JP2009185685A - 還元剤ポンプの異常検出装置及び還元剤吐出システム - Google Patents

還元剤ポンプの異常検出装置及び還元剤吐出システム Download PDF

Info

Publication number
JP2009185685A
JP2009185685A JP2008026290A JP2008026290A JP2009185685A JP 2009185685 A JP2009185685 A JP 2009185685A JP 2008026290 A JP2008026290 A JP 2008026290A JP 2008026290 A JP2008026290 A JP 2008026290A JP 2009185685 A JP2009185685 A JP 2009185685A
Authority
JP
Japan
Prior art keywords
reducing agent
pump
urea water
electric motor
factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008026290A
Other languages
English (en)
Inventor
Hisaharu Takeuchi
久晴 竹内
Yoshiaki Nishijima
義明 西島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008026290A priority Critical patent/JP2009185685A/ja
Publication of JP2009185685A publication Critical patent/JP2009185685A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

【課題】インペラの回転不良を検出するとともに、その回転不良の要因を探索できる還元剤ポンプの異常検出装置を提供する。
【解決手段】ポンプ室を内部に形成するポンプケース、及びポンプ室に配置されて電動モータ部により回転駆動するインペラを備え、エンジンの排気中に含まれる窒素酸化物を還元する尿素水(還元剤水溶液)を吐出する尿素水ポンプ(還元剤ポンプ)に適用され、電動モータ部の脱調を検出する脱調検出手段S10と、脱調検出手段S10により脱調が検出された場合に、ポンプケース内で尿素水中の尿素が析出していることが脱調の要因であるか否かを探索する脱調要因探索手段と、を備えることを特徴とする。
【選択図】 図5

Description

本発明は、内燃機関の排気中に含まれる窒素酸化物を還元する還元剤水溶液を吐出する還元剤ポンプに関する。
近年、自動車等に適用される内燃機関(特にディーゼルエンジン)において、排気中のNOx(窒素酸化物)を還元する選択還元(SCR:Selective Catalytic Reduction)型の尿素SCRシステムの開発が進められており、一部実用化に至っている。
この尿素SCRシステムでは、内燃機関の排気管に選択還元型のNOx浄化触媒(SCR触媒)が設けられるとともに、その上流側に、還元剤としての尿素水(尿素水溶液)を排気管内に噴射する尿素水噴射弁が設けられている。かかるシステムにおいては、尿素水噴射弁により排気管内に尿素水が噴射されることで、排気と共に尿素水がNOx浄化触媒に供給され、該NOx浄化触媒上でのNOxの還元反応によって排気が浄化される。NOxの還元に際しては、尿素水が排気熱で加水分解されることによりアンモニア(NH3)が生成され、NOx浄化触媒ではアンモニアにより、酸素濃度が高い環境でもNOxが選択的に還元されることで排気浄化が行われることとなる。
また、このような尿素SCRシステムでは、タンクに貯蔵された尿素水を尿素水噴射弁に圧送する尿素水ポンプを備えており、当該ポンプは、ポンプ室を内部に形成するポンプケースと、ポンプ室に配置されて電動モータにより回転駆動するインペラとを備えて構成されるのが一般的である(特許文献1等参照)。
特表2004−510093号公報
しかしながら、ポンプ室に尿素水(還元剤水溶液)が充満していない状態でポンプを稼動させずに長時間放置すると、ポンプケース内面やインペラ表面に付着した尿素水の水成分が蒸発することに伴い、その尿素水の尿素成分(還元剤成分)が析出する。すると、析出した尿素成分がインペラをポンプケース内面に固着させてしまい、インペラの回転不良が生じ得る。そして、このような回転不良が生じると、インペラ及びポンプケースが磨耗したり、場合によってはインペラがロックして回転不能となり、インペラの破損を招くこともある。
本発明は、上記課題を解決するためになされたものであり、その目的は、インペラの回転不良を検出するとともに、その回転不良の要因を探索できる還元剤ポンプの異常検出装置を提供することにある。
以下、上記課題を解決するための手段、及びその作用効果について記載する。
請求項1記載の発明では、ポンプ室を内部に形成するポンプケース、及び前記ポンプ室に配置されて電動モータにより回転駆動するインペラを備え、内燃機関の排気中に含まれる窒素酸化物を還元する還元剤水溶液を吐出する還元剤ポンプに適用され、
前記電動モータの脱調を検出する脱調検出手段と、
前記脱調検出手段により脱調が検出された場合に、前記ポンプケース内で前記還元剤水溶液中の還元剤が析出していることが脱調の要因であるか否かを探索する脱調要因探索手段と、
を備えることを特徴とする。
ここで、ポンプケース内で還元剤水溶液中の還元剤が析出し、その析出物がポンプケースとインペラとの間に噛み込んでインペラ回転不良を引き起こしている状態では、インペラへの負荷が異常に大きくなり電動モータの脱調が生じ得る。本発明者らはこの点に着目し、本発明では、電動モータの脱調を検出する脱調検出手段を備えるので、脱調の検出有無に基づきインペラ回転不良の可能性有無を判断できる。しかも本発明では、脱調が検出された場合に前記析出が脱調の要因であるか否かを探索する脱調要因探索手段を備えるので、析出有無を探索結果として取得することができ、その探索結果に応じたインペラ回転不良発生時の異常処理を実行できる。
前記異常処理の具体例としては、還元剤水溶液の補給を促すよう報知する処理が挙げられる。補給された還元剤水溶液により還元剤析出物が溶解すれば、インペラ回転不良を好適に解消できるからである。また請求項8記載の発明の如く、還元剤水溶液を補給してから一定時間が経過するまでは、前記電動モータの起動を禁止する処理等が挙げられる。前記溶解には一定時間を要するからであり、未だ溶解されていない状態で電動モータを起動させることにより、再び脱調してしまうことの回避を図るためである。
なお、このような脱調が生じ得る電動モータの具体例として、ブラシレスモータが挙げられる。また、還元剤の具体例として尿素が挙げられる。この場合の析出とは、尿素水溶液中の尿素成分が析出することである。
ここで、脱調が生じた場合であっても、その要因が還元剤の析出ではなく、ポンプケースとインペラとの間に存在する還元剤水溶液が凍結したことが要因となってインペラ回転不良による脱調が生じている場合がある。この点を鑑み請求項2記載の発明では、前記還元剤水溶液が凍結する温度以下となっているか否かを判定する温度判定手段を備え、前記脱調要因探索手段は、前記温度判定手段により凍結温度以下でないと判定されたことを条件として、前記脱調の要因が前記析出であると判断することを特徴とする。よって、実際の脱調要因が凍結である場合に、析出を脱調要因として誤探索してしまうことを回避できる。
さらに請求項3記載の発明では、前記脱調要因探索手段は、前記温度判定手段により凍結温度以下と判定されたことを条件として、前記脱調の要因が前記凍結であると判断することを特徴とする。よって、脱調要因探索手段は、脱調要因が析出であるか否かの探索に加え、脱調要因が凍結であるか否かの探索も行うことができる。なお、凍結が脱調要因であると探索された場合の異常処理としては、還元剤水溶液が凍結温度より高くなっているかを推定し、内燃機関の熱等により還元剤水溶液の温度が凍結温度より高くなるまで電動モータの起動を禁止する処理等が挙げられる。
ここで、還元剤の析出は還元剤水溶液中の水成分が蒸発することに伴い生じるものであるため、インペラが十分な量の還元剤水溶液中に浸った状態であればインペラでの析出は生じない。この点を鑑み請求項4記載の発明では、前記還元剤ポンプは、前記還元剤水溶液を貯蔵するタンク内に配置されており、前記タンク内の水位が予め設定された閾値以下となっている低水位であるか否かを判定する水位判定手段を備え、前記脱調要因探索手段は、前記水位判定手段により前記低水位と判定されたことを条件として、前記脱調の要因が前記析出であると判断することを特徴とする。よって、インペラが十分な量の還元剤水溶液中に浸った状態(低水位でない状態)であり析出が生じない場合において、析出を脱調要因として誤探索してしまうことを回避できる。
還元剤水溶液が補給されて低水位でない状態になると、補給された還元剤水溶液により還元剤析出物が未だ溶解されておらず、この溶解には一定の時間を要する。そこで請求項5記載の発明では、前記水位判定手段により前記低水位との判定から前記低水位でないとの判定に切り替わった後、所定時間が経過するまでは、前記脱調要因探索手段による前記判断を禁止することを特徴とする。よって、補給したにも拘わらず、例えば還元剤水溶液の補給を促すよう報知する処理等の異常処理が継続して実行されてしまうことを回避できる。
ここで、脱調が生じた場合であっても、その要因が還元剤の析出ではなく、電動モータの起動失敗が要因となって脱調が生じている場合がある。そしてこの場合には、再起動させれば電動モータは正常に起動する可能性が高い。より詳細に説明すると、電動モータ起動時にはモータ位相が不明である。しかしながらロータが少し回転して電流が流れ出せば、位相が確認できてロータが正常に回転する。但し、回転開始時点におけるロータ位置によっては、ロータが少し回転しても電流が流れない場合があり、この場合に上記起動失敗となり脱調する。したがって、起動失敗した場合であっても再起動させれば、再起動開始時点におけるロータ位置は前回の起動開始時点における位置からずれている可能性が高いため、起動失敗となる可能性は低い。
以上の点を鑑み請求項6記載の発明では、前記脱調検出手段により脱調が検出された場合に、前記電動モータを再起動させる再起動制御手段を備え、前記脱調要因探索手段は、前記再起動の実行後に再び前記脱調が検出されたことを条件として、前記脱調の要因が前記析出であると判断することを特徴とする。よって、実際の脱調要因が電動モータの起動失敗である場合に、析出を脱調要因として誤探索してしまうことを回避できる。
さらに請求項7記載の発明では、前記脱調要因探索手段は、前記再起動の実行後に前記脱調が検出されなかったことを条件として、前記脱調の要因が前記電動モータの起動失敗であると判断することを特徴とする。よって、脱調要因探索手段は、脱調要因が析出であるか否かの探索に加え、脱調要因が電動モータの起動失敗であるか否かの探索も行うことができる。
請求項8記載の発明では、前記脱調要因探索手段により前記脱調の要因が前記析出であると判断された後、前記還元剤水溶液を補給してから一定時間が経過するまでは、前記電動モータの起動を禁止することを特徴とする。補給された還元剤水溶液により還元剤析出物が溶解すれば、インペラ回転不良を好適に解消できるものの、前記溶解には一定時間を要する。これに対し上記請求項8記載の発明によれば、補給してから一定時間が経過するまでは電動モータの起動を禁止するので、未だ溶解されていない状態で電動モータを起動させることにより、再び脱調してしまうことを回避できる。
請求項9記載の発明は、上記異常検出装置及び還元剤ポンプを備えることを特徴とする還元剤吐出システムである。この還元剤吐出システムによれば、上述の各種効果を同様に発揮することができる。
以下、本発明を具体化した一実施形態を図面に基づいて説明する。本実施形態にかかる還元剤ポンプは、還元剤として尿素を用いた尿素水溶液(以下、単に尿素水と呼ぶ)を吐出する尿素水ポンプに適用されており、当該尿素水ポンプから吐出された尿素水は噴射弁に加圧圧送される。噴射弁は、内燃機関としてディーゼルエンジン(以降、エンジンと呼称する)の排気通路内における排気流れ中に、尿素水を噴射するように配設される。
図1は、本実施形態における尿素SCRシステムの全体構成を示す全体構成図である。この全体構成図には、自動車(図示略)のエンジンにより排出される排気を浄化対象とした排気浄化装置が示される。排気浄化装置の構成を大別すると、排気系の構成部、尿素水供給系の構成部、および、制御系の構成部に分類される。
排気系の構成部は、排気上流側から順に配設される、DPF1(Diesel Particulate Filter)、排気管2(触媒の上流側排気通路)、触媒3、および、排気管4(触媒の下流側排気通路)を備えている。DPF1は、排気中のPM(Particulate Matter、粒子状物質)を捕集する連続再生式のPM除去用フィルタであり、例えばメインの燃料噴射後のポスト噴射等で捕集PMを繰り返し燃焼除去する(PM除去用フィルタの再生処理に相当)ことにより継続的に使用することができる。また、DPF1は、図示しない白金系の酸化触媒を担持しており、PM成分の1つである可溶性有機成分(SOF)と共に、HCやCOを除去することができる。
触媒3は、NOxの還元反応を促進し排気を浄化する部位であり、例えば、
4NO+4NH3+O2→4N2+6H2O …(式1)
6NO2+8NH3→7N2+12H2O …(式2)
NO+NO2+2NH3→2N2+3H2O …(式3)
このような反応を促進して排気中のNOxを還元する。そして、これらの反応においてNOxの還元剤となるアンモニア(NH3)を含む水溶液(以降、尿素水と呼称する)は、排気と混合されて触媒3に供給される。具体的には、尿素水は、触媒3の上流側の排気管2を流通する排気に向けて、後述する噴射弁により噴射供給される。
尿素水供給系の構成部は、尿素水供給部5、噴射弁6、及び配送管7等を備え、尿素水供給部5は、尿素水タンク8及び尿素水ポンプ9(還元剤ポンプ)等を備えている。なお、図1に示す尿素水タンク8は車両に搭載した状態を示しており、尿素水タンク8及び尿素水ポンプ9の上下方向は、車両に搭載された状態において図1に示す向きとなっている。
尿素水タンク8内の尿素水は、フィルタ9aを通じて尿素水ポンプ9に吸入されて加圧圧送される。その後、レギュレータ9bによりその吐出圧力が調整された後、配送管7を通じて噴射弁6に供給される。噴射弁6の先端に形成される噴射口は、1つの噴射口、あるいは、多数の微噴孔の集合体(群噴孔)によって構成される。そして、噴射口を開閉させるニードル弁を電磁アクチュエータにより開弁操作すると、噴射弁6に供給された尿素水は、霧状化して排気管2中に噴射される。なお、尿素水ポンプ9からの供給圧力がレギュレータ9bの設定値を超えた場合には、同レギュレータ9bにより、配送管7内の尿素水が尿素水タンク8へ戻される。
尿素水タンク8は、給液キャップ付きの密閉容器にて構成されており、その内部に所定濃度の尿素水が貯蔵されている。尿素水タンク8内には、尿素水に浸漬した状態として配設した尿素水ポンプ9が設けられており、尿素水ポンプ9は、インタンク式の圧送ポンプを構成するとともに、ECU10(異常検出装置)からの駆動信号により回転駆動する電動式ポンプである。なお、尿素水ポンプ9の詳細構成については、図2等を用いて後に詳述する。
制御系の構成部は、ECU10(電子制御ユニット)、クランク角センサ11、アクセル操作量センサ12、排気センサ13、水位センサ14、圧力センサ15などによって構成される。ECU10は、周知のマイクロコンピュータを備え、各種センサ11,12,13,14,15からの検出値が入力されるとともに、これらの検出値に基づいて、尿素水ポンプ9及び噴射弁6などの各種アクチュエータの駆動量等を制御する。
クランク角センサ11は、クランク軸(出力軸)の回転角度を検出することで、クランク軸の回転速度(エンジン回転速度)を検出する。アクセル操作量センサ12は、運転者によるアクセルペダルの操作量を検出することで、要求されるエンジン負荷を検出する。排気センサ13は、触媒3の下流側の排気管4に設けられており、NOxセンサと排気温センサとが共に内蔵され、排気中のNOx量(ひいては触媒3によるNOxの浄化率)、及び排気温度を検出する。水位センサ14は、尿素水タンク8に設けられ、尿素水タンク8内の尿素水の水位を検出する。圧力センサ15は、配送管7の途中に設けられ、噴射弁6に対する尿素水の供給圧力を検出するように構成される。
具体的には、ECU10は、クランク角センサ11にて検出されたエンジン回転速度、及びアクセル操作量センサ12により検出されたアクセル操作量に基づき、噴射弁6からの尿素水噴射量を算出する。そして、算出した噴射量となるよう、噴射弁6を開弁作動させる電磁弁に駆動電流を出力するよう制御する。また、排気センサ13にて検出されたNOx量が所望の量となるよう、上述の如く算出した噴射量をフィードバック補正する。さらにECU10は、水位センサ14及び圧力センサ15の検出値に基づき尿素水ポンプ9の駆動を制御する(詳細は後述)。
本実施形態に係る上記した構成の尿素SCRシステムは、エンジン運転時において、尿素水ポンプ9の駆動により尿素水タンク8の尿素水が配送管7を通じて噴射弁6に圧送され、この噴射弁6により排気管2内に尿素水が添加供給される。すると、排気管2内において排気と共に尿素水がSCR触媒3に供給され、SCR触媒3においてNOxの還元反応が行われることによってその排気が浄化されるように構成される。
NOxの還元に際しては、例えば、
(NH2)2CO+H2O→2NH3+CO2 …(式4)
このような反応により、尿素水が排気熱で加水分解される。これにより、アンモニア(NH3)が生成され、SCR触媒3にて選択的に吸着された排気中のNOxに対し、このアンモニアが添加される。そして、触媒3上で、そのアンモニアに基づく還元反応(上記反応式(式1)〜(式3))が行われることによって、NOxが還元、浄化されることになる。
次に、尿素水ポンプ9の単体構造について、図2〜図4を用いて詳細に説明する。
図2に示すように、尿素水ポンプ9は、尿素水を圧送する機構部を有するポンプ部18と、機構部が尿素水を圧送するように駆動する駆動力を発生させる電動モータ部19(特許請求の範囲に記載の電動モータに相当)とを備えている。ポンプ部18は、ポンプケース及びインペラ22からなる渦流ポンプである。ポンプケースは、アッパケース20とロアケース21との2部材を接合させ、その接合される合わせ面の内側に、その室を区画する区画面が臨むように配されるポンプ室としての空間を形成する。この空間との相対位置が規定される回転部材としてのインペラ22を回転自在に収容する。
図3はインペラ22単体を示す斜視図であり、円板状に形成されたインペラ22には、回転方向に複数の羽根溝22aが設けられ、それら羽根溝22aの回転径方向外側に環状の外周部22bが形成されている。また、アッパケース20及びロアケース21のうち羽根溝22aに対向する部分には、それぞれC字状のポンプ通路23(図2参照)が形成されている。インペラ22を回転させると、羽根溝22a内の尿素水はポンプ通路23に流出した後、別の羽根溝22a内に流入する。
インペラ22両側の各々のポンプ通路23において、このような尿素水の流出及び流入を羽根溝22a同士で多数繰り返すことにより、ポンプ室内の尿素水は旋回流となって両ポンプ通路23で昇圧される。ロアケース21に設けられた吸入口24から吸入された尿素水は、インペラ22の回転動作によりポンプ通路23で昇圧され、後述する電動モータ部19に圧送される。
なお、アッパケース20及びロアケース21は金属製であり、例えば、尿素水に対する耐腐食性に優れた材質(例えばステンレス)にて形成され、インペラ22は樹脂(例えばフェノール樹脂)にて形成されている。
電動モータ部19は、ステータ25、ロータ26、回転軸27等を備えた直流のブラシレスモータであり、通電されて尿素水を圧送する駆動力を発生するよう機能する。図4は、ステータ25及びステータ25をモールドする絶縁樹脂材45を示す縦断面図であり、この図4に示すように、ステータ25は6個の分割コア25aを周方向に配置して構成されている。各分割コア25aは、絶縁皮膜を施した磁性鋼板を回転軸方向(図2の上下方向)に積層して一体に構成されている。ECU10は、ロータ26の回転位置に応じてコイル29への通電を制御することにより、ロータ26と向き合う各分割コア25aの内周面に形成される磁極を切り換える。
ロータ26は、回転軸27および永久磁石31を有し、ステータ25の内周に回転自在に設置されている。回転軸27の一端部は軸受部32により、他端部は軸受部33により回転自在に支持されている。なお、回転軸27の一端部側をピン部35に押接することで、回転軸27は軸方向に位置決めされる。
永久磁石31は、PPS等の熱可塑性樹脂材に磁性粉を練り込んで円筒状に形成されたプラスティックマグネットであり、回転軸27の外周に射出成形等により直接形成されている。永久磁石31は、回転方向に8個の磁極部を形成している。これらの磁極部は、ステータコア30と向き合う外周面側に回転方向に交互に異なる磁極を形成するように着磁されている。
ハウジング36は、ポンプ部18および電動モータ部19の両方のハウジングを兼ねている。ハウジング36は金属製であり、軸方向の両端で、ロアケース21およびエンドカバー37をそれぞれかしめて形成される。アッパケース20は、ハウジング36の段部36aに軸方向に突き当てられている。これにより、アッパケース20の軸方向の位置決めがなされている。アッパケース20の中央部には、先述した軸受部32が圧入により固定されている。ロアケース21は、ハウジング36の一端側でかしめ固定されており、このかしめにより生じる軸力により、アッパケース20と段部36a、ならびにロアケース21とアッパケース20とが互いに軸方向に押し付けられる面圧を確保し、尿素水をシールしている。
電動モータ部19側に圧送された尿素水は、ステータ25とロータ26との間の流通路38、吐出通路39の順に送出され、吐出口40から噴射弁6側に供給される。エンドカバー37から外部に開口する吐出通路39の吐出口40は、軸受部33に対して偏心して形成されている。
前述したコイル29は絶縁樹脂材45により樹脂モールドされており、絶縁樹脂材45は、ステータ25に対してポンプ部18と反対側の端部を覆うエンドカバー37を一体成形している。エンドカバー37は、回転軸27を軸受けする軸受部33と、ターミナル43の支持部と、吐出口40とを、絶縁樹脂材45により一体に成形して構成されている。
エンドカバー37が形成する吐出口40内には、逆止弁47及びスプリング48が収容されている。ポンプ部18で昇圧された尿素水が所定圧以上になると、逆止弁47はスプリング48の荷重に抗してリフトし、吐出口40から尿素水が噴射弁6側に吐出される。また、逆止弁47は、尿素水ポンプ9から吐出される尿素水の逆流を防止するように設けられる。
ところで、尿素水タンク8に貯蔵されている尿素水の水位が、ロアケース21に設けられた吸入口24の下端位置(図1及び図2中の一点鎖線Wに示す高さ)より低い場合には、吐出通路39、流通路38及びポンプ室等のポンプ内の尿素水は、インペラ22の回転を停止させると同時に、吸入口24から尿素水タンク8に流出することとなる。そして、このようにポンプ室に尿素水が充満していない状態で尿素水ポンプ9を稼動させずに長時間放置すると、インペラ22の上下面22c及び外周面22d(図3参照)やポンプケース20,21の内面に付着した尿素水の水成分が蒸発することに伴い、その尿素水の尿素成分が析出する。
そして、ポンプケース20,21とインペラ22とのクリアランスにて、上述の如く尿素成分が析出すると、その析出尿素成分がインペラ22をポンプケース20,21内面に固着させてしまい、インペラ22の回転不良を招き、場合によってはインペラ22が回転不能となるインペラロックとなる。特に本実施形態の如くインペラ22が樹脂製である場合には、インペラロックした状態で電動モータ部19のコイル29に電力供給すると、インペラ22の破損が懸念される。このようなインペラ回転不良による異常を検出すべく、本実施形態では以下に説明する異常検出処理を行う。この異常検出処理では、インペラ回転不良を招いた要因を探索する要因探索処理をも行っている。
図5及び図6は、ECU10のマイコンが実行する前記異常検出及び要因探索の処理内容を示すフローチャートであり、これら図5及び図6に示す一連の処理は、ターミナル43から電動モータ部19に電力供給して尿素水ポンプ9を起動させたことをトリガとして、所定周期(例えば先述のCPUが行う演算周期)毎に繰り返し実行される。本実施形態では、エンジン始動とともに尿素水ポンプ9を起動させ、エンジン運転中は尿素水ポンプ9を常時運転させる。そして、噴射弁6から噴射をさせない期間中、尿素水ポンプ9から過剰に吐出された尿素水は、レギュレータ9bから尿素水タンク8へ戻されることとなる。
尿素水ポンプ9の起動についてさらに詳細に説明すると、コイル29はU相、V相、W相による3相に分かれており、ECU10によってスイッチングされることにより、ターミナル43から各相のコイル29への通電が制御される。これにより、各相の巻線29に発生する磁極が切り替えられて回転磁界が生じる。そして、このように回転磁界を生じさせるステータ25と所定のギャップを介して配置されたロータ26は、回転磁界の回転速度(同期速度)と同期して回転することとなる。そして、インペラ22への回転負荷が異常に大きくなると、ロータ26の回転速度が実際の同期速度と一致しなくなる所謂「脱調」が生じ得る。
図5の処理について、先ずステップS10(脱調検出手段)では、このような脱調現象が生じているか否かを判定する。具体的には、コイル29の各相に流れる電流を電流センサ16(図1参照)により検出し、各相を流れる電流検出値に基づき脱調有無を判定する。脱調有りと判定した場合(S10:YES)には、インペラ22への回転負荷が異常に大きくなっているインペラ回転不良による異常、或いは、電動モータ部19の起動失敗による異常が発生していると判断する。そして、ステップS11以降の処理(脱調要因探索手段)により脱調の要因を探索する。なお、脱調無しと判定した場合(S10:NO)には、脱調要因を探索することなくそのまま尿素水ポンプ9の運転を継続させる。
続くステップS11(脱調要因探索手段)では、尿素水が凍結する温度以下となっているか否かを判定する。具体的には、尿素水タンク8内に配置された温度センサ17(図1参照)により、タンク8内の尿素水温度を検出する。或いは、尿素水温度と相関のある温度(例えば外気温度等)を検出し、その相関温度に基づき尿素水温度を推定するようにしてもよい。そして、このような検出又は推定により得られた温度が凍結温度以下となっているか否かを判定する。
次に、脱調要因が凍結であるか否かの判断について説明する。
尿素水温度が凍結温度以下であると判定した場合(S11:YES)には、図6に示すステップS30に進み、ステップS10にて検出された脱調の要因が、以下に説明する凍結であると判断する。すなわち、ポンプケース20,21により形成されたポンプ室内の尿素水が凍結して、インペラ22が回転不能状態となっていることにより、先述の如くインペラ22への回転負荷が異常に大きくなっていると判断する。
続くステップS31では、図示しないダイアグランプを点灯させる等により、尿素水ポンプ9が異常である旨を車両乗員(エンジン運転者)に報知する。また、電動モータ部19への電力供給を直ちに停止させて、尿素水ポンプ9を停止させる。これにより、インペラ22の破損回避を図る。
ここで、尿素水タンク8はエンジンルーム内に配置されているため、エンジンの始動後は雰囲気温度上昇に伴い尿素水温度も上昇する。よって、ステップS30にて凍結判断された場合であっても、その後尿素水温度が上昇して凍結した尿素水が溶けて液体になることが考えられる。そこで、続くステップS32では、温度センサ17による検出又は前述の推定により得られた尿素水温度が凍結温度以下となったか否かを判定する。
尿素水温度が凍結温度以下であると判定(S32:YES)される限り、処理はステップS32に留まることとなる。つまり、脱調要因の探索及び尿素水ポンプ9の運転を禁止した状態となる。一方、尿素水温度が凍結温度より高くなったと判定した場合(S32:NO)には、凍結が解消されたと判断し、ステップS31にて点灯させたダイアグランプをステップS50にて消灯させる。
次に、ステップS11に係る判定処理の説明に戻り、脱調要因が析出であるか否かの判断について説明する。
尿素水温度が凍結温度より高いと判定した場合(S11:NO)には、脱調の要因として上記凍結の可能性はないと判断してステップS12の処理に進む。ステップS12(脱調要因探索手段)では、尿素水タンク8内の液量が少なく、ポンプ室に尿素水が充満していない状態であるか否かを判定する。具体的には、水位センサ14の検出値を取得し、取得した検出値(水位)が予め設定された閾値より小さい場合に、ポンプ室に尿素水が充満していないと判定する。前記閾値は、尿素水ポンプ9の吸入口24の下端位置Wに設定されている。
尿素水タンク8内の液量が少ないと判定した場合(S12:YES)には、続くステップS13において、ステップS10にて検出された脱調の要因が、先に説明した尿素成分の析出、或いは電動モータ部19の起動失敗である可能性があると判断する。
ここで、ステップS10にて脱調を検出し(S10:YES)、凍結温度より高く(S11:NO)、尿素水タンク8内の液量が少ない場合(S12:YES)であっても、脱調要因が析出ではなく、電動モータ部19の起動失敗により脱調検出されている可能性がある。そしてこの場合には、電動モータ部19を再起動させれば正常に起動して脱調が検出されなくなる可能性が高い。
この点を鑑み、続くステップS14では、尿素水ポンプ9の運転を一旦停止させ、その後尿素水ポンプ9を再起動させる。つまり、ターミナル43から電動モータ部19への通電を一旦停止させ、その後再び通電して再起動させる。その後ステップS15(脱調要因探索手段)において、ステップS10と同様にして脱調現象が生じているか否かを判定する。
この再起動により脱調が検出されなくなった場合(S15:NO)には、図5の処理開始に先立つ尿素水ポンプ9の起動処理では起動失敗したが、ステップS14での再起動では正常に起動して復帰したと判断する(ステップS16)。その後、脱調要因を探索することなくそのまま尿素水ポンプ9の運転を継続させる。
一方、ステップS14での再起動を行っても未だ脱調が検出される場合(S15:YES)には、続くステップS17において脱調要因が析出であると判断する。すなわち、析出成分がインペラ22をポンプケース20,21内面に固着させ、インペラ22が回転不良状態又は回転不能状態となっていることにより、先述の如くインペラ22への回転負荷が異常に大きくなっていると判断する。
続くステップS18では、図示しないダイアグランプを点灯させる等により、尿素水ポンプ9が異常である旨を車両乗員(エンジン運転者)に報知する。この報知においては、尿素水タンク8への尿素水補給を促すよう報知することが望ましい。また、電動モータ部19への電力供給を直ちに停止させて、尿素水ポンプ9を停止させる。これにより、インペラ22の破損回避を図る。
続くステップS19では、尿素水タンク8への尿素水補給が充分になされたか否かを判定する。具体的には、水位センサ14の検出値を取得し、取得した検出値(水位)が予め設定された閾値より大きい場合に補給が充分であると判定する。本ステップS19で用いる閾値は、ステップS12で用いる閾値と同じで吸入口24の下端位置Wに設定してもよいし、下端位置Wよりも高い位置に設定してもよい。
続くステップS20では、ステップS19にて補給充分と判定された時点から、予め設定された一定の時間が経過したか否かを判定する。一定時間経過が判定されなければ(S20:NO)、処理はステップS20に留まることとなる。つまり、脱調要因の探索及び尿素水ポンプ9の運転を禁止した状態となる。一方、一定時間経過が判定されれば(S20:YES)、析出が解消されたと判断し、ステップS18にて点灯させたダイアグランプをステップS21にて消灯させる。
次に、脱調要因が尿素水ポンプ9の故障であるか否かの判断について説明する。
先述のステップS12において、尿素水タンク8内の液量が少なくないと判定した場合(S12:NO)には、図6のステップS40に進む。このステップS40では、ステップS10にて検出された脱調の要因が、以下に説明する異物噛み込み、或いは電動モータ部19の起動失敗である可能性があると判断する。すなわち、尿素水による析出物以外の異物であって尿素水中に混入していた異物が、ポンプケース20,21とインペラ22とのクリアランスに噛み込んでいることが要因となって、インペラ22の回転不良を生じさせている可能性があると判断する。
続くステップS41では、尿素水ポンプ9の運転を一旦停止させ、その後尿素水ポンプ9を再起動させる。つまり、ターミナル43から電動モータ部19への通電を一旦停止させ、その後再び通電して再起動させる。その後ステップS42(脱調要因探索手段)において、ステップS10と同様にして脱調現象が生じているか否かを判定する。
この再起動により脱調が検出されなくなった場合(S42:NO)には、図5の処理開始に先立つ尿素水ポンプ9の起動処理では起動失敗したが、ステップS41での再起動では正常に起動して復帰したと判断する(ステップS43)。その後、脱調要因を探索することなくそのまま尿素水ポンプ9の運転を継続させる。一方、ステップS41での再起動を行っても未だ脱調が検出される場合(S42:YES)には、続くステップS44において脱調要因が異物噛み込み又は尿素水ポンプ9の故障であると判断する。
続くステップS45では、図示しないダイアグランプを点灯させる等により、尿素水ポンプ9が故障している旨を車両乗員(エンジン運転者)に報知する。この報知においては、尿素水ポンプ9の交換を促すよう報知することが望ましい。また、電動モータ部19への電力供給を直ちに停止させて、尿素水ポンプ9を停止させる。これにより、インペラ22の破損回避を図る。
以上詳述した本実施形態によれば、以下の効果が得られるようになる。
(1)ステップS10における脱調有無の判定結果に基づき、インペラ22回転不良の可能性有無を判断でき、脱調が検出された場合に尿素成分析出が脱調の要因であるか否かを探索するので、析出有無を探索結果として取得することができ、その探索結果に応じたインペラ回転不良発生時の異常処理(S18,S31,S45)を実行できる。
(2)尿素水析出以外の脱調要因として、尿素水凍結、異物噛み込み又は尿素水ポンプ9の故障、電動モータ部19の起動失敗が挙げられる。そこで本実施形態では、脱調要因を探索するにあたり、ステップS11,S12,S15の条件を満たした場合に脱調要因が析出であると判断する。つまり、尿素水が凍結温度以下でなく(S11:NO)、尿素水タンク8内の液量が充分であり(S12:YES)、尿素水ポンプ9を再起動させても脱調が解消されない(S15:YES)、との条件を満たした場合に析出有りと判断する。
よって、尿素水凍結(S11:YES)、異物噛み込み又は尿素水ポンプ9の故障(S12:NO)、及び電動モータ部19の起動失敗(S15:NO)による脱調の場合に、析出を脱調要因として誤って判断してしまうおそれを回避でき、脱調要因の探索精度を向上できる。しかも、脱調要因が析出であるか否かを検出するのみならず、尿素水凍結、異物噛み込み又は尿素水ポンプ9の故障、及び電動モータ部19の起動失敗であるか否かをも検出できる。
(3)尿素水の補給に伴い、水位センサ14の検出値がステップS19での判定で閾値より大きくなるよう変化した場合には、尿素水補給後、析出物の溶解に要する一定時間が経過するまでは脱調要因の探索及び尿素水ポンプ9の運転を禁止する(ステップS20)。これにより、尿素水が補給された後であっても、析出物が未だ溶解されていない状態での電動モータ部19の起動が禁止されるので、再び脱調してしまうことの回避、及びインペラ22の破損回避を図ることができる。
(4)ステップS30にて尿素水凍結と判断された後、エンジンの暖機運転に伴い温度センサ17の検出値が凍結温度より大きくなるまでは、脱調要因の探索及び尿素水ポンプ9の運転を禁止する(ステップS32)。これにより、尿素水が凍結した状態での電動モータ部19の起動が禁止されるので、再び脱調してしまうことの回避、及びインペラ22の破損回避を図ることができる。
(他の実施形態)
上記各実施形態は、以下のように変更して実施してもよい。また、本発明は上記実施形態の記載内容に限定されず、各実施形態の特徴的構造をそれぞれ任意に組み合わせるようにしてもよい。
・上記実施形態では、本発明に係る還元剤ポンプを尿素水ポンプに適用させているが、本発明はこのような尿素水ポンプに限定されるものではなく、例えば、還元剤として尿素水を排気中に添加することに替え、還元剤として炭化水素(HC)を添加するようにした内燃機関において、その炭化水素を噴射弁に圧送するポンプに本発明に係る還元剤ポンプを適用するようにしてもよい。
・上記実施形態では、ステップS30にて凍結と判断された場合の異常処理として、尿送水温度が凍結温度より高くなるまで尿素水ポンプ9の運転禁止を行っているが、他の異常処理として、尿素水を加熱する手段(例えば電気ヒータ)を備え、加熱手段を作動させるようにしてもよい。
・上記実施形態では本発明に係る電動モータとして直流ブラシレスモータを適用させているが、脱調が生じ得るモータであればこのような直流ブラシレスモータに限定されるものではない。
本発明の一実施形態に係る尿素水ポンプ(還元剤ポンプ)が適用された、尿素SCRシステムの全体構成を示す図。 図1に示す尿素水ポンプの詳細構成図。 図2に示すインペラの単体構造を示す斜視図。 図2のI−I断面図。 図1に示すECUが実行する、異常検出及び要因探索の処理内容を示すフローチャート。 図1に示すECUが実行する、異常検出及び要因探索の処理内容を示すフローチャート。
符号の説明
9…尿素水ポンプ(還元剤ポンプ)、10…ECU(異常検出装置)、19…電動モータ部(電動モータ)、20…アッパケース(ポンプケース)、21…ロアケース(ポンプケース)、22…インペラ、S10…脱調検出手段、S11…温度判定手段、S12…水位判定手段、S14,S41…再起動制御手段。

Claims (9)

  1. ポンプ室を内部に形成するポンプケース、及び前記ポンプ室に配置されて電動モータにより回転駆動するインペラを備え、内燃機関の排気中に含まれる窒素酸化物を還元する還元剤水溶液を吐出する還元剤ポンプに適用され、
    前記電動モータの脱調を検出する脱調検出手段と、
    前記脱調検出手段により脱調が検出された場合に、前記ポンプケース内で前記還元剤水溶液中の還元剤が析出していることが脱調の要因であるか否かを探索する脱調要因探索手段と、
    を備えることを特徴とする還元剤ポンプの異常検出装置。
  2. 前記還元剤水溶液が凍結する温度以下となっているか否かを判定する温度判定手段を備え、
    前記脱調要因探索手段は、前記温度判定手段により凍結温度以下でないと判定されたことを条件として、前記脱調の要因が前記析出であると判断することを特徴とする請求項1に記載の還元剤ポンプの異常検出装置。
  3. 前記脱調要因探索手段は、前記温度判定手段により凍結温度以下と判定されたことを条件として、前記脱調の要因が前記凍結であると判断することを特徴とする請求項2に記載の還元剤ポンプの異常検出装置。
  4. 前記還元剤ポンプは、前記還元剤水溶液を貯蔵するタンク内に配置されており、
    前記タンク内の水位が予め設定された閾値以下となっている低水位であるか否かを判定する水位判定手段を備え、
    前記脱調要因探索手段は、前記水位判定手段により前記低水位と判定されたことを条件として、前記脱調の要因が前記析出であると判断することを特徴とする請求項1〜3のいずれか1つに記載の還元剤ポンプの異常検出装置。
  5. 前記水位判定手段により前記低水位との判定から前記低水位でないとの判定に切り替わった後、所定時間が経過するまでは、前記脱調要因探索手段による前記判断を禁止することを特徴とする請求項4に記載の還元剤ポンプの異常検出装置。
  6. 前記脱調検出手段により脱調が検出された場合に、前記電動モータを再起動させる再起動制御手段を備え、
    前記脱調要因探索手段は、前記再起動の実行後に再び前記脱調が検出されたことを条件として、前記脱調の要因が前記析出であると判断することを特徴とする請求項1〜5のいずれか1つに記載の還元剤ポンプの異常検出装置。
  7. 前記脱調要因探索手段は、前記再起動の実行後に前記脱調が検出されなかったことを条件として、前記脱調の要因が前記電動モータの起動失敗であると判断することを特徴とする請求項6に記載の還元剤ポンプの異常検出装置。
  8. 前記脱調要因探索手段により前記脱調の要因が前記析出であると判断された後、前記還元剤水溶液を補給してから一定時間が経過するまでは、前記電動モータの起動を禁止することを特徴とする請求項1〜7のいずれか1つに記載の還元剤ポンプの異常検出装置。
  9. ポンプ室を内部に形成するポンプケース、及び前記ポンプ室に配置されて電動モータにより回転駆動するインペラを備え、内燃機関の排気中に含まれる窒素酸化物を還元する還元剤水溶液を吐出する還元剤ポンプと、
    請求項1〜8のいずれか1つに記載の異常検出装置と、
    を備えることを特徴とする還元剤吐出システム。
JP2008026290A 2008-02-06 2008-02-06 還元剤ポンプの異常検出装置及び還元剤吐出システム Pending JP2009185685A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008026290A JP2009185685A (ja) 2008-02-06 2008-02-06 還元剤ポンプの異常検出装置及び還元剤吐出システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008026290A JP2009185685A (ja) 2008-02-06 2008-02-06 還元剤ポンプの異常検出装置及び還元剤吐出システム

Publications (1)

Publication Number Publication Date
JP2009185685A true JP2009185685A (ja) 2009-08-20

Family

ID=41069184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008026290A Pending JP2009185685A (ja) 2008-02-06 2008-02-06 還元剤ポンプの異常検出装置及び還元剤吐出システム

Country Status (1)

Country Link
JP (1) JP2009185685A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145567A1 (ja) * 2010-05-17 2011-11-24 いすゞ自動車株式会社 Scr解凍制御システム
JP2013524086A (ja) * 2010-04-09 2013-06-17 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング 液体還元剤を提供するための装置
WO2014024307A1 (ja) * 2012-08-10 2014-02-13 トヨタ自動車 株式会社 内燃機関の添加剤供給装置
JP2015175362A (ja) * 2014-03-18 2015-10-05 株式会社デンソー 排気浄化装置の制御装置
JP2016053373A (ja) * 2010-07-28 2016-04-14 アークイス アンド アークイス エス アー 自動車の排ガス中のNOx排出量を低減するための方法
JP2018066526A (ja) * 2016-10-21 2018-04-26 三菱電機株式会社 給湯機

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013524086A (ja) * 2010-04-09 2013-06-17 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング 液体還元剤を提供するための装置
WO2011145567A1 (ja) * 2010-05-17 2011-11-24 いすゞ自動車株式会社 Scr解凍制御システム
JP2012002062A (ja) * 2010-05-17 2012-01-05 Isuzu Motors Ltd Scr解凍制御システム
CN102947562A (zh) * 2010-05-17 2013-02-27 五十铃自动车株式会社 选择催化还原解冻控制系统
US8959890B2 (en) 2010-05-17 2015-02-24 Isuzu Motors Limited SCR thawing control system
EP2573341A4 (en) * 2010-05-17 2015-02-25 Isuzu Motors Ltd SYSTEM FOR CONTROLLING THE DEFROSTING OF A SELECTIVE REDUCTION CATALYST (SCR)
JP2016053373A (ja) * 2010-07-28 2016-04-14 アークイス アンド アークイス エス アー 自動車の排ガス中のNOx排出量を低減するための方法
WO2014024307A1 (ja) * 2012-08-10 2014-02-13 トヨタ自動車 株式会社 内燃機関の添加剤供給装置
JP5871072B2 (ja) * 2012-08-10 2016-03-01 トヨタ自動車株式会社 内燃機関の添加剤供給装置
JP2015175362A (ja) * 2014-03-18 2015-10-05 株式会社デンソー 排気浄化装置の制御装置
JP2018066526A (ja) * 2016-10-21 2018-04-26 三菱電機株式会社 給湯機

Similar Documents

Publication Publication Date Title
JP4730278B2 (ja) エンジンの排気浄化装置
JP5139765B2 (ja) 還元剤供給システムの制御装置及び制御方法
JP4737312B2 (ja) 排気浄化システムの異常診断装置及び排気浄化システム
US8209966B2 (en) Exhaust emission control device for internal combustion
JP5087188B2 (ja) 排気浄化システム及び排気浄化システムの制御方法
US9145817B2 (en) Reducing agent injection valve abnormality detection unit and reducing agent supply apparatus
JP2009185685A (ja) 還元剤ポンプの異常検出装置及び還元剤吐出システム
JP2008291678A (ja) 還元剤供給装置
US20130283769A1 (en) Exhaust gas purification system and method for controlling the same
JP5979770B2 (ja) 還元剤供給装置の制御装置及び制御方法
JP2010065581A (ja) 内燃機関の排気浄化システム
JP2009133290A (ja) 還元剤ポンプ制御装置及び還元剤吐出システム
JP2008157218A (ja) 還元剤圧送ポンプ
JP2011241740A (ja) 尿素水温度センサの妥当性診断システム
JP5051148B2 (ja) 排気浄化システムの異常診断装置
JP2010031731A (ja) 内燃機関の排気浄化装置
JP5136450B2 (ja) 排気浄化システムの異常診断装置
JP2012127214A (ja) 還元剤供給装置及び内燃機関の排気浄化装置
JP6575441B2 (ja) 尿素噴射制御装置
JP6172468B2 (ja) 内燃機関の排気浄化装置
JP4853472B2 (ja) 尿素水ポンプおよび尿素水噴射システム
JP2018105145A (ja) 尿素水撹拌制御装置
JP6112093B2 (ja) 排気浄化システム
JP6540523B2 (ja) 異常判定装置
JPWO2018047554A1 (ja) 制御装置