer 51 is formed on both surfaces of the positive electrode foil 20 when viewed in the laminating direction DL. And the 2nd positive electrode active material layer 52 is laminated | stacked and arrange | positioned. Specifically, the first positive electrode active material layer 51 and the second positive electrode active material layer 52 are disposed on the first electrode foil main surface 21 and the second electrode foil main surface 22 of the positive electrode foil 20.

このうち、第1正極活物質層51および第2正極活物質層52はいずれも、LiNiO2からなる正極活物質X、アセチレンブラック(AB、図示しない)、ポリテトラフルオロエチレン(PTFE、図示しない)およびカルボキシルメチルセルロース(CMC、図示しない)を含む。なお、正極活物質層51,52内における、これらの重量比は、正極活物質X:AB:PTFE:CMC=100:10:3:1とした。 Among these, the first positive electrode active material layer 51 and the second positive electrode active material layer 52 are both a positive electrode active material X made of LiNiO 2 , acetylene black (AB, not shown), polytetrafluoroethylene (PTFE, not shown). And carboxymethylcellulose (CMC, not shown). The weight ratio in the positive electrode active material layers 51 and 52 was set to positive electrode active material X: AB: PTFE: CMC = 100: 10: 3: 1.

また、正電極箔20は、図3に示すように、長手方向DAに延びた長尺帯板状であり、厚み方向(積層方向DL)に見て、アルミニウムからなる箔本体30の両面に、それぞれ箔本体30を被覆してなる被覆層40が積層されている。詳細には、この被覆層40が、箔本体30の第1箔表面31及び第2箔表面32上にそれぞれ配置されている。   Further, as shown in FIG. 3, the positive electrode foil 20 is in the form of a long strip extending in the longitudinal direction DA, and on the both sides of the foil body 30 made of aluminum as viewed in the thickness direction (stacking direction DL), A covering layer 40 that covers the foil body 30 is laminated. Specifically, the coating layer 40 is disposed on the first foil surface 31 and the second foil surface 32 of the foil body 30, respectively.

このうち被覆層40は、箔表面31,32を被覆してなるアモルファスカーボン膜41と、このアモルファスカーボン膜41に散点状に分散する黒鉛からなる粒子状の黒鉛粒子部42とからなる(図4参照)。このうちアモルファスカーボン膜41は、箔本体30の箔表面31,32が酸化したり、腐食したりするのを抑制する耐食膜として機能する。即ち、この正電極箔20が、例えば、リチウムイオン二次電池に用いる電解液に触れても、アモルファスカーボン膜41が箔本体30の箔表面31,32を覆うため、これら箔表面31,32上に酸化物やフッ化物等の膜が形成されるのを防止できる。   Of these, the coating layer 40 is composed of an amorphous carbon film 41 covering the foil surfaces 31 and 32 and a particulate graphite particle portion 42 made of graphite dispersed in a scattered manner in the amorphous carbon film 41 (FIG. 4). Among these, the amorphous carbon film 41 functions as a corrosion-resistant film that suppresses oxidation and corrosion of the foil surfaces 31 and 32 of the foil body 30. That is, even if this positive electrode foil 20 is in contact with the electrolyte used in, for example, a lithium ion secondary battery, the amorphous carbon film 41 covers the foil surfaces 31 and 32 of the foil main body 30. It is possible to prevent the formation of a film of oxide or fluoride.

但し、アモルファスカーボン膜41は、非晶質の炭素皮膜であり、例えば、同素体の黒鉛よりも導電性が低いことが多い。そこで、本実施形態では、黒鉛からなる多数の黒鉛粒子部42をアモルファスカーボン膜41に分散させて、被覆層40の導電性を確実に向上させている。即ち、被覆層40を介する箔本体30と正極活物質層51,52との間の導電性が高くされている。   However, the amorphous carbon film 41 is an amorphous carbon film, and for example, is often less conductive than allotrope graphite. Therefore, in the present embodiment, a large number of graphite particle portions 42 made of graphite are dispersed in the amorphous carbon film 41 to reliably improve the conductivity of the coating layer 40. That is, the electrical conductivity between the foil body 30 and the positive electrode active material layers 51 and 52 through the coating layer 40 is increased.

本実施形態の正電極板10は、図2に示すように、上述の被覆層40を第1正極活物質層51と第1電極箔主面21との間、及び、第2正極活物質層52と第2電極箔主面22との間にそれぞれ有する。従って、正電極箔20と正極活物質層51,52との間に生じる抵抗が低い。
かくして、この正電極板10をリチウムイオン二次電池に用いれば、この二次電池を内部抵抗の低い二次電池とすることができる。
As shown in FIG. 2, the positive electrode plate 10 of the present embodiment includes the above-described coating layer 40 between the first positive electrode active material layer 51 and the first electrode foil main surface 21 and the second positive electrode active material layer. 52 and the second electrode foil main surface 22. Therefore, the resistance generated between the positive electrode foil 20 and the positive electrode active material layers 51 and 52 is low.
Thus, if the positive electrode plate 10 is used for a lithium ion secondary battery, the secondary battery can be a secondary battery having a low internal resistance.

次に、本実施形態にかかる正電極板10の製造方法について、図面を参照しつつ説明する。
まず図5(a)に、正電極板10の製造方法のうち、正電極箔20の被覆層形成工程を担う二極スパッタ装置100の概略図を示す。この二極スパッタ装置100は、真空容器120内に、箔本体30の巻出し部101、巻取り部102、ターゲット110、陽極端子131、陰極端子132、電源装置150、複数の補助ローラ140、及び導通補助ローラ140Nを備えている。
Next, a method for manufacturing the positive electrode plate 10 according to the present embodiment will be described with reference to the drawings.
First, in FIG. 5A, a schematic diagram of a bipolar sputtering apparatus 100 responsible for the coating layer forming step of the positive electrode foil 20 in the method for manufacturing the positive electrode plate 10 is shown. The bipolar sputtering apparatus 100 includes an unwinding portion 101, a winding portion 102, a target 110, an anode terminal 131, a cathode terminal 132, a power supply device 150, a plurality of auxiliary rollers 140, A conduction auxiliary roller 140N is provided.

このうち、真空容器120は、図示しない真空排気ポンプにより容器内を真空に排気することができる。その後、この真空容器120内にはアルゴンガスを少量充填する。
また、箔本体30は、真空装置120内で巻出し部101から巻き出され、複数の補助ローラ140及び導通補助ローラ140Nにより長手方向DAに移動し、巻取り部102で巻き取られる。このうち、導通補助ローラ140Nは金属からなり、箔本体30と導通可能とされている(図5参照)。この導通補助ローラ140Nには、電源装置150の正極端子131が電気的に接続してあるため、電源装置150を用いて電圧を印加すれば、箔本体30全体が正電位となる。
Among these, the vacuum container 120 can exhaust the inside of a container to a vacuum with the vacuum exhaust pump which is not illustrated. Thereafter, the vacuum container 120 is filled with a small amount of argon gas.
The foil body 30 is unwound from the unwinding unit 101 in the vacuum device 120, moved in the longitudinal direction DA by the plurality of auxiliary rollers 140 and the conduction auxiliary roller 140 </ b> N, and is wound by the winding unit 102. Among these, the conduction auxiliary roller 140N is made of metal and can be electrically connected to the foil body 30 (see FIG. 5). Since the positive electrode terminal 131 of the power supply device 150 is electrically connected to the conduction assisting roller 140N, when a voltage is applied using the power supply device 150, the entire foil body 30 becomes a positive potential.

また、ターゲット110は、表面及び内部に多数の空孔BHを分散して含むポーラス黒鉛からなる。このポーラス黒鉛は、粒径1〜5mm程度の炭素粒子とスチレン粒子とを、炭素粒子:スチレン粒子=2:1の体積比で混合した後、2000〜2500℃の焼成温度で焼成してできたものである。
このようなポーラス黒鉛をターゲット110に用いて、陰極端子132に接続して、電源装置150で電圧印加すれば、ターゲット110の表面に開口する空孔BHの周縁において電界が集中して、アルゴンイオンが空孔BHの周囲の黒鉛に衝突しやすく、ターゲット110から、炭素原子CAのほか、黒鉛の結晶状態を維持した黒鉛粒子のドロップレットCDが多数放出される。
The target 110 is made of porous graphite containing a large number of holes BH dispersed on the surface and inside. This porous graphite was obtained by mixing carbon particles having a particle diameter of about 1 to 5 mm and styrene particles at a volume ratio of carbon particles: styrene particles = 2: 1, and then firing at a firing temperature of 2000 to 2500 ° C. Is.
When such porous graphite is used for the target 110 and connected to the cathode terminal 132 and a voltage is applied by the power supply device 150, the electric field concentrates at the periphery of the hole BH opening on the surface of the target 110, and argon ions Tends to collide with the graphite around the pores BH, and in addition to the carbon atoms CA, many droplets of graphite particles CD that maintain the crystalline state of graphite are emitted from the target 110.

本実施形態の二極スパッタ装置100において、電源装置150を用いて電圧を印加する。すると、箔本体30は正電荷に、ターゲット110は負電荷にそれぞれ帯電し、箔本体30の第1箔表面31(あるいは第2箔表面32)上には、上述の炭素原子CA及びドロップレットCDが堆積して、被覆層40が形成される。この被覆層40では、ドロップレットCDがそのまま黒鉛粒子部42となる。   In the bipolar sputtering apparatus 100 of this embodiment, a voltage is applied using the power supply apparatus 150. Then, the foil main body 30 is charged with a positive charge and the target 110 is charged with a negative charge. On the first foil surface 31 (or the second foil surface 32) of the foil main body 30, the above-described carbon atoms CA and droplets CD are described. Are deposited to form the coating layer 40. In this coating layer 40, the droplet CD becomes the graphite particle part 42 as it is.

箔本体30の第1箔表面31(あるいは第2箔表面32)に被覆層40が形成された後、箔本体30の第2箔表面32にも同様に被覆層40を形成する。かくして、箔本体30の両箔表面31,32に被覆層40を積層配置した、正電極箔20が作製される。   After the coating layer 40 is formed on the first foil surface 31 (or the second foil surface 32) of the foil body 30, the coating layer 40 is similarly formed on the second foil surface 32 of the foil body 30. Thus, the positive electrode foil 20 in which the covering layer 40 is laminated on the both foil surfaces 31 and 32 of the foil body 30 is produced.

次いで、この正電極板10の製造方法のうち、塗工装置200を用いた担持工程について説明する。
この塗工装置200は、図6に示すように、巻出し部201、ダイ210、乾燥炉220、巻取り部202、及び複数の補助ローラ240を備えている。
このうち、ダイ210は、活物質ペーストAPを内部に保持してなる金属製のペースト保持部211と、このペースト保持部211に保持した活物質ペーストAPを正電極箔20の第1電極箔主面21あるいは第2電極箔主面22に向かって活物質ペーストAPを連続的に吐出する吐出口212とを有する。
この吐出口212はスリット状で、長手方向DAに移動する正電極箔20の箔主面(第1電極箔主面21あるいは第2電極箔主面22)上に、帯状に活物質ペーストAPを吐出するよう、正電極箔20の幅方向(図6中、奥行き方向)に平行に開口している。
Next, a supporting process using the coating apparatus 200 in the method for manufacturing the positive electrode plate 10 will be described.
As shown in FIG. 6, the coating apparatus 200 includes an unwinding unit 201, a die 210, a drying furnace 220, a winding unit 202, and a plurality of auxiliary rollers 240.
Among them, the die 210 includes a metal paste holding unit 211 that holds the active material paste AP therein, and the active material paste AP held in the paste holding unit 211 as a first electrode foil main layer of the positive electrode foil 20. It has a discharge port 212 for continuously discharging the active material paste AP toward the surface 21 or the second electrode foil main surface 22.
The discharge port 212 is slit-shaped, and the active material paste AP is strip-shaped on the foil main surface (the first electrode foil main surface 21 or the second electrode foil main surface 22) of the positive electrode foil 20 moving in the longitudinal direction DA. It opens in parallel to the width direction (depth direction in FIG. 6) of the positive electrode foil 20 so as to be discharged.

なお、ダイ210が保持する活物質ペーストAPは、LiNiO2からなる正極活物質Xのほか、アセチレンブラック(AB、図示しない)、ポリテトラフルオロエチレン(PTFE、図示しない)およびカルボキシルメチルセルロース(CMC、図示しない)をイオン交換水AQに分散させて混練してなる流動体である。また、この活物質ペーストAPに含まれる、正極活物質X、AB、PTFEおよびCMCの重量比は、前述の通り、正極活物質X:AB:PTFE:CMC=100:10:3:1である。 The active material paste AP held by the die 210 includes, in addition to the positive electrode active material X made of LiNiO 2 , acetylene black (AB, not shown), polytetrafluoroethylene (PTFE, not shown), and carboxymethyl cellulose (CMC, shown). Is a fluid obtained by dispersing and kneading in ion exchange water AQ. Further, as described above, the weight ratio of the positive electrode active materials X, AB, PTFE and CMC contained in the active material paste AP is the positive electrode active material X: AB: PTFE: CMC = 100: 10: 3: 1. .

また、乾燥炉220では、正電極箔20に塗布された活物質ペーストAPに向けて、熱風を送る。これにより、正電極箔20に塗布された活物質ペーストAPは、この乾燥炉220内を移動している間に、徐々に乾燥が進み、乾燥炉220を通過時には、活物質ペーストAPは全乾燥、すなわち、活物質ペーストAP内の水分(イオン交換水AQ)は全て蒸発する。
また、帯状の正電極箔20は、複数の補助ローラ240により、その長手方向DAに移動する。
In the drying furnace 220, hot air is sent toward the active material paste AP applied to the positive electrode foil 20. Thus, the active material paste AP applied to the positive electrode foil 20 is gradually dried while moving in the drying furnace 220, and when passing through the drying furnace 220, the active material paste AP is completely dried. That is, all the water (ion exchange water AQ) in the active material paste AP evaporates.
The strip-shaped positive electrode foil 20 is moved in the longitudinal direction DA by the plurality of auxiliary rollers 240.

この塗工装置200では、まず、巻出し部201に捲回した帯状の正電極箔20を長手方向DAに移動させ、その正電極箔20の第1電極箔主面21に、ダイ210により活物質ペーストAPを塗布する。その後は、乾燥炉220で正電極箔20と共に活物質ペーストAPを乾燥させて、第1電極箔主面21に未圧縮活物質層(図示しない)を担持させた片面担持電極箔20Kを、巻取り部202に一旦巻き取る。   In this coating apparatus 200, first, the belt-like positive electrode foil 20 wound around the unwinding portion 201 is moved in the longitudinal direction DA, and the first electrode foil main surface 21 of the positive electrode foil 20 is activated by the die 210. The substance paste AP is applied. Thereafter, the active material paste AP is dried together with the positive electrode foil 20 in the drying furnace 220, and the single-side supported electrode foil 20K in which the uncompressed active material layer (not shown) is supported on the first electrode foil main surface 21 is wound. It winds up around the take-up section 202 once.

次に、この塗工装置200を再度用いて、上述の片面担持電極箔20Kにおいて、正電極箔20の第2電極箔主面22にも活物質ペーストAPを塗布する。そして、この活物質ペーストAPを乾燥炉220で全乾燥させる。かくして、正電極箔20の両電極箔主面21,22に未圧縮正極活物質層(図示しない)を積層配置した、プレス前の正電極板10Bが作製される。   Next, using this coating apparatus 200 again, the active material paste AP is applied also to the second electrode foil main surface 22 of the positive electrode foil 20 in the above-described single-side supported electrode foil 20K. Then, this active material paste AP is completely dried in a drying furnace 220. Thus, the positive electrode plate 10B before pressing, in which the uncompressed positive electrode active material layer (not shown) is laminated on both the electrode foil main surfaces 21 and 22 of the positive electrode foil 20, is manufactured.

次いで、図7に、正電極板10の製造方法の担持工程のうち、プレス装置300を用いたプレス切断工程を示す。
プレス装置300は、巻出し部301、プレスローラ310、巻取り部302、切断刃330および複数の補助ローラ320を備えている。そして、このプレス装置300では、巻出し部301から上述のプレス前正電極板10Bを、2つのプレスローラ310の間に通すことで、厚み方向に圧縮された上述の正電極板10を得ることができる。その後、切断刃330で中央を切断して2つに分けた後、2つの巻取り部302で正電極板10を巻き取る。かくして、正電極板10の製造ができた(図1,2参照)。
Next, FIG. 7 shows a press cutting process using the press device 300 in the supporting process of the method for manufacturing the positive electrode plate 10.
The press device 300 includes an unwinding unit 301, a press roller 310, a winding unit 302, a cutting blade 330, and a plurality of auxiliary rollers 320. And in this press apparatus 300, the above-mentioned positive electrode plate 10 compressed in the thickness direction is obtained by passing the above-mentioned positive electrode plate 10B before pressing from the unwinding part 301 between the two press rollers 310. Can do. Thereafter, the center is cut by the cutting blade 330 and divided into two, and the positive electrode plate 10 is wound by the two winding portions 302. Thus, the positive electrode plate 10 was manufactured (see FIGS. 1 and 2).

上述した正電極箔20及び正電極板10において、被覆層40のうちのアモルファスカーボン膜41は、箔本体30の箔表面31,32が酸化したり、腐食したりするのを抑制する耐食膜として機能する。また、黒鉛粒子部42は黒鉛からなるため、アモルファスカーボン膜41に比して導電性が高く、被覆層40の導電性を確実に向上させることができる。具体的には、正電極箔20において、この被覆層40を介する箔本体30と正極活物質層51,52間の導電性を向上できる。かくして、正電極箔20を用いることで、箔本体30の箔表面31,32に酸化物あるいはフッ化物などの膜が生じるのを防止して、正極活物質層51,52と箔本体30との間に生じる抵抗を低くした正電極板10を製造することができる。
また、この正電極箔20を用いた正電極板10を用いることで、内部抵抗の低いリチウムイオン二次電池を製造することができる。
In the positive electrode foil 20 and the positive electrode plate 10 described above, the amorphous carbon film 41 in the coating layer 40 is a corrosion-resistant film that suppresses oxidation and corrosion of the foil surfaces 31 and 32 of the foil body 30. Function. Moreover, since the graphite particle part 42 consists of graphite, it has high electroconductivity compared with the amorphous carbon film 41, and can improve the electroconductivity of the coating layer 40 reliably. Specifically, in the positive electrode foil 20, the conductivity between the foil body 30 and the positive electrode active material layers 51 and 52 through the coating layer 40 can be improved. Thus, by using the positive electrode foil 20, a film such as an oxide or fluoride is prevented from being formed on the foil surfaces 31 and 32 of the foil body 30, and the positive electrode active material layers 51 and 52 and the foil body 30 are separated from each other. The positive electrode plate 10 having a low resistance generated therebetween can be manufactured.
Moreover, the lithium ion secondary battery with low internal resistance can be manufactured by using the positive electrode plate 10 using this positive electrode foil 20.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態では、正電極箔20に、正極活物質層を担持させて正電極板10を形成したが、電極箔に負極活物質層を担持させた負電極板に適用しても良い。その場合、負極活物質層としては、例えば、グラファイトからなる負極活物質、結着剤、導電剤等を混合したものが、負電極板としては、例えば、銅からなる箔本体の両面に前述の被覆層を形成したものが挙げられる。
また、正極活物質層内の正極活物質XをLiNiO2としたが、例えば、LiCoO2、LiMn24、LiFeO2、Li5FeO4、Li2MnO3、LiFePO4、LiV24、および、これらの混合物としても良い。さらに、金属箔の材質をアルミニウムとしたが、例えば、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン等としても良い。
In the above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof.
For example, in the embodiment, the positive electrode foil 20 is supported on the positive electrode foil 20 to form the positive electrode plate 10, but the present invention may be applied to a negative electrode plate in which the negative electrode active material layer is supported on the electrode foil. In that case, as the negative electrode active material layer, for example, a negative electrode active material made of graphite, a binder, a conductive agent, etc. are mixed. What formed the coating layer is mentioned.
Moreover, although the positive electrode active material X in the positive electrode active material layer was LiNiO 2 , for example, LiCoO 2 , LiMn 2 O 4 , LiFeO 2 , Li 5 FeO 4 , Li 2 MnO 3 , LiFePO 4 , LiV 2 O 4 , A mixture thereof may also be used. Furthermore, although the material of the metal foil is aluminum, for example, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, or the like may be used.

また、被覆層形成工程では、スパッタ法として二極スパッタ装置による二極スパッタ法を用いたが、例えば、三極(又は四極)スパッタ法、マグネトロンスパッタ法、高周波スパッタ法、バイアススパッタ法でも良い。
さらに、被覆層形成工程においてターゲット110として、全体が黒鉛からなるポーラス黒鉛を用いた。しかし、全体が黒鉛でなくとも、表面及び内部に多数の空孔を分散して含むとともに、一部にグラファイト構造の結晶構造を有する部位を分散して含むポーラスカーボンをターゲット110に用いて、アモルファスカーボン膜41のほか、黒鉛粒子部42に代えてグラファイト構造を有するカーボン粒子を分散した被覆層を形成しても良い。
In the coating layer forming step, a bipolar sputtering method using a bipolar sputtering apparatus is used as the sputtering method. However, for example, a tripolar (or quadrupolar) sputtering method, a magnetron sputtering method, a high frequency sputtering method, or a bias sputtering method may be used.
Furthermore, porous graphite made entirely of graphite was used as the target 110 in the coating layer forming step. However, even if the whole is not graphite, the target 110 is made of porous carbon containing a large number of pores dispersed on the surface and inside, and partly containing a portion having a crystal structure of graphite structure. In addition to the carbon film 41, a coating layer in which carbon particles having a graphite structure are dispersed may be formed instead of the graphite particle portion 42.

実施形態にかかる正電極板の斜視図である。It is a perspective view of the positive electrode plate concerning an embodiment. 実施形態にかかる正電極板の部分拡大端面図(図1のA部)である。It is a partial expanded end view (A section of Drawing 1) of a positive electrode board concerning an embodiment. 実施形態にかかる正電極箔の斜視図である。It is a perspective view of the positive electrode foil concerning embodiment. 実施形態にかかる正電極箔の部分拡大端面図(図3のB部)である。It is a partial expanded end view (B section of Drawing 3) of positive electrode foil concerning an embodiment. 実施形態の被覆層形成工程の説明図であり、(a)は二極スパッタ装置の概要図、(b)はターゲットの部分拡大図である。It is explanatory drawing of the coating layer formation process of embodiment, (a) is a schematic diagram of a bipolar sputtering apparatus, (b) is the elements on larger scale of a target. 実施形態の担持工程のうち、塗工工程の説明図である。It is explanatory drawing of a coating process among the support processes of embodiment. 実施形態の担持工程のうち、プレス切断工程の説明図である。It is explanatory drawing of a press cutting process among the holding processes of embodiment.

符号の説明Explanation of symbols

10 正電極板(非水電解質電池用電極体)
20 正電極箔(非水電解質電池用電極箔)
30 箔本体(金属箔)
31 第1箔表面(箔表面)
32 第2箔表面(箔表面)
40 被覆層
41 アモルファスカーボン膜
42 黒鉛粒子部
51 第1正極活物質層
52 第2正極活物質層
110 ターゲット
BH 空孔
X 正極活物質(活物質)
10 Positive electrode plate (electrode body for non-aqueous electrolyte battery)
20 Positive electrode foil (electrode foil for non-aqueous electrolyte battery)
30 Foil body (metal foil)
31 First foil surface (foil surface)
32 Second foil surface (foil surface)
40 Coating Layer 41 Amorphous Carbon Film 42 Graphite Particle Part 51 First Cathode Active Material Layer 52 Second Cathode Active Material Layer 110 Target BH Hole X Cathode Active Material (Active Material)

Claims (4)

金属箔と、
上記金属箔の箔表面上に配置され、アモルファスカーボン膜にグラファイト構造を有する粒子状のカーボン粒子部が散点状に分散して配置された被覆層と、を備える
非水電解質電池用電極箔の製造方法であって、
表面及び内部に多数の空孔を分散して含むとともに、グラファイト構造を有するポーラスカーボンからなるターゲットを用いて、スパッタ法により、上記金属箔の上記箔表面上に、上記アモルファスカーボン膜を成長させると共に上記カーボン粒子部を分散して配置して、上記被覆層を形成する被覆層形成工程を備える
非水電解質電池用電極箔の製造方法。
Metal foil,
An electrode foil for a non-aqueous electrolyte battery, comprising: a coating layer disposed on a foil surface of the metal foil, and a particulate carbon particle portion having a graphite structure dispersed in an amorphous carbon film in a scattered manner A manufacturing method comprising:
The amorphous carbon film is grown on the surface of the metal foil by a sputtering method using a target made of porous carbon having a graphite structure and including a large number of pores dispersed on the surface and inside. The manufacturing method of the electrode foil for nonaqueous electrolyte batteries provided with the coating layer formation process which disperse | distributes and arrange | positions the said carbon particle part and forms the said coating layer.
請求項1に記載の非水電解質電池用電極箔の製造方法であって、
前記カーボン粒子部は、黒鉛からなる黒鉛粒子部であり、
前記被覆層形成工程では、
前記ポーラスカーボンに、黒鉛からなるポーラス黒鉛を用いる
非水電解質電池用電極箔の製造方法。
It is a manufacturing method of the electrode foil for nonaqueous electrolyte batteries according to claim 1,
The carbon particle part is a graphite particle part made of graphite,
In the coating layer forming step,
The manufacturing method of the electrode foil for nonaqueous electrolyte batteries which uses the porous graphite which consists of graphite for the said porous carbon.
金属箔と、上記金属箔の箔表面上に配置され、アモルファスカーボン膜にグラファイト構造を有する粒子状のカーボン粒子部が散点状に分散して配置された被覆層と、を有する非水電解質電池用電極箔、及び、
活物質を含み、上記被覆層上に担持されてなる活物質層、を備える
非水電解質電池用電極体の製造方法であって、
表面及び内部に多数の空孔を分散して含むとともに、グラファイト構造を有するポーラスカーボンからなるターゲットを用いて、スパッタ法により、上記金属箔の上記箔表面上に、上記アモルファスカーボン膜を成長させると共に上記カーボン粒子部を分散して配置して、上記被覆層を形成する被覆層形成工程と、
上記被覆層上に、上記活物質層を担持させる担持工程と、を備える
非水電解質電池用電極体の製造方法。
A non-aqueous electrolyte battery comprising: a metal foil; and a coating layer disposed on the surface of the metal foil, wherein the amorphous carbon film has particulate carbon particle portions having a graphite structure dispersed in a scattered manner. Electrode foil, and
A method for producing an electrode body for a non-aqueous electrolyte battery comprising an active material and an active material layer carried on the coating layer,
The amorphous carbon film is grown on the surface of the metal foil by a sputtering method using a target made of porous carbon having a graphite structure and including a large number of pores dispersed on the surface and inside. A coating layer forming step of dispersing and arranging the carbon particle parts to form the coating layer;
A method for producing an electrode body for a nonaqueous electrolyte battery, comprising: a supporting step for supporting the active material layer on the coating layer.
請求項1に記載の非水電解質電池用電極体の製造方法であって、
前記カーボン粒子部は、黒鉛からなる黒鉛粒子部であり、
前記被覆層形成工程では、
前記ポーラスカーボンに、黒鉛からなるポーラス黒鉛を用いる
非水電解質電池用電極体の製造方法。
It is a manufacturing method of the electrode object for nonaqueous electrolyte batteries according to claim 1,
The carbon particle part is a graphite particle part made of graphite,
In the coating layer forming step,
The manufacturing method of the electrode body for nonaqueous electrolyte batteries which uses the porous graphite which consists of graphite for the said porous carbon.
JP2008026065A 2008-02-06 2008-02-06 Manufacturing method of electrode foil for nonaqueous electrolyte battery, and manufacturing method of electrode plate for nonaqueous electrolyte battery Withdrawn JP2009187772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008026065A JP2009187772A (en) 2008-02-06 2008-02-06 Manufacturing method of electrode foil for nonaqueous electrolyte battery, and manufacturing method of electrode plate for nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008026065A JP2009187772A (en) 2008-02-06 2008-02-06 Manufacturing method of electrode foil for nonaqueous electrolyte battery, and manufacturing method of electrode plate for nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2009187772A true JP2009187772A (en) 2009-08-20

Family

ID=41070811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008026065A Withdrawn JP2009187772A (en) 2008-02-06 2008-02-06 Manufacturing method of electrode foil for nonaqueous electrolyte battery, and manufacturing method of electrode plate for nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2009187772A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105451A1 (en) * 2010-02-25 2011-09-01 株式会社神戸製鋼所 Positive electrode current collector for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and process for production of positive electrode current collector for lithium ion secondary battery
CN103515616A (en) * 2012-06-27 2014-01-15 万向电动汽车有限公司 Positive electrode piece of lithium-ion power battery and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105451A1 (en) * 2010-02-25 2011-09-01 株式会社神戸製鋼所 Positive electrode current collector for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and process for production of positive electrode current collector for lithium ion secondary battery
CN102763253A (en) * 2010-02-25 2012-10-31 株式会社神户制钢所 Positive electrode current collector for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and process for production of positive electrode current collector for lithium ion secondary battery
CN103515616A (en) * 2012-06-27 2014-01-15 万向电动汽车有限公司 Positive electrode piece of lithium-ion power battery and preparation method thereof

Similar Documents

Publication Publication Date Title
TWI706588B (en) Anode structure with binders for silicon and stabilized lithium metal powder
TWI616017B (en) Multi-layer battery electrode design for enabling thicker electrode fabrication
JP5313761B2 (en) Lithium ion battery
JP5088378B2 (en) Metal-air battery and metal-air battery manufacturing method
CN110350151B (en) Protective coating for lithium-containing electrodes and method for producing same
US10593945B2 (en) Printed planar lithium-ion batteries
JP2007220452A (en) Nonaqueous electrolytic solution secondary battery and separator fabricated therefore
WO2011080901A1 (en) Positive electrode for a nonaqueous-electrolyte secondary battery and nonaqueous-electrolyte secondary battery using said positive electrode
KR101211863B1 (en) Electrode assembly and secondary battery including the same
WO2013098970A1 (en) Method for producing electrode and method for producing non-aqueous electrolyte battery
CN112382793A (en) Sulfide impregnated solid state battery
JP5119584B2 (en) Nonaqueous electrolyte secondary battery and method for producing the negative electrode
WO2019008827A1 (en) Method for manufacturing secondary battery
JP2009064715A (en) Positive electrode and lithium secondary battery using the same
JP5775444B2 (en) Nonaqueous electrolyte battery electrode and nonaqueous electrolyte battery
CN110828777B (en) Electrode for secondary battery and secondary battery
KR20160027364A (en) Electrode assembly for secondary battery
JP4929763B2 (en) Lithium secondary battery
JP4649862B2 (en) Lithium ion secondary battery and manufacturing method thereof
CN111386616A (en) Method of manufacturing electrode for secondary battery and method of manufacturing secondary battery
JP2010015852A (en) Secondary battery
JP6926910B2 (en) Rechargeable battery
JP2009187772A (en) Manufacturing method of electrode foil for nonaqueous electrolyte battery, and manufacturing method of electrode plate for nonaqueous electrolyte battery
JP2010251194A (en) Positive electrode for battery and method of manufacturing the same
JP2007328932A (en) Negative electrode for lithium secondary battery and lithium secondary battery using it

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110510