JP2009187657A - Method of manufacturing substrate - Google Patents

Method of manufacturing substrate Download PDF

Info

Publication number
JP2009187657A
JP2009187657A JP2009090548A JP2009090548A JP2009187657A JP 2009187657 A JP2009187657 A JP 2009187657A JP 2009090548 A JP2009090548 A JP 2009090548A JP 2009090548 A JP2009090548 A JP 2009090548A JP 2009187657 A JP2009187657 A JP 2009187657A
Authority
JP
Japan
Prior art keywords
abrasive
polishing
substrate
particle size
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009090548A
Other languages
Japanese (ja)
Inventor
Yoshiaki Oshima
良暁 大島
Kazuhiko Nishimoto
和彦 西本
Kenichi Suenaga
憲一 末永
Toshiya Hagiwara
敏也 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2009090548A priority Critical patent/JP2009187657A/en
Publication of JP2009187657A publication Critical patent/JP2009187657A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a substrate which reduces fine waviness of a product to be polished after polishing, for finish polishing of a memory hard disk and polishing of a semiconductor element, to provide a polishing method and to provide a method for reducing the fine waviness. <P>SOLUTION: The method of manufacturing a substrate for a memory hard disk is provided, which uses a suede-like polishing pad having: a polishing liquid composition containing an abrasive and water; at least a base layer and a foaming surface layer; and a surface member made of a polyurethane having 1 to 25 μm average pore diameter and ≤60 μm maximum value of the pore diameter. The abrasive includes an abrasive (a first component) having particle diameter distribution expressed by expression (16): σ>0.9067×r+0.588 and other abrasive (a second component) having an average particle diameter and/or a standard deviation different from those of the first component by 10% or more. In expression (16), r denotes a number based average particle diameter (nm) and σ denotes a number based standard deviation (nm). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、研磨液組成物と研磨パッドを用いた基板の製造方法、研磨方法及び微小うねりの低減方法に関する。   The present invention relates to a method for producing a substrate using a polishing composition and a polishing pad, a polishing method, and a method for reducing microwaviness.

近年のメモリーハードディスクドライブには、高容量・小径化が求められ記録密度を上げるために磁気ヘッドの浮上量を低下させたり、単位記録面積を小さくすることが強いられている。それに伴い、磁気ディスク用基板の製造工程においても研磨後に要求される表面品質は年々厳しくなってきており、ヘッドの低浮上化に対応して、表面粗さ、微小うねり、ロールオフ、突起の低減や単位記録面積の減少に対応して許容されるスクラッチ、ピットの大きさと深さがますます小さくなってきている。   Memory hard disk drives in recent years are required to have a high capacity and a small diameter, and in order to increase the recording density, the flying height of the magnetic head is reduced or the unit recording area is reduced. Along with this, the surface quality required after polishing in the manufacturing process of magnetic disk substrates has become stricter year by year, and the surface roughness, micro-waviness, roll-off, and protrusions are reduced in response to the low flying height of the head. In addition, the size and depth of scratches and pits allowed in response to the decrease in unit recording area are becoming smaller.

このような要求に対して、平均うねりが小さく、表面欠陥の少ないアルミニウムディスク基板を得ることの出来る、異なったモノモーダル数粒子径分布を有するコロイダルシリカ粒子群を含む、アルミニウムディスク基板の研磨用組成物が知られている(例えば、特許文献1参照)。
また、表面平滑性に優れ、かつ表面欠陥を発生することなく、しかも経済的な速度で研磨を可能とする、特定の粒径分布を有するコロイダルシリカを含有する研磨液組成物が知られている(例えば、特許文献2参照)。
In order to meet such demands, an aluminum disk substrate polishing composition comprising colloidal silica particles having different monomodal number particle size distributions, which can provide an aluminum disk substrate with small average waviness and few surface defects. A thing is known (for example, refer patent document 1).
Further, a polishing composition containing colloidal silica having a specific particle size distribution that is excellent in surface smoothness and capable of polishing at an economical speed without generating surface defects is known. (For example, refer to Patent Document 2).

しかしながら、年々向上する記録密度の増大に伴い、ヘッドの浮上量を低下させる必要があるため、基板に求められる微小うねりのスペックはますます厳しくなっている。そのため、上記特許文献1、2記載の従来の研磨液組成物と研磨パッドの組み合わせでは品質が達成できなくなった。   However, as the recording density increases year by year, it is necessary to reduce the flying height of the head, so that the specifications of the micro waviness required for the substrate are becoming stricter. Therefore, the quality cannot be achieved by the combination of the conventional polishing composition and the polishing pad described in Patent Documents 1 and 2 above.

また、特許文献3には研磨パッドの表面に気孔のないパッドを用いて微小うねりを低減する方法が開示されているが、この方法では研磨液が十分研磨パッドに保持されないために、研磨速度が遅いという問題があった。   Further, Patent Document 3 discloses a method for reducing microwaviness by using a pad having no pores on the surface of the polishing pad. However, in this method, since the polishing liquid is not sufficiently held by the polishing pad, the polishing rate is increased. There was a problem of being slow.

特開2002−30274号公報JP 2002-30274 A 特開2001−323254号公報JP 2001-323254 A 特開2001−62704号公報JP 2001-62704 A

本発明の目的は、メモリーハードディスクの仕上げ研磨や半導体素子の研磨用として、研磨後の被研磨物の微小うねりを低減できる基板の製造方法、研磨方法、及び微小うねり低減方法を提供することにある。   An object of the present invention is to provide a substrate manufacturing method, a polishing method, and a micro-waviness reduction method that can reduce micro-waviness of an object to be polished after polishing for polishing a memory hard disk or polishing a semiconductor element. .

即ち、本発明の要旨は、
〔1〕 研磨材と水を含有してなる研磨液組成物と、少なくともベース層と発泡した表面層とを有するスエードタイプであって、平均気孔径が1〜25μmで、気孔径の最大値が60μm以下のポリウレタン製の表面部材を有する研磨パッドを用いるメモリーハードディスク用基板の製造方法であって、前記研磨材が、式(16):
σ > 0.9067 × r+0.588 (16)
(式中、rは個数基準の平均粒子径(nm)、σは個数基準の標準偏差(nm)を示す)
で表される粒径分布の研磨材(第1成分)と第1成分とは平均粒子径及び/又は標準偏差が10%以上異なる他の研磨材(第2成分)とを含む、メモリーハードディスク用基板の製造方法、
〔2〕 研磨材全量中の粒子径5〜120nmの粒子の含有量が50体積%以上であり、該研磨材として粒子径が5nm〜40nm未満の小粒径粒子を粒子径5〜120nmの粒子全量に対して10〜100体積%含有し、粒子径が40nm〜80nm未満の中粒径粒子を粒子径5〜120nmの粒子全量に対して0〜70体積%含有し、粒子径が80nm〜120nmの大粒径粒子を粒子径5〜120nmの粒子全量に対して0〜40体積%含有するものである前記〔1〕記載の基板の製造方法、
〔3〕 研磨材がシリカである前記〔1〕又は〔2〕記載の基板の製造方法、
〔4〕 研磨液組成物がさらに酸化剤を含有する前記〔1〕〜〔3〕いずれか記載の基板の製造方法、
〔5〕 酸化剤の含有量が、研磨液組成物中0.01〜5重量%である、前記〔4〕記載の基板の製造方法、
〔6〕 研磨液組成物がさらに酸及び/又はその塩を含有する前記〔1〕〜〔3〕いずれか記載の基板の製造方法、
〔7〕 酸が、無機酸及び/又は有機ホスホン酸を含有する、前記〔6〕記載の基板の製造方法、
〔8〕 酸及びその塩の含有量が、研磨液組成物中0.0025〜1重量%である、前記〔6〕又は〔7〕記載の基板の製造方法、
〔9〕 研磨材の含有量が、研磨液組成物中1〜15重量%である、前記〔1〕〜〔8〕いずれか記載の基板の製造方法、
〔10〕 研磨液組成物の流量が、40〜130cc/minである、前記〔1〕〜〔9〕いずれか記載の基板の製造方法、
〔11〕 基板が、Ni−Pメッキされたアルミニウム合金基板である、前記〔1〕〜〔10〕いずれか記載の基板の製造方法、
〔12〕 研磨材と水を含有してなる研磨液組成物と、少なくともベース層と発泡した表面層とを有するスエードタイプであって、平均気孔径が1〜25μmで、気孔径の最大値が60μm以下のポリウレタン製の表面部材を有する研磨パッドを用いるメモリーハードディスク用基板の研磨方法であって、前記研磨材が、式(16):
σ > 0.9067 × r+0.588 (16)
(式中、rは個数基準の平均粒子径(nm)、σは個数基準の標準偏差(nm)を示す)
で表される粒径分布の研磨材(第1成分)と第1成分とは平均粒子径及び/又は標準偏差が10%以上異なる他の研磨材(第2成分)とを含む、メモリーハードディスク用基板の研磨方法、
〔13〕 研磨材と水を含有してなる研磨液組成物と、少なくともベース層と発泡した表面層とを有するスエードタイプであって、平均気孔径が1〜25μmで、気孔径の最大値が60μm以下のポリウレタン製の表面部材を有する研磨パッドを用いるメモリーハードディスク用基板の微小うねりの低減方法であって、前記研磨材が、式(16):
σ > 0.9067 × r+0.588 (16)
(式中、rは個数基準の平均粒子径(nm)、σは個数基準の標準偏差(nm)を示す)
で表される粒径分布の研磨材(第1成分)と第1成分とは平均粒子径及び/又は標準偏差が10%以上異なる他の研磨材(第2成分)とを含む、メモリーハードディスク用基板の微小うねりの低減方法
に関する。
That is, the gist of the present invention is as follows.
[1] A suede type comprising a polishing composition comprising an abrasive and water, at least a base layer and a foamed surface layer, having an average pore diameter of 1 to 25 μm and a maximum pore diameter A method of manufacturing a memory hard disk substrate using a polishing pad having a polyurethane surface member of 60 μm or less, wherein the abrasive is represented by the formula (16):
σ> 0.9067 × r + 0.588 (16)
(Wherein r represents the number-based average particle diameter (nm), and σ represents the number-based standard deviation (nm))
For a memory hard disk, comprising an abrasive having a particle size distribution represented by the formula (first component) and the first component and another abrasive (second component) having an average particle size and / or standard deviation different by 10% or more. Substrate manufacturing method,
[2] The content of particles having a particle size of 5 to 120 nm in the total amount of the abrasive is 50% by volume or more, and small particles having a particle size of 5 nm to less than 40 nm are used as the abrasive. 10 to 100% by volume based on the total amount, 0 to 70% by volume of medium-sized particles having a particle size of 40 nm to less than 80 nm with respect to the total amount of particles having a particle size of 5 to 120 nm, and a particle size of 80 to 120 nm The method for producing a substrate according to the above [1], wherein the large particle size is 0 to 40% by volume with respect to the total amount of the particles having a particle size of 5 to 120 nm,
[3] The method for producing a substrate according to [1] or [2], wherein the abrasive is silica.
[4] The method for producing a substrate according to any one of [1] to [3], wherein the polishing composition further contains an oxidizing agent,
[5] The method for producing a substrate according to the above [4], wherein the content of the oxidizing agent is 0.01 to 5% by weight in the polishing composition.
[6] The method for producing a substrate according to any one of [1] to [3], wherein the polishing composition further contains an acid and / or a salt thereof,
[7] The method for producing a substrate according to [6], wherein the acid contains an inorganic acid and / or an organic phosphonic acid,
[8] The method for producing a substrate according to [6] or [7], wherein the content of the acid and the salt thereof is 0.0025 to 1% by weight in the polishing composition.
[9] The method for producing a substrate according to any one of [1] to [8], wherein the content of the abrasive is 1 to 15% by weight in the polishing composition.
[10] The method for producing a substrate according to any one of [1] to [9], wherein the flow rate of the polishing composition is 40 to 130 cc / min,
[11] The method for producing a substrate according to any one of [1] to [10], wherein the substrate is a Ni-P plated aluminum alloy substrate,
[12] A suede type comprising a polishing composition comprising an abrasive and water, at least a base layer and a foamed surface layer, having an average pore diameter of 1 to 25 μm and a maximum pore diameter A method for polishing a substrate for a memory hard disk using a polishing pad having a polyurethane surface member of 60 μm or less, wherein the abrasive is represented by the formula (16):
σ> 0.9067 × r + 0.588 (16)
(Wherein r represents the number-based average particle diameter (nm), and σ represents the number-based standard deviation (nm))
For a memory hard disk, comprising an abrasive having a particle size distribution represented by the formula (first component) and the first component and another abrasive (second component) having an average particle size and / or standard deviation different by 10% or more. Substrate polishing method,
[13] A suede type comprising a polishing composition comprising an abrasive and water, at least a base layer and a foamed surface layer, having an average pore diameter of 1 to 25 μm and a maximum pore diameter A method for reducing microwaviness of a memory hard disk substrate using a polishing pad having a polyurethane surface member of 60 μm or less, wherein the abrasive is represented by the formula (16):
σ> 0.9067 × r + 0.588 (16)
(Wherein r represents the number-based average particle diameter (nm), and σ represents the number-based standard deviation (nm))
For a memory hard disk, comprising an abrasive having a particle size distribution represented by the formula (first component) and the first component and another abrasive (second component) having an average particle size and / or standard deviation different by 10% or more. The present invention relates to a method for reducing minute waviness of a substrate.

本発明の基板の製造方法により、研磨後の被研磨物の微小うねりが顕著に低減したメモリーハードディスクや半導体素子を製造することができるという効果が奏される。   According to the substrate manufacturing method of the present invention, it is possible to manufacture a memory hard disk or a semiconductor element in which the fine waviness of the polished object after polishing is significantly reduced.

図1は、各実施例で使用された研磨材粒子の粒径対累積体積頻度グラフである。FIG. 1 is a graph of the particle size of the abrasive particles used in each example versus the cumulative volume frequency. 図2は、マイクロピットの測定の際に、微分干渉式顕微鏡で走査した基板上の部位を示す概略図である。FIG. 2 is a schematic view showing a portion on a substrate scanned with a differential interference microscope when measuring micropits.

本発明の基板の製造方法は、水と研磨材を含有する研磨液組成物と平均気孔径が0.01〜35μmの表面部材を有する研磨パッドを用いることを特徴とし、本発明においては、前記のような研磨液組成物と研磨パッドを用いることで、研磨後の基板の微小うねりを顕著に低減できるという効果が発現される。   The method for producing a substrate of the present invention is characterized by using a polishing liquid composition containing water and an abrasive and a polishing pad having a surface member having an average pore diameter of 0.01 to 35 μm. In the present invention, By using such a polishing liquid composition and a polishing pad, the effect of significantly reducing the fine waviness of the substrate after polishing is exhibited.

中でも、本発明においては、前記のような特定の表面部材を有する研磨パッドを使用することにより、研磨液組成物を研磨パッドに適度に保持することができるため、高い研磨速度を維持しながら、被研磨物の微小うねりを低減して、高品質のメモリーハードディスクや半導体素子を製造することができるという効果が発現される。
なお、従来使用されている研磨パッドは、パッド表面に比較的大きな気孔(平均気孔径約40〜80μm)を有するものであり、かかる研磨パッドを使用する場合、微小うねりの低減効果は十分なものではなかった。
Among them, in the present invention, by using the polishing pad having the specific surface member as described above, the polishing composition can be appropriately held in the polishing pad, so that while maintaining a high polishing rate, The effect of reducing the fine waviness of the object to be polished and producing a high-quality memory hard disk or semiconductor element is exhibited.
A conventionally used polishing pad has relatively large pores (average pore diameter of about 40 to 80 μm) on the pad surface, and when such a polishing pad is used, the effect of reducing microwaviness is sufficient. It wasn't.

ここでいう、微小うねりとは、粗さとうねりの中間の波長を持つ表面の凹凸であり、短波長うねり(波長50〜500μmのうねり)、長波長うねり(波長500μm〜5mmのうねり)に分類される。   As used herein, microwaviness refers to irregularities on the surface having an intermediate wavelength between roughness and waviness, and is classified into short wavelength waviness (wavelength of 50 to 500 μm) and long wavelength waviness (wavelength of 500 μm to 5 mm). The

すなわち、微小うねりは、対象物の表面の平滑性を示す指標となり、磁気ヘッド浮上量に影響を及ぼす。したがって、微小うねりの値が小さい程、対象物の表面の平滑性は優れることとなり、磁気ヘッドの低浮上化が可能となる。   That is, the minute waviness becomes an index indicating the smoothness of the surface of the object and affects the flying height of the magnetic head. Therefore, the smaller the value of the microwaviness, the better the smoothness of the surface of the object, and the magnetic head can be lowered.

一般に、対象物の表面の微小うねりは、対象物の表面からランダムに抜き取った各部分の平均として求められる。対象物の表面では、個々の位置における微小うねりは一様ではなく、相当に大きなバラツキを示すのが普通である。従って、対象物の表面の微小うねりを求めるには、その母平均が効果的に推定できるように測定位置及びその個数を定める必要がある。よって、データの信頼性は、測定位置及びその個数の選択に大きく依存する。
本発明において微小うねりの測定方法の詳細については、後述の実施例において記載する。
In general, the minute waviness on the surface of the object is obtained as an average of each portion extracted at random from the surface of the object. On the surface of the object, the minute undulations at the individual positions are not uniform and usually show considerable variations. Therefore, in order to obtain the minute waviness on the surface of the object, it is necessary to determine the measurement position and the number of the measurement positions so that the population average can be estimated effectively. Therefore, the reliability of data greatly depends on the selection of the measurement position and the number thereof.
The details of the method for measuring microwaviness in the present invention will be described in the examples described later.

本発明に用いられる研磨パッドとしては、平均気孔径が0.01〜35μmの表面部材を有するものであれば、その構造について特に限定はなく、例えば、「CMP技術基礎実例講座シリーズ第2回メカノケミカルポリシング(CMP)の基礎と実例(ポリシングパッド編)1998年5月27日資料 グローバルネット株式会社編」、「CMPのサイエンス 柏木正広編 株式会社サイエンスフォーラム 第4章」に記載されるようなスエードタイプ、不織布タイプ、ポリウレタン独立発泡タイプ及びこれらを積層した二層構造タイプがあるが、表面粗さ、微小うねり、表面欠陥であるマイクロスクラッチ、幅広スクラッチを低減する観点からは、スエードタイプが好ましい。ここで、スエードタイプとは、少なくともベース層と発泡した表面層とを有する構造の研磨パッドをいう。ベース層の材質としては、ポリエチレンテレフタレート(PET)等の高硬度樹脂が好ましい。また、表面層の材質としてはポリウレタンが好ましい。スエードタイプの研磨パッドの例としては、特に限定はなく、例えば、特開平11−335979号公報、特開2001−62704号公報に記載のものが挙げられる。   The structure of the polishing pad used in the present invention is not particularly limited as long as it has a surface member having an average pore diameter of 0.01 to 35 μm. For example, “CMP Technology Basic Example Course Series 2nd Mechano” Suede as described in Chemical Polishing (CMP) Basics and Examples (Polishing Pad Edition), May 27, 1998, Global Net Co., Ltd., “CMP Science, Masahiro Kashiwa, Science Forum, Chapter 4” There are types, nonwoven fabric types, polyurethane closed-cell foam types, and two-layer structure types in which these are laminated. From the viewpoint of reducing surface roughness, microwaviness, micro scratches that are surface defects, and wide scratches, suede types are preferred. Here, the suede type refers to a polishing pad having a structure having at least a base layer and a foamed surface layer. As the material of the base layer, a high-hardness resin such as polyethylene terephthalate (PET) is preferable. The material for the surface layer is preferably polyurethane. Examples of the suede type polishing pad are not particularly limited, and examples thereof include those described in JP-A Nos. 11-335979 and 2001-62704.

研磨パッドの表面部材の平均気孔径は、スクラッチ及び/又は微小うねり低減の観点から、35μm以下であり、好ましくは30μm以下、より好ましくは27μm以下、さらに好ましくは25μm以下である。パッドの研磨液保持性の観点から、気孔で研磨液を保持し液切れを起こさないようにするために、平均気孔径は0.01μm以上であり、好ましくは0.1μm以上、より好ましくは0.5μm以上、さらに好ましくは1μm以上である。また、研磨パッドの気孔径の最大値は、スクラッチ及び/又は微小うねり低減の観点から、100μm以下が好ましく、より好ましくは70μm以下、さらに好ましくは60μm以下、特に好ましくは50μm以下である。   The average pore diameter of the surface member of the polishing pad is 35 μm or less, preferably 30 μm or less, more preferably 27 μm or less, and even more preferably 25 μm or less, from the viewpoint of reducing scratches and / or microwaviness. From the viewpoint of holding the polishing liquid of the pad, the average pore diameter is 0.01 μm or more, preferably 0.1 μm or more, more preferably 0 in order to keep the polishing liquid in the pores and prevent the liquid from running out. 0.5 μm or more, more preferably 1 μm or more. Further, the maximum value of the pore size of the polishing pad is preferably 100 μm or less, more preferably 70 μm or less, still more preferably 60 μm or less, and particularly preferably 50 μm or less, from the viewpoint of reducing scratches and / or microwaviness.

また、本発明で用いられる研磨液組成物は、研磨材と水とを含有する研磨液組成物であって、該研磨材は、研磨用に一般に使用されている研磨材を使用することができる。該研磨材として、金属;金属又は半金属の炭化物、窒化物、酸化物、ホウ化物;ダイヤモンド等が挙げられる。金属又は半金属元素は、周期律表(長周期型)の2A、2B、3A、3B、4A、4B、5A、6A、7A又は8A族由来のものである。研磨材の具体例として、酸化アルミニウム、炭化珪素、ダイヤモンド、酸化マグネシウム、酸化亜鉛、酸化チタン、酸化セリウム、酸化ジルコニウム、シリカ等が挙げられ、これらを1種以上使用することは研磨速度を向上させる観点から好ましい。中でも、酸化アルミニウム、シリカ、酸化セリウム、酸化ジルコニウム、酸化チタン等が、半導体ウエハや半導体素子、磁気記録媒体用基板等の精密部品用基板の研磨に適している。酸化アルミニウムについては、α、θ、γ等種々の結晶系が知られているが、用途に応じ適宜選択、使用することができる。この内、シリカ、特にコロイダルシリカは、より高度な平滑性を必要とする高記録密度メモリー磁気ディスク用基板の最終仕上げ研磨用途や半導体デバイス基板の研磨用途に適している。   Moreover, the polishing composition used in the present invention is a polishing composition containing an abrasive and water, and the abrasive can be an abrasive generally used for polishing. . Examples of the abrasive include metal; metal or metalloid carbide, nitride, oxide, boride; diamond and the like. The metal or metalloid element is derived from the 2A, 2B, 3A, 3B, 4A, 4B, 5A, 6A, 7A or 8A group of the periodic table (long period type). Specific examples of the abrasive include aluminum oxide, silicon carbide, diamond, magnesium oxide, zinc oxide, titanium oxide, cerium oxide, zirconium oxide, and silica. The use of one or more of these improves the polishing rate. It is preferable from the viewpoint. Among these, aluminum oxide, silica, cerium oxide, zirconium oxide, titanium oxide, and the like are suitable for polishing a substrate for precision parts such as a semiconductor wafer, a semiconductor element, and a magnetic recording medium substrate. As for aluminum oxide, various crystal systems such as α, θ, and γ are known, but can be appropriately selected and used according to the application. Of these, silica, particularly colloidal silica, is suitable for final finishing polishing for high recording density memory magnetic disk substrates that require higher smoothness and for polishing semiconductor device substrates.

また、本発明においては、表面粗さ(Ra 、Rmax) 、微小うねりを低減し、スクラッチ等の表面欠陥を減少させて、表面品質を向上させる観点から、研磨材としてシリカを用いることがより好ましい。シリカとしては、コロイダルシリカ、ヒュームドシリカ、表面修飾したシリカ等が挙げられ、中でも、コロイダルシリカが好ましい。なお、コロイダルシリカは、例えば、ケイ酸水溶液から生成させる製法により得ることができる。   In the present invention, it is more preferable to use silica as an abrasive from the viewpoint of reducing surface roughness (Ra, Rmax), microwaviness, reducing surface defects such as scratches, and improving surface quality. . Examples of the silica include colloidal silica, fumed silica, surface-modified silica, and the like. Among these, colloidal silica is preferable. In addition, colloidal silica can be obtained by the manufacturing method produced | generated from silicic acid aqueous solution, for example.

表面粗さ(Ra、Rmax)及び微小うねり低減、マイクロピット低減、スクラッチ低減の観点から、研磨材全量中における粒子径5nm〜120nmの粒子の含有量が50体積%以上であり、該研磨材として粒子径が5nm〜40nm未満の小粒径粒子を粒子径5〜120nmの粒子全量に対して10〜100体積%含有し、粒子径が40nm〜80nm未満の中粒径粒子を粒子径5〜120nmの粒子全量に対して0〜70体積%含有し、粒子径が80nm〜120nmの大粒径粒子を粒子径5〜120nmの粒子全量に対して0〜40体積%含有するものであることが好ましい。   From the viewpoint of surface roughness (Ra, Rmax) and micro waviness reduction, micropit reduction, and scratch reduction, the content of particles having a particle diameter of 5 nm to 120 nm in the total amount of the abrasive is 50% by volume or more. 10 to 100% by volume of small particle size particles having a particle size of 5 nm to less than 40 nm with respect to the total amount of particles having a particle size of 5 to 120 nm, and medium particle size particles having a particle size of less than 40 nm to 80 nm. It is preferable to contain 0 to 70% by volume with respect to the total amount of particles, and 0 to 40% by volume of large particle size particles having a particle size of 80 to 120 nm with respect to the total particle size of 5 to 120 nm. .

また、マイクロピット低減の観点から研磨材全量中における5〜120nmの粒子の含有量が50体積%以上であり、該研磨材として粒子径が5nm〜40nm未満の小粒径粒子を粒子径5nm〜120nmの粒子全量に対して10〜70体積%含有し、粒子径が40nm〜80nm未満の中粒径粒子を粒子径5〜120nmの粒子全量に対して20〜70体積%含有し、粒子径が80nm〜120nmの大粒径粒子を粒子径5〜120nmの粒子全量に対して0.1〜40体積%含有することが好ましい。   Further, from the viewpoint of reducing the micropits, the content of particles of 5 to 120 nm in the total amount of the abrasive is 50% by volume or more, and small particles having a particle diameter of 5 nm to less than 40 nm are used as the abrasive. 10 to 70% by volume with respect to the total amount of 120 nm particles, 20 to 70% by volume of medium-sized particles having a particle size of less than 40 to 80 nm with respect to the total amount of 5 to 120 nm particles, and a particle size of It is preferable to contain 0.1 to 40% by volume of large particle diameters of 80 nm to 120 nm with respect to the total amount of particles having a particle diameter of 5 to 120 nm.

ここで、マイクロピットとは、(1)微分干渉式光学顕微鏡で観察する場合、倍率50〜100倍で、基板表面を十分に平坦に調整した状態でのみ観測できる凹み又は(2)原子間力顕微鏡で観察する場合、直径0.2〜5μm、深さ10〜100nmの逆円錐型の凹みであって、(3)凹みの底にAl元素が検出されるものをいう。なお、Al元素の検出は、走査型電子顕微鏡(SEM)と元素分析手法(EDS、オージェ分光)を組み合わせることにより確認できる。   Here, the micropits are (1) a dent that can be observed only when the substrate surface is sufficiently flat, and (2) an atomic force when observed with a differential interference optical microscope. When observing with a microscope, it is an inverted conical dent having a diameter of 0.2 to 5 μm and a depth of 10 to 100 nm, and (3) means that an Al element is detected at the bottom of the dent. The detection of Al element can be confirmed by combining a scanning electron microscope (SEM) and an elemental analysis method (EDS, Auger spectroscopy).

このマイクロピットは、研磨材の平均粒径が小さくなるにつれ、機械的研削力が不足し、たとえば前工程のアルミナ砥粒の突き刺さり等の残留物が排出しにくく、研磨後期で排出されたものが研削されずに凹みとして残ることでマイクロピットが発生すると考えられる。   As the average particle size of the abrasive becomes smaller, this micropit has insufficient mechanical grinding force. For example, it is difficult to discharge residues such as stabs of alumina abrasive grains in the previous process, and those discharged in the late stage of polishing. It is considered that micropits are generated by remaining as a dent without being ground.

本発明に用いられる研磨材は、粒子径5〜120nmの粒子を50体積%以上含有するものが好ましい。前記粒子径5〜120nmの粒子の含有量は、マイクロピット、表面粗さ及びスクラッチの低減の観点から、55体積%以上が好ましく、60体積%以上がより好ましい。   The abrasive used in the present invention preferably contains 50% by volume or more of particles having a particle diameter of 5 to 120 nm. The content of the particles having a particle diameter of 5 to 120 nm is preferably 55% by volume or more, and more preferably 60% by volume or more, from the viewpoint of reducing micropits, surface roughness, and scratches.

マイクロピット低減の観点から、前記小粒径粒子の含有量としては、12〜68体積%が好ましく、15〜65体積%がより好ましく、20〜60体積%がさらに好ましく、最も好ましくは30〜60体積%、中粒径粒子の含有量としては、25〜70体積%が好ましく、25〜60体積%がより好ましく、さらに好ましくは30〜50体積%、大粒径粒子の含有量としては、0.5〜35体積%が好ましく、1〜30体積%がより好ましい。   From the viewpoint of reducing micropits, the content of the small particle size is preferably 12 to 68% by volume, more preferably 15 to 65% by volume, still more preferably 20 to 60% by volume, and most preferably 30 to 60%. The content of the volume% and medium particle diameter is preferably 25 to 70 volume%, more preferably 25 to 60 volume%, still more preferably 30 to 50 volume%, and the content of the large particle diameter is 0. 5 to 35% by volume is preferable, and 1 to 30% by volume is more preferable.

中でも、本発明に用いられる研磨材は、マイクロピット低減の観点から、粒子径5〜120nmの粒子全量に対して、粒子径が10nm〜30nmの粒子を5〜70体積%、好ましくは10〜50体積%、粒子径が45nm〜75nmの粒子を20〜70体積%、好ましくは22〜65体積%、及び粒子径が90nm〜110nmの粒子を0.1〜25体積%、好ましくは1〜15体積%含有していることが望ましい。   Among them, the abrasive used in the present invention is 5 to 70% by volume, preferably 10 to 50%, of particles having a particle size of 10 to 30 nm with respect to the total amount of particles having a particle size of 5 to 120 nm from the viewpoint of reducing micropits. Volume%, particles having a particle diameter of 45 nm to 75 nm are 20 to 70 volume%, preferably 22 to 65 volume%, and particles having a particle diameter of 90 nm to 110 nm are 0.1 to 25 volume%, preferably 1 to 15 volumes. % Content is desirable.

前記研磨材の粒径分布は、以下の方法により求めることができる。即ち、研磨材粒子を日本電子製透過型電子顕微鏡(TEM)「JEM−2000FX」(80kV、1〜5万倍)で観察した写真をパソコン(PC)にスキャナで取込み、解析ソフト「WinROOF」(販売元、三谷商事)を用いて1個1個の粒子の円相当径を求め、それを直径とし、1000個以上の粒子データを解析した後、それをもとに表計算ソフト「EXCEL」(マイクロソフト社製)にて粒子直径から粒子体積に換算する。まず、全粒子中における5nm以上120nm以下(5〜120nm)の粒子の割合(体積基準%)を計算し、さらに5nm以上120nm以下の粒子の集合全体における5nm以上40nm未満(5nm〜40nm未満)、40nm以上80nm未満(40nm〜80nm未満)、80nm以上120nm以下(80nm〜120nm)の3つの領域の割合(体積基準%)を求める。同様に10nm以上30nm以下、45nm以上75nm以下、90nm以上110nm以下の3つの領域の割合(体積基準%)についても求める。   The particle size distribution of the abrasive can be determined by the following method. That is, a photograph obtained by observing the abrasive particles with a transmission electron microscope (TEM) “JEM-2000FX” (80 kV, 1 to 50,000 times) manufactured by JEOL is taken into a personal computer (PC) with a scanner, and analysis software “WinROOF” ( After obtaining the equivalent circle diameter of each particle using a distributor (Mitani Corporation), analyzing the data of more than 1000 particles, spreadsheet software “EXCEL” ( Converted from particle diameter to particle volume by Microsoft). First, the ratio (volume basis%) of particles of 5 nm to 120 nm (5 to 120 nm) in all particles is calculated, and further 5 nm to 40 nm (5 nm to less than 40 nm) in the entire set of particles of 5 nm to 120 nm. The ratio (volume basis%) of three regions of 40 nm or more and less than 80 nm (40 nm to less than 80 nm) and 80 nm or more and 120 nm or less (80 nm to 120 nm) is determined. Similarly, the ratio (volume reference%) of three regions of 10 nm to 30 nm, 45 nm to 75 nm, and 90 nm to 110 nm is also obtained.

また、本発明において、研磨材は、研磨速度の観点から、個数基準の平均粒子径(r)に対して、個数基準の標準偏差値(σ)が式(1)を満たすことが好ましく、式(2)を満たすことがより好ましく、式(3)を満たすことが更に好ましい。
σ≧0.3×r (1)
σ≧0.34×r (2)
σ≧0.375×r (3)
(式中、rは個数基準の平均粒子径(nm)、σは個数基準の標準偏差(nm)を示す)
In the present invention, the abrasive preferably has a number-based standard deviation value (σ) satisfying the formula (1) with respect to the number-based average particle diameter (r) from the viewpoint of the polishing rate. It is more preferable to satisfy (2), and it is still more preferable to satisfy Formula (3).
σ ≧ 0.3 × r (1)
σ ≧ 0.34 × r (2)
σ ≧ 0.375 × r (3)
(Wherein r represents the number-based average particle diameter (nm), and σ represents the number-based standard deviation (nm))

また、表面粗さの観点から、式(4)を満たすことが好ましく、式(5)を満たすことが更に好ましい。
−0.2×r+25≧σ (4)
−0.25×r+25≧σ (5)
(式中、r、σは前記と同じ)
Moreover, it is preferable to satisfy | fill Formula (4) from a viewpoint of surface roughness, and it is still more preferable to satisfy | fill Formula (5).
−0.2 × r + 25 ≧ σ (4)
−0.25 × r + 25 ≧ σ (5)
(Wherein r and σ are the same as above)

前記研磨材の平均粒子径(r)、個数基準の標準偏差(δ)は、前記粒径分布を測定する際に求めた1000個以上の研磨材粒子の円相当径を直径とし、表計算ソフト「EXCEL」(マイクロソフト社製)で処理することで、個数基準の平均粒子径(r)及び標準偏差値(σ)をそれぞれ得ることができる。   The average particle diameter (r) of the abrasive and the standard deviation (δ) based on the number are calculated by calculating the equivalent circle diameter of 1000 or more abrasive particles obtained when measuring the particle size distribution. By processing with “EXCEL” (manufactured by Microsoft Corporation), the number-based average particle diameter (r) and standard deviation value (σ) can be obtained.

また、前記表計算ソフト「EXCEL」にて、粒子直径から粒子体積に換算して得られる研磨材粒子の粒径分布データに基づき、全粒子中における、ある粒子径の粒子の割合(体積基準%)を小粒子径側からの累積頻度として表し、累積体積頻度(%)を得る。以上のようにして得られた研磨材粒子の粒子径及び累積体積頻度データに基づき、粒子径に対して累積体積頻度をプロットすることにより、粒子径対累積体積頻度グラフが得られる。   In addition, based on the particle size distribution data of the abrasive particles obtained by converting the particle diameter to the particle volume with the spreadsheet software “EXCEL”, the ratio of particles having a certain particle diameter in all particles (volume basis%) ) Is expressed as a cumulative frequency from the small particle diameter side to obtain a cumulative volume frequency (%). By plotting the cumulative volume frequency against the particle diameter based on the particle diameter and cumulative volume frequency data of the abrasive particles obtained as described above, a particle diameter versus cumulative volume frequency graph is obtained.

本発明において、研磨材は、前記粒子径対累積体積頻度グラフにおいて、粒子径60〜120nmの範囲における累積体積頻度(V)が粒子径(R)に対し、下記式(6)及び(7):
V≧0.5×R (6)
V≦0.25×R+75 (7)
(式中、Rは研磨材の粒子径(nm)、Vは研磨材の小粒子径側からの累積体積頻度(%)を示す)
を満たす粒径分布を有することが好ましく、ディスク用基板の表面の微小うねりの低減による当該基板の表面の平滑性の向上の観点から、粒子径105nm以上の範囲で累積体積頻度が90%となる粒径分布を有するものがさらに好ましい。
In the present invention, the abrasive has the following formulas (6) and (7) in which the cumulative volume frequency (V) in the particle diameter range of 60 to 120 nm is the particle diameter (R) in the particle diameter versus cumulative volume frequency graph. :
V ≧ 0.5 × R (6)
V ≦ 0.25 × R + 75 (7)
(In the formula, R represents the particle diameter (nm) of the abrasive, and V represents the cumulative volume frequency (%) from the small particle diameter side of the abrasive)
Preferably from a viewpoint of improving the smoothness of the surface of the substrate by reducing micro waviness on the surface of the disk substrate, the cumulative volume frequency is 90% in the range of the particle diameter of 105 nm or more. What has a particle size distribution is still more preferable.

本発明において、前記式(1)は、研磨材粒子の粒径分布の広がりを示す指標であり、かかる範囲内の粒径分布を有する研磨材粒子は、その粒径分布がある一定以上の広がりを有するものであることを意味する。
また、本発明において、前記式(6)及び(7)は、研磨材粒子の存在割合を示す指標であり、粒子径60〜120nmの範囲において前記式(6)及び(7)を満たす研磨材粒子は、所定の粒子径のものをある一定以上の割合で含有することを意味する。
これらの式(1)〜(7)を満たす研磨材を用いることにより、生産性を損なうことなく、微小うねりを実用上充分な程度に低減させることができる。
In the present invention, the formula (1) is an index indicating the spread of the particle size distribution of the abrasive particles, and the abrasive particles having a particle size distribution within such a range have a certain size or more spread. It means that it has.
In the present invention, the formulas (6) and (7) are indexes indicating the abundance ratio of abrasive particles, and the abrasives satisfying the formulas (6) and (7) in a particle diameter range of 60 to 120 nm. It means that the particles contain particles having a predetermined particle diameter at a certain ratio or more.
By using an abrasive that satisfies these formulas (1) to (7), the fine waviness can be reduced to a practically sufficient level without impairing productivity.

本発明に使用される研磨材としては、前記のような粒径分布を有するものであれば、特定の粒径分布を有する1種類の研磨材からなるものであっても、異なる粒径分布を有する2種類以上の研磨材を混合してなるものであってもよい。なお、2種以上の研磨材を用いる場合、研磨材の粒径分布とは、混合した研磨材の粒径分布をいう。   The abrasive used in the present invention has a different particle size distribution even if it is composed of one type of abrasive having a specific particle size distribution as long as it has the particle size distribution as described above. It may be formed by mixing two or more kinds of abrasives. In addition, when using 2 or more types of abrasives, the particle size distribution of an abrasive means the particle size distribution of the mixed abrasives.

また、研磨材としては、基板の表面の表面粗さ(TMS−Ra)の低減による当該基板の表面の平滑性の向上の観点から、前記粒径対累積体積頻度グラフにおいて、粒径40〜100nmの範囲における累積体積頻度(V)が粒径(R)に対し、式(8):
V≧0.5×R+40 (8)
を満たす粒径分布を有するものが好ましく、粒径40〜70nmの範囲において、VがRに対し、以下の式(9):
V≧1×R+20 (9)
を満たす粒径分布を有するものがより好ましく、粒径40〜60nmの範囲において、VがRに対し、以下の式(10):
V≧1.5×R (10)
を満たす粒径分布を有するものが更に好ましく、粒径40〜50nmの範囲において、VがRに対し、以下の式(11):
V≧3×R−60 (11)
を満たす粒径分布を有するものが特に好ましく、粒径40〜45nmの範囲において、VがRに対し、以下の式(12):
V≧R+50 (12)
を満たす粒径分布を有するものが最も好ましい。また、研磨速度の観点から、粒径1〜3nmの範囲において、VがRに対し、以下の式(13):
V≦8R+5 (13)
を満たす粒径分布を有するものが好ましい。
In addition, as the abrasive, from the viewpoint of improving the smoothness of the surface of the substrate by reducing the surface roughness (TMS-Ra) of the substrate, the particle size is 40 to 100 nm in the particle size versus cumulative volume frequency graph. For the cumulative volume frequency (V) in the range of
V ≧ 0.5 × R + 40 (8)
Preferably having a particle size distribution that satisfies the following formula (9):
V ≧ 1 × R + 20 (9)
More preferably, it has a particle size distribution that satisfies the following formula. In the particle size range of 40 to 60 nm, V is R, and the following formula (10):
V ≧ 1.5 × R (10)
More preferably, it has a particle size distribution satisfying the following formula. In the particle size range of 40 to 50 nm, V is R and R is the following formula (11):
V ≧ 3 × R-60 (11)
Particularly preferred are those having a particle size distribution that satisfies the following formula (12):
V ≧ R + 50 (12)
Those having a particle size distribution satisfying the above are most preferable. Further, from the viewpoint of the polishing rate, in the range of 1 to 3 nm in the particle diameter, V is R with respect to R (Equation 13):
V ≦ 8R + 5 (13)
What has the particle size distribution which satisfy | fills is preferable.

本明細書において、「表面粗さ(TMS−Ra)」とは、光散乱式表面粗さ測定機:TMS−2000RC〔シュミット・メジャーメント・インコーポレイテッド(Schmitt Measurement Systems, Inc. )製〕により測定される測定対象物(以下、対象物という)の表面粗さ〔Ra(Å)〕をいう。   In the present specification, “surface roughness (TMS-Ra)” is measured by a light scattering surface roughness measuring machine: TMS-2000RC (manufactured by Schmitt Measurement Systems, Inc.). The surface roughness [Ra (Å)] of the measurement object to be measured (hereinafter referred to as the object).

また、研磨材としては、キャリア鳴きの観点から、前記粒径対累積体積頻度グラフにおいて、(a)粒径5〜40nmの範囲における累積体積頻度(V)が粒径(R)に対し、前記式(14):
V≦2×(R−5) (14)
を満たし、および(b)粒径20〜40nmの範囲における累積体積頻度(V)が粒径(R)に対し、前記式(15):
V≧0.5×(R−20) (15)
を満たす粒径分布を有することが好ましい。研磨材として使用する粒子の粒径分布が前記(a)を満たすものであることから、ディスク用基板の研磨工程でのキャリア鳴きの発生が抑えられる。一方、該粒子の粒径分布が前記(b)を満たすものであることから、マイクロピットが効果的に低減され、しかも高い研磨速度が得られる。
In addition, as an abrasive, from the viewpoint of carrier noise, in the particle size vs. cumulative volume frequency graph, (a) the cumulative volume frequency (V) in the range of 5 to 40 nm in the particle size (R) Formula (14):
V ≦ 2 × (R-5) (14)
And (b) the cumulative volume frequency (V) in the particle size range of 20 to 40 nm is the above formula (15) for the particle size (R):
V ≧ 0.5 × (R-20) (15)
It is preferable to have a particle size distribution that satisfies Since the particle size distribution of the particles used as the abrasive satisfies the above (a), the occurrence of carrier squeal in the polishing process of the disk substrate can be suppressed. On the other hand, since the particle size distribution of the particles satisfies the above (b), micropits are effectively reduced and a high polishing rate can be obtained.

研磨機を用いてディスク用基板の研磨を行う際、該基板は研磨盤間にセットされた保持具(キャリア)内に偏心した状態で装填される。そして、研磨の進行と共に、該キャリアの周辺よりキャリア鳴きが発生する場合がある。キャリア鳴きは、一般に粒径が40nm以下の研磨材粒子を多く含有する研磨液組成物を用いた場合に顕著に発生し、キャリア鳴きが軽度の場合には、断続的にあるいは連続的にキュッキュッという音が発生する程度であるが、重度の場合には、研磨機全体が振動し始め、研磨工程を中断せざるを得ないことがある。   When polishing a disk substrate using a polishing machine, the substrate is loaded in an eccentric state in a holder (carrier) set between the polishing disks. As the polishing progresses, carrier noise may occur from around the carrier. Carrier squeal generally occurs when a polishing composition containing a large number of abrasive particles having a particle size of 40 nm or less is used, and when the carrier squeal is mild, it is intermittently or continuously called squeezing. Although the sound is only generated, if it is severe, the entire polishing machine may start to vibrate and the polishing process may have to be interrupted.

また、本発明においては、研磨材は、式(16)で表される粒径分布の研磨材(第1成分)並びに第1成分とは平均粒子径及び/又は標準偏差が異なる他の研磨材(第2成分)との混合物として使用されることが好ましい。
σ > 0.9067 × r+0.588 (16)
(式中、rは個数基準の平均粒子径(nm)、σは個数基準の標準偏差(nm)を示す)
In the present invention, the abrasive is an abrasive having a particle size distribution represented by formula (16) (first component) and other abrasives having an average particle size and / or standard deviation different from the first component. It is preferably used as a mixture with (second component).
σ> 0.9067 × r + 0.588 (16)
(Wherein r represents the number-based average particle diameter (nm), and σ represents the number-based standard deviation (nm))

ここで、式(16)は、研磨材の粒径分布の状態を示し、式(16)を満たす粒径分布を有する研磨材は、粒径分布が平均粒径に応じた比較的分布幅の広い状態(いわゆる、ブロードな状態)であることを示す。なお、標準偏差は、表面粗さ、スクラッチ低減の観点より、30以下であることが好ましく、また、
σ > 0.71 × r+0.7
で表される粒径分布を満たすことがより好ましく、
σ >0.57 × r+0.8
で表される粒径分布を満たすことがさらに好ましい。
Here, the equation (16) shows the state of the particle size distribution of the abrasive, and the abrasive having the particle size distribution satisfying the equation (16) has a relatively wide distribution width according to the average particle size. Indicates a wide state (so-called broad state). The standard deviation is preferably 30 or less from the viewpoint of surface roughness and scratch reduction,
σ> 0.71 × r + 0.7
It is more preferable to satisfy the particle size distribution represented by
σ> 0.57 × r + 0.8
More preferably, the particle size distribution represented by

第2成分の研磨材は、第1成分の研磨材と平均粒子径又は標準偏差の少なくともどちらか一方が異なる研磨材であればよい。中でも、研磨速度の向上、表面粗さと微小うねりの低減の観点から、第2成分の研磨材は平均粒子径又は標準偏差が第1成分の研磨材のものに比べて、10%以上異なることが好ましく、20%以上異なることがより好ましい。   The abrasive of the second component may be an abrasive that differs from the abrasive of the first component in at least one of the average particle diameter or the standard deviation. Above all, from the viewpoint of improving the polishing rate and reducing the surface roughness and microwaviness, the second component abrasive may differ by 10% or more in average particle size or standard deviation from that of the first component abrasive. Preferably, it is more preferably different by 20% or more.

また、第2成分の研磨材の粒径分布としては、式(16)で表される粒径分布を有するものであってもよいが、研磨速度の向上、表面粗さと微小うねりの低減の観点から、式(17)で表される粒径分布を有するものであるのが好ましい。
σ ≦ 0.9067 × r+0.588 (17)
The particle size distribution of the abrasive of the second component may have the particle size distribution represented by the formula (16). From the viewpoints of improving the polishing rate and reducing the surface roughness and microwaviness. Therefore, it is preferable to have a particle size distribution represented by Formula (17).
σ ≦ 0.9067 × r + 0.588 (17)

ここで、式(17)を満たす粒径分布を有する研磨材は、式(16)以外の粒径分布の状態、すなわち、粒径分布が平均粒径に応じた比較的分布幅の狭い状態(いわゆる、シャープな状態)であることを示す。なお、標準偏差は、研磨速度向上の観点より、1以上であることが好ましい。   Here, the abrasive having a particle size distribution satisfying the equation (17) is in a particle size distribution state other than the equation (16), that is, a state in which the particle size distribution is relatively narrow according to the average particle size ( So-called sharp state). The standard deviation is preferably 1 or more from the viewpoint of improving the polishing rate.

さらに第3成分の研磨材を含有してもよい。第3成分の研磨材は、前記ブロードな状態であっても、シャープな状態であってもよく、ブロードな状態の研磨材とシャープな状態の研磨材を併用してもよい。   Further, a third component abrasive may be contained. The abrasive of the third component may be in the broad state or in a sharp state, and a broad state of the abrasive and a sharp state of the abrasive may be used in combination.

研磨液組成物中における第1成分の研磨材と第2成分の研磨材との量比(第1成分/第2成分、重量比)としては、研磨速度の向上、表面粗さと微小うねりの低減の観点から、1:0.05〜0.05:1が好ましく、1:0.1〜0.1:1がより好ましく、1:0.2〜0.2:1がさらに好ましく、1:0.25〜0.25:1が特に好ましい。   As a quantitative ratio (first component / second component, weight ratio) between the first component abrasive and the second component abrasive in the polishing composition, the polishing rate is improved, and the surface roughness and micro-waviness are reduced. In view of the above, 1: 0.05 to 0.05: 1 is preferable, 1: 0.1 to 0.1: 1 is more preferable, 1: 0.2 to 0.2: 1 is further preferable, and 1: 0.25 to 0.25: 1 is particularly preferred.

研磨液組成物中における研磨材の含有量は、研磨速度を向上させる観点から、好ましくは0.5 重量%以上、より好ましくは1重量%以上、さらに好ましくは3重量%以上、特に好ましくは5重量%以上であり、また、表面品質を向上させる観点、及び経済性の観点から、好ましくは20重量%以下、より好ましくは15重量%以下、さらに好ましくは13重量%以下、特に好ましくは10重量%以下である。すなわち、該含有量は、好ましくは0.5 〜20重量% 、より好ましくは1 〜15重量% 、さらに好ましくは3 〜13重量% 、特に好ましくは5 〜10重量% である。   The content of the abrasive in the polishing composition is preferably 0.5% by weight or more, more preferably 1% by weight or more, further preferably 3% by weight or more, and particularly preferably 5% from the viewpoint of improving the polishing rate. From the viewpoint of improving the surface quality and economy, it is preferably 20% by weight or less, more preferably 15% by weight or less, still more preferably 13% by weight or less, and particularly preferably 10% by weight. % Or less. That is, the content is preferably 0.5 to 20% by weight, more preferably 1 to 15% by weight, still more preferably 3 to 13% by weight, and particularly preferably 5 to 10% by weight.

また、本発明に用いられる研磨液組成物は、研磨速度の向上、表面粗さ(Ra、Rmax)や微小うねりの低減の観点から、さらに酸化剤を含有してもよい。酸化剤としては、共立出版刊「化学大辞典3」P910に記載されている酸化剤を使用できる。この中でも、過酸化水素、硝酸鉄(III)、過酢酸、ペルオキソ二硫酸アンモニウム、硫酸鉄(III)及び硫酸アンモニウム鉄(III)が好ましい。表面に金属イオンが付着せず汎用に使用され安価であるという観点から過酸化水素が特に好ましい。これらの酸化剤は、単独で又は2種以上を混合して使用してもよい。   In addition, the polishing composition used in the present invention may further contain an oxidizing agent from the viewpoint of improving the polishing rate, reducing the surface roughness (Ra, Rmax) and microwaviness. As the oxidizing agent, an oxidizing agent described in Kyoritsu Shuppan "Chemical Dictionary 3" P910 can be used. Among these, hydrogen peroxide, iron (III) nitrate, peracetic acid, ammonium peroxodisulfate, iron (III) sulfate, and iron (III) ammonium sulfate are preferable. Hydrogen peroxide is particularly preferable from the viewpoint that metal ions do not adhere to the surface and are generally used and inexpensive. These oxidizing agents may be used alone or in admixture of two or more.

研磨速度を向上させる観点から、研磨液組成物中の酸化剤の含有量は、好ましくは0.002 重量% 以上、より好ましくは0.005 重量% 以上、さらに好ましくは0.007 重量% 以上、特に好ましくは0.01重量% 以上であり、表面粗さや微小うねりを低減し、ピット、スクラッチ等の表面欠陥を減少させて表面品質を向上させる観点及び経済性の観点から、好ましくは20重量% 以下、より好ましくは15重量% 以下、さらに好ましくは10重量% 以下、特に好ましくは5 重量% 以下である。該含有量は、好ましくは0.002 〜20重量% 、より好ましくは0.005 〜15重量% 、さらに好ましくは、0.007 〜10重量% 、特に好ましくは0.01〜5 重量% である。   From the viewpoint of improving the polishing rate, the content of the oxidizing agent in the polishing composition is preferably 0.002% by weight or more, more preferably 0.005% by weight or more, still more preferably 0.007% by weight or more, Particularly preferably, it is 0.01% by weight or more, and preferably 20% by weight from the viewpoint of reducing surface roughness and micro-waviness, reducing surface defects such as pits and scratches and improving surface quality, and economical efficiency. Hereinafter, it is more preferably 15% by weight or less, further preferably 10% by weight or less, and particularly preferably 5% by weight or less. The content is preferably 0.002 to 20% by weight, more preferably 0.005 to 15% by weight, still more preferably 0.007 to 10% by weight, and particularly preferably 0.01 to 5% by weight. .

また、前記研磨液組成物は、研磨速度の向上、表面粗さ(Ra、Rmax)や微小うねりの低減及びスクラッチ等の表面欠陥を減少させる観点から、酸及び/又はその塩を含有してもよい。酸及び/又はその塩としては、その酸のpK1が2以下の化合物が好ましく、微小スクラッチを低減する観点から、pK1が1.5以下、より好ましくは1以下、最も好ましくはpK1で表せない程の強い酸性を示す化合物が望ましい。その例としては、改訂4版 化学便覧(基礎編)II、pp316−325(日本化学会編)に記載の酸が挙げられ、中でも、幅広スクラッチを低減する観点から、無機酸や有機ホスホン酸が好ましい。また、無機酸の中では、硝酸、硫酸、塩酸、過塩素酸がより好ましい。有機ホスホン酸の中では、1−ヒドロキシエチリデン−1,1−ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)がより好ましい。   In addition, the polishing composition may contain an acid and / or a salt thereof from the viewpoint of improving the polishing rate, reducing the surface roughness (Ra, Rmax) and microwaviness, and reducing surface defects such as scratches. Good. As the acid and / or salt thereof, a compound having a pK1 of 2 or less is preferable. From the viewpoint of reducing fine scratches, pK1 is 1.5 or less, more preferably 1 or less, and most preferably not represented by pK1. A compound exhibiting strong acidity is desirable. Examples thereof include acids described in the revised 4th edition, Chemical Handbook (Basic) II, pp316-325 (Edited by Chemical Society of Japan). Among them, inorganic acids and organic phosphonic acids are used from the viewpoint of reducing wide scratches. preferable. Among inorganic acids, nitric acid, sulfuric acid, hydrochloric acid, and perchloric acid are more preferable. Among organic phosphonic acids, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), and diethylenetriaminepenta (methylenephosphonic acid) are more preferable.

塩としては、特に限定はなく、具体的には、金属、アンモニウム、アルキルアンモニウム、有機アミン等との塩が挙げられる。金属の具体例としては、周期律表(長周期型)1A、1B、2A、2B、3A、3B、4A、6A、7A又は8族に属する金属が挙げられる。これらの中でも、微小スクラッチ低減の観点から1A族に属する金属又はアンモニウムとの塩が好ましい。これらの酸及びその塩は単独で又は2種以上を混合して用いてもよい。   The salt is not particularly limited, and specific examples include salts with metals, ammonium, alkylammonium, organic amines and the like. Specific examples of the metal include metals belonging to the periodic table (long-period type) 1A, 1B, 2A, 2B, 3A, 3B, 4A, 6A, 7A, or Group 8. Among these, a salt with a metal belonging to Group 1A or ammonium is preferable from the viewpoint of reducing fine scratches. These acids and salts thereof may be used alone or in admixture of two or more.

前記酸及びその塩の研磨液組成物中における含有量は、充分な研磨速度を発揮する観点および表面品質を向上させる観点から、0.0001〜5重量%が好ましく、より好ましくは0.0003〜3重量%であり、さらに好ましくは0.001 〜2重量%、特に好ましくは0.0025〜1重量%である。   The content of the acid and its salt in the polishing composition is preferably 0.0001 to 5% by weight, more preferably 0.0003 to 5% from the viewpoint of exhibiting a sufficient polishing rate and improving the surface quality. It is 3% by weight, more preferably 0.001 to 2% by weight, and particularly preferably 0.0025 to 1% by weight.

研磨液組成物中の水は、媒体として使用されるものであり、例えば、蒸留水、イオン交換水、超純水等が使用される。その含有量は、被研磨物を効率よく研磨する観点から、好ましくは55〜99.4979 重量% 、より好ましくは67〜98.9947 重量% 、さらに好ましくは75〜96.992重量% 、特に好ましくは84〜94.9875 重量% である。   The water in the polishing composition is used as a medium, and for example, distilled water, ion exchange water, ultrapure water, or the like is used. The content thereof is preferably 55 to 99.4799% by weight, more preferably 67 to 98.9947% by weight, still more preferably 75 to 96.992% by weight, particularly preferably from the viewpoint of efficiently polishing an object to be polished. Is 84-94.9875 wt%.

尚、前記研磨液組成物中の研磨材、水、酸化剤、酸及び/又はその塩等の各成分の濃度は、該組成物製造時の濃度及び使用時の濃度のいずれであってもよい。通常、濃縮液として研磨液組成物は製造され、これを使用時に希釈して用いる場合が多い。   The concentration of each component such as abrasive, water, oxidant, acid and / or salt thereof in the polishing composition may be any of the concentration during production of the composition and the concentration during use. . Usually, a polishing composition is produced as a concentrated liquid, and it is often used after being diluted at the time of use.

また、本発明の研磨液組成物には、必要に応じて他の成分を配合することができる。該他の成分としては、増粘剤、分散剤、防錆剤、塩基性物質、界面活性剤等が挙げられる。   Moreover, other components can be mix | blended with the polishing liquid composition of this invention as needed. Examples of the other components include a thickener, a dispersant, a rust inhibitor, a basic substance, and a surfactant.

本発明の研磨液組成物は、前記研磨材、酸化剤、酸及び/又はその塩、水、必要に応じて他の成分等を公知の方法で混合することにより調製することができる。   The polishing composition of the present invention can be prepared by mixing the polishing material, oxidizing agent, acid and / or salt thereof, water, and other components as required, by a known method.

本発明の基板の製造方法としては、例えば、前記研磨パッドを用いて被研磨基板を研磨する際に、前記研磨液組成物を用いる方法が挙げられる。被研磨基板の研磨方法としては、前記研磨液組成物を用いて、あるいは前記研磨液組成物の組成となるように各成分を混合して研磨液組成物を調製し、かかる研磨液組成物を研磨パッドの供給して被研磨基板を研磨する工程を有しており、特にメモリーハードディスク用基板等の精密部品用基板を好適に製造することができる。また、かかる方法により、微小うねりを顕著に低減して高い研磨速度を発揮することができる。したがって、本発明は、基板の研磨方法および基板の微小うねりの低減方法に関する。   Examples of the method for producing a substrate of the present invention include a method using the polishing composition when the substrate to be polished is polished using the polishing pad. As a polishing method for a substrate to be polished, a polishing liquid composition is prepared by using the polishing liquid composition or by mixing each component so as to be the composition of the polishing liquid composition. A polishing pad is supplied to polish the substrate to be polished. In particular, a substrate for precision parts such as a memory hard disk substrate can be suitably manufactured. In addition, this method can remarkably reduce the fine waviness and exhibit a high polishing rate. Therefore, the present invention relates to a method for polishing a substrate and a method for reducing micro waviness of a substrate.

基板の製造方法の条件としては、特に限定はないが、例えば、研磨液組成物の流量としては、スクラッチ低減の観点から、基板1枚あたり20〜200cc/minが好ましく、30〜150cc/minがより好ましく、40〜130cc/minがさらに好ましい。   The conditions of the substrate production method are not particularly limited. For example, the flow rate of the polishing composition is preferably 20 to 200 cc / min, preferably 30 to 150 cc / min per substrate from the viewpoint of reducing scratches. More preferred is 40 to 130 cc / min.

本発明の研磨液組成物が対象とする基板の材質は、例えば、シリコン、アルミニウム、ニッケル、タングステン、銅、タンタル、チタン等の金属又は半金属およびこれらの合金、及びガラス、ガラス状カーボン、アモルファスカーボン等のガラス状物質、アルミナ、二酸化珪素、窒化珪素、窒化タンタル、炭化チタン等のセラミック材料、ポリイミド樹脂等の樹脂等が挙げられる。これらの中では、アルミニウム、ニッケル、タングステン、銅等の金属及びこれらの金属を主成分とする合金が基板であるか、又は半導体素子等の半導体基板のような、それらが金属を含んだ基板が好適で、例えば、Ni−Pメッキされたアルミニウム合金基板や結晶化ガラス、強化ガラス等のガラス基板がより適しており、Ni−Pメッキされたアルミニウム合金基板が特に適している。   Examples of the material of the substrate targeted by the polishing composition of the present invention include metals, metalloids such as silicon, aluminum, nickel, tungsten, copper, tantalum, and titanium, and alloys thereof, and glass, glassy carbon, and amorphous. Examples thereof include glassy substances such as carbon, ceramic materials such as alumina, silicon dioxide, silicon nitride, tantalum nitride, and titanium carbide, and resins such as polyimide resins. Among these, metals such as aluminum, nickel, tungsten, and copper and alloys containing these metals as the main component are substrates, or a substrate containing them, such as a semiconductor substrate such as a semiconductor element. For example, a Ni-P plated aluminum alloy substrate or a glass substrate such as crystallized glass or tempered glass is more suitable, and a Ni-P plated aluminum alloy substrate is particularly suitable.

本発明の基板の製造方法により、研磨後の被研磨物の微小うねりが顕著に低減したメモリーハードディスクや半導体素子を製造することができるという効果が発現される。   According to the substrate manufacturing method of the present invention, an effect that a memory hard disk or a semiconductor element in which the fine waviness of the polished object is significantly reduced can be manufactured.

(被研磨物)
被研磨基板として、Ni−Pメッキされた基板をアルミナ研磨材を含有する研磨液であらかじめ粗研磨し、基板表面粗さ(Ra)1nmとした厚さ1.27mmの95mmφのアルミニウム合金基板を用いて研磨評価を行った。
(Polished object)
As the substrate to be polished, a 95 mmφ aluminum alloy substrate having a thickness of 1.27 mm and a substrate surface roughness (Ra) of 1 nm was prepared by rough polishing a Ni-P plated substrate in advance with a polishing liquid containing an alumina abrasive. Polishing evaluation was performed.

実施例1〜13及び比較例1〜6
表1、2に記載の研磨材、過酸化水素(H)、1−ヒドロキシエチリデン−1,1−ジホスホン酸(HEDP)及び残部水(イオン交換水)を添加、混合することにより、表3に記載の組成を有する研磨液組成物を調製した。混合する順番としては、HEDPを水に希釈した水溶液に35重量%過酸化水素を、次いで残りの成分を混合し、最後に研磨材のスラリーをゲル化しないように攪拌しながら配合し、研磨液組成物を調製した。次いで得られた研磨液組成物を表4に示す研磨パッドと共に用いて、以下に示す研磨条件で被研磨基板の研磨を行った。
Examples 1-13 and Comparative Examples 1-6
By adding and mixing the abrasives listed in Tables 1 and 2, hydrogen peroxide (H 2 O 2 ), 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) and the remaining water (ion exchange water), A polishing liquid composition having the composition described in Table 3 was prepared. As the mixing order, 35 wt% hydrogen peroxide was mixed in an aqueous solution obtained by diluting HEDP in water, then the remaining components were mixed, and finally the slurry was mixed with stirring so as not to gel the slurry of the abrasive. A composition was prepared. Next, using the obtained polishing composition with the polishing pad shown in Table 4, the substrate to be polished was polished under the following polishing conditions.

Figure 2009187657
Figure 2009187657

Figure 2009187657
Figure 2009187657

Figure 2009187657
Figure 2009187657

なお、表3中、
HEDPは、1−ヒドロキシエチリデン−1,1−ジホスホン酸(ディクエスト2010,ソルーシア・ジャパン製)、
は35重量%過酸化水素(旭電化製)、
を示す。
In Table 3,
HEDP is composed of 1-hydroxyethylidene-1,1-diphosphonic acid (Dequest 2010, manufactured by Solusia Japan),
H 2 O 2 is 35% by weight hydrogen peroxide (Asahi Denka),
Indicates.

Figure 2009187657
Figure 2009187657

なお、得られた研磨液組成物中の研磨材に含まれる研磨材粒子の粒径分布を以下に示す方法に従って求めた。その結果を図1に示す。
(平均粒子径と標準偏差の算出方法)
研磨材粒子を日本電子製透過型電子顕微鏡(商品名「JEM−2000FX」、80kV、観察倍率1〜5万倍)で観測した写真をスキャナでPCに取込み、三谷商事販売の解析ソフト「WinRoof」を用いて1個1個のシリカ粒子の円相当径を求め、直径とし、1000個以上のシリカ粒子データを解析した後、それをもとにEXCEL上で個数基準の平均粒子径(μ)、標準偏差(σ)を算出した。
In addition, the particle size distribution of the abrasive particles contained in the abrasive in the obtained polishing composition was determined according to the following method. The result is shown in FIG.
(Calculation method of average particle size and standard deviation)
Photographs obtained by observing abrasive particles with a JEOL transmission electron microscope (trade name “JEM-2000FX”, 80 kV, observation magnification 1 to 50,000 times) are taken into a PC with a scanner, and analysis software “WinRoof” sold by Mitani Corporation Is used to determine the equivalent circle diameter of each silica particle, which is used as the diameter, and 1000 or more silica particle data are analyzed, and based on that, the number-based average particle diameter (μ), Standard deviation (σ) was calculated.

[研磨条件]
研磨試験機:スピードファム社製 両面9B研磨機
定盤回転数:32.5r/min
スラリー供給量:40ml/min
研磨荷重:7.8kPa
投入した基板の枚数:10枚
[Polishing conditions]
Polishing tester: Double speed 9B polishing machine surface plate rotation speed: 32.5r / min
Slurry supply amount: 40 ml / min
Polishing load: 7.8 kPa
Number of substrates loaded: 10

〔研磨パッドの気孔径の測定方法〕
測定したい研磨パッド表面をKEYENCE製「デジタルマイクロスコープVH−D8000」(高倍率ズームレンズVH−Z450)で450倍に拡大して観察し、深度合成処理を行い、画像をファイルに取り込んだ。次に、取り込んだ画像を用いてPCにて画像解析ソフトWinROOF(三谷商事)で気孔径を計測した。1つの気孔を楕円とみなした場合の長径と短径の平均値を気孔径とし、これを100個以上の気孔に対して行い、その平均気孔径、気孔径の最大値を算出した。
[Measurement method of pore size of polishing pad]
The surface of the polishing pad to be measured was observed with a “Digital Microscope VH-D8000” (high magnification zoom lens VH-Z450) manufactured by KEYENCE, magnified 450 times, subjected to a depth synthesis process, and an image was taken into a file. Next, the pore diameter was measured with image analysis software WinROOF (Mitani Corporation) on a PC using the captured image. The average value of the major axis and the minor axis when one pore is regarded as an ellipse was defined as the pore diameter, and this was performed for 100 or more pores, and the average pore diameter and the maximum value of the pore diameter were calculated.

得られた研磨基板の表面の微小うねりを以下の方法に従って、測定し、その結果を表5に示す。   The surface of the obtained polishing substrate was measured for micro-waviness according to the following method, and the results are shown in Table 5.

[マイクロピットの測定方法]
微分干渉式顕微鏡観察〔金属顕微鏡「BX60M」(オリンパス工業社製)、倍率50倍(接眼レンズ10倍、対物レンズ5倍)〕により5枚の基板について表面、裏面ともに図2に示すように線AB、CD、EF、GHについて走査しながらマイクロピットの個数をカウントし、一面あたりの個数を算出した。
[Measurement method of micropits]
The differential interference microscope observation [metal microscope “BX60M” (manufactured by Olympus Kogyo Co., Ltd.), magnification 50 × (eyepiece 10 ×, objective lens 5 ×)] shows a line as shown in FIG. The number of micropits was counted while scanning AB, CD, EF, and GH, and the number per side was calculated.

〔微小うねりの測定〕
Zygo製、「New View200」を用いて被測定基板を180°おきに2点(計4点)について、以下の条件で短波長うねりと長波長うねりを測定し、その4点の測定値の平均値を1枚の基板の短波長うねり又は長波長うねりとして算出した。
対物レンズ :2.5倍 Michelson
ズーム比 :0.5倍
フィルター :Band Pass
フィルタータイプ:FFT Fixed
測定波長:
・短波長うねり:Filter High Wavelength 0.05mm
Filter Low Wavelength 0.50mm
・長波長うねり:Filter High Wavelength 0.50mm
Filter Low Wavelength 5.00mm
[Measurement of micro swell]
Measure the short wavelength undulation and long wavelength undulation under the following conditions for 2 points (total 4 points) at 180 ° intervals using the “New View 200” manufactured by Zygo, and the average of the measured values at the 4 points The value was calculated as the short wavelength waviness or long wavelength waviness of one substrate.
Objective lens: 2.5x Michelson
Zoom ratio: 0.5 times Filter: Band Pass
Filter type: FFT Fixed
Measurement wavelength:
・ Short wavelength swell: Filter High Wavelength 0.05mm
Filter Low Wavelength 0.50mm
・ Long wavelength swell: Filter High Wavelength 0.50mm
Filter Low Wavelength 5.00mm

〔表面粗さ(TMS−Ra)の測定〕
表面粗さ(TMS−Ra)は、光散乱式表面粗さ測定機:TMS−2000RC〔シュミット・メジャーメント・インコーポレイテッド(Schmitt Measurement Systems, Inc. )製〕により、当該測定機のメーカーが添付する説明書に従って測定した。具体的には、当該測定機により、被研磨物の表面および裏面のほぼ全面領域を、測定空間波長領域0.88〜7.8μmにて測定し、表面粗さ(TMS−Ra)値(Å)を得た。
[Measurement of surface roughness (TMS-Ra)]
The surface roughness (TMS-Ra) is attached by the manufacturer of the measuring instrument using a light scattering type surface roughness measuring instrument: TMS-2000RC (manufactured by Schmitt Measurement Systems, Inc.). Measured according to instructions. Specifically, with the measuring device, the substantially entire surface area of the surface and back surface of the object to be polished was measured in the measurement spatial wavelength region of 0.88 to 7.8 μm, and the surface roughness (TMS-Ra) value (Å )

〔キャリア鳴きの判定〕
研磨開始直後より研磨終了までの間において、研磨試験機の回転する定盤(キャリア)周辺から発生する音を以下の評価基準に従って評価し、キャリア鳴きの発生の有無を判定した。○は、キャリア鳴きの発生が無いことを、△は、キャリア鳴きの発生が有ることを、それぞれ示す。
[Determination of carrier noise]
From immediately after the start of polishing until the end of polishing, the sound generated from the periphery of the rotating platen (carrier) of the polishing tester was evaluated according to the following evaluation criteria to determine whether carrier squeak occurred. A symbol indicates that no carrier noise has occurred, and a triangle indicates that carrier noise has occurred.

評価基準
○: 研磨時の際の通常の摺動音が認められる
△: 前記摺動音ではないキュッキュッという摩擦音が認められる
Evaluation criteria ○: Normal sliding sound at the time of polishing is recognized Δ: Frictional noise that is not the sliding sound is recognized

Figure 2009187657
Figure 2009187657

表3〜5の結果より、平均気孔径が0.01〜35μmの表面部材を有する研磨パッドを用いた実施例1〜13では、平均気孔径が41.4μmのものを用いた比較例1〜6と比べて、短波長うねり、長波長うねりを共に低減する研磨を短時間で行うことができることがわかる。   From the results of Tables 3 to 5, in Examples 1 to 13 using a polishing pad having a surface member having an average pore diameter of 0.01 to 35 μm, Comparative Examples 1 to 1 having an average pore diameter of 41.4 μm were used. Compared to 6, it can be seen that polishing for reducing both short wavelength waviness and long wavelength waviness can be performed in a short time.

Claims (13)

研磨材と水を含有してなる研磨液組成物と、少なくともベース層と発泡した表面層とを有するスエードタイプであって、平均気孔径が1〜25μmで、気孔径の最大値が60μm以下のポリウレタン製の表面部材を有する研磨パッドを用いるメモリーハードディスク用基板の製造方法であって、前記研磨材が、式(16):
σ > 0.9067 × r+0.588 (16)
(式中、rは個数基準の平均粒子径(nm)、σは個数基準の標準偏差(nm)を示す)
で表される粒径分布の研磨材(第1成分)と第1成分とは平均粒子径及び/又は標準偏差が10%以上異なる他の研磨材(第2成分)とを含む、メモリーハードディスク用基板の製造方法。
A suede type comprising a polishing composition comprising an abrasive and water, and at least a base layer and a foamed surface layer, having an average pore diameter of 1 to 25 μm and a maximum pore diameter of 60 μm or less A method of manufacturing a memory hard disk substrate using a polishing pad having a surface member made of polyurethane, wherein the abrasive is represented by the formula (16):
σ> 0.9067 × r + 0.588 (16)
(Wherein r represents the number-based average particle diameter (nm), and σ represents the number-based standard deviation (nm))
For a memory hard disk, comprising an abrasive having a particle size distribution represented by the formula (first component) and the first component and another abrasive (second component) having an average particle size and / or standard deviation different by 10% or more. A method for manufacturing a substrate.
研磨材全量中の粒子径5〜120nmの粒子の含有量が50体積%以上であり、該研磨材として粒子径が5nm〜40nm未満の小粒径粒子を粒子径5〜120nmの粒子全量に対して10〜100体積%含有し、粒子径が40nm〜80nm未満の中粒径粒子を粒子径5〜120nmの粒子全量に対して0〜70体積%含有し、粒子径が80nm〜120nmの大粒径粒子を粒子径5〜120nmの粒子全量に対して0〜40体積%含有するものである請求項1記載の基板の製造方法。   The content of particles having a particle size of 5 to 120 nm in the total amount of the abrasive is 50% by volume or more, and small particles having a particle size of 5 nm to less than 40 nm are used as the abrasive with respect to the total amount of particles having a particle size of 5 to 120 nm. 10 to 100% by volume, medium-sized particles having a particle size of 40 nm to less than 80 nm are contained in an amount of 0 to 70% by volume based on the total amount of particles having a particle size of 5 to 120 nm, and large particles having a particle size of 80 to 120 nm. The method for producing a substrate according to claim 1, wherein the diameter particles are contained in an amount of 0 to 40% by volume based on the total amount of particles having a particle diameter of 5 to 120 nm. 研磨材がシリカである請求項1又は2記載の基板の製造方法。   The method for producing a substrate according to claim 1, wherein the abrasive is silica. 研磨液組成物がさらに酸化剤を含有する請求項1〜3いずれか記載の基板の製造方法。   The manufacturing method of the board | substrate in any one of Claims 1-3 in which polishing liquid composition contains an oxidizing agent further. 酸化剤の含有量が、研磨液組成物中0.01〜5重量%である、請求項4記載の基板の製造方法。   The manufacturing method of the board | substrate of Claim 4 whose content of an oxidizing agent is 0.01 to 5 weight% in polishing liquid composition. 研磨液組成物がさらに酸及び/又はその塩を含有する請求項1〜3いずれか記載の基板の製造方法。   The manufacturing method of the board | substrate in any one of Claims 1-3 in which polishing liquid composition contains an acid and / or its salt further. 酸が、無機酸及び/又は有機ホスホン酸を含有する、請求項6記載の基板の製造方法。   The method for producing a substrate according to claim 6, wherein the acid contains an inorganic acid and / or an organic phosphonic acid. 酸及びその塩の含有量が、研磨液組成物中0.0025〜1重量%である、請求項6又は7記載の基板の製造方法。   The manufacturing method of the board | substrate of Claim 6 or 7 whose content of an acid and its salt is 0.0025 to 1 weight% in polishing liquid composition. 研磨材の含有量が、研磨液組成物中1〜15重量%である、請求項1〜8いずれか記載の基板の製造方法。   The manufacturing method of the board | substrate in any one of Claims 1-8 whose content of an abrasive | polishing material is 1 to 15 weight% in polishing liquid composition. 研磨液組成物の流量が、40〜130cc/minである、請求項1〜9いずれか記載の基板の製造方法。   The manufacturing method of the board | substrate in any one of Claims 1-9 whose flow volume of polishing liquid composition is 40-130 cc / min. 基板が、Ni−Pメッキされたアルミニウム合金基板である、請求項1〜10いずれか記載の基板の製造方法。   The manufacturing method of the board | substrate in any one of Claims 1-10 whose board | substrate is a Ni-P plated aluminum alloy board | substrate. 研磨材と水を含有してなる研磨液組成物と、少なくともベース層と発泡した表面層とを有するスエードタイプであって、平均気孔径が1〜25μmで、気孔径の最大値が60μm以下のポリウレタン製の表面部材を有する研磨パッドを用いるメモリーハードディスク用基板の研磨方法であって、前記研磨材が、式(16):
σ > 0.9067 × r+0.588 (16)
(式中、rは個数基準の平均粒子径(nm)、σは個数基準の標準偏差(nm)を示す)
で表される粒径分布の研磨材(第1成分)と第1成分とは平均粒子径及び/又は標準偏差が10%以上異なる他の研磨材(第2成分)とを含む、メモリーハードディスク用基板の研磨方法。
A suede type comprising a polishing composition comprising an abrasive and water, and at least a base layer and a foamed surface layer, having an average pore diameter of 1 to 25 μm and a maximum pore diameter of 60 μm or less A method of polishing a memory hard disk substrate using a polishing pad having a polyurethane surface member, wherein the polishing material is represented by the formula (16):
σ> 0.9067 × r + 0.588 (16)
(Wherein r represents the number-based average particle diameter (nm), and σ represents the number-based standard deviation (nm))
For a memory hard disk, comprising an abrasive having a particle size distribution represented by the formula (first component) and the first component and another abrasive (second component) having an average particle size and / or standard deviation different by 10% or more. A method for polishing a substrate.
研磨材と水を含有してなる研磨液組成物と、少なくともベース層と発泡した表面層とを有するスエードタイプであって、平均気孔径が1〜25μmで、気孔径の最大値が60μm以下のポリウレタン製の表面部材を有する研磨パッドを用いるメモリーハードディスク用基板の微小うねりの低減方法であって、前記研磨材が、式(16):
σ > 0.9067 × r+0.588 (16)
(式中、rは個数基準の平均粒子径(nm)、σは個数基準の標準偏差(nm)を示す)
で表される粒径分布の研磨材(第1成分)と第1成分とは平均粒子径及び/又は標準偏差が10%以上異なる他の研磨材(第2成分)とを含む、メモリーハードディスク用基板の微小うねりの低減方法。
A suede type comprising a polishing composition comprising an abrasive and water, and at least a base layer and a foamed surface layer, having an average pore diameter of 1 to 25 μm and a maximum pore diameter of 60 μm or less A method for reducing micro-waviness of a memory hard disk substrate using a polishing pad having a surface member made of polyurethane, wherein the abrasive is represented by formula (16):
σ> 0.9067 × r + 0.588 (16)
(Wherein r represents the number-based average particle diameter (nm), and σ represents the number-based standard deviation (nm))
For a memory hard disk, comprising an abrasive having a particle size distribution represented by the formula (first component) and the first component and another abrasive (second component) having an average particle size and / or standard deviation different by 10% or more. A method for reducing the fine waviness of a substrate.
JP2009090548A 2009-04-02 2009-04-02 Method of manufacturing substrate Pending JP2009187657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009090548A JP2009187657A (en) 2009-04-02 2009-04-02 Method of manufacturing substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009090548A JP2009187657A (en) 2009-04-02 2009-04-02 Method of manufacturing substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003164329A Division JP4986099B2 (en) 2003-06-09 2003-06-09 Substrate manufacturing method

Publications (1)

Publication Number Publication Date
JP2009187657A true JP2009187657A (en) 2009-08-20

Family

ID=41070714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009090548A Pending JP2009187657A (en) 2009-04-02 2009-04-02 Method of manufacturing substrate

Country Status (1)

Country Link
JP (1) JP2009187657A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001358101A (en) * 2000-06-13 2001-12-26 Toray Ind Inc Polishing pad
JP2002030274A (en) * 2000-05-12 2002-01-31 Nissan Chem Ind Ltd Abrasive composition
JP2002075933A (en) * 2000-08-23 2002-03-15 Toyobo Co Ltd Polishing pad
JP2002327170A (en) * 2001-04-27 2002-11-15 Kao Corp Polishing liquid composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030274A (en) * 2000-05-12 2002-01-31 Nissan Chem Ind Ltd Abrasive composition
JP2001358101A (en) * 2000-06-13 2001-12-26 Toray Ind Inc Polishing pad
JP2002075933A (en) * 2000-08-23 2002-03-15 Toyobo Co Ltd Polishing pad
JP2002327170A (en) * 2001-04-27 2002-11-15 Kao Corp Polishing liquid composition

Similar Documents

Publication Publication Date Title
JP4231632B2 (en) Polishing liquid composition
US7014534B2 (en) Method for manufacturing substrate
JP4986099B2 (en) Substrate manufacturing method
JP5853117B1 (en) Polishing liquid composition for magnetic disk substrate
JP5289877B2 (en) Polishing liquid composition for magnetic disk substrate
JP3997152B2 (en) Polishing liquid composition
US6910952B2 (en) Polishing composition
US7147682B2 (en) Polishing composition
US7267702B2 (en) Polishing composition
TWI411667B (en) Polishing composition for magnetic disk substrate
JP2004253058A (en) Polishing liquid composition
JP5377117B2 (en) Method for detecting non-spherical particles in a particle dispersion
JP6092623B2 (en) Manufacturing method of magnetic disk substrate
JP4255976B2 (en) Polishing liquid composition for magnetic disk substrate
JP4104335B2 (en) Method for reducing microprojections
JP4373776B2 (en) Polishing liquid composition
JP4286168B2 (en) How to reduce nanoscratches
JP5473587B2 (en) Polishing liquid composition for magnetic disk substrate
JP3997153B2 (en) Polishing liquid composition
JP3997154B2 (en) Polishing liquid composition
JP2009181690A (en) Method of manufacturing substrate
JP2009187657A (en) Method of manufacturing substrate
JP6081317B2 (en) Manufacturing method of magnetic disk substrate
JP2005001018A (en) Method of manufacturing substrate
JP4640981B2 (en) Substrate manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100802