JP2009182112A - Electronic apparatus and method of manufacturing the same - Google Patents

Electronic apparatus and method of manufacturing the same Download PDF

Info

Publication number
JP2009182112A
JP2009182112A JP2008019148A JP2008019148A JP2009182112A JP 2009182112 A JP2009182112 A JP 2009182112A JP 2008019148 A JP2008019148 A JP 2008019148A JP 2008019148 A JP2008019148 A JP 2008019148A JP 2009182112 A JP2009182112 A JP 2009182112A
Authority
JP
Japan
Prior art keywords
adhesive
resin member
ceramic substrate
resin
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008019148A
Other languages
Japanese (ja)
Other versions
JP4835599B2 (en
Inventor
Susumu Yamada
晋 山田
Toru Nomura
徹 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008019148A priority Critical patent/JP4835599B2/en
Publication of JP2009182112A publication Critical patent/JP2009182112A/en
Application granted granted Critical
Publication of JP4835599B2 publication Critical patent/JP4835599B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent void generation in adhesive as much as possible, and to suppress deterioration of heat dissipation in an electronic apparatus, wherein a resin member is arranged over the whole surface of a ceramic substrate and the resin member is adhered to a heatsink with adhesive. <P>SOLUTION: After forming a resin member 40 over the whole surface of a ceramic substrate 20, the resin member 40 is heat-treated, and then the resin member 40 is adhered with adhesive 30. Heat treatment for the resin member 40 is performed so that the percentage of moisture content may be less than 3%. The percentage of moisture content is defined as a ratio of moisture content that the resin member 40 absorbs to the constant weight of the resin member 40. The constant weight is the weight of the resin member 40 when it is dried up to 100°C to 110°C. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、セラミック基板の一面に樹脂部材を設け、この樹脂部材とヒートシンクとを接着剤を介して接着してなる電子装置およびそのような電子装置の製造方法に関する。   The present invention relates to an electronic device in which a resin member is provided on one surface of a ceramic substrate, and the resin member and a heat sink are bonded via an adhesive, and a method for manufacturing such an electronic device.

従来より、この種の一般的な電子装置としては、金属製のヒートシンクと、一面に樹脂よりなる樹脂部材が設けられたセラミック基板とを用意し、接着剤を介してヒートシンクとセラミック基板の一面とを対向させるとともに、樹脂部材を接着剤に接触させた状態で、接着剤を硬化することにより、ヒートシンクとセラミック基板とを接着してなるものが提案されている。   Conventionally, as a general electronic device of this type, a metal heat sink and a ceramic substrate provided with a resin member made of resin on one surface are prepared, and the heat sink and one surface of the ceramic substrate are bonded via an adhesive. In addition, the heat sink and the ceramic substrate are bonded to each other by curing the adhesive while the resin member is in contact with the adhesive.

このような電子装置においては、セラミック基板には多くの電子部品が搭載されるが、近年、装置の高機能化に伴い、電子部品のパイパワー化が進んでいる。この場合、セラミック基板上のパワー素子の熱は、当該基板から接着剤を介してヒートシンクへ放熱されるが、パワー素子の温度を効率よく低減するためには、その熱経路である接着剤中のボイドを低減する必要がある。   In such an electronic device, many electronic components are mounted on a ceramic substrate, but in recent years, with the enhancement of the functionality of the device, the electronic components have become more pi-powered. In this case, the heat of the power element on the ceramic substrate is dissipated from the substrate to the heat sink via the adhesive, but in order to efficiently reduce the temperature of the power element, It is necessary to reduce voids.

このボイドを低減する方法として、従来では、特許文献1に記載されているように、シリコンを含む結合基板の製造方法において、結合面のOH基を増加させた後,水分の低減工程を通し、結合させるという方法が提案されている。
特開2006−80314号公報
As a method of reducing this void, conventionally, as described in Patent Document 1, in a method for manufacturing a bonded substrate containing silicon, after increasing the OH group of the bonded surface, a moisture reducing step is performed. A method of combining them has been proposed.
JP 2006-80314 A

しかしながら、上記特許文献1に記載の方法によっても、樹脂部材のように、接合面に吸水性の高い材料が含まれる場合には、当該樹脂部材中に含まれる水分が、接着剤中に出てくることによりボイドを形成するため、接着剤中のボイドを十分に低減することができないという問題がある。   However, even in the method described in Patent Document 1, when a material having high water absorption is contained in the joint surface, such as a resin member, moisture contained in the resin member comes out in the adhesive. Since voids are formed by forming, there is a problem that voids in the adhesive cannot be sufficiently reduced.

本発明は、上記問題に鑑みてなされたものであり、セラミック基板の一面に樹脂部材を設け、この樹脂部材とヒートシンクとを接着剤を介して接着してなる電子装置において、接着剤中のボイドの発生を極力防止し、放熱性の低下を抑制することを目的とする。   The present invention has been made in view of the above problems, and in an electronic device in which a resin member is provided on one surface of a ceramic substrate and the resin member and a heat sink are bonded via an adhesive, a void in the adhesive is provided. The purpose is to prevent the generation of heat as much as possible and suppress the decrease in heat dissipation.

上記目的を達成するため、請求項1に記載の発明では、接着剤(30)を介してヒートシンク(10)と樹脂部材(40)が設けられているセラミック基板(20)の一面とを対向させるとともに、樹脂部材(40)を接着剤(30)に接触させた状態で、接着剤(30)を硬化することにより、ヒートシンク(10)とセラミック基板(20)とを接着する電子装置の製造方法において、樹脂部材(40)をセラミック基板(20)の一面に設けた後、樹脂部材(40)を加熱処理し、その後、接着剤(30)による接着を行うことを特徴としている。   In order to achieve the above object, according to the first aspect of the present invention, the heat sink (10) and one surface of the ceramic substrate (20) provided with the resin member (40) are opposed to each other through the adhesive (30). And the manufacturing method of the electronic device which adhere | attaches a heat sink (10) and a ceramic substrate (20) by hardening an adhesive agent (30) in the state which made the resin member (40) contact the adhesive agent (30). In the method, after the resin member (40) is provided on one surface of the ceramic substrate (20), the resin member (40) is subjected to heat treatment, and thereafter, the bonding with the adhesive (30) is performed.

それによれば、接着剤(30)による接着を行う前に、樹脂部材(40)を加熱処理して樹脂部材(40)に吸水された水分を低減できるため、接着剤(30)中のボイドの発生を極力防止し、放熱性の低下を抑制することができる。   According to this, since the water absorbed by the resin member (40) can be reduced by heat-treating the resin member (40) before bonding with the adhesive (30), voids in the adhesive (30) can be reduced. Generation | occurrence | production can be prevented as much as possible and the fall of heat dissipation can be suppressed.

ここで、請求項2に記載の発明のように、樹脂部材(40)を100℃〜110℃で定重量となるまで乾燥させたときの当該定重量に対する、前記樹脂部材(40)が吸収した水分量の百分率を吸水率としたとき、樹脂部材(40)の加熱処理は、樹脂部材(40)の吸水率が3%未満となるように樹脂部材(40)を加熱するものであることが好ましい。   Here, like the invention of Claim 2, the said resin member (40) with respect to the said constant weight when the resin member (40) was dried until it became a constant weight at 100 to 110 degreeC absorbed. The heat treatment of the resin member (40) may be performed by heating the resin member (40) so that the water absorption rate of the resin member (40) is less than 3%, where the percentage of water content is the water absorption rate. preferable.

本発明者の実験によれば、樹脂部材(40)の吸水率を3%未満とし、この状態で接着剤(30)による接着を行えば、接着剤(30)中のボイドの大幅な低減が可能となる。   According to the inventor's experiment, if the water absorption rate of the resin member (40) is less than 3% and adhesion is performed with the adhesive (30) in this state, the voids in the adhesive (30) are significantly reduced. It becomes possible.

この場合、樹脂部材(40)の吸水率を3%未満とした状態を維持しつつ、接着剤(30)による接着を行うためには、請求項3に記載の発明のように、加熱処理を行った後、30分以内に接着剤(30)による接着を行うことが好ましい。   In this case, in order to perform adhesion with the adhesive (30) while maintaining a state where the water absorption rate of the resin member (40) is less than 3%, as in the invention according to claim 3, heat treatment is performed. After performing, it is preferable to perform adhesion | attachment by an adhesive agent (30) within 30 minutes.

また、樹脂部材(40)の吸水率を3%未満とした状態を維持しつつ、接着剤(30)による接着を行うためには、請求項4に記載の発明のように、加熱処理を行った後、接着剤(30)による接着を行うまでの間、樹脂部材(40)を乾燥雰囲気に保持しておくことが好ましい。   Moreover, in order to perform adhesion by the adhesive (30) while maintaining a state where the water absorption rate of the resin member (40) is less than 3%, a heat treatment is performed as in the invention described in claim 4. After that, it is preferable to keep the resin member (40) in a dry atmosphere until bonding with the adhesive (30) is performed.

また、請求項5に記載の発明のように、接着剤(30)の接着を、シリコーン樹脂よりなる接着剤(30)を加熱して硬化することにより行う場合、接着剤(30)による接着は、接着剤(30)の加熱における昇温速度を40℃/分以下として接着剤(30)を加熱・硬化させるものにすれば、接着剤(30)中のボイドの低減のために好ましい。また、この場合、請求項6に記載の発明のように、昇温速度を20℃/分以下とすれば、より好ましい。   When the adhesive (30) is bonded by heating and curing the adhesive (30) made of silicone resin as in the invention described in claim 5, the bonding by the adhesive (30) If the heating rate of the adhesive (30) is set to 40 ° C./min or less to heat and cure the adhesive (30), it is preferable for reducing voids in the adhesive (30). In this case, it is more preferable that the rate of temperature rise is 20 ° C./min or less as in the invention described in claim 6.

また、請求項7に記載の発明のように、接着剤(30)の接着を、シリコーン樹脂よりなる接着剤(30)を加熱して硬化することにより行う場合、接着剤(30)による接着は、接着剤(30)に対して80〜120℃で1分以上20分以下の予備加熱を行った後、当該予備加熱以上の温度で加熱して接着剤(30)を硬化させることにより行うようにすれば、接着剤(30)中のボイドの低減のために好ましい。   When the adhesive (30) is bonded by heating and curing the adhesive (30) made of silicone resin as in the invention described in claim 7, the bonding by the adhesive (30) The adhesive (30) is preheated at 80 to 120 ° C. for 1 minute or more and 20 minutes or less, and then heated at a temperature equal to or higher than the preheating to cure the adhesive (30). In this case, it is preferable for reducing voids in the adhesive (30).

また、請求項8に記載の発明では、金属製のヒートシンク(10)と、一面がヒートシンク(10)と対向した状態で配置されたセラミック基板(20)と、ヒートシンク(10)とセラミック基板(20)との間に介在し、ヒートシンク(10)とセラミック基板(20)とを接着する接着剤(30)とを備える電子装置において、セラミック基板(20)の一面には、樹脂よりなる樹脂部材(40)が設けられ、この樹脂部材(40)を介してセラミック基板(20)は接着剤(30)に接触しており、樹脂部材(40)を100℃〜110℃で定重量となるまで乾燥させたときの当該定重量に対する、樹脂部材(40)が吸収した水分量の百分率を吸水率としたとき、樹脂部材(40)は、吸水率が3%未満の樹脂よりなることを特徴としている。   In the invention according to claim 8, the metal heat sink (10), the ceramic substrate (20) arranged with one surface facing the heat sink (10), the heat sink (10) and the ceramic substrate (20 ) And an adhesive (30) for bonding the heat sink (10) and the ceramic substrate (20), a resin member (made of resin) is provided on one surface of the ceramic substrate (20). 40), the ceramic substrate (20) is in contact with the adhesive (30) through the resin member (40), and the resin member (40) is dried at 100 to 110 ° C. until a constant weight is obtained. The resin member (40) is made of a resin having a water absorption rate of less than 3%, where the percentage of water absorbed by the resin member (40) with respect to the constant weight when the water absorption rate is taken as the water absorption rate. It is.

本発明の電子装置は、実験的に見出されたものであり、樹脂部材(40)の吸水率が3%未満であれば、接着剤(30)中のボイドの大幅な低減が可能となるため、接着剤(30)中のボイドの発生を極力防止し、放熱性の低下を抑制することができる。   The electronic device of the present invention has been found experimentally. If the water absorption rate of the resin member (40) is less than 3%, the voids in the adhesive (30) can be significantly reduced. Therefore, generation | occurrence | production of the void in an adhesive agent (30) can be prevented as much as possible, and the fall of heat dissipation can be suppressed.

なお、特許請求の範囲およびこの欄で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。   In addition, the code | symbol in the bracket | parenthesis of each means described in the claim and this column is an example which shows a corresponding relationship with the specific means as described in embodiment mentioned later.

以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、説明の簡略化を図るべく、図中、同一符号を付してある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other are given the same reference numerals in the drawings in order to simplify the description.

(第1実施形態)
図1は、本発明の第1実施形態に係る電子装置S1の概略断面構成を示す図である。この電子装置S1は、大きくは、接着剤30を介してヒートシンク10にセラミック基板20の一面を対向させるとともに、セラミック基板20の一面に樹脂部材40を設け、この樹脂部材40を介してセラミック基板20を接着剤30に接触させたものである。
(First embodiment)
FIG. 1 is a diagram showing a schematic cross-sectional configuration of an electronic device S1 according to the first embodiment of the present invention. The electronic device S1 is roughly configured such that one surface of the ceramic substrate 20 is opposed to the heat sink 10 via the adhesive 30, and a resin member 40 is provided on one surface of the ceramic substrate 20, and the ceramic substrate 20 is interposed via the resin member 40. Is brought into contact with the adhesive 30.

ヒートシンク10は、その上に搭載されたセラミック基板20およびセラミック基板20上の部品50、51に発生する熱を放熱する板状のものであり、放熱性に優れた鉄、銅、モリブデン、アルミニウムなどの金属材料よりなる。   The heat sink 10 is a plate-shaped member that dissipates heat generated on the ceramic substrate 20 mounted thereon and the components 50 and 51 on the ceramic substrate 20, and has excellent heat dissipation, such as iron, copper, molybdenum, and aluminum. Made of metal material.

セラミック基板20は、アルミナなどのセラミックよりなる配線基板であり、単層でも多層でもよい。セラミック基板20は、その一面(図1中の下面)をヒートシンク10に対向させた状態でヒートシンク10上に搭載されている。   The ceramic substrate 20 is a wiring substrate made of ceramic such as alumina, and may be a single layer or a multilayer. The ceramic substrate 20 is mounted on the heat sink 10 with one surface thereof (the lower surface in FIG. 1) facing the heat sink 10.

また、セラミック基板20の他面(図1中の上面)には、上記部品50、51が搭載されている。これら部品50、51は、ICチップやコンデンサ素子、抵抗素子などの表面実装部品などであり、Agペーストやはんだなどの図示しないダイマウント材を介して、セラミック基板20の他面に搭載され接着されている。   Further, the components 50 and 51 are mounted on the other surface of the ceramic substrate 20 (the upper surface in FIG. 1). These components 50 and 51 are surface mount components such as an IC chip, a capacitor element, and a resistance element, and are mounted and bonded to the other surface of the ceramic substrate 20 via a die mount material (not shown) such as Ag paste or solder. ing.

また、図示しないが、これら部品50、51とセラミック基板20との間、これら部品50、51と外部との間、および、セラミック基板20と外部との間は、たとえばワイヤボンディングなどにより電気的に接続されている。   Further, although not shown in the figure, between these components 50 and 51 and the ceramic substrate 20, between these components 50 and 51 and the outside, and between the ceramic substrate 20 and the outside are electrically connected by, for example, wire bonding. It is connected.

ヒートシンク10とセラミック基板20との間に介在する接着剤30としては、UV硬化型接着剤、熱硬化型接着剤、エポキシ系接着剤、ウレタン系接着剤、シリコーン系接着剤等があげられる。この接着剤30により、ヒートシンク10とセラミック基板20とが接着されている。   Examples of the adhesive 30 interposed between the heat sink 10 and the ceramic substrate 20 include a UV curable adhesive, a thermosetting adhesive, an epoxy adhesive, a urethane adhesive, and a silicone adhesive. The heat sink 10 and the ceramic substrate 20 are bonded by the adhesive 30.

なお、図1では、接着剤30中にボイドBが存在しているが、本実施形態では、このボイドBは極力低減されている。具体的には、後述するボイド率(図3参照)が5%未満となっている。   In FIG. 1, the void B is present in the adhesive 30, but in the present embodiment, the void B is reduced as much as possible. Specifically, the void ratio (see FIG. 3) described later is less than 5%.

樹脂部材50は、UV硬化型樹脂、熱硬化型樹脂、エポキシ系樹脂、ウレタン系樹脂などの樹脂よりなるもので、セラミック基板20の一面に塗布して硬化させることにより層状をなして形成されている。そして、セラミック基板20は、この樹脂部材40の部分にて接着剤30を介してヒートシンク10に接着されている。   The resin member 50 is made of a resin such as a UV curable resin, a thermosetting resin, an epoxy resin, or a urethane resin, and is formed in a layer shape by being applied to one surface of the ceramic substrate 20 and cured. Yes. The ceramic substrate 20 is bonded to the heat sink 10 via the adhesive 30 at the resin member 40 portion.

ここで、本実施形態では、樹脂部材40は、吸水率が3%未満の樹脂として構成されている。この吸水率は、樹脂部材40を100℃〜110℃で定重量となるまで乾燥させたときの当該定重量に対する当該樹脂部材40が吸収した水分量の百分率である。   Here, in this embodiment, the resin member 40 is configured as a resin having a water absorption rate of less than 3%. This water absorption is a percentage of the amount of moisture absorbed by the resin member 40 with respect to the constant weight when the resin member 40 is dried at 100 ° C. to 110 ° C. until the weight becomes constant.

具体的には、樹脂部材40を100℃〜110℃で定重量m1となるまで乾燥させた後、大気中に24時間放置し、この放置後の樹脂部材40の重量をm2とする。当該大気放置によって樹脂部材40は、水分を吸収して重くなるが、この場合の吸水率は、当該放置後の樹脂部材40の重量の増加分(m2−m1)を当該乾燥による定重量m1で除して100を乗じた値、すなわち[(m2−m1)/m1]×100である。   Specifically, after the resin member 40 is dried at 100 ° C. to 110 ° C. until the constant weight m1 is reached, the resin member 40 is left in the atmosphere for 24 hours, and the weight of the resin member 40 after being left is set to m2. The resin member 40 absorbs moisture and becomes heavy by being left in the atmosphere, but the water absorption rate in this case is the constant weight m1 due to the drying (m2-m1) of the increase in the weight of the resin member 40 after being left as it is. The value obtained by dividing by 100, that is, [(m2−m1) / m1] × 100.

次に、本実施形態の電子装置S1の製造方法について述べる。まず、セラミック基板20の一面に塗布・硬化などにより樹脂部材40を設け、他面に部品50、51を搭載する。また、ヒートシンク10を用意する。   Next, a method for manufacturing the electronic device S1 of this embodiment will be described. First, the resin member 40 is provided on one surface of the ceramic substrate 20 by coating and curing, and the components 50 and 51 are mounted on the other surface. Also, a heat sink 10 is prepared.

次に、セラミック基板20とともに樹脂部材40をオーブンなどに入れて、加熱処理する。このとき、当該加熱処理によって樹脂部材40中の水分を除去することにより、樹脂部材40の上記吸水率が3%未満となるように、樹脂部材40の加熱を行う。この加熱処理工程における3%未満の根拠については後述する。   Next, the resin member 40 together with the ceramic substrate 20 is placed in an oven or the like and subjected to heat treatment. At this time, the resin member 40 is heated so that the water absorption rate of the resin member 40 is less than 3% by removing moisture in the resin member 40 by the heat treatment. The basis of less than 3% in this heat treatment step will be described later.

この加熱処理工程の加熱条件については、次のようにして求められる。上記具体例と同様に、樹脂部材40を100℃〜110℃で定重量m1となるまで乾燥させた後、大気中に24時間放置する工程において、当該放置後の樹脂部材40の重量の増加分(m2−m1)を当該乾燥による定重量m1で除して100を乗じた値を、吸水率とする。   About the heating conditions of this heat processing process, it calculates | requires as follows. Similar to the above specific example, after the resin member 40 is dried at 100 ° C. to 110 ° C. until the constant weight m1 is reached, the resin member 40 is left in the atmosphere for 24 hours. A value obtained by dividing (m2-m1) by the constant weight m1 by the drying and multiplying by 100 is defined as a water absorption rate.

そして、塗布して硬化した直後の樹脂部材40の重量は、上記定重量m1であり、当該硬化直後の樹脂部材40を更に大気中に24時間放置した後の重量m2を求めることで、当該放置後の樹脂部材40の吸水率を求めておく。そして、当該放置後の重量m2である樹脂部材40を、さらに加熱処理する。   The weight of the resin member 40 immediately after being applied and cured is the above-described constant weight m1, and the weight m2 after the resin member 40 immediately after curing is further left in the air for 24 hours is obtained. The water absorption rate of the subsequent resin member 40 is obtained. Then, the resin member 40 having the weight m2 after being left is further heat-treated.

そして、当該加熱処理後の樹脂部材40の重量m3と上記定重量m1との差分を求めれば、上記放置後の吸水率に比べて低くなった加熱処理後の吸水率[(m3−m1)/m1]×100が求められる。このとき、当該加熱処理の条件、すなわち加熱温度や加熱時間を調整し、加熱処理後の吸水率が3%未満となるような加熱条件を求める。   And if the difference of the weight m3 of the resin member 40 after the said heat processing and the said constant weight m1 is calculated | required, the water absorption after the heat processing [(m3-m1) // which became low compared with the water absorption after the said standing. m1] × 100 is obtained. At this time, the conditions for the heat treatment, that is, the heating temperature and the heating time are adjusted, and the heating conditions such that the water absorption after the heat treatment is less than 3% are obtained.

そして、本実施形態の加熱処理工程では、求められた加熱条件にて加熱処理を行うものである。加熱条件の一例を述べると、加熱温度は70℃以上、望ましくは80℃〜180℃の間であり、加熱時間は数分から10分程度である。   In the heat treatment process of this embodiment, the heat treatment is performed under the obtained heating conditions. As an example of the heating conditions, the heating temperature is 70 ° C. or higher, desirably 80 ° C. to 180 ° C., and the heating time is about several minutes to 10 minutes.

こうして、加熱処理工程を行った後、ヒートシンク10または樹脂部材40に接着剤を印刷などで塗布し、ヒートシンク10とセラミック基板20とを貼り合わせる。続いて、接着剤30を硬化することで、接着剤30によるヒートシンク10とセラミック基板20との接着を行い、本実施形態の電子装置S1ができあがる。   Thus, after performing the heat treatment step, an adhesive is applied to the heat sink 10 or the resin member 40 by printing or the like, and the heat sink 10 and the ceramic substrate 20 are bonded together. Subsequently, by curing the adhesive 30, the heat sink 10 and the ceramic substrate 20 are bonded by the adhesive 30, and the electronic device S1 of this embodiment is completed.

上記製造方法によれば、接着剤30による接着を行う前に、樹脂部材40を加熱処理して樹脂部材40に吸水された水分を低減できるため、接着剤30中のボイドの発生を極力防止し、放熱性の低下を抑制することができる。   According to the manufacturing method described above, since the water absorbed by the resin member 40 can be reduced by heat-treating the resin member 40 before bonding with the adhesive 30, the generation of voids in the adhesive 30 is prevented as much as possible. , A decrease in heat dissipation can be suppressed.

次に、樹脂部材40の吸水率が3%未満となるように加熱処理工程を行う根拠について述べる。この根拠は次に述べる検討例の結果に基づく。   Next, the grounds for performing the heat treatment step so that the water absorption rate of the resin member 40 is less than 3% will be described. This basis is based on the results of the following study examples.

この検討例において、樹脂部材40としては一般的なエポキシ樹脂を用いた。この樹脂部材40をセラミック基板20に塗布・硬化して設けた後、吸水率が実質的に0となるまで加熱処理を行った。そして、この加熱処理工程後に樹脂部材40の大気放置を行い、樹脂部材40の吸水率の変化を調べた結果を図2に示す。   In this examination example, a general epoxy resin was used as the resin member 40. After the resin member 40 was applied and cured on the ceramic substrate 20, heat treatment was performed until the water absorption rate became substantially zero. Then, after this heat treatment step, the resin member 40 is left in the atmosphere, and the result of examining the change in the water absorption rate of the resin member 40 is shown in FIG.

図2は、加熱処理工程後の大気放置時間(単位:分)と吸水率(単位:重量%)との関係を示す図である。図2に示されるように、加熱処理直後は、吸水率は0であり、大気放置時間の増加とともに、樹脂部材40が水分を吸収して、吸水率が増加していく。本例では、大気放置時間が30分までは、吸水率は3%未満であり、30分を超えると3%以上となることがわかった。   FIG. 2 is a diagram showing the relationship between the air standing time (unit: minutes) and the water absorption rate (unit: wt%) after the heat treatment step. As shown in FIG. 2, immediately after the heat treatment, the water absorption rate is 0, and the resin member 40 absorbs moisture and increases the water absorption rate as the air standing time increases. In this example, it was found that the water absorption rate was less than 3% up to 30 minutes in the air, and 3% or more after 30 minutes.

また、図3は、上記大気放置時間(単位:分)とボイド率(単位:%)との関係を調査した結果を示す図である。ここで、大気放置時間は、樹脂部材40の加熱処理工程後に接着剤30を印刷するまでの時間に相当する。   FIG. 3 is a diagram showing the results of investigating the relationship between the air standing time (unit: minutes) and the void ratio (unit:%). Here, the air standing time corresponds to the time until the adhesive 30 is printed after the heat treatment process of the resin member 40.

また、図3において、ボイド率は、接着剤30の硬化後において接着剤30中に存在する上記ボイドB(上記図1参照)の発生割合を示すものである。ここでは、ボイド率は、接着完了後の接着剤30による接合部を強制的に剥離させ、その剥離面に占めるボイドBの面積比率を画像処理などにより求め、百分率で示したものとした。   Further, in FIG. 3, the void ratio indicates a generation ratio of the void B (see FIG. 1) present in the adhesive 30 after the adhesive 30 is cured. Here, the void ratio was obtained by forcibly peeling the bonded portion by the adhesive 30 after completion of bonding, and obtaining the area ratio of the void B in the peeled surface by image processing or the like, and expressed as a percentage.

図3に示されるように、大気放置時間の増加、すなわち加熱処理工程後から接着剤印刷までの放置時間の増加とともに、ボイド率が増加していく。つまり、図2、図3より、吸水率の増加とともにボイド率が増加していく。また、加熱処理を行わない(図3中の「加熱無し」)場合では、加熱処理を行った場合に比べて、大幅にボイド率が大きくなっている。   As shown in FIG. 3, the void ratio increases with an increase in the standing time in the atmosphere, that is, an increase in the standing time from the heat treatment step to the adhesive printing. That is, as shown in FIGS. 2 and 3, the void ratio increases as the water absorption increases. Further, in the case where the heat treatment is not performed (“no heating” in FIG. 3), the void ratio is greatly increased as compared with the case where the heat treatment is performed.

そして、図3に示されるように、大気放置時間が30分以下のとき、すなわち吸水率が3%未満の状態で接着剤30の印刷を行ったときには、5%未満という実用レベルにて問題ない低いボイド率が実現されている。これら図2、図3に示されるような検討結果が、樹脂部材40の吸水率が3%未満となるように加熱処理工程を行う根拠である。   As shown in FIG. 3, when the air leaving time is 30 minutes or less, that is, when the adhesive 30 is printed with a water absorption rate of less than 3%, there is no problem at a practical level of less than 5%. A low void fraction has been realized. These examination results as shown in FIGS. 2 and 3 are grounds for performing the heat treatment step so that the water absorption rate of the resin member 40 is less than 3%.

また、これら図2、図3より、樹脂部材40の吸水率を3%未満とした状態を維持しつつ、接着剤30による接着を行うためには、加熱処理工程を行った後、30分以内に接着剤30による接着を行うことが好ましいといえる。   2 and 3, in order to perform adhesion with the adhesive 30 while maintaining a state where the water absorption rate of the resin member 40 is less than 3%, within 30 minutes after performing the heat treatment process. It can be said that it is preferable to perform adhesion with the adhesive 30.

また、樹脂部材40の吸水率を3%未満とした状態を維持しつつ、接着剤30による接着を行うためには、加熱処理工程を行った後、接着剤30による接着を行うまでの間、樹脂部材40を乾燥雰囲気に保持しておいてもよい。   Moreover, in order to perform adhesion by the adhesive 30 while maintaining the state in which the water absorption rate of the resin member 40 is less than 3%, after performing the heat treatment process, until the adhesion by the adhesive 30 is performed, The resin member 40 may be kept in a dry atmosphere.

具体的に、乾燥雰囲気とは、エアコンや減圧ポンプなどで、たとえば湿度が10%以下まで除湿されたガス中である。除湿されたガスとしては空気でもよいし、不活性ガスなどであってもよい。   Specifically, the dry atmosphere is a gas that has been dehumidified to, for example, a humidity of 10% or less with an air conditioner, a vacuum pump, or the like. The dehumidified gas may be air or an inert gas.

また、本実施形態の電子装置S1は、樹脂部材40の吸水率が3%未満であるため、上記同様の理由から接着剤30中のボイドの大幅な低減が可能となる。そのため、本電子装置S1によれば、接着剤30中のボイドの発生を極力防止し、放熱性の低下を抑制することができる。   Further, in the electronic device S1 of the present embodiment, since the water absorption rate of the resin member 40 is less than 3%, the voids in the adhesive 30 can be significantly reduced for the same reason as described above. Therefore, according to this electronic device S1, generation | occurrence | production of the void in the adhesive agent 30 can be prevented as much as possible, and the fall of heat dissipation can be suppressed.

(第2実施形態)
本発明の第2実施形態は、上記第1実施形態に示した製造方法において、接着剤30の接着を、シリコーン樹脂よりなる接着剤30を加熱して硬化することにより行うものとし、さらに、接着剤30の加熱における昇温速度を40℃/分以下(好ましくは20℃/分以下)として接着剤30を加熱・硬化させるものである。
(Second Embodiment)
According to the second embodiment of the present invention, in the manufacturing method shown in the first embodiment, the adhesive 30 is bonded by heating and curing the adhesive 30 made of a silicone resin. The adhesive 30 is heated and cured at a heating rate of 40 ° C./min or less (preferably 20 ° C./min or less) in heating the agent 30.

この接着剤30の加熱における昇温速度を規定する根拠は、次に述べるような本発明者が行った検討結果に基づくものである。   The grounds for defining the rate of temperature increase in heating the adhesive 30 are based on the results of studies conducted by the present inventors as described below.

ここで、接着剤30および樹脂部材40中の水分が、接着剤加熱によって接着剤30が軟らかいうちに急激に膨張することでボイドが発生すると考えられる。そこで、昇温速度をある程度遅くしてやれば、水分の急激な膨張を抑制し、ボイドが低減できると考え、適切な昇温速度を求めることとした。これが昇温速度に着目した理由である。   Here, it is considered that voids are generated by the water in the adhesive 30 and the resin member 40 rapidly expanding while the adhesive 30 is soft due to the adhesive heating. Therefore, it is considered that if the temperature increase rate is slowed to some extent, rapid expansion of moisture can be suppressed and voids can be reduced, and an appropriate temperature increase rate is obtained. This is the reason for paying attention to the heating rate.

そして、この検討例において、樹脂部材40としては一般的なエポキシ樹脂を用い、接着剤30としては一般的なシリコーン樹脂よりなる接着剤を用いた。   In this examination example, a general epoxy resin was used as the resin member 40, and an adhesive made of a general silicone resin was used as the adhesive 30.

そして、樹脂部材40をセラミック基板20に塗布・硬化して設けた後、上記実施形態では行っていた加熱処理工程は行わずに、ヒートシンク10とセラミック基板20との貼り合わせ、接着剤30の加熱硬化による接着を行った。そして、このとき、接着剤30の加熱における昇温速度を種々変えていき、上記ボイド率との関係を調べた。その結果を図4に示す。   Then, after the resin member 40 is applied and cured on the ceramic substrate 20, the heat treatment step performed in the above embodiment is not performed, and the heat sink 10 and the ceramic substrate 20 are bonded together, and the adhesive 30 is heated. Adhesion by curing was performed. And at this time, the temperature rising rate in the heating of the adhesive 30 was changed variously, and the relationship with the said void ratio was investigated. The result is shown in FIG.

図4は、接着剤30の加熱における昇温速度(単位:℃/分)とボイド率(単位:%)との関係を示す図である。図4では、各昇温速度におけるボイド率の値の平均値(図中の白三角プロット)を線で結んでいる。昇温速度の増加とともに、ボイド率が増加していくことがわかる。   FIG. 4 is a diagram showing the relationship between the rate of temperature increase (unit: ° C./min) and the void ratio (unit:%) in heating the adhesive 30. In FIG. 4, the average value (white triangle plot in the figure) of the void ratio values at each temperature increase rate is connected by a line. It can be seen that the void ratio increases as the heating rate increases.

そして、図4に示されるように、昇温速度が40℃/分以下のときには、5%未満という実用レベルにて問題ない低いボイド率が実現されている。また、昇温速度が20℃/分であれば、ばらつきを含めても、より確実にボイド率5%未満を実現している。   And as FIG. 4 shows, when the temperature increase rate is 40 degrees C / min or less, the low void rate which is satisfactory in the practical level of less than 5% is implement | achieved. Further, if the temperature rising rate is 20 ° C./min, the void ratio is less than 5% more reliably even if the variation is included.

つまり、接着剤30の加熱における昇温速度を40℃/分以下(好ましくは20℃/分以下)として接着剤30を加熱・硬化させることにより、樹脂部材40の上記加熱処理を行わずとも、図4に示されるように、ボイド率の大幅な低減が図れる。   That is, the heating rate of the adhesive 30 is set to 40 ° C./min or less (preferably 20 ° C./min or less), and the adhesive 30 is heated and cured, so that the heat treatment of the resin member 40 is not performed. As shown in FIG. 4, the void ratio can be greatly reduced.

そのため、樹脂部材40の上記加熱処理と組み合わせれば、より大きなボイド低減効果が期待できる。これらのことを根拠として、本実施形態の製造方法では、上記したように、吸水率が3%未満となるように樹脂部材40を加熱処理し、その後、接着剤の塗布、ヒートシンク10とセラミック基板20との貼り合わせを行い、次に、昇温速度40℃/以下で接着剤30を加熱・硬化するものである。   Therefore, when combined with the heat treatment of the resin member 40, a larger void reduction effect can be expected. Based on these facts, in the manufacturing method of the present embodiment, as described above, the resin member 40 is heat-treated so that the water absorption is less than 3%, and then the adhesive is applied, the heat sink 10 and the ceramic substrate. 20 and then, the adhesive 30 is heated and cured at a temperature rising rate of 40 ° C./less.

(第3実施形態)
本発明の第3実施形態は、上記第1実施形態に示した製造方法において、接着剤30の接着を、シリコーン樹脂よりなる接着剤30を加熱して硬化することにより行うものとし、さらに、この接着剤30による接着を、接着剤30に対して80〜120℃で1分以上20分以下の予備加熱を行った後、当該予備加熱以上の温度で加熱して接着剤30を硬化させることにより行うものである。
(Third embodiment)
According to the third embodiment of the present invention, in the manufacturing method shown in the first embodiment, the adhesive 30 is bonded by heating and curing the adhesive 30 made of a silicone resin. By preheating the adhesive 30 with the adhesive 30 at 80 to 120 ° C. for 1 minute or more and 20 minutes or less, and then heating the adhesive 30 at a temperature equal to or higher than the preliminary heating to cure the adhesive 30. Is what you do.

このように接着剤30の加熱において予備加熱を行う根拠は、次に述べるような本発明者が行った検討結果に基づくものである。この検討例において、樹脂部材40としては一般的なエポキシ樹脂を用い、接着剤30としては一般的なシリコーン樹脂よりなる接着剤を用いた。   The basis for performing the preheating in the heating of the adhesive 30 as described above is based on the results of studies conducted by the inventors as described below. In this examination example, a general epoxy resin was used as the resin member 40, and an adhesive made of a general silicone resin was used as the adhesive 30.

そして、樹脂部材40をセラミック基板20に塗布・硬化して設けた後、上記実施形態では行っていた加熱処理工程は行わずに、ヒートシンク10とセラミック基板20との貼り合わせ、接着剤30の加熱・硬化による接着を行った。   Then, after the resin member 40 is applied and cured on the ceramic substrate 20, the heat treatment step performed in the above embodiment is not performed, and the heat sink 10 and the ceramic substrate 20 are bonded together, and the adhesive 30 is heated. -Adhesion by curing was performed.

図5は、接着剤30の加熱・硬化工程における温度プロファイルを示す図である。この温度プロファイルは、ワークをセットした加熱炉内の温度を示すものである。この工程では、温度を上げていき、温度T1にて一定時間(たとえば1分〜20分)、予備加熱を行い、そこからさらに温度を上げていき、温度T2にて接着剤30の本硬化を行い、接着を完了させる。なお、このプロファイルにおける昇温部分の昇温速度は、上記同様40℃/分以下でもよいが、それ以外の速度でもよい。   FIG. 5 is a diagram showing a temperature profile in the heating / curing process of the adhesive 30. This temperature profile indicates the temperature in the heating furnace in which the workpiece is set. In this step, the temperature is raised, preheating is performed at a temperature T1 for a certain period of time (for example, 1 minute to 20 minutes), the temperature is further raised, and the main curing of the adhesive 30 is performed at the temperature T2. To complete the adhesion. The temperature rising rate of the temperature rising portion in this profile may be 40 ° C./min or less as described above, but may be other speeds.

このような温度プロファイルにて、予備加熱温度T1を種々変更していき、上記ボイド率との関係を調べた。その結果を図6に示す。図6は、予備加熱温度(単位:℃)とボイド率(単位:%)との関係を調査した結果を示す図である。図6では、各予備加熱温度におけるボイド率の値の平均値(図中の黒丸プロット)を線で結んでいる。   With such a temperature profile, the preheating temperature T1 was changed variously, and the relationship with the void ratio was examined. The result is shown in FIG. FIG. 6 is a diagram showing the results of investigating the relationship between the preheating temperature (unit: ° C.) and the void ratio (unit:%). In FIG. 6, the average value of the void ratio at each preheating temperature (black circle plot in the figure) is connected by a line.

そして、図6に示されるように、予備加熱温度を80℃以上120℃以下とすれば、5%未満という実用レベルにて問題ない低いボイド率が実現しやすいことが、確認された。また、予備加熱温度を90℃以上110℃以下とすれば、より低いボイド率が実現できることがわかる。   As shown in FIG. 6, it was confirmed that when the preheating temperature is set to 80 ° C. or more and 120 ° C. or less, a low void rate that is not problematic at a practical level of less than 5% is easily realized. It can also be seen that if the preheating temperature is 90 ° C. or higher and 110 ° C. or lower, a lower void ratio can be realized.

つまり、接着剤30に対して80〜120℃で1分以上20分以下の予備加熱を行った後、当該予備加熱以上の温度で加熱して接着剤30を硬化させることにより、樹脂部材40の上記加熱処理を行わずとも、図6に示されるように、ボイド率の大幅な低減が図れる。   That is, after preheating the adhesive 30 at 80 to 120 ° C. for 1 minute or more and 20 minutes or less, the adhesive 30 is cured by heating at a temperature equal to or higher than the preliminary heating. Even if the heat treatment is not performed, the void ratio can be significantly reduced as shown in FIG.

そのため、樹脂部材40の上記加熱処理と組み合わせれば、より大きなボイド低減効果が期待できる。これらのことを根拠として、本実施形態の製造方法では、上記したように、吸水率が3%未満となるように樹脂部材40を加熱処理し、その後、接着剤の塗布、ヒートシンク10とセラミック基板20との貼り合わせを行い、次に、接着剤30に対して上記予備加熱・本硬化を行うものである。   Therefore, when combined with the heat treatment of the resin member 40, a larger void reduction effect can be expected. Based on these facts, in the manufacturing method of the present embodiment, as described above, the resin member 40 is heat-treated so that the water absorption is less than 3%, and then the adhesive is applied, the heat sink 10 and the ceramic substrate. Next, the preheating and the main curing are performed on the adhesive 30.

なお、予備加熱の温度T1は80〜120℃、時間は1分〜20分であるが、生産性を考慮すると、予備加熱の時間T1は90℃〜110℃、時間は1分〜10分が好ましい。また、本硬化の温度T2は、予備加熱温度T1よりも高く120〜200℃であり、本硬化の時間はたとえば10分以上である。   The preheating temperature T1 is 80 to 120 ° C. and the time is 1 minute to 20 minutes. However, in consideration of productivity, the preheating time T1 is 90 ° C. to 110 ° C., and the time is 1 minute to 10 minutes. preferable. Moreover, the temperature T2 of this hardening is 120-200 degreeC higher than the preheating temperature T1, and the time of this hardening is 10 minutes or more, for example.

(他の実施形態)
なお、樹脂部材40としては、当該樹脂部材40を構成する樹脂の固有の性質として3%未満であるものを用いてもよい。この場合、上記加熱処理は不要である。
(Other embodiments)
In addition, as the resin member 40, you may use what is less than 3% as an intrinsic | native property of resin which comprises the said resin member 40. FIG. In this case, the heat treatment is not necessary.

また、上記加熱処理工程によって樹脂部材40の吸水率が3%未満にならなくてもよい。あらかじめ、試験的にボイド率と加熱処理温度や加熱時間との関係を調べておき、実用レベル(たとえば5%未満)までボイド率が低減可能な条件で加熱処理を行うものであれば、加熱処理後の樹脂部材40の吸水率が3%以上であってもかまわない。   Further, the water absorption rate of the resin member 40 may not be less than 3% by the heat treatment step. If the relationship between the void ratio and the heat treatment temperature and the heating time is examined beforehand in advance and the heat treatment is performed under conditions that can reduce the void ratio to a practical level (for example, less than 5%), the heat treatment is performed. The water absorption rate of the subsequent resin member 40 may be 3% or more.

また、1個のヒートシンクに対して複数個のセラミック基板を接着する場合、あるいは、1個のセラミック基板に対して複数個のヒートシンクを接着する場合においても、上記した各実施形態が適用可能である。また、上記図1では、セラミック基板20の他面に部品50、51が搭載されていたが、このような実装形態に限定されるものではなく、また、当該部品は無いものであってもよい。   Further, the above-described embodiments can also be applied when a plurality of ceramic substrates are bonded to one heat sink or when a plurality of heat sinks are bonded to one ceramic substrate. . In FIG. 1, the components 50 and 51 are mounted on the other surface of the ceramic substrate 20. However, the present invention is not limited to such a mounting form, and the components may not be provided. .

本発明の第1実施形態に係る電子装置の概略断面図である。1 is a schematic cross-sectional view of an electronic device according to a first embodiment of the present invention. 加熱処理工程後の大気放置時間と吸水率との関係を示す図である。It is a figure which shows the relationship between the air standing time after a heat processing process, and a water absorption. 大気放置時間とボイド率との関係を示す図である。It is a figure which shows the relationship between air leaving time and a void ratio. 接着剤の加熱における昇温速度とボイド率との関係を示す図である。It is a figure which shows the relationship between the temperature increase rate in the heating of an adhesive agent, and a void ratio. 接着剤の加熱・硬化工程における温度プロファイルを示す図である。It is a figure which shows the temperature profile in the heating and hardening process of an adhesive agent. 予備加熱温度とボイド率との関係を示す図である。It is a figure which shows the relationship between preheating temperature and a void ratio.

符号の説明Explanation of symbols

10 ヒートシンク
20 セラミック基板
30 接着剤
40 樹脂部材
10 heat sink 20 ceramic substrate 30 adhesive 40 resin member

Claims (8)

金属製のヒートシンク(10)と、一面に樹脂よりなる樹脂部材(40)が設けられたセラミック基板(20)とを用意し、
接着剤(30)を介して前記ヒートシンク(10)と前記セラミック基板(20)の前記一面とを対向させるとともに、前記樹脂部材(40)を前記接着剤(30)に接触させた状態で、前記接着剤(30)を硬化することにより、前記ヒートシンク(10)と前記セラミック基板(20)とを接着する電子装置の製造方法において、
前記樹脂部材(40)を前記セラミック基板(20)の前記一面に設けた後、前記樹脂部材(40)を加熱処理し、その後、前記接着剤(30)による接着を行うことを特徴とする電子装置の製造方法。
A metal heat sink (10) and a ceramic substrate (20) provided with a resin member (40) made of resin on one side are prepared,
The heat sink (10) and the one surface of the ceramic substrate (20) are opposed to each other through an adhesive (30), and the resin member (40) is in contact with the adhesive (30). In the method of manufacturing an electronic device for bonding the heat sink (10) and the ceramic substrate (20) by curing the adhesive (30),
The resin member (40) is provided on the one surface of the ceramic substrate (20), and then the resin member (40) is heat-treated, and then bonded by the adhesive (30). Device manufacturing method.
前記樹脂部材(40)を100℃〜110℃で定重量となるまで乾燥させたときの当該定重量に対する、前記樹脂部材(40)が吸収した水分量の百分率を吸水率としたとき、
前記樹脂部材(40)の加熱処理は、前記樹脂部材(40)の前記吸水率が3%未満となるように前記樹脂部材(40)を加熱するものであることを特徴とする請求項1に記載の電子装置の製造方法。
When the percentage of moisture absorbed by the resin member (40) relative to the constant weight when the resin member (40) is dried at 100 ° C. to 110 ° C. until a constant weight is obtained,
The heat treatment of the resin member (40) heats the resin member (40) so that the water absorption rate of the resin member (40) is less than 3%. The manufacturing method of the electronic device of description.
前記加熱処理を行った後、30分以内に前記接着剤(30)による接着を行うことを特徴とする請求項2に記載の電子装置の製造方法。   3. The method of manufacturing an electronic device according to claim 2, wherein the adhesive (30) is adhered within 30 minutes after the heat treatment. 前記加熱処理を行った後、前記接着剤(30)による接着を行うまでの間、前記樹脂部材(40)を乾燥雰囲気に保持しておくことを特徴とする請求項2に記載の電子装置の製造方法。   3. The electronic device according to claim 2, wherein the resin member is maintained in a dry atmosphere after the heat treatment and before the adhesion with the adhesive. Production method. 前記接着剤(30)の接着は、シリコーン樹脂よりなる前記接着剤(30)を加熱して硬化することにより行うものであり、
前記接着剤(30)による接着は、前記接着剤(30)の加熱における昇温速度を40℃/分以下として前記接着剤(30)を加熱・硬化させるものであることを特徴とする請求項1ないし4のいずれか1つに記載の電子装置の製造方法。
Adhesion of the adhesive (30) is performed by heating and curing the adhesive (30) made of a silicone resin,
The adhesion with the adhesive (30) is characterized in that the adhesive (30) is heated and cured at a heating rate of 40 ° C / min or less in heating the adhesive (30). 5. A method for manufacturing an electronic device according to any one of 1 to 4.
前記昇温速度を20℃/分以下とすることを特徴とする請求項5に記載の電子装置の製造方法。   The method for manufacturing an electronic device according to claim 5, wherein the rate of temperature rise is set to 20 ° C./min or less. 前記接着剤(30)の接着は、シリコーン樹脂よりなる前記接着剤(30)を加熱して硬化することにより行うものであり、
前記接着剤(30)による接着は、前記接着剤(30)に対して80〜120℃で1分以上20分以下の予備加熱を行った後、当該予備加熱以上の温度で加熱して前記接着剤(30)を硬化させることにより行うことを特徴とする請求項1ないし4のいずれか1つに記載の電子装置の製造方法。
Adhesion of the adhesive (30) is performed by heating and curing the adhesive (30) made of a silicone resin,
Adhesion by the adhesive (30) is performed by preheating the adhesive (30) at 80 to 120 ° C. for 1 minute or more and 20 minutes or less, and then heating at a temperature equal to or higher than the preheating. The method for manufacturing an electronic device according to claim 1, wherein the method is performed by curing the agent (30).
金属製のヒートシンク(10)と、
一面が前記ヒートシンク(10)と対向した状態で配置されたセラミック基板(20)と、
前記ヒートシンク(10)と前記セラミック基板(20)との間に介在し、前記ヒートシンク(10)と前記セラミック基板(20)とを接着する接着剤(30)とを備える電子装置において、
前記セラミック基板(20)の前記一面には、樹脂よりなる樹脂部材(40)が設けられ、この樹脂部材(40)を介して前記セラミック基板(20)は前記接着剤(30)に接触しており、
前記樹脂部材(40)を100℃〜110℃で定重量となるまで乾燥させたときの当該定重量に対する、前記樹脂部材(40)が吸収した水分量の百分率を吸水率としたとき、
前記樹脂部材(40)は、前記吸水率が3%未満の樹脂よりなることを特徴とする電子装置。
A metal heat sink (10);
A ceramic substrate (20) disposed on one side facing the heat sink (10);
In an electronic device comprising an adhesive (30) interposed between the heat sink (10) and the ceramic substrate (20) and bonding the heat sink (10) and the ceramic substrate (20),
A resin member (40) made of resin is provided on the one surface of the ceramic substrate (20), and the ceramic substrate (20) is in contact with the adhesive (30) through the resin member (40). And
When the percentage of moisture absorbed by the resin member (40) relative to the constant weight when the resin member (40) is dried at 100 ° C. to 110 ° C. until a constant weight is obtained,
The said resin member (40) consists of resin whose said water absorption is less than 3%, The electronic device characterized by the above-mentioned.
JP2008019148A 2008-01-30 2008-01-30 Electronic device and manufacturing method thereof Expired - Fee Related JP4835599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008019148A JP4835599B2 (en) 2008-01-30 2008-01-30 Electronic device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008019148A JP4835599B2 (en) 2008-01-30 2008-01-30 Electronic device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009182112A true JP2009182112A (en) 2009-08-13
JP4835599B2 JP4835599B2 (en) 2011-12-14

Family

ID=41035860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008019148A Expired - Fee Related JP4835599B2 (en) 2008-01-30 2008-01-30 Electronic device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4835599B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102505723B1 (en) 2018-11-20 2023-03-03 주식회사 엘지에너지솔루션 Formation method for secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59119749A (en) * 1982-12-25 1984-07-11 Toshiba Corp Semiconductor device
JPS6376356A (en) * 1986-09-18 1988-04-06 Hitachi Ltd Automatic device for fixing fin
JPH0582686A (en) * 1991-09-20 1993-04-02 Oki Electric Ind Co Ltd Semiconductor heat sink structure
JPH06302728A (en) * 1993-04-12 1994-10-28 Oki Electric Ind Co Ltd Lsi heat dissipation structure of ceramic multilayer board
JP2001257437A (en) * 2000-03-10 2001-09-21 Denso Corp Electronic circuit board and its manufacturing method
JP2001335602A (en) * 2000-05-26 2001-12-04 Jsr Corp Curable composition for thermal conductive sheet, thermal conductive sheet and its production method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59119749A (en) * 1982-12-25 1984-07-11 Toshiba Corp Semiconductor device
JPS6376356A (en) * 1986-09-18 1988-04-06 Hitachi Ltd Automatic device for fixing fin
JPH0582686A (en) * 1991-09-20 1993-04-02 Oki Electric Ind Co Ltd Semiconductor heat sink structure
JPH06302728A (en) * 1993-04-12 1994-10-28 Oki Electric Ind Co Ltd Lsi heat dissipation structure of ceramic multilayer board
JP2001257437A (en) * 2000-03-10 2001-09-21 Denso Corp Electronic circuit board and its manufacturing method
JP2001335602A (en) * 2000-05-26 2001-12-04 Jsr Corp Curable composition for thermal conductive sheet, thermal conductive sheet and its production method

Also Published As

Publication number Publication date
JP4835599B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP5367914B2 (en) Wiring substrate, manufacturing method thereof, and semiconductor device
JP2007266191A (en) Wafer processing method
CN103302572B (en) The method for grinding of plate object
JP4835599B2 (en) Electronic device and manufacturing method thereof
JP6797018B2 (en) Brazing material and ceramic substrate using it
KR20090117249A (en) Printed circuit board and manufacturing method thereof
US8800137B2 (en) Method of manufacturing printed circuit board
JP6467775B2 (en) Manufacturing method of component-embedded substrate
JP5083076B2 (en) Manufacturing method of electronic device
JP2004055777A (en) Method for manufacturing compound multilayer wiring board
JP2018163906A (en) Print circuit board
JP5011845B2 (en) Method for manufacturing thermal conductive substrate and thermal conductive substrate manufactured thereby
JP4801874B2 (en) Method for manufacturing metal-based circuit board
JP2015103791A (en) Method for bonding semiconductor chip
KR101113438B1 (en) Mounting method for the semiconductor chip
US6574860B1 (en) Ball grid array module
JP2004335928A (en) Method for manufacturing metal base circuit board
JP2004134781A (en) Method for manufacturing metal base circuit board
KR101348127B1 (en) Maunfacturing method for circuit pattern on heat sink
JP5498361B2 (en) How to connect electronic components
KR102041676B1 (en) Manufacturing method of semiconductor package using carrier for package
US10096569B2 (en) Semiconductor device and method for manufacturing the same
JP3985558B2 (en) Method for manufacturing thermally conductive substrate
JP2000252384A (en) Method for forming thermoplastic adhesive layer on circuit board with bump electrode
JP2002313825A (en) Mounting method for bare chip, and bare chip processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4835599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees