JP2009181908A - Dc high-speed vacuum circuit breaker - Google Patents

Dc high-speed vacuum circuit breaker Download PDF

Info

Publication number
JP2009181908A
JP2009181908A JP2008021835A JP2008021835A JP2009181908A JP 2009181908 A JP2009181908 A JP 2009181908A JP 2008021835 A JP2008021835 A JP 2008021835A JP 2008021835 A JP2008021835 A JP 2008021835A JP 2009181908 A JP2009181908 A JP 2009181908A
Authority
JP
Japan
Prior art keywords
switch
capacitor
circuit
series
connection point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008021835A
Other languages
Japanese (ja)
Other versions
JP5031607B2 (en
Inventor
Yasuhiko Hosokawa
靖彦 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2008021835A priority Critical patent/JP5031607B2/en
Publication of JP2009181908A publication Critical patent/JP2009181908A/en
Application granted granted Critical
Publication of JP5031607B2 publication Critical patent/JP5031607B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact, inexpensive DC high-speed vacuum circuit breaker. <P>SOLUTION: A vacuum valve 4 is connected between a DC power source 14 and a load 15, one end of a second series circuit S2 composed of a capacitor 1, a commutation switch 2 and an inductance element 3 is connected with a connection point between the DC power source 14 and the vacuum valve 4. A first switch 7 having no DC current breaking capability is connected between the other end of the second series circuit S2 and a connection point of the vacuum valve 4 and the load 15, and is connected with the second series circuit S2 in parallel. A discharge resistor 12 of the capacitor 1 and a second switch 13 having DC current breaking capability and current conduction capability smaller than that of the first switch 7 are connected with each other in series. Both ends of a charging circuit of a capacitor composed of an AC power source 9, a diode bridge rectifying circuit 10 for rectifying the AC, and a charging resistor 11 of the capacitor 1 are connected with a connection point of the discharge resistor 12 and the second switch 13 and a connection point of the inductance element 3 and the capacitor 1. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、主として電鉄用の直流変電所の直流電源と負荷(き電線)との間に設置され、負荷の短絡事故時に直流電源を負荷から切り離して保護するために使用するもので、真空バルブを含む直流高速真空遮断装置に関する。   The present invention is mainly installed between a DC power source and a load (feeder) of a DC substation for electric railways, and is used to protect the DC power source by separating it from the load in the event of a load short circuit accident. It is related with the direct-current high-speed vacuum circuit breaker containing.

図6は例えば特許文献1に開示された従来の直流高速真空遮断装置の概略構成を示す図である。直流電源14と負荷15に間に接続され、直流を遮断する真空バルブ4と、真空バルブ4に並列に接続され配線のインダクタンスに蓄えられたエネルギーを吸収する非線形抵抗5と、可飽和リアクトル6が直列に接続された第1の直列回路S1と、第1の直列回路S1にコンデンサ1と、インダクタンス要素3と、転流スイッチ2が直列に接続された第2の直列回路S2と、第1および第2の直列回路S1、S2は第1のスイッチ7を介して並列接続して構成されている。直列回路S2には放電抵抗12が並列に接続されている。そして、交流スイッチ7、交流電源9、ダイオードブリッジ整流回路10、充電抵抗11からなるコンデンサ1の充電回路が、コンデンサ1とインダクタンス要素3の接続点と、放電抵抗12とコンデンサ1の接続点に接続されている。   FIG. 6 is a diagram showing a schematic configuration of a conventional DC high-speed vacuum interrupter disclosed in Patent Document 1, for example. A vacuum valve 4 that is connected between the DC power source 14 and the load 15 and cuts off the direct current, a non-linear resistor 5 that is connected in parallel to the vacuum valve 4 and absorbs energy stored in the inductance of the wiring, and a saturable reactor 6 A first series circuit S1 connected in series, a capacitor 1, an inductance element 3, and a commutation switch 2 connected in series to the first series circuit S1, a first series circuit S1, The second series circuits S 1 and S 2 are configured to be connected in parallel via the first switch 7. A discharge resistor 12 is connected in parallel to the series circuit S2. A capacitor 1 charging circuit including an AC switch 7, an AC power source 9, a diode bridge rectifier circuit 10, and a charging resistor 11 is connected to a connection point between the capacitor 1 and the inductance element 3, and a connection point between the discharge resistor 12 and the capacitor 1. Has been.

このような構成において、スイッチ8を閉じることによりコンデンサ1を図6に示す極性に所定の直流電圧まで充電し、コンデンサ1は遮断のために常時一定の電圧に充電された状態を保持して待機している。さらに放電抵抗12を第1の直列回路に並列接続してコンデンサ1の放電回路を構成し、コンデンサ1の放電が必要なときに転流スイッチ2を点弧することによりコンデンサ1の電荷を急速に放電させるように動作する。スイッチ7は第1の直列回路と第2の直列回路との間に設けられ遮断後に第2の直列回路S2を離す。   In such a configuration, by closing the switch 8, the capacitor 1 is charged to the polarity shown in FIG. 6 up to a predetermined DC voltage, and the capacitor 1 is always kept at a constant voltage for shutting off and is on standby. is doing. Further, the discharge resistor 12 is connected in parallel to the first series circuit to form a discharge circuit for the capacitor 1, and when the discharge of the capacitor 1 is necessary, the commutation switch 2 is ignited to rapidly charge the capacitor 1. Operates to discharge. The switch 7 is provided between the first series circuit and the second series circuit, and releases the second series circuit S2 after being cut off.

次に、このような直流高速真空遮断装置の動作について説明する。直流電源14と負荷15例えば、き電線との間に設けられ、常時、負荷電流は真空バルブ4、可飽和リアクトル6を通じて流れている。コンデンサ1はあらかじめ交流電源9と、交流電源スイッチ8と、交流電源9の交流を整流するダイオードブリッジ整流回路10と、充電抵抗11からなる充電回路によって図6に示す極性に充電されている。  Next, the operation of such a DC high-speed vacuum interrupter will be described. Provided between the DC power supply 14 and the load 15, for example, a feeder, the load current always flows through the vacuum valve 4 and the saturable reactor 6. The capacitor 1 is charged in advance with the polarity shown in FIG. 6 by a charging circuit including an AC power source 9, an AC power source switch 8, a diode bridge rectifier circuit 10 that rectifies the AC of the AC power source 9, and a charging resistor 11.

このとき、外部から遮断信号が与えられるか、または負荷15の異常電流を検出したとき、先ず真空バブル4を開極し、その直後、転流スイッチ2を投入する。すると、コンデンサ1、真空バルブ4、可飽和リアクトル6、転流スイッチ2、インダクタンス要素3のループで直列共振回路が構成され、コンデンサ1に蓄えられた電荷により共振電流が流れる。この電流の最大値は予測される負荷電流の最大値より大きくなるようにコンデンサ1とインダクタンス要素3の値およびコンデンサ1の初期充電電圧が決められている。   At this time, when an interruption signal is given from the outside or when an abnormal current of the load 15 is detected, the vacuum bubble 4 is first opened, and immediately thereafter, the commutation switch 2 is turned on. Then, a series resonance circuit is configured by a loop of the capacitor 1, the vacuum valve 4, the saturable reactor 6, the commutation switch 2, and the inductance element 3, and a resonance current flows due to the electric charge stored in the capacitor 1. The values of the capacitor 1 and the inductance element 3 and the initial charging voltage of the capacitor 1 are determined so that the maximum value of the current is larger than the predicted maximum value of the load current.

真空バルブ4の開極後、主回路電流はアークとなって流れ続けるが、このとき前述の共振電流が主回路電流に重畳して流れ、共振電流の最大値が主回路電流より大きいため、真空バルブ4内の電流はゼロ点を過り極性反転しようとする。この際、可飽和リアクトル6が飽和から開放されて高インダクタンスとなり、電流の変化速度を弱める。   After the vacuum valve 4 is opened, the main circuit current continues to flow as an arc. At this time, the resonance current flows in a manner superimposed on the main circuit current, and the maximum value of the resonance current is larger than the main circuit current. The current in the valve 4 exceeds the zero point and tries to reverse the polarity. At this time, the saturable reactor 6 is released from saturation and becomes a high inductance, and the rate of change of current is weakened.

電流がゼロ点附近を過る時点で真空バルブ4内のアークは消滅し、ギャップには絶縁が回復する。その後も転流コンデンサ1の電圧は転流回路のインダクタンス要素3および、負荷に存在する浮遊インダクタンスに蓄えられたエネルギーにより、初期充電極性と逆方向に上昇を続ける。   When the current exceeds the zero point, the arc in the vacuum valve 4 is extinguished, and the insulation is restored in the gap. After that, the voltage of the commutation capacitor 1 continues to rise in the opposite direction to the initial charge polarity due to the energy stored in the inductance element 3 of the commutation circuit and the stray inductance present in the load.

この電圧がある程度大きくなると、非線形抵抗5に電流が流れ、負荷電流は減衰してやがて第2の直列回路を流れる電流はゼロとなる。   When this voltage increases to some extent, a current flows through the non-linear resistor 5, the load current attenuates, and eventually the current flowing through the second series circuit becomes zero.

しかし、その後も電源14と負荷15とに電位差がある場合などには図7に示すような経路で充電抵抗11や放電抵抗12および第1のスイッチ7を通して直流電流が流れ続ける。このような場合にはサイリスタはゲートをオフにしてもオン状態を継続するので負荷電流の遮断が完了しない。そのため最終的にはスイッチ7を開いて回路を完全に遮断する。
特開2003−123569
However, after that, when there is a potential difference between the power source 14 and the load 15, a direct current continues to flow through the charging resistor 11, the discharging resistor 12 and the first switch 7 through the path shown in FIG. In such a case, since the thyristor continues to be turned on even when the gate is turned off, the interruption of the load current is not completed. Therefore, finally, the switch 7 is opened to completely shut off the circuit.
JP-A-2003-123569

従来の充電回路は図7のように構成されているため、遮断動作を行った際、真空バルブ4の電流遮断が完了した後も、直流電源14から負荷15に向かって矢印の経路(転流スイッチ2、転流リアクトル3、放電抵抗12、あるいは充電抵抗11、ダイオード整流器10よりなる充電回路)を通って流れ続ける。この電流は直流であるためスイッチ7は開放時に直流電流を遮断する能力が必要であるとともに、遮断時には大きな電流を通電する必要があるために、寸法、コストともに大きくなるという問題があった。   Since the conventional charging circuit is configured as shown in FIG. 7, an arrow path (commutation) from the DC power source 14 toward the load 15 is obtained after the current interruption of the vacuum valve 4 is completed when the interruption operation is performed. It continues to flow through the switch 2, the commutation reactor 3, the discharge resistor 12, or the charging resistor 11 and the diode rectifier 10). Since this current is a direct current, the switch 7 needs to have a capability of interrupting the direct current when opened, and a large current needs to be applied when the switch 7 is interrupted, resulting in an increase in both size and cost.

この発明は前記のような問題を解決するためになされたもので、電流遮断能力を要求されないスイッチを使うことで直流電源と負荷とを完全に開放できる小型で安価な直流高速真空遮断装置を提供することを目的とする。   The present invention has been made to solve the above problems, and provides a small and inexpensive DC high-speed vacuum interrupter that can completely open the DC power supply and load by using a switch that does not require current interrupting capability. The purpose is to do.

前記目的を達成するため、請求項1に対応する発明は、直流電源と負荷との間に、直列に接続してなる真空バルブを含む第1の直列回路と、前記第1の直列回路に前記直流電源との接続点に、その一端を接続し、コンデンサと転流スイッチとインダクタンス要素を直列接続してなる第2の直列回路と、前記第2の直列回路の他端と、前記負荷と前記真空バルブの接続点との間に接続し、直流電流遮断能力を持たない第1のスイッチと、前記第2の直列回路に並列に接続し、前記コンデンサの放電抵抗と、直流電流遮断能力を持ち前記第1のスイッチより通電能力の小さい第2のスイッチを直列接続してなる第3の直列回路と、前記放電抵抗と前記第2のスイッチの接続点と、前記インダクタンス要素と前記コンデンサの接続点にその両端を接続し、前記コンデンサを充電可能なコンデンサ充電回路と、
遮断指令が入力されたとき、前記真空バルブに対して開放指令、前記転流スイッチに対して投入指令、前記第2のスイッチに対して開放指令、前記第1のスイッチに対して開放指令を順次与える制御装置とを備えたことを特徴とする直流高速真空遮断装置である。
In order to achieve the object, the invention corresponding to claim 1 includes a first series circuit including a vacuum valve connected in series between a DC power source and a load, and the first series circuit includes the first series circuit. One end is connected to a connection point with a DC power source, a second series circuit in which a capacitor, a commutation switch, and an inductance element are connected in series, the other end of the second series circuit, the load, and the Connected to the connection point of the vacuum valve, connected in parallel to the first switch that does not have DC current blocking capability and the second series circuit, and has the discharge resistance of the capacitor and DC current blocking capability A third series circuit formed by connecting in series a second switch having a smaller current-carrying capacity than the first switch, a connection point between the discharge resistor and the second switch, and a connection point between the inductance element and the capacitor; Connect both ends to And a capacitor charging circuit that can charge the capacitor,
When a shut-off command is input, an open command for the vacuum valve, a turn-on command for the commutation switch, an open command for the second switch, and an open command for the first switch sequentially A direct current high-speed vacuum shut-off device characterized by comprising a control device for giving.

前記目的を達成するため、請求項2に対応する発明は、直流電源と負荷との間に、直列に接続してなる真空バルブを含む第1の直列回路と、前記第1の直列回路に前記直流電源との接続点に、その一端を接続し、コンデンサと転流スイッチとインダクタンス要素を直列接続してなる第2の直列回路と、前記第2の直列回路の他端と、前記負荷と前記真空バルブの接続点との間に接続し、直流電流遮断能力を持たない第1のスイッチと、前記コンデンサと前記インダクタンス要素の接続点に、その一端を接続し、直流電流遮断能力を持ち前記第1のスイッチより通電能力の小さい第2のスイッチと、前記第2のスイッチの他端と、前記コンデンサと前記第1のスイッチの接続点に接続し、前記コンデンサを充電可能なコンデンサ充電回路と、遮断指令が入力されたとき、前記真空バルブに対して開放指令、前記転流スイッチに対して投入指令、前記第2のスイッチに対して開放指令、前記第1のスイッチに対して開放指令を順次与える制御装置とを備えたことを特徴とする直流高速真空遮断装置である。   In order to achieve the above object, the invention corresponding to claim 2 includes a first series circuit including a vacuum valve connected in series between a DC power source and a load, and the first series circuit includes the first series circuit. One end is connected to a connection point with a DC power source, a second series circuit in which a capacitor, a commutation switch, and an inductance element are connected in series, the other end of the second series circuit, the load, and the A first switch that is connected between the connection points of the vacuum valve and does not have a direct current interruption capability, and one end thereof is connected to a connection point between the capacitor and the inductance element, and has a direct current interruption capability and the first switch. A second switch having a smaller current-carrying capacity than the first switch, the other end of the second switch, a capacitor charging circuit connected to a connection point of the capacitor and the first switch, and capable of charging the capacitor; Blocking When a command is input, an opening command is sequentially given to the vacuum valve, a closing command is given to the commutation switch, an opening command is given to the second switch, and an opening command is given to the first switch. A direct-current high-speed vacuum shut-off device comprising a control device.

前記目的を達成するため、請求項6に対応する発明は、直流電源と負荷との間に、直列に接続してなる真空バルブを含む第1の直列回路と、前記第1の直列回路に前記直流電源との接続点に、その一端を接続し、コンデンサと転流スイッチとインダクタンス要素を直列接続してなる第2の直列回路と、前記第2の直列回路の他端と、前記負荷と前記真空バルブの接続点との間に接続し、直流電流遮断能力を持たない第1のスイッチと、前記第2の直列回路に並列に接続し、前記コンデンサの放電抵抗と、直流電流遮断能力を持ち前記第1のスイッチより通電能力の小さい第2のスイッチを直列接続してなる第3の直列回路と、予め前記コンデンサが充電された状態で遮断指令が入力されたとき、前記真空バルブに対して開放指令、前記転流スイッチに対して投入指令、前記第2のスイッチに対して開放指令、前記第1のスイッチに対して開放指令を順次与える制御装置とを備えたことを特徴とする直流高速真空遮断装置である。   In order to achieve the above object, the invention corresponding to claim 6 includes a first series circuit including a vacuum valve connected in series between a DC power source and a load, and the first series circuit includes the first series circuit. One end is connected to a connection point with a DC power source, a second series circuit in which a capacitor, a commutation switch, and an inductance element are connected in series, the other end of the second series circuit, the load, and the Connected to the connection point of the vacuum valve, connected in parallel to the first switch that does not have DC current blocking capability and the second series circuit, and has the discharge resistance of the capacitor and DC current blocking capability A third series circuit in which a second switch having a smaller current-carrying capacity than the first switch is connected in series, and when a shut-off command is input in a state where the capacitor is charged in advance, the vacuum valve Open command, commutation A DC high-speed vacuum shut-off device comprising a control device that sequentially applies a closing command to the switch, an opening command to the second switch, and an opening command to the first switch. .

本発明によれば、第1のスイッチ及び第2のスイッチに通電と遮断の役割を分担させることにより、安価で小型の直流高速真空遮断装置を得ることができる。   According to the present invention, it is possible to obtain an inexpensive and small-sized DC high-speed vacuum cutoff device by sharing the roles of energization and cutoff with the first switch and the second switch.

図1は本発明の第1の実施形態を説明するための概略構成図であり、これは第1の直列回路S1と、第2の直列回路S2と、第3の直列回路S3と、第1のスイッチ7と、コンデンサ充電回路と、制御装置20を備えている。   FIG. 1 is a schematic configuration diagram for explaining a first embodiment of the present invention, which includes a first series circuit S1, a second series circuit S2, a third series circuit S3, and a first series circuit. Switch 7, a capacitor charging circuit, and a control device 20.

第1の直列回路S1は直流電源14と負荷15との間に、真空バルブ4と、真空バルブ4に並列に接続し、配線のインダクタンスに蓄えられたエネルギーを吸収する非線形抵抗5と、可飽和リアクトル6とを直列に接続したものである。   The first series circuit S1 is connected between the DC power supply 14 and the load 15 in parallel with the vacuum valve 4, the non-linear resistance 5 that absorbs the energy stored in the wiring inductance, and is saturable. A reactor 6 is connected in series.

第2の直列回路S2は、コンデンサ1とインダクタンス要素3と転流スイッチ2を直列接続してなり、その一端を第1の直列回路S1に直流電源14との接続点に接続したものである。   The second series circuit S2 is formed by connecting the capacitor 1, the inductance element 3, and the commutation switch 2 in series, and one end thereof is connected to the connection point between the first series circuit S1 and the DC power source 14.

第1のスイッチ7は、第2の直列回路S2の他端と、負荷15と真空バルブ4の接続点との間に接続したもので、直流電流遮断能力を持たないものである。   The first switch 7 is connected between the other end of the second series circuit S2 and the connection point between the load 15 and the vacuum valve 4, and does not have a DC current blocking capability.

第3の直列回路S3は、第2の直列回路S2に並列に接続し、コンデンサ1の放電抵抗12と、直流電流遮断能力を持ち後述する第1のスイッチ7より通電能力の小さい第2のスイッチ13を直列接続したものである。   The third series circuit S3 is connected in parallel to the second series circuit S2, and has a discharge resistance 12 of the capacitor 1 and a second switch having a direct current interruption capability and a smaller current carrying capability than the first switch 7 described later. 13 are connected in series.

コンデンサの充電回路は、放電抵抗12と第2のスイッチ13の接続点と、インダクタンス要素3とコンデンサ1の接続点にその両端を接続し、コンデンサ1を充電可能なもので、コンデンサ充電回路は、交流電源9と、この交流を整流するダイオードブリッジ整流回路10と、コンデンサ1の充電抵抗11を備えたものである。   The capacitor charging circuit is capable of charging the capacitor 1 by connecting both ends to the connection point of the discharge resistor 12 and the second switch 13 and the connection point of the inductance element 3 and the capacitor 1. An AC power supply 9, a diode bridge rectifier circuit 10 for rectifying the AC, and a charging resistor 11 for the capacitor 1 are provided.

制御装置20は、図2に示すように遮断指令が入力されたとき、真空バルブ4に対して開放指令、転流スイッチ2に対して投入指令、第2のスイッチ13に対して開放指令、第1のスイッチ7に対して開放指令を順次与えるものである。図2において、T1は真空バルブ4の開極時間、T2は電流減衰時間、T3はスイッチ13の開放時間である。   As shown in FIG. 2, the control device 20 receives an opening command for the vacuum valve 4, a closing command for the commutation switch 2, an opening command for the second switch 13, The opening command is sequentially given to one switch 7. In FIG. 2, T1 is the opening time of the vacuum valve 4, T2 is the current decay time, and T3 is the opening time of the switch 13.

次に、以上のように構成された第1の実施形態の動作について、図1、図2を参照して説明する。負荷電流を遮断する際の初期の動作は従来例とまったくおなじである。すなわち、直流高速真空遮断装置は直流電源と負荷(き電線)との間に設けられ、常時、負荷電流は真空バルブ4、可飽和リアクトル6を通じて流れている。コンデンサ1はあらかじめ充電回路によって図1に示す極性に充電されている。このとき第2のスイッチ13には充電電流が流れるがその大きさは充電抵抗11によって制限されるごく小さい電流となる。   Next, the operation of the first embodiment configured as described above will be described with reference to FIGS. The initial operation when cutting off the load current is exactly the same as the conventional example. That is, the DC high-speed vacuum circuit breaker is provided between the DC power supply and the load (feed wire), and the load current always flows through the vacuum valve 4 and the saturable reactor 6. The capacitor 1 is charged in advance with the polarity shown in FIG. 1 by a charging circuit. At this time, a charging current flows through the second switch 13, but its magnitude is a very small current limited by the charging resistor 11.

外部、具体的には過電流継電器(図示せず)から遮断指令が与えられるか、または負荷の異常電流を検出したとき、先ず真空バブル4を開極し、その直後、転流スイッチ2を投入する。すると、コンデンサ1、真空バルブ4、可飽和リアクトル6、転流スイッチ2、インダクタンス要素3のループで直列共振回路が構成され、コンデンサ1に蓄えられた電荷により共振電流が流れる。この電流の最大値は予測される負荷電流の最大値より大きくなるようにコンデンサ1とインダクタンス要素3の値およびコンデンサ1の初期充電電圧が決められている。この共振電流は非常に大きいが第1のスイッチ7を経由するが第2のスイッチ13には流れない。スイッチ13には放電抵抗12で制限された極小さい電流だけが流れる。   When a disconnection command is given from the outside, specifically an overcurrent relay (not shown), or when an abnormal load current is detected, the vacuum bubble 4 is first opened, and immediately thereafter, the commutation switch 2 is turned on. To do. Then, a series resonance circuit is configured by a loop of the capacitor 1, the vacuum valve 4, the saturable reactor 6, the commutation switch 2, and the inductance element 3, and a resonance current flows due to the electric charge stored in the capacitor 1. The values of the capacitor 1 and the inductance element 3 and the initial charging voltage of the capacitor 1 are determined so that the maximum value of the current is larger than the predicted maximum value of the load current. Although this resonance current is very large, it passes through the first switch 7 but does not flow through the second switch 13. Only a very small current limited by the discharge resistor 12 flows through the switch 13.

真空バルブ4の開極後、主回路電流はアークとなって流れ続けるが、このとき前述の共振電流が主回路電流に重畳して流れ、共振電流の最大値が主回路電流より大きいため、真空バルブ4内の電流はゼロ点を過り極性反転しようとする。この際、可飽和リアクトル6が飽和から開放されて高インダクタンスとなり、電流の変化速度を弱める。電流がゼロ点附近を過る時点で真空バルブ4内のアークは消滅し、ギャップには絶縁が回復する。その後も転流コンデンサ1の電圧は転流回路のインダクタンス要素3および、負荷に存在する浮遊インダクタンスに蓄えられたエネルギーにより、初期充電極性と逆方向に上昇を続ける。この電圧がある程度大きくなると、非線形抵抗5に電流が流れ、負荷電流は減衰してやがて第1の直列回路S1を流れる電流はゼロとなる。   After the vacuum valve 4 is opened, the main circuit current continues to flow as an arc. At this time, the resonance current flows in a manner superimposed on the main circuit current, and the maximum value of the resonance current is larger than the main circuit current. The current in the valve 4 exceeds the zero point and tries to reverse the polarity. At this time, the saturable reactor 6 is released from saturation and becomes a high inductance, and the rate of change of current is weakened. When the current exceeds the zero point, the arc in the vacuum valve 4 is extinguished, and the insulation is restored in the gap. After that, the voltage of the commutation capacitor 1 continues to rise in the opposite direction to the initial charge polarity due to the energy stored in the inductance element 3 of the commutation circuit and the stray inductance present in the load. When this voltage increases to some extent, a current flows through the non-linear resistor 5, the load current attenuates, and eventually the current flowing through the first series circuit S1 becomes zero.

しかし、その後も電源14と負荷15とに電位差がある場合などには、例えば図7に示したような経路で充電抵抗11や放電抵抗12およびスイッチ13、スッチ7を通して直流電流が流れ続ける。このような場合には転流スイッチ2はゲートをオフにしてもオン状態を継続するので負荷電流の遮断が完了しない。そのため、遮断動作開始から所定時間経過した後、まずスイッチ13を開放する。   However, when there is a potential difference between the power supply 14 and the load 15 thereafter, for example, a direct current continues to flow through the charging resistor 11, the discharging resistor 12, the switch 13, and the switch 7 through the path shown in FIG. In such a case, the commutation switch 2 continues to be turned on even when the gate is turned off, so that the interruption of the load current is not completed. For this reason, the switch 13 is first opened after a predetermined time has elapsed since the start of the blocking operation.

ただし、このときスイッチ13には充電抵抗11および放電抵抗12で制限される極小さい電流だけが流れているので、スイッチ13は極小電流の通電能力および遮断能力をもてばよい。スイッチ13を開放した後、ひきつづきスイッチ7を開放して直流電源14と負荷15とを完全に開放する。スイッチ7を開放する際には、スイッチ7には負荷電流が流れていないので、従来装置のように電流遮断能力は必要がない。   However, since only a very small current limited by the charging resistor 11 and the discharging resistor 12 flows through the switch 13 at this time, the switch 13 may have an energization capability and a blocking capability of the minimal current. After the switch 13 is opened, the switch 7 is subsequently opened to completely open the DC power supply 14 and the load 15. When the switch 7 is opened, since no load current flows through the switch 7, the current interruption capability is not required unlike the conventional device.

以上述べた第1の実施形態によれば、従来装置に設けられたコンデンサ1の充電抵抗11及び、又は放電抵抗12と直列に小容量でかつ直流を開放できる第2のスイッチ13を挿入し、このスイッチ13を第1のスイッチ7を開放する前に開放することにより、第1のスイッチ7の直流遮断能力を不要とするものである。第2のスイッチ13は遮断動作時に大きな振動電流や負荷電流が流れないルートに設けるためごく小容量のものが適用できる。   According to the first embodiment described above, the second switch 13 having a small capacity and capable of opening direct current is inserted in series with the charging resistor 11 and / or the discharging resistor 12 of the capacitor 1 provided in the conventional device, By opening the switch 13 before opening the first switch 7, the DC cut-off capability of the first switch 7 becomes unnecessary. Since the second switch 13 is provided in a route where a large oscillating current or load current does not flow during the cutoff operation, a switch having a very small capacity can be applied.

図3は本発明の第2の実施形態を示す概略構成図であり、図1と異なる点は、放電抵抗12を省いた点である。図1に示した制御装置20は、省略してあるが、これは実際には必要なものである。具体的には、直流電源14と負荷15との間に、真空バルブ4と、真空バルブ4に並列に接続し、配線のインダクタンスに蓄えられたエネルギーを吸収する非線形抵抗5と、可飽和リアクトル6とを直列に接続した第1の直列回路S1と、第1の直列回路S1に、コンデンサ1とインダクタンス要素3と転流スイッチ2を直列接続してなる第2の直列回路S2の一端を、直流電源14との接続点に接続したものである。   FIG. 3 is a schematic configuration diagram showing a second embodiment of the present invention. The difference from FIG. 1 is that the discharge resistor 12 is omitted. The control device 20 shown in FIG. 1 is omitted, but this is actually necessary. Specifically, a vacuum valve 4, a non-linear resistor 5 that is connected in parallel to the vacuum valve 4 between the DC power source 14 and the load 15 and absorbs energy stored in the wiring inductance, and a saturable reactor 6 Are connected in series to a first series circuit S1, and one end of a second series circuit S2 formed by connecting a capacitor 1, an inductance element 3, and a commutation switch 2 in series to the first series circuit S1 It is connected to a connection point with the power source 14.

第2の直列回路S2の他端と、負荷15と真空バルブ4の接続点との間に、第1のスイッチ7を接続したもので、第1のスイッチ7は直流電流遮断能力を持たないものである。   The first switch 7 is connected between the other end of the second series circuit S2 and the connection point between the load 15 and the vacuum valve 4, and the first switch 7 does not have a DC current blocking capability. It is.

以上述べたことは、図1と同一であり、以下に述べる点が異なる。 What has been described above is the same as that of FIG. 1 and differs in the following points.

すなわち、第1のスイッチ7は、直流電流遮断能力を持たないものであって、コンデンサ1と真空バルブ4の接続点と、負荷15と真空バルブ4の接続点との間に接続したものである。第2のスイッチ13は、直流電流遮断能力を持ち第1のスイッチ7より通電能力の小さいものであって、コンデンサ1とインダクタンス要素3の接続点に、その一端を接続し、第2のスイッチ13の他端と、コンデンサ1と第1のスイッチ7の接続点に、コンデンサ1を充電可能な、図1の実施形態と同一のコンデンサ充電回路を接続したものである。   That is, the first switch 7 does not have a direct current interruption capability, and is connected between the connection point between the capacitor 1 and the vacuum valve 4 and the connection point between the load 15 and the vacuum valve 4. . The second switch 13 has a DC current blocking capability and a smaller energization capability than the first switch 7, and one end of the second switch 13 is connected to the connection point between the capacitor 1 and the inductance element 3. 1 is connected to the connection point of the capacitor 1 and the first switch 7 with the same capacitor charging circuit as in the embodiment of FIG.

このような構成において、図1の実施形態と同様に、制御装置20を備えている。制御装置20は、遮断指令が入力されたとき、真空バルブ4に対して開放指令、転流スイッチ2に対して投入指令、第2のスイッチ13に対して開放指令、第1のスイッチ7に対して開放指令を順次与えるものである。   In such a configuration, the control device 20 is provided as in the embodiment of FIG. When the shutoff command is input, the control device 20 opens the vacuum valve 4, inputs the commutation switch 2, opens the second switch 13, and opens the first switch 7. Open commands are given sequentially.

次に図3に示される第2の実施形態の動作について説明する。負荷電流を遮断する際の初期の動作は従来例あるいは実施形態1とまったくおなじであるので省略する。遮断時にはコンデンサ1に蓄えられた電荷により共振電流が流れる。この共振電流は非常に大きいが第1のスイッチ7を経由するがスイッチ13には放電抵抗12で制限された極小さい電流だけが流れる。真空バルブ4の遮断後も直流電源14と負荷15とに電位差がある場合などには整流回路10、充電抵抗11およびスイッチ13を通して直流電流が流れ続ける。このような場合には転流スイッチ2はゲートをオフにしてもオン状態を継続するので負荷電流の遮断が完了しない。そのため、遮断動作開始から所定時間経過したのち、まず第2のスイッチ13を開放する。ただし、このとき第2のスイッチ13には充電抵抗11で制限される、極小さい電流だけが流れているので、第2のスイッチ13は極小電流の通電能力および遮断能力をもてばよい。第2のスイッチ13を開放した後、ひきつづき第1のスイッチ7を開放して直流電源14と負荷15とを完全に開放する。第1のスイッチ7を開放する際には、第1のスイッチ7には負荷電流が流れていないので、従来装置のように電流遮断能力は必要がない。   Next, the operation of the second embodiment shown in FIG. 3 will be described. The initial operation when the load current is cut off is the same as that of the conventional example or the first embodiment, and is omitted. At the time of interruption, a resonance current flows due to the electric charge stored in the capacitor 1. Although this resonance current is very large, it passes through the first switch 7, but only a very small current limited by the discharge resistor 12 flows through the switch 13. Even after the vacuum valve 4 is shut off, when there is a potential difference between the DC power supply 14 and the load 15, the DC current continues to flow through the rectifier circuit 10, the charging resistor 11 and the switch 13. In such a case, the commutation switch 2 continues to be turned on even when the gate is turned off, so that the interruption of the load current is not completed. Therefore, the second switch 13 is first opened after a predetermined time has elapsed from the start of the shut-off operation. However, since only a very small current, which is limited by the charging resistor 11, flows through the second switch 13 at this time, the second switch 13 only needs to have a current-carrying capability and a blocking capability of the minimal current. After the second switch 13 is opened, the first switch 7 is subsequently opened to completely open the DC power supply 14 and the load 15. When the first switch 7 is opened, no load current flows through the first switch 7, so that the current interruption capability is not required as in the conventional device.

図4は本発明の第3の実施形態を説明するための図であり、図1と異なる点は、図1のコンデンサ1の充電回路を省略した構成となっている。なお、充電回路は、交流電源9と、この交流を整流するダイオードブリッジ整流回路10と、コンデンサ1の充電抵抗11を備えたものである。   FIG. 4 is a diagram for explaining a third embodiment of the present invention. The difference from FIG. 1 is that the charging circuit for the capacitor 1 in FIG. 1 is omitted. The charging circuit includes an AC power source 9, a diode bridge rectifier circuit 10 that rectifies the AC, and a charging resistor 11 for the capacitor 1.

このような構成の実施形態においては、コンデンサ11は図示しない回路により充電される。13は第2のスイッチであり、第1のスイッチ7と比較して極小電流の通電能力しかもたないが直流電流の遮断能力を持つスイッチである。第2のスイッチ13は放電抵抗12に直列に挿入される。   In the embodiment having such a configuration, the capacitor 11 is charged by a circuit (not shown). Reference numeral 13 denotes a second switch, which is a switch that has only a minimum current supply capability as compared with the first switch 7 but has a DC current cutoff capability. The second switch 13 is inserted in series with the discharge resistor 12.

次に図4に示される第3の実施形態の動作について説明する。負荷電流を遮断する際の初期の動作は従来例あるいは実施形態1とまったくおなじであるので省略する。遮断時にはコンデンサ1に蓄えられた電荷により共振電流が流れ、この共振電流は非常に大きく第1のスイッチ7を経由するが第2のスイッチ13には放電抵抗12で制限された極小さい電流だけが流れる。真空バルブの遮断後も電源と負荷とに電位差がある場合などにはダイオー放電抵抗12および第2のスイッチ13、第1のスイッチ17を通して直流電流が流れ続ける。このような場合には転流スイッチ2はゲートをオフにしてもオン状態を継続するので負荷電流の遮断が完了しない。そのため、遮断動作開始から所定時間経過したのち、まず第2のスイッチ13を開放する。ただしこのとき第2のスイッチには抵抗12で制限される極小さい電流だけが流れているので、第2のスイッチは極小電流の通電能力および遮断能力をもてばよい。第2のスイッチを開放した後、ひきつづき第1のスイッチを開放して電源と負荷とを完全に開放する。第1のスイッチを開放する際には、第1のスイッチ7には負荷電流が流れていないので、従来装置のように電流遮断能力は必要がない。   Next, the operation of the third embodiment shown in FIG. 4 will be described. The initial operation when the load current is cut off is the same as that of the conventional example or the first embodiment, and is omitted. When cut off, a resonance current flows due to the electric charge stored in the capacitor 1, and this resonance current is very large and passes through the first switch 7, but the second switch 13 has only a very small current limited by the discharge resistor 12. Flowing. If there is a potential difference between the power supply and the load even after the vacuum valve is shut off, a direct current continues to flow through the diode discharge resistor 12, the second switch 13, and the first switch 17. In such a case, the commutation switch 2 continues to be turned on even when the gate is turned off, so that the interruption of the load current is not completed. Therefore, the second switch 13 is first opened after a predetermined time has elapsed from the start of the shut-off operation. However, since only a very small current limited by the resistor 12 flows through the second switch at this time, the second switch only needs to have the ability to energize and shut off the minimum current. After the second switch is opened, the first switch is subsequently opened to completely open the power source and the load. When the first switch is opened, no load current flows through the first switch 7, so that the current interruption capability is not required as in the conventional device.

(変形例)
以上述べた第1乃至第3の実施形態においては真空バルブ4と並列に非線形抵抗5が接続された回路を用いて説明したが、非線形抵抗5を接続していない回路あるいはそれに変わるサージ吸収回路を接続した回路に本発明を適用しても同様の効果が得られることは明らかである。
(Modification)
In the first to third embodiments described above, the circuit in which the non-linear resistance 5 is connected in parallel with the vacuum valve 4 has been described. However, a circuit in which the non-linear resistance 5 is not connected or a surge absorption circuit in place thereof is used. It is obvious that the same effect can be obtained even if the present invention is applied to a connected circuit.

また、同各実施形態における転流スイッチ2はサイリスタに限らず、直流遮断能力を持たない機械スイッチを用いた場合にも本発明を適用することで同様の効果が得られることは明らかである。   Further, the commutation switch 2 in each of the embodiments is not limited to the thyristor, and it is obvious that the same effect can be obtained by applying the present invention even when a mechanical switch having no DC cutoff capability is used.

さらに、各実施形態においては真空バルブ4と直列に可飽和リアクトル6を接続した回路を用いて説明したが、この可飽和リアクトル6は真空バルブ4の遮断責務を緩和する目的で接続されているものであり、真空バルブ4の性能によっては省略することも可能である。   Furthermore, although each embodiment demonstrated using the circuit which connected the saturable reactor 6 in series with the vacuum valve 4, this saturable reactor 6 is connected in order to ease the interruption | blocking duty of the vacuum valve 4 It can be omitted depending on the performance of the vacuum valve 4.

また、各実施形態において、第2のスイッチ13としては微小な直流電流を遮断できる能力を持ったスイッチが必要であるが、共振電流や主回路電流はこの経路には流れず抵抗で制限された小電流だけが流れるので、通電能力としては小さい容量で済むためコスト、寸法とも小さく実現できる。   In each embodiment, the second switch 13 requires a switch capable of interrupting a minute direct current, but the resonance current and the main circuit current do not flow through this path and are limited by resistance. Since only a small current flows, a small capacity is sufficient for the current-carrying capacity, so that both cost and size can be reduced.

第2のスイッチ13としては、例えば電流容量のごく小さい自己消弧形の半導体素子を使用できる。図5はその一構成例であり、IGBT(絶縁ゲート形バイポーラトランジスタ)とダイオードとを逆並列接続した回路を逆方向に直列接続したスイッチで構成している。この場合も、第1のスイッチ7としては従来装置のように電流遮断能力が必要ないので、安価で小型のスイッチを使用することができる。   As the second switch 13, for example, a self-extinguishing type semiconductor element having a very small current capacity can be used. FIG. 5 shows an example of the configuration, which includes a switch in which a circuit in which an IGBT (insulated gate bipolar transistor) and a diode are connected in antiparallel is connected in series in the reverse direction. Also in this case, the first switch 7 does not need a current interruption capability unlike the conventional device, so that an inexpensive and small switch can be used.

前述の実施形態(図1)では、コンデンサ1の充電回路に充電抵抗11を備えたものを例に挙げたが、この充電抵抗11は、充電回路になく、次のようにしてもよい。すなわち、コンデンサ1とインダクタンス要素3の接続点及び放電抵抗12と第2のスイッチ13との接続点の少なくとも一方に、コンデンサ1の充電抵抗11の一端を接続し、コンデンサ充電回路は、充電抵抗11の他端と、放電抵抗12と第2のスイッチ13の接続点に接続するようにしてもよい。   In the above-described embodiment (FIG. 1), the charging circuit for the capacitor 1 provided with the charging resistor 11 is taken as an example. However, the charging resistor 11 is not provided in the charging circuit and may be as follows. That is, one end of the charging resistor 11 of the capacitor 1 is connected to at least one of a connection point between the capacitor 1 and the inductance element 3 and a connection point between the discharge resistor 12 and the second switch 13. It is also possible to connect to the other end of the first and the connection points of the discharge resistor 12 and the second switch 13.

また、前述の実施形態(図3)では、コンデンサ1の充電回路に充電抵抗11を備えたものを例に挙げたが、この充電抵抗11は、充電回路になく、次のようにしてもよい。   In the above-described embodiment (FIG. 3), the charging circuit for the capacitor 1 is provided with the charging resistor 11 as an example. However, the charging resistor 11 is not provided in the charging circuit and may be as follows. .

コンデンサ充電回路は、交流電源8と、この交流を整流する整流回路10とを備えたものであり、コンデンサ1とインダクタンス要素3の接続点に一端が接続されている第2のスイッチ13の他端及びコンデンサ1と第1のスイッチ7の接続点の少なくとも一方にコンデンサ1の充電抵抗11の一端を接続し、コンデンサ充電回路は、充電抵抗11の他端と、放電抵抗12と第2のスイッチ13の接続点に接続するようにしてもよい。 The capacitor charging circuit includes an AC power supply 8 and a rectifier circuit 10 that rectifies the AC, and the other end of the second switch 13 having one end connected to a connection point between the capacitor 1 and the inductance element 3. One end of the charging resistor 11 of the capacitor 1 is connected to at least one of the connection points of the capacitor 1 and the first switch 7, and the capacitor charging circuit includes the other end of the charging resistor 11, the discharge resistor 12, and the second switch 13. You may make it connect to the connection point of.

本発明による直流高速真空遮断装置の第1の実施形態を説明するための図。BRIEF DESCRIPTION OF THE DRAWINGS The figure for demonstrating 1st Embodiment of the direct-current high-speed vacuum interrupter by this invention. 図1の実施形態の遮断動作時の説明するためのタイムチャート。The time chart for demonstrating at the time of interruption | blocking operation | movement of embodiment of FIG. 本発明による直流高速真空遮断装置の第2の実施形態を説明するための図。The figure for demonstrating 2nd Embodiment of the direct-current high-speed vacuum interrupter by this invention. 本発明による直流高速真空遮断装置の第3の実施形態を説明するための図。The figure for demonstrating 3rd Embodiment of the direct-current high-speed vacuum interrupter by this invention. 図1、図3、図4の転流スイッチを説明するための図。The figure for demonstrating the commutation switch of FIG.1, FIG.3, FIG.4. 従来の直流高速真空遮断装置を説明するための図。The figure for demonstrating the conventional direct current | flow high-speed vacuum interruption | blocking apparatus. 図6の動作を説明するための図。The figure for demonstrating the operation | movement of FIG.

符号の説明Explanation of symbols

1…コンデンサ、2…転流スイッチ、3…インダクタンス要素、4…真空バルブ、5…非線形抵抗、6…可飽和リアクトル、7…第1のスイッチ、8…交流スイッチ、9…交流電源、10…ダイオードブリッジ整流回路、11…充電抵抗、12…放電抵抗、13…第2のスイッチ、14…直流電源、15…負荷。   DESCRIPTION OF SYMBOLS 1 ... Capacitor, 2 ... Commutation switch, 3 ... Inductance element, 4 ... Vacuum valve, 5 ... Nonlinear resistance, 6 ... Saturable reactor, 7 ... 1st switch, 8 ... AC switch, 9 ... AC power supply, 10 ... Diode bridge rectifier circuit, 11: charging resistor, 12: discharging resistor, 13: second switch, 14: DC power supply, 15: load.

Claims (8)

直流電源と負荷との間に、直列に接続してなる真空バルブを含む第1の直列回路と、
前記第1の直列回路に前記直流電源との接続点に、その一端を接続し、コンデンサと転流スイッチとインダクタンス要素を直列接続してなる第2の直列回路と、
前記第2の直列回路の他端と、前記負荷と前記真空バルブの接続点との間に接続し、直流電流遮断能力を持たない第1のスイッチと、
前記第2の直列回路に並列に接続し、前記コンデンサの放電抵抗と、直流電流遮断能力を持ち前記第1のスイッチより通電能力の小さい第2のスイッチを直列接続してなる第3の直列回路と、
前記放電抵抗と前記第2のスイッチの接続点と、前記インダクタンス要素と前記コンデンサの接続点にその両端を接続し、前記コンデンサを充電可能なコンデンサ充電回路と、
遮断指令が入力されたとき、前記真空バルブに対して開放指令、前記転流スイッチに対して投入指令、前記第2のスイッチに対して開放指令、前記第1のスイッチに対して開放指令を順次与える制御装置と、
を備えたことを特徴とする直流高速真空遮断装置。
A first series circuit including a vacuum valve connected in series between a DC power source and a load;
A second series circuit formed by connecting one end of the first series circuit to a connection point with the DC power source and connecting a capacitor, a commutation switch, and an inductance element in series;
A first switch connected between the other end of the second series circuit and a connection point of the load and the vacuum valve, and having no DC current blocking capability;
A third series circuit connected in parallel to the second series circuit, and connected in series with a discharge resistor of the capacitor and a second switch having a DC current blocking capability and a smaller current carrying capability than the first switch. When,
A capacitor charging circuit capable of charging the capacitor by connecting both ends thereof to a connection point of the discharge resistor and the second switch, and a connection point of the inductance element and the capacitor;
When a shut-off command is input, an open command for the vacuum valve, a turn-on command for the commutation switch, an open command for the second switch, and an open command for the first switch sequentially A control device to give,
DC high-speed vacuum circuit breaker characterized by comprising.
直流電源と負荷との間に、直列に接続してなる真空バルブを含む第1の直列回路と、
前記第1の直列回路に前記直流電源との接続点に、その一端を接続し、コンデンサと転流スイッチとインダクタンス要素を直列接続してなる第2の直列回路と、
前記第2の直列回路の他端と、前記負荷と前記真空バルブの接続点との間に接続し、直流電流遮断能力を持たない第1のスイッチと、
前記コンデンサと前記インダクタンス要素の接続点に、その一端を接続し、直流電流遮断能力を持ち前記第1のスイッチより通電能力の小さい第2のスイッチと、
前記第2のスイッチの他端と、前記コンデンサと前記第1のスイッチの接続点に接続し、前記コンデンサを充電可能なコンデンサ充電回路と、
遮断指令が入力されたとき、前記真空バルブに対して開放指令、前記転流スイッチに対して投入指令、前記第2のスイッチに対して開放指令、前記第1のスイッチに対して開放指令を順次与える制御装置と、
を備えたことを特徴とする直流高速真空遮断装置。
A first series circuit including a vacuum valve connected in series between a DC power source and a load;
A second series circuit formed by connecting one end of the first series circuit to a connection point with the DC power source and connecting a capacitor, a commutation switch, and an inductance element in series;
A first switch connected between the other end of the second series circuit and a connection point of the load and the vacuum valve, and having no DC current blocking capability;
A second switch having one end connected to a connection point between the capacitor and the inductance element, a DC current blocking capability, and a smaller energization capability than the first switch;
A capacitor charging circuit connected to the other end of the second switch, and a connection point of the capacitor and the first switch, and capable of charging the capacitor;
When a shut-off command is input, an open command for the vacuum valve, a turn-on command for the commutation switch, an open command for the second switch, and an open command for the first switch sequentially A control device to give,
DC high-speed vacuum circuit breaker characterized by comprising.
前記コンデンサ充電回路は、交流電源と、この交流を整流する整流回路と、前記コンデンサの充電抵抗を備えたことを特徴とする請求項1又は2記載の直流高速真空遮断装置。   3. The DC high-speed vacuum circuit breaker according to claim 1, wherein the capacitor charging circuit includes an AC power supply, a rectifying circuit for rectifying the AC, and a charging resistor for the capacitor. 前記コンデンサ充電回路は、交流電源と、この交流を整流する整流回路とを備えたものであり、前記コンデンサと前記インダクタンス要素の接続点及び前記放電抵抗と前記第2のスイッチとの接続点の少なくとも一方に、前記コンデンサの充電抵抗の一端を接続し、前記コンデンサ充電回路は、前記充電抵抗の他端と、前記放電抵抗と前記第2のスイッチの接続点に接続することを特徴とする請求項1記載の直流高速真空遮断装置。   The capacitor charging circuit includes an AC power source and a rectifier circuit that rectifies the AC, and at least a connection point between the capacitor and the inductance element and a connection point between the discharge resistor and the second switch. One end of a charging resistor of the capacitor is connected to one side, and the capacitor charging circuit is connected to the other end of the charging resistor and a connection point of the discharging resistor and the second switch. 1. A DC high-speed vacuum interrupter according to 1. 前記コンデンサ充電回路は、交流電源と、この交流を整流する整流回路とを備えたものであり、前記コンデンサと前記インダクタンス要素の接続点に一端が接続されている第2のスイッチの他端及び前記コンデンサと前記第1のスイッチの接続点の少なくとも一方に前記コンデンサの充電抵抗の一端を接続し、前記コンデンサ充電回路は、前記充電抵抗の他端と、前記放電抵抗と前記第2のスイッチの接続点に接続することを特徴とする請求項2記載の直流高速真空遮断装置。   The capacitor charging circuit includes an AC power source and a rectifier circuit that rectifies the AC, and the other end of a second switch having one end connected to a connection point between the capacitor and the inductance element, and the One end of a charging resistor of the capacitor is connected to at least one of a connection point between the capacitor and the first switch, and the capacitor charging circuit is connected to the other end of the charging resistor, the discharge resistor, and the second switch. 3. The DC high-speed vacuum interrupter according to claim 2, wherein the DC high-speed vacuum interrupter is connected to a point. 直流電源と負荷との間に、直列に接続してなる真空バルブを含む第1の直列回路と、
前記第1の直列回路に前記直流電源との接続点に、その一端を接続し、コンデンサと転流スイッチとインダクタンス要素を直列接続してなる第2の直列回路と、
前記第2の直列回路の他端と、前記負荷と前記真空バルブの接続点との間に接続し、直流電流遮断能力を持たない第1のスイッチと、
前記第2の直列回路に並列に接続し、前記コンデンサの放電抵抗と、直流電流遮断能力を持ち前記第1のスイッチより通電能力の小さい第2のスイッチを直列接続してなる第3の直列回路と、
予め前記コンデンサが充電された状態で遮断指令が入力されたとき、前記真空バルブに対して開放指令、前記転流スイッチに対して投入指令、前記第2のスイッチに対して開放指令、前記第1のスイッチに対して開放指令を順次与える制御装置と、
を備えたことを特徴とする直流高速真空遮断装置。
A first series circuit including a vacuum valve connected in series between a DC power source and a load;
A second series circuit formed by connecting one end of the first series circuit to a connection point with the DC power source and connecting a capacitor, a commutation switch, and an inductance element in series;
A first switch connected between the other end of the second series circuit and a connection point of the load and the vacuum valve, and having no DC current blocking capability;
A third series circuit connected in parallel to the second series circuit, and connected in series with a discharge resistor of the capacitor and a second switch having a DC current blocking capability and a smaller current carrying capability than the first switch. When,
When a shut-off command is input with the capacitor charged in advance, an open command for the vacuum valve, a turn-on command for the commutation switch, an open command for the second switch, the first command A control device for sequentially giving an opening command to the switches of
DC high-speed vacuum circuit breaker characterized by comprising.
前記真空バルブに並列に接続する非直線抵抗体と、前記直流電源と前記真空バルブとの接続点に挿入する可飽和リアクトルとの少なくとも一方を備えたことを特徴とする請求項1乃至請求項3のいずれか一つに記載の直流高速真空遮断装置。   4. The apparatus according to claim 1, further comprising at least one of a non-linear resistor connected in parallel to the vacuum valve and a saturable reactor inserted at a connection point between the DC power source and the vacuum valve. The direct current | flow high-speed vacuum circuit breaker as described in any one of these. 前記第2のスイッチは自己消弧形半導体素子とダイオードとを逆並列接続した逆並列接続回路が複数個からなり、各逆並列接続回路は逆方向に直列接続して構成したことを特徴とする請求項1乃至請求項3のいずれか一つに記載の直流高速真空遮断装置。   The second switch includes a plurality of anti-parallel connection circuits in which a self-extinguishing semiconductor element and a diode are connected in anti-parallel, and each anti-parallel connection circuit is connected in series in the reverse direction. The direct current | flow high-speed vacuum interrupter as described in any one of Claims 1 thru | or 3.
JP2008021835A 2008-01-31 2008-01-31 DC high-speed vacuum circuit breaker Active JP5031607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008021835A JP5031607B2 (en) 2008-01-31 2008-01-31 DC high-speed vacuum circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008021835A JP5031607B2 (en) 2008-01-31 2008-01-31 DC high-speed vacuum circuit breaker

Publications (2)

Publication Number Publication Date
JP2009181908A true JP2009181908A (en) 2009-08-13
JP5031607B2 JP5031607B2 (en) 2012-09-19

Family

ID=41035693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008021835A Active JP5031607B2 (en) 2008-01-31 2008-01-31 DC high-speed vacuum circuit breaker

Country Status (1)

Country Link
JP (1) JP5031607B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011175925A (en) * 2010-02-25 2011-09-08 Toshiba Corp Direct current breaker
WO2015102311A1 (en) * 2013-12-31 2015-07-09 주식회사 효성 High-voltage dc circuit breaker
WO2016108524A1 (en) * 2014-12-29 2016-07-07 주식회사 효성 High voltage dc circuit breaker
US20160329179A1 (en) * 2013-12-30 2016-11-10 Hyosung Corporation High-voltage dc circuit breaker
WO2021106191A1 (en) * 2019-11-29 2021-06-03 株式会社東芝 Direct-current circuit breaker

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107834526B (en) * 2017-12-19 2019-03-19 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) A kind of hybrid DC solid circuit breaker and its control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07161264A (en) * 1993-12-08 1995-06-23 Hitachi Ltd Large current breaker
JP2003123569A (en) * 2001-10-12 2003-04-25 Mitsubishi Electric Corp Direct current vacuum circuit breaker
JP2003263945A (en) * 2002-03-08 2003-09-19 Mitsubishi Electric Corp Commutation breaker
JP2006032077A (en) * 2004-07-15 2006-02-02 Toshiba Corp Dc circuit breaker

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07161264A (en) * 1993-12-08 1995-06-23 Hitachi Ltd Large current breaker
JP2003123569A (en) * 2001-10-12 2003-04-25 Mitsubishi Electric Corp Direct current vacuum circuit breaker
JP2003263945A (en) * 2002-03-08 2003-09-19 Mitsubishi Electric Corp Commutation breaker
JP2006032077A (en) * 2004-07-15 2006-02-02 Toshiba Corp Dc circuit breaker

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011175925A (en) * 2010-02-25 2011-09-08 Toshiba Corp Direct current breaker
US20160329179A1 (en) * 2013-12-30 2016-11-10 Hyosung Corporation High-voltage dc circuit breaker
US10176947B2 (en) * 2013-12-30 2019-01-08 Hyosung Heavy Industries Corporation High-voltage DC circuit breaker for blocking DC current
WO2015102311A1 (en) * 2013-12-31 2015-07-09 주식회사 효성 High-voltage dc circuit breaker
KR101550374B1 (en) * 2013-12-31 2015-09-04 주식회사 효성 High-voltage DC circuit breaker
US10176939B2 (en) 2013-12-31 2019-01-08 Hyosung Heavy Industries Corporation High-voltage DC circuit breaker for blocking current flowing through DC lines
WO2016108524A1 (en) * 2014-12-29 2016-07-07 주식회사 효성 High voltage dc circuit breaker
US10395866B2 (en) 2014-12-29 2019-08-27 Hyosung Heavy Industries Corporation High voltage DC circuit breaker
WO2021106191A1 (en) * 2019-11-29 2021-06-03 株式会社東芝 Direct-current circuit breaker
JPWO2021106191A1 (en) * 2019-11-29 2021-06-03
JP7214893B2 (en) 2019-11-29 2023-01-30 株式会社東芝 DC circuit breaker

Also Published As

Publication number Publication date
JP5031607B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
KR101550374B1 (en) High-voltage DC circuit breaker
JP5622978B1 (en) DC power transmission system protection system, AC / DC converter, and DC power transmission system disconnection method
KR101522412B1 (en) Bi-directional DC interruption device
US10176947B2 (en) High-voltage DC circuit breaker for blocking DC current
JP6297619B2 (en) DC circuit breaker
KR101521545B1 (en) Device and method to interrupt high voltage direct current
JP6134778B2 (en) DC circuit breaker and method of breaking the same
JP5214066B1 (en) DC circuit breaker
KR101652937B1 (en) DC circuit breaker
WO2015133365A1 (en) Power conversion device
KR101641511B1 (en) Device for interrupting DC current and method the same
US9178348B2 (en) DC voltage line circuit breaker
SE539392C2 (en) Arrangement, system, and method of interrupting current
JP5031607B2 (en) DC high-speed vacuum circuit breaker
KR20150019416A (en) High-voltage DC circuit breaker
WO2015015831A1 (en) Current-limiting reactor device
KR101697623B1 (en) DC circuit breaker
KR101522413B1 (en) High-voltage DC circuit breaker
JP2019115030A (en) Current breaker
JP2014216056A (en) Dc circuit breaker device
JP6386955B2 (en) DC cutoff device and DC cutoff method
JP2018195565A (en) Direct current shut-down device
JP2010238391A (en) Direct-current breaker
JP2006260925A (en) Direct current high speed vacuum circuit breaker
WO2016199407A1 (en) Direct-current interruption apparatus, direct-current interruption method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120627

R150 Certificate of patent or registration of utility model

Ref document number: 5031607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250