WO2021106191A1 - Direct-current circuit breaker - Google Patents

Direct-current circuit breaker Download PDF

Info

Publication number
WO2021106191A1
WO2021106191A1 PCT/JP2019/046772 JP2019046772W WO2021106191A1 WO 2021106191 A1 WO2021106191 A1 WO 2021106191A1 JP 2019046772 W JP2019046772 W JP 2019046772W WO 2021106191 A1 WO2021106191 A1 WO 2021106191A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
circuit breaker
commutation
transmission line
capacitor
Prior art date
Application number
PCT/JP2019/046772
Other languages
French (fr)
Japanese (ja)
Inventor
優平 橋本
健作 宮崎
Original Assignee
株式会社東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社東芝
Priority to CN201980100995.XA priority Critical patent/CN114467161B/en
Priority to PCT/JP2019/046772 priority patent/WO2021106191A1/en
Priority to JP2021561103A priority patent/JP7214893B2/en
Priority to EP19953832.3A priority patent/EP4068326B1/en
Publication of WO2021106191A1 publication Critical patent/WO2021106191A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H33/596Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle for interrupting dc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • H01H2009/543Contacts shunted by static switch means third parallel branch comprising an energy absorber, e.g. MOV, PTC, Zener
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/16Impedances connected with contacts
    • H01H33/168Impedances connected with contacts the impedance being inserted both while closing and while opening the switch

Definitions

  • An embodiment of the present invention relates to a DC circuit breaker.
  • the DC circuit breaker includes a semiconductor circuit breaker using a semiconductor circuit breaker, a mechanical circuit breaker using a mechanical circuit breaker, and a hybrid circuit breaker using both a semiconductor circuit breaker and a mechanical circuit breaker.
  • a mechanical circuit breaker type DC circuit breaker closes a commutation circuit equipped with a commutation switch, a commutation capacitor, and a commutation reactor, and generates a resonance current in the current flowing through the DC transmission line to generate a zero point. As a result, the mechanical circuit breaker is cut off, and the current flowing through the DC transmission line is cut off.
  • the commutation switch includes a mechanical method that mechanically moves one or both of the electrodes to make the electrodes electrically and mechanically conductive, and semiconductors such as thyristors and IGBTs (Insulated Gate Bipolar Transistor).
  • semiconductors such as thyristors and IGBTs (Insulated Gate Bipolar Transistor).
  • the mechanical commutation switch has a pair of electrodes, and at least one of the electrodes is moved to bring the distance between the electrodes closer, and the insulation performance between the electrodes is lowered from the open state to cause dielectric breakdown.
  • the mechanical commutation switch in the closed state, an arc is generated due to dielectric breakdown between the electrodes, and the switch becomes electrically conductive. Therefore, the mechanical commutation switch has a problem that a surge may be generated due to dielectric breakdown and peripheral circuit elements and other peripheral devices may malfunction or fail.
  • the DC cutoff device may be required to be responsible for reclosing the circuit.
  • the commutation capacitor is charged by the recovery voltage when the accident current is interrupted, so even after the reclosing is performed, the mechanical circuit breaker is interrupted. It was possible to cut off the current flowing through the DC transmission line.
  • the problem to be solved by the present invention is to provide a DC circuit breaker capable of appropriately reclosing the circuit while suppressing a surge.
  • the DC circuit breaker of the embodiment has a mechanical circuit breaker, a lightning arrester, and a commutation circuit.
  • the first end of the mechanical circuit breaker is connected to the first DC transmission line, and the second end is connected to the second DC transmission line.
  • the commutation circuit has a first switch, a second switch, a reactor, a capacitor, and a resistor.
  • the commutation circuit, the lightning arrester, and the mechanical circuit breaker are connected in parallel to each other between the first DC power transmission line and the second DC power transmission line.
  • the first switch, the capacitor, and the reactor are connected in series between the first DC power transmission line and the second DC power transmission line.
  • a switch in which the second switch and the resistor are connected in series is provided in parallel with the first switch.
  • FIG. 1 is a diagram showing an example of the configuration of the DC circuit breaker 1 of the embodiment.
  • the DC circuit breaker 1 is a device that electrically conducts or cuts off the first DC transmission line LN1 and the second DC transmission line LN2 among the DC transmission lines constituting the DC system.
  • the DC voltage in the first DC transmission line LN1 will be referred to as the first voltage VDC1
  • the DC voltage in the second DC transmission line LN2 will be referred to as the second voltage VDC2.
  • the first voltage VDC1 and the second voltage VDC2 are, for example, a voltage of about several tens to several hundreds [kV].
  • the first voltage VDC1 is usually larger than the second voltage VDC2. Therefore, normally, the DC system current flows in the direction from the first DC transmission line LN1 to the second DC transmission line LN2.
  • the DC circuit breaker 1 includes, for example, one or more mechanical circuit breakers 10, one or more disconnectors, a lightning arrester 15, a commutation circuit 40, and a control unit 100.
  • the DC circuit breaker 1 includes two disconnectors, a first disconnector 20 and a second disconnector 30, will be described.
  • the commutation circuit 40 includes, for example, a commutation switch 50, a commutation capacitor 60, a commutation reactor 70, a surge switch 80, and a surge resistor 90.
  • the control unit 100 indicates, for example, a signal (hereinafter, cutoff) indicating that the first DC power transmission line LN1 and the second DC power transmission line LN2 are electrically cut off from a detection device (not shown) for detecting an abnormality in the DC system. (Instruction signal) is received.
  • cutoff a signal
  • the mechanical circuit breaker 10 the first disconnector 20, and the first disconnector so as to electrically cut off the first DC power transmission line LN1 and the second DC power transmission line LN2. 2
  • An abnormality in a DC system is, for example, an abnormality caused by an accident such as a ground fault or a short circuit occurring in a DC transmission line.
  • the mechanical circuit breaker 10 includes a first terminal 10a and a second terminal 10b.
  • the first disconnector 20 includes a first terminal 20a and a second terminal 20b.
  • the second disconnector 30 includes a first terminal 30a and a second terminal 30b.
  • the commutation circuit 40 includes a first terminal 40a and a second terminal 40b.
  • the commutation switch 50 includes a first terminal 50a and a second terminal 50b.
  • the surge switch 80 includes a first terminal 80a and a second terminal 80b.
  • the first disconnector 20, the mechanical circuit breaker 10, and the second disconnector 30 are connected in series between the first DC transmission line LN1 and the second DC transmission line LN2 in the order described. Specifically, the first terminal 10a of the first disconnector 20 is connected to the first DC transmission line LN1, and the second terminal 20b of the first disconnector 20 and the first terminal 10a of the mechanical circuit breaker 10 Is connected, the second terminal 10b of the mechanical circuit breaker 10 and the first terminal 30a of the second disconnector 30 are connected, and the second terminal 30b of the second disconnector 30 is connected to the second DC transmission line LN2. Will be done.
  • the lightning arrester 15 and the commutation circuit 40 are connected to the mechanical circuit breaker 10 in parallel with each other. Specifically, the first terminal 10a of the mechanical circuit breaker 10, one end of the lightning arrester 15, and the first terminal 40a of the commutation circuit 40 are connected to each other, and the second terminal 10b of the mechanical circuit breaker 10 and the second terminal 10b. The other end of the lightning arrester 15 and the second terminal 40b of the commutation circuit 40 are connected to each other.
  • the commutation switch 50, the commutation capacitor 60, and the commutation reactor 70 are connected in series between the first terminal 40a and the second terminal 40b in the order described. Specifically, the first terminal 40a and the first terminal 50a of the commutation switch 50 are connected to the second terminal 50b of the commutation switch 50 and one end of the commutation capacitor 60 (positive electrode terminal in the figure). Is connected, the other end of the commutation capacitor 60 (negative electrode terminal in the figure) and one end of the commutation reactor 70 are connected, and the other end of the commutation reactor 70 and the second terminal 40b are connected.
  • the surge switch 80 and the surge resistor 90 are connected in series in the order described and connected in parallel to the commutation switch 50. Specifically, the first terminal 80a of the surge switch 80 is connected to the first terminal 50a of the commutation switch 50, the second terminal 80b of the surge switch 80 is connected to one end of the surge resistance 90, and the surge resistance 90 The other end of is connected to the second terminal 50b of the commutation switch 50.
  • the commutation circuit 40 includes the first terminal 40a and the second terminal 40b. It does not have to be provided. In this case, in the above-described configuration, the parts connected via the first terminal 40a and the second terminal 40b are directly connected.
  • the commutation circuit 40 will be described as including the first terminal 40a and the second terminal 40b.
  • the lightning arrester 15 absorbs the surge voltage generated when the mechanical circuit breaker 10 is controlled to the closed state.
  • the limiting voltage of the lightning arrester 15 is 1.5 [p.]
  • the first voltage VDC1 and the second voltage VDC2 are used as a reference in a state where no abnormality such as an accident has occurred in the DC system. u] is about the size.
  • the commutation switch 50 is, for example, a mechanical switch. Specifically, the commutation switch 50 has a pair of electrodes, and at least one of the electrodes is moved based on the control of the control unit 100 to bring the distance between the electrodes closer, and the insulation performance between the electrodes is opened. It is a contact type switch that closes by lowering it and breaking the insulation.
  • the commutation switch 50 is an example of a “first switch”.
  • the commutation switch 50 may be a non-contact switch.
  • the commutation switch 50 has a pair of fixed electrodes, and the insulation performance between the electrodes is lowered from the open state to break down the insulation based on the control of the control unit 100, so that the commutation switch 50 is closed.
  • the commutation capacitor 60 is, for example, in a state in which the voltage generated between the positive electrode terminal and the negative electrode terminal (hereinafter referred to as the capacitor voltage) by a charging device (not shown) in the initial state does not cause an abnormality such as an accident in the DC system. It is charged so as to match or substantially match the first voltage VDC1 and the second voltage VDC2 in the above.
  • the initial state is, for example, when the DC circuit breaker 1 is installed or when the operation of the DC circuit breaker 1 is started.
  • the charging device may charge the commutation capacitor 60 by applying a system voltage of the DC system, for example, or may charge the commutation capacitor 60 by an external power source other than the system voltage of the DC system.
  • the commutation capacitor 60 is, for example, a capacitor having a charging capacity of several to several tens [ ⁇ F].
  • the commutation capacitor 60 and the commutation reactor 70 form an LC resonance circuit as the commutation switch 50 is controlled to a closed state, and the capacitor component of the commutation capacitor 60 and the reactor of the commutation reactor 70 are formed.
  • the DC system current is resonated by the resonance frequency corresponding to the component, and the timing at which the DC system current becomes 0 [A] is generated.
  • generating the timing at which the DC system current becomes 0 [A] is also described as "generating a zero point”.
  • the commutation reactor 70 is commutated so that the reclosing time from the time tg to th, which will be described later, does not exceed a predetermined maximum value of the reclosing time while ensuring a predetermined reclosing time.
  • a value is set according to the capacity of the capacitor 60.
  • the surge switch 80 is, for example, a mechanical switch.
  • the surge switch 80 is an example of a “second switch”.
  • the surge resistor 90 reduces the surge generated when the commutation switch 50 is controlled to the closed state by dielectric breakdown while the surge switch 80 is controlled to the closed state.
  • the surge resistor 90 is, for example, a resistor having a resistance value of about several hundred to several k [ ⁇ ].
  • FIG. 12 is a graph showing an example of a change with time of the DC circuit breaker 1.
  • the horizontal axis represents time.
  • the waveform W10 indicates the open / closed state of the mechanical circuit breaker 10
  • the waveform W12 indicates the open / closed state of the surge switch 80
  • the waveform W14 indicates the open / closed state of the commutation switch 50
  • the waveform W16 indicates the open / closed state of the disconnector. Indicates the state.
  • “C” represents a closed state (Close)
  • "O" represents an open state (Open).
  • the waveforms W20 to W26 are waveforms showing the time course of the current related to the DC circuit breaker 1, and the vertical axis of the waveforms W20 to W26 shows the magnitude of the current.
  • the value of the DC system current flowing in the direction from the first DC transmission line LN1 to the second DC transmission line LN2 is shown as a positive value, and the direction from the second DC transmission line LN2 to the first DC transmission line LN1.
  • the value of the DC system current flowing through is indicated by a negative value.
  • the waveform W20 is a waveform showing a change over time in the direct current system.
  • the waveform W22 is a waveform showing a change over time in the current flowing through the mechanical circuit breaker 10.
  • the waveform W24 is a waveform showing a change over time in the current flowing through the commutation capacitor 60.
  • the waveform W26 is a waveform showing a change over time in the current flowing through the lightning arrester 15.
  • the waveforms W30 and W32 are waveforms showing the time course of the voltage related to the DC circuit breaker 1, and the vertical axis of the waveforms W30 and W32 shows the magnitude of the voltage.
  • the waveform W30 is a waveform showing a change over time in the voltage applied between the electrodes of the mechanical circuit breaker 10.
  • the waveform W34 is a waveform showing a change over time in the capacitor voltage.
  • the control unit 100 sets each unit. Control to the following states.
  • the conduction state is between time t0 and ta.
  • -Mechanical circuit breaker 10 Closed state-Lightning arrester 15: Stopped state-First disconnector 20: Closed state-Second disconnector 30: Closed state-Commutation switch 50: Open state-Surge switch 80: Open state-Rolling Flow capacitor 60: Charged state
  • FIG. 2 is a diagram schematically showing an abnormality occurring in a DC system.
  • a ground fault has occurred in the second DC transmission line LN2, and the second voltage VDC2 has a ground potential.
  • the ground fault occurs at time ta. Therefore, as shown by the waveforms W20 to W22, the DC system current and the current flowing through the mechanical circuit breaker 10 hold predetermined values from the time t0 to the time ta, and the commutation circuit 40 moves from the time ta to the time ta. It rises until it operates (until the time td described later).
  • FIG. 3 is a diagram showing a state of the DC circuit breaker 1 in which the mechanical circuit breaker 10 is controlled to the mechanically open state.
  • the detection device transmits a cutoff instruction signal to the DC circuit breaker 1 when an abnormality occurs in the DC system.
  • the control unit 100 receives a cutoff instruction signal from the detection device at time tb, and controls the mechanical circuit breaker 10 in the open state.
  • the state of each part of the DC circuit breaker 1 at this time is as follows.
  • the mechanical circuit breaker 10 is controlled to be closed at time tb, and the electrodes are physically separated from each other.
  • the mechanical circuit breaker 10 even if the electrodes are physically separated from each other, an arc is generated between the electrodes, so that the mechanical circuit breaker 10 is not electrically cut off (that is, it is in a mechanically open state). Therefore, as the waveforms W20 to W22 show, the DC system current and the current flowing through the mechanical circuit breaker 10 increase even during the time tb to tk.
  • FIG. 4 is a diagram showing a state of the DC circuit breaker 1 in which the surge switch 80 is controlled to the closed state.
  • the control unit 100 controls the surge switch 80 to be closed at time ct in order to reduce the surge associated with closing the commutation switch 50 (see FIG. 12).
  • the state of each part of the DC circuit breaker 1 at this time is as follows.
  • -Mechanical circuit breaker 10 Mechanically open state-Lightning arrester 15: Stopped state-First disconnector 20: Closed state-Second disconnector 30: Closed state-Commutation switch 50: Open state-Surge switch 80: Closed state ⁇ Commuting capacitor 60: A state in which discharge is slightly started.
  • the surge switch 80 is mechanically controlled to be in a closed state by the control unit 100, and before the electrodes come into contact with each other, an arc is generated by causing dielectric breakdown between the electrodes, and the surge switch 80 is in an electrically conductive state. Become. Therefore, a surge is generated by controlling the surge switch 80 in the closed state, and this surge is suppressed by the surge resistance 90.
  • the surge switch 80 is controlled to the closed state, in the DC circuit breaker 1, the loop of the mechanical circuit breaker 10, the commutation reactor 70, the commutation capacitor 60, the surge resistance 90, and the surge switch 80 ,
  • the capacitor voltage of the commutation capacitor 60 that has been charged in advance, the surge resistance 90, and the commutation reactor 70 act, and a minute commutation current L3 begins to flow.
  • the commutation capacitor 60 Since the commutation capacitor 60 is discharged by the flow of this minute commutation current L3, the commutation capacitor 60 is charged from the time ct until the commutation circuit 40 operates, as shown by the waveform W24 in FIG. The flowing current rises slightly. Along with this, as shown by the waveform W32, the capacitor voltage of the commutation capacitor 60 slightly decreases from the time ct until the commutation circuit 40 operates.
  • FIG. 5 is a diagram showing a state of the DC circuit breaker 1 in which the commutation switch 50 is controlled to the closed state.
  • the control unit 100 closes the commutation switch 50 at time td and operates the commutation circuit 40 (see FIG. 12).
  • the surge since the surge is already suppressed by the surge resistance 90, the surge does not occur even when the commutation switch 50 is controlled to the closed state, or peripheral circuit elements and other peripheral devices are used. Surge is sufficiently suppressed to the extent that it does not malfunction or break down.
  • the state of each part at this time is as follows.
  • the loops of the mechanical circuit breaker 10, the commutation reactor 70, the commutation capacitor 60, and the commutation switch 50 are precharged in the DC circuit breaker 1.
  • the capacitor voltage of the commutation capacitor 60 and the commutation reactor 70 act, and a commutation current L3 that is larger than the minute commutation current L3 that flowed in the scene of FIG. 4 described above starts to flow.
  • the direction of the commutation current L3 differs depending on the connection direction between the positive electrode terminal and the negative electrode terminal of the commutation capacitor 60, the location of the accident that occurred in the DC system, and the like.
  • the commutation current L3 When the direction of the commutation current L3 is the same as the direction in which the DC system current flows (that is, the same polarity), the commutation current L3 has a commutation current L3 between the time td and 1/2 to 3/4 of the resonance frequency. A zero point is generated. Further, when the direction of the commutation current L3 is different from the direction in which the DC system current flows (that is, the polarity is opposite), the commutation current L3 has a zero point between the time td and the quarter period of the resonance frequency. Will be generated. In the present embodiment, the case where the commutation current L3 is a current having the same polarity as the DC system current will be described.
  • a commutation current L3 resonating at a resonance frequency corresponding to the capacitor component of the commutation capacitor 60 and the reactor component of the commutation reactor 70 flows through the mechanical circuit breaker 10.
  • the mechanical breaker 10 and the commutation capacitor 60 are provided with the mechanical breaker 10 and the commutation capacitor 60 during the period from the time td to the time te when the 3/4 cycle of the resonance frequency elapses.
  • a commutation current L3 with a resonance frequency of less than 3/4 wave flows, and a zero point is generated at time te.
  • the waveform W32 since the commutation capacitor 60 acts and the commutation current L3 flows, the capacitor voltage decreases from the time td to the time te.
  • FIG. 6 is a diagram showing a state of the DC circuit breaker 1 in which the mechanical circuit breaker 10 is electrically controlled to be in the open state.
  • the control unit 100 electrically controls the mechanical circuit breaker 10 in an open state when a zero point is generated in the commutation current L3 flowing through the mechanical circuit breaker 10 at time te.
  • the control unit 100 electrically controls the mechanical circuit breaker 10 in an open state by extinguishing the arc by, for example, gas shutoff or vacuum cutoff when a zero point is generated. Further, as shown in FIG.
  • the arc of the mechanical circuit breaker 10 is extinguished at time te, and after time te, the mechanical circuit breaker 10 is controlled to be in an open state both mechanically and electrically.
  • the waveform W30 since a transient recovery voltage is generated between the electrodes of the mechanical circuit breaker 10 that is mechanically and electrically controlled to be in the open state, the lightning arrester 15 is moved from time te. The voltage between the electrodes of the mechanical circuit breaker 10 rises until it operates (until the time tf described later).
  • a direct current system current flows in the commutation capacitor 60 from the time te until the lightning arrester 15 operates. Therefore, as shown by the waveform W32, the capacitor voltage rises from the time te until the lightning arrester 15 operates.
  • FIG. 7 is a diagram showing a state of the DC circuit breaker 1 in which the lightning arrester 15 is operated.
  • the voltage applied between the electrodes of the mechanical circuit breaker 10 that is, it is applied to both ends of the lightning arrester 15. Voltage
  • the voltage between the electrodes of the mechanical circuit breaker 10 reaches the operating voltage of the lightning arrester 15, and the lightning arrester 15 operates.
  • the DC system current flows from the first DC transmission line LN1 to the second DC transmission line LN2 via the paths of the first disconnector 20, the lightning arrester 15, and the second disconnector 30.
  • -Mechanical circuit breaker 10 Open mechanically and electrically-Lightning arrester 15: Operating state-First disconnector 20: Closed-Second disconnector 30: Closed-Commuting switch 50: Closed- Surge switch 80: Closed state / commutation capacitor 60: Almost no charge / discharge
  • the voltage between the electrodes of the mechanical circuit breaker 10 reaches the operating voltage of the lightning arrester 15 at time tf.
  • the lightning arrester 15 starts operating at time tf and absorbs the recovery voltage. Therefore, as shown by the waveform W26, the current flowing through the lightning arrester 15 that has increased sharply at the time tf gradually decreases from the time tf to the time tg, and becomes 0 [A] at the time tg.
  • the waveform W20 shows, the DC system current gradually decreases from the time tf to the time tg.
  • the voltage between the electrodes of the mechanical circuit breaker 10 shown by the waveform W30 and the capacitor voltage shown by the waveform W32 hold the values at the timing of the time tf from the time tf to the time tg.
  • the waveform W16 shows, the arc generated between the electrodes of the commutation switch 50 is extinguished from the time tf to the time tg.
  • FIG. 8 is a diagram showing a state of the DC circuit breaker 1 controlled in a state of charging the commutation capacitor 60.
  • the DC system current is changed from the first DC transmission line LN1 to the first disconnector 20, the commutation switch 50, the commutation condenser 60, the commutation reactor 70, and the second disconnector 30. It flows to the second DC transmission line LN2 via the path of.
  • the state of each part at this time is as follows.
  • -Mechanical circuit breaker 10 Open mechanically and electrically-Lightning arrester 15: Stopped-First disconnector 20: Closed-Second disconnector 30: Closed-Commuting switch 50: Closed- Surge switch 80: Closed state / commutation capacitor 60: Charged state
  • the DC system current oscillates from the time tg to the time th when the commutation capacitor 60 ends the transient vibration.
  • the vibration of the DC system current is damped as the transient vibration subsides. Therefore, the DC system current gradually converges from the time tg to the time th.
  • a DC system electric voltage vibrating due to transient vibration flows through the commutation capacitor 60. Therefore, as shown by the waveform W32, the capacitor voltage gradually converges to a predetermined voltage while oscillating due to transient vibration from time tg to time th.
  • the predetermined voltage is a voltage that matches or substantially matches the first voltage VDC1.
  • the period from time tg to time th is an example of the reclosing time.
  • the reclosing time is the time from when the DC circuit breaker 1 electrically cuts off the first DC transmission line LN1 and the second DC transmission line LN2 until it is electrically conducted again.
  • the capacitance of the commutation capacitor 60 and the value of the commutation reactor 70 ensure the predetermined reclosing time, and the transient vibration converges within a range not exceeding the predetermined maximum value of the reclosing time. Is set.
  • the capacitor voltage converges to a predetermined voltage
  • the insulation performance between the electrodes of the commutation switch 50 is restored, the arc of the commutation switch 50 is cut, or the arc is extinguished by the zero point of the current. It may arc and become open.
  • the commutation capacitor 60 is charged to a predetermined voltage by the DC system current flowing from the first DC transmission line LN1 to the second DC transmission line LN2 via the path of the surge switch 80 and the surge resistance 90.
  • FIG. 9 is a diagram showing a state of the DC circuit breaker 1 in which the commutation switch 50 is controlled to be in the open state.
  • the control unit 100 determines whether or not the capacitor voltage of the commutation capacitor 60 is a predetermined voltage after the time tg. For example, when the transient vibration of the DC system current has converged, the control unit 100 determines that the commutation capacitor 60 has been charged to a predetermined voltage. When the control unit 100 determines that the commutation capacitor 60 has been charged to a predetermined voltage, the control unit 100 controls the commutation switch 50 to be in the open state.
  • the state of each part at this time is as follows.
  • the control unit 100 determines that the commutation capacitor 60 has been charged to a predetermined voltage at time th, and controls the commutation switch 50 to be in the open state.
  • FIG. 10 is a diagram showing a state of the DC circuit breaker 1 in which the first disconnector 20 and the second disconnector 30 are controlled to be in the open state.
  • FIG. 11 is a diagram showing a state of the DC circuit breaker 1 in which the surge switch 80 is controlled to be in the open state.
  • the control unit 100 controls the commutation switch 50 to be in the open state, and then controls the first disconnector 20 and the second disconnector 30 to be in the open state. Then, the control unit 100 controls the first disconnector 20 and the second disconnector 30 in the open state, and then controls the surge switch 80 in the open state.
  • the state of each part in the scene of FIG. 11 is as follows.
  • -Mechanical circuit breaker 10 Mechanically and electrically open state-Lightning arrester 15: Stopped state-First disconnector 20: Open state-Second disconnector 30: Open state-Commutation switch 50: Open state- Surge switch 80: Open state / commutation capacitor 60: Charged state
  • control unit 100 controls the first disconnector 20 and the second disconnector 30 in the open state at time ti. Further, as shown by the waveform W12, the control unit 100 controls the surge switch 80 to be in the open state at time tj.
  • the control unit 100 may control the first disconnector 20 and the second disconnector 30 in the open state after controlling the surge switch 80 in the open state, and the first disconnector 20 and the second disconnector 20 may be controlled in the open state.
  • the vessel 30 may be controlled to the open state in order.
  • FIG. 13 is a flowchart showing an example of the operation of the DC circuit breaker 1.
  • the control unit 100 determines whether or not a cutoff instruction signal indicating that the first DC power transmission line LN1 and the second DC power transmission line LN2 are electrically cut off has been received from the detection device (step S100). .. The control unit 100 waits until the cutoff instruction signal is received from the detection device.
  • the control unit 100 controls the mechanical circuit breaker 10 in the open state (step S102).
  • the control unit 100 controls the surge switch 80 to be in the closed state (step S104). At this time, the surge generated by controlling the surge switch 80 to the closed state is suppressed by the surge resistance 90.
  • the control unit 100 controls the commutation switch 50 to be in the closed state (step S106).
  • the surge is sufficiently suppressed by the surge resistance 90, the surge does not occur even when the commutation switch 50 is closed, or the peripheral circuit elements and other peripheral devices do not malfunction or break down. Surge is sufficiently suppressed.
  • the commutation switch 50 is controlled to the closed state, the loop of the mechanical circuit breaker 10, the commutation reactor 70, the commutation capacitor 60, and the commutation switch 50 is charged in advance in the DC circuit breaker 1.
  • the capacitor voltage of the commutation capacitor 60 and the commutation reactor 70 act on each other, and the commutation current L3 resonates with the resonance frequency corresponding to the capacitor component of the commutation capacitor 60 and the reactor component of the commutation reactor 70. Flows.
  • the control unit 100 electrically controls the mechanical circuit breaker 10 in an open state when a zero point is generated in the resonant commutation current L3 flowing through the mechanical circuit breaker 10 (step S108). Since the mechanical circuit breaker 10 is electrically controlled to be in the open state, a transient recovery voltage is generated between the electrodes of the mechanical circuit breaker 10, so that the voltage applied between the electrodes of the mechanical circuit breaker 10 is generated. (That is, the voltage applied to both ends of the lightning arrester 15) rises. Then, the voltage between the electrodes of the mechanical circuit breaker 10 reaches the operating voltage of the lightning arrester 15, and the lightning arrester 15 operates (step S110).
  • the DC system current flows from the first DC transmission line LN1 to the second DC transmission line LN2 via the paths of the first disconnector 20, the lightning arrester 15, and the second disconnector 30.
  • the DC system current vibrates until the commutation capacitor 60 finishes the transient vibration.
  • the DC system current is damped as the transient oscillations subside.
  • the capacitor voltage gradually converges to a predetermined voltage while vibrating due to transient vibration.
  • the predetermined voltage is a voltage that matches or substantially matches the DC voltage supplied by the DC system such as the first DC transmission line LN1 and the second DC transmission line LN2.
  • the control unit 100 determines whether or not the capacitor voltage of the commutation capacitor 60 is a predetermined voltage (step S112). For example, when the transient vibration of the DC system current has converged, the control unit 100 determines that the commutation capacitor 60 has been charged to a predetermined voltage. The control unit 100 stands by until the commutation capacitor 60 is charged to a predetermined voltage. When the control unit 100 determines that the commutation capacitor 60 has been charged to a predetermined voltage, the control unit 100 controls the commutation switch 50 to be in the open state (step S114). Next, the control unit 100 controls the disconnector to the open state (step S116). Next, the control unit 100 controls the surge switch 80 to be in the open state (step S118). As a result, the DC circuit breaker 1 can electrically cut off the first DC transmission line LN1 and the second DC transmission line LN2.
  • the DC circuit breaker 1 of the embodiment includes a mechanical circuit breaker 10, a lightning arrester 15, and a commutation circuit 40.
  • the first terminal 10a is connected to the first DC transmission line LN1 via the first disconnector 20
  • the second terminal 10b is connected to the second DC transmission line LN2 via the second disconnector 30.
  • the commutation circuit 40 includes a commutation switch 50, a commutation capacitor 60, a commutation reactor 70, a surge switch 80, and a surge resistor 90.
  • the commutation circuit 40, the lightning arrester 15, and the mechanical circuit breaker 10 are connected in parallel to each other between the first DC transmission line LN1 and the second DC transmission line LN2.
  • the commutation switch 50, the commutation capacitor 60, and the commutation reactor 70 are connected in series between the first DC transmission line LN1 and the second DC transmission line LN2.
  • a surge switch 80 and a surge switch 80 connected in series are provided in parallel with a commutation switch 50.
  • the commutation switch 50 is set before the capacitor voltage converges to a predetermined voltage. The insulation performance between the electrodes may be restored, and the commutation switch 50 may be opened. If the commutation switch 50 is opened before the capacitor voltage converges to a predetermined voltage, the next time the first DC transmission line LN1 and the second DC transmission line LN2 are cut off, the commutation switch 50 is opened. There are cases where the commutation capacitor 60 is not charged with enough power to pass a sufficient commutation current L3, or the commutation capacitor 60 is overcharged with enough power to pass an excess commutation current L3.
  • the resonant commutation current L3 becomes large and flows to the mechanical circuit breaker 10 during the period from time td to te.
  • the current change rate (di / dt) at the current zero point may increase.
  • the commutation current L3 having a large current change rate (di / dt) cannot be electrically opened, and the first DC transmission line LN1 and the second DC power transmission There is a possibility that the interruption with the line LN2 will fail.
  • the capacitor voltage is smaller than the voltage of the DC system (that is, the commutation capacitor 60 is insufficiently charged)
  • the resonant commutation current L3 at the time of reclosing is reduced, and the mechanical circuit breaker 10 is used.
  • the zero point cannot be generated by the commutating current L3 that flows, and there is a possibility that the disconnection between the first DC transmission line LN1 and the second DC transmission line LN2 fails.
  • the series circuit of the surge switch 80 and the surge resistance 90 is provided in parallel with the commutation switch 50, so that the current between the electrodes of the commutation switch 50 is increased. Even if the arc is cut or extinguished at the zero point of the current, the DC system current continues to flow through the surge switch 80 and the surge resistor 90 in the commutation capacitor 60, so that the commutation capacitor 60 is surely brought to a predetermined voltage. It can be charged. Therefore, the DC circuit breaker 1 of the present embodiment can appropriately reclose the circuit while suppressing the surge.

Abstract

This direct-current circuit breaker has a mechanical circuit breaker, a surge arrester, and a commutation circuit. The mechanical circuit breaker is connected to a first direct-current transmission line at a first end thereof and to a second direct-current transmission line at a second end thereof. The commutation circuit has a first switch, a second switch, a reactor, a capacitor, and a resistor. The commutation circuit, the surge arrester, and the mechanical circuit breaker are parallelly connected between the first direct-current transmission line and the second direct-current transmission line. The first switch, the capacitor, and the reactor are serially connected between the first direct-current transmission line and the second direct-current transmission line. The second switch and the resistor are serially connected and disposed in parallel with the first switch.

Description

直流遮断器DC circuit breaker
 本発明の実施形態は、直流遮断器に関する。 An embodiment of the present invention relates to a DC circuit breaker.
 近年、複数の直流送電線が格子状に構成された直流送電網による電力の送電が行われている。直流送電網においては事故が発生した場合、特定の送電線のみを遮断し、残りの送電線によって電力の送電を継続する場合がある。これに関して、直流送電線路に流れる電流を遮断する直流遮断装器に関する技術が知られている。 In recent years, electric power has been transmitted by a DC transmission network in which a plurality of DC transmission lines are configured in a grid pattern. In the case of an accident in the DC power grid, only a specific power line may be cut off and the remaining power lines may continue to transmit power. In this regard, a technique related to a DC cutoff device that cuts off the current flowing through the DC transmission line is known.
 ところで、直流遮断装器には、半導体遮断器を用いる半導体遮断方式と、機械遮断器を用いる機械遮断方式と、半導体遮断器と機械遮断器との両方を用いるハイブリッド遮断方式とが存在する。機械遮断方式の直流遮断装器は、転流スイッチと転流コンデンサと転流リアクトルとを備える転流回路を閉回路にし、直流送電線路に流れる電流に共振電流を発生させてゼロ点を生成することにより、機械遮断器を遮断させ、直流送電線路に流れる電流を遮断する。 By the way, the DC circuit breaker includes a semiconductor circuit breaker using a semiconductor circuit breaker, a mechanical circuit breaker using a mechanical circuit breaker, and a hybrid circuit breaker using both a semiconductor circuit breaker and a mechanical circuit breaker. A mechanical circuit breaker type DC circuit breaker closes a commutation circuit equipped with a commutation switch, a commutation capacitor, and a commutation reactor, and generates a resonance current in the current flowing through the DC transmission line to generate a zero point. As a result, the mechanical circuit breaker is cut off, and the current flowing through the DC transmission line is cut off.
 また、転流スイッチには、電極の片方または両方を機械的に動かすことにより、電極間を電気的、機械的に導通状態にする機械方式と、サイリスタやIGBT(Insulated Gate Bipolar Transistor)などの半導体素子を用いて導通状態にする半導体方式と、固定された電極間に外的要因を加えることにより、絶縁性能を下げることで電気的に導通状態にする放電方式とが存在する。更に、機械方式の転流スイッチには、一対の電極を有し、電極のうち少なくとも一方を移動させて電極間の距離を近づけ、電極間の絶縁性能を開状態よりも下げて絶縁破壊させることで閉状態にさせる接触方式と、固定された一対の電極を有し、電極間の絶縁性能を開状態よりも下げて絶縁破壊させることで閉状態にさせる非接触方式とが存在する。 In addition, the commutation switch includes a mechanical method that mechanically moves one or both of the electrodes to make the electrodes electrically and mechanically conductive, and semiconductors such as thyristors and IGBTs (Insulated Gate Bipolar Transistor). There are a semiconductor method that uses an element to make it conductive, and a discharge method that makes it electrically conductive by lowering the insulation performance by adding an external factor between the fixed electrodes. Further, the mechanical commutation switch has a pair of electrodes, and at least one of the electrodes is moved to bring the distance between the electrodes closer, and the insulation performance between the electrodes is lowered from the open state to cause dielectric breakdown. There are a contact method in which the electrodes are closed with a pair of electrodes, and a non-contact method in which the electrodes have a pair of fixed electrodes and the insulation performance between the electrodes is lowered from that in the open state to cause dielectric breakdown.
 ここで、機械方式の転流スイッチは、閉状態において、電極間の絶縁破壊によってアークが発生し、電気的な導通状態になる。したがって、機械方式の転流スイッチは、絶縁破壊によってサージを発生させて周辺回路素子や他の周辺機器が誤動作、又は故障する可能性があるという課題があった。 Here, in the mechanical commutation switch, in the closed state, an arc is generated due to dielectric breakdown between the electrodes, and the switch becomes electrically conductive. Therefore, the mechanical commutation switch has a problem that a surge may be generated due to dielectric breakdown and peripheral circuit elements and other peripheral devices may malfunction or fail.
 また、直流遮断装器は、再閉路の責務が求められる場合がある。ハイブリッド遮断方式や半導体遮断方式の直流遮断装器では、事故電流を遮断した際の回復電圧にて転流コンデンサが充電されるので、再閉路が行われた以降も、機械遮断器を遮断させ、直流送電線路に流れる電流を遮断することが可能であった。 In addition, the DC cutoff device may be required to be responsible for reclosing the circuit. In hybrid circuit breaker and semiconductor circuit breaker DC circuit breakers, the commutation capacitor is charged by the recovery voltage when the accident current is interrupted, so even after the reclosing is performed, the mechanical circuit breaker is interrupted. It was possible to cut off the current flowing through the DC transmission line.
 これに対して、機械方式の転流スイッチを用いる直流遮断装器は、転流スイッチの電極間の絶縁性能が回復することによって電極間を流れる電流が遮断され、または電流ゼロ点にて消弧されるため、転流コンデンサの充電状態が適切でないまま、電気的な導通状態を終えてしまう場合があった。この場合、転流コンデンサは、十分に充電されない、又は所定の電圧以上に充電され、適切に再閉路ができないという課題があった。 On the other hand, in a DC cutoff device that uses a mechanical commutation switch, the current flowing between the electrodes is cut off by recovering the insulation performance between the electrodes of the commutation switch, or the arc is extinguished at the current zero point. Therefore, the electrical conduction state may be terminated without the charging state of the commutation capacitor being appropriate. In this case, there is a problem that the commutation capacitor is not sufficiently charged or is charged to a predetermined voltage or higher, and the circuit cannot be properly reclosed.
国際公開第2015/166600号International Publication No. 2015/1666600
 本発明が解決しようとする課題は、サージを抑制しつつ、適切に再閉路を行うことができる直流遮断器を提供することである。 The problem to be solved by the present invention is to provide a DC circuit breaker capable of appropriately reclosing the circuit while suppressing a surge.
 実施形態の直流遮断器は、機械式遮断器と、避雷器と、転流回路とを持つ。機械式遮断器は、第1端が第1直流送電線路に接続され、第2端が第2直流送電線路に接続される。転流回路は、第1スイッチと、第2スイッチと、リアクトルと、コンデンサと、抵抗とを有する。前記転流回路と、前記避雷器と、前記機械式遮断器とは、前記第1直流送電線路と、前記第2直流送電線路との間に互いに並列に接続される。前記第1スイッチと、前記コンデンサと、前記リアクトルとは、前記第1直流送電線路と、前記第2直流送電線路との間に直列に接続される。前記第2スイッチと前記抵抗とが直列に接続されたものが、前記第1スイッチと並列に設けられている。 The DC circuit breaker of the embodiment has a mechanical circuit breaker, a lightning arrester, and a commutation circuit. The first end of the mechanical circuit breaker is connected to the first DC transmission line, and the second end is connected to the second DC transmission line. The commutation circuit has a first switch, a second switch, a reactor, a capacitor, and a resistor. The commutation circuit, the lightning arrester, and the mechanical circuit breaker are connected in parallel to each other between the first DC power transmission line and the second DC power transmission line. The first switch, the capacitor, and the reactor are connected in series between the first DC power transmission line and the second DC power transmission line. A switch in which the second switch and the resistor are connected in series is provided in parallel with the first switch.
実施形態の直流遮断器1の構成の一例を示す図である。It is a figure which shows an example of the structure of the DC circuit breaker 1 of an embodiment. 直流系統に発生した異常を模式的に示す図である。It is a figure which shows typically the abnormality which occurred in the DC system. 機械式遮断器10が機械的開状態に制御された直流遮断器1の状態を示す図である。It is a figure which shows the state of the DC circuit breaker 1 in which the mechanical circuit breaker 10 is controlled to the mechanically open state. サージスイッチ80が閉状態に制御された直流遮断器1の状態を示す図である。It is a figure which shows the state of the DC circuit breaker 1 which controlled the surge switch 80 to the closed state. 転流スイッチ50が閉状態に制御された直流遮断器1の状態を示す図である。It is a figure which shows the state of the DC circuit breaker 1 which controlled the commutation switch 50 to the closed state. 機械式遮断器10が電気的に開状態に制御された直流遮断器1の状態を示す図である。It is a figure which shows the state of the DC circuit breaker 1 in which the mechanical circuit breaker 10 is electrically controlled to open state. 避雷器15が動作した直流遮断器1の状態を示す図である。It is a figure which shows the state of the DC circuit breaker 1 in which a lightning arrester 15 operated. 転流コンデンサ60を充電する状態に制御された直流遮断器1の状態を示す図である。It is a figure which shows the state of the DC circuit breaker 1 controlled in the state which charges a commutation capacitor 60. 転流スイッチ50が開状態に制御された直流遮断器1の状態を示す図である。It is a figure which shows the state of the DC circuit breaker 1 which controlled the commutation switch 50 in an open state. サージスイッチ80が開状態に制御された直流遮断器1の状態を示す図である。It is a figure which shows the state of the DC circuit breaker 1 which controlled the surge switch 80 to the open state. 第1断路器20、及び第2断路器30が開状態に制御された直流遮断器1の状態を示す図である。It is a figure which shows the state of the DC circuit breaker 1 which controlled the 1st disconnector 20 and the 2nd disconnector 30 in an open state. 直流遮断器1に係る経時変化の一例を示すグラフである。It is a graph which shows an example of the time-dependent change concerning DC circuit breaker 1. 直流遮断器1の動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation of a DC circuit breaker 1.
 以下、実施形態の直流遮断器を、図面を参照して説明する。 Hereinafter, the DC circuit breaker of the embodiment will be described with reference to the drawings.
(実施形態)
[直流遮断器1の構成]
 図1は、実施形態の直流遮断器1の構成の一例を示す図である。直流遮断器1は、直流系統を構成する直流送電線路のうち、第1直流送電線路LN1と、第2直流送電線路LN2とを電気的に導通させ、または遮断する装置である。以降の説明において、第1直流送電線路LN1における直流電圧を第1電圧VDC1と記載し、第2直流送電線路LN2における直流電圧を第2電圧VDC2と記載する。第1電圧VDC1や第2電圧VDC2は、例えば、数十~数百[kV]程度の電圧である。例えば、第1直流送電線路LN1側には、送電設備が存在し、第2直流送電線路LN2側には、需要家が存在する。この場合、通常、第1電圧VDC1が第2電圧VDC2よりも大きい電圧となる。したがって、通常であれば第1直流送電線路LN1から第2直流送電線路LN2の方向に直流系統電流が流れる。
(Embodiment)
[Configuration of DC circuit breaker 1]
FIG. 1 is a diagram showing an example of the configuration of the DC circuit breaker 1 of the embodiment. The DC circuit breaker 1 is a device that electrically conducts or cuts off the first DC transmission line LN1 and the second DC transmission line LN2 among the DC transmission lines constituting the DC system. In the following description, the DC voltage in the first DC transmission line LN1 will be referred to as the first voltage VDC1, and the DC voltage in the second DC transmission line LN2 will be referred to as the second voltage VDC2. The first voltage VDC1 and the second voltage VDC2 are, for example, a voltage of about several tens to several hundreds [kV]. For example, a power transmission facility exists on the first DC transmission line LN1 side, and a consumer exists on the second DC transmission line LN2 side. In this case, the first voltage VDC1 is usually larger than the second voltage VDC2. Therefore, normally, the DC system current flows in the direction from the first DC transmission line LN1 to the second DC transmission line LN2.
 直流遮断器1は、例えば、一以上の機械式遮断器10と、一以上の断路器と、避雷器15と、転流回路40と、制御部100を備える。本実施形態では、直流遮断器1が、第1断路器20と第2断路器30との2つの断路器を備える場合について説明する。以降の説明において、第1断路器20と、第2断路器30とを区別しない場合、単に「断路器」と記載する。転流回路40は、例えば、転流スイッチ50と、転流コンデンサ60と、転流リアクトル70と、サージスイッチ80と、サージ抵抗90とを備える。 The DC circuit breaker 1 includes, for example, one or more mechanical circuit breakers 10, one or more disconnectors, a lightning arrester 15, a commutation circuit 40, and a control unit 100. In the present embodiment, a case where the DC circuit breaker 1 includes two disconnectors, a first disconnector 20 and a second disconnector 30, will be described. In the following description, when the first disconnector 20 and the second disconnector 30 are not distinguished, they are simply referred to as "disconnector". The commutation circuit 40 includes, for example, a commutation switch 50, a commutation capacitor 60, a commutation reactor 70, a surge switch 80, and a surge resistor 90.
 制御部100は、例えば、直流系統の異常を検出する検出装置(不図示)から第1直流送電線路LN1と、第2直流送電線路LN2とを電気的に遮断させることを示す信号(以下、遮断指示信号)を受信する。制御部100は、遮断指示信号を受信した場合、第1直流送電線路LN1と、第2直流送電線路LN2とを電気的に遮断するように、機械式遮断器10、第1断路器20、第2断路器30、転流スイッチ50、及びサージスイッチ80の開閉状態を制御する。直流系統の異常とは、例えば、直流送電線路に生じる地絡や短絡等の事故によって生じる異常である。 The control unit 100 indicates, for example, a signal (hereinafter, cutoff) indicating that the first DC power transmission line LN1 and the second DC power transmission line LN2 are electrically cut off from a detection device (not shown) for detecting an abnormality in the DC system. (Instruction signal) is received. When the control unit 100 receives the cutoff instruction signal, the mechanical circuit breaker 10, the first disconnector 20, and the first disconnector so as to electrically cut off the first DC power transmission line LN1 and the second DC power transmission line LN2. 2 Controls the open / closed state of the disconnector 30, the commutation switch 50, and the surge switch 80. An abnormality in a DC system is, for example, an abnormality caused by an accident such as a ground fault or a short circuit occurring in a DC transmission line.
 機械式遮断器10は、第1端子10aと、第2端子10bとを備える。第1断路器20は、第1端子20aと、第2端子20bとを備える。第2断路器30は、第1端子30aと、第2端子30bとを備える。転流回路40は、第1端子40aと、第2端子40bとを備える。転流スイッチ50は、第1端子50aと、第2端子50bとを備える。サージスイッチ80は、第1端子80aと、第2端子80bとを備える。 The mechanical circuit breaker 10 includes a first terminal 10a and a second terminal 10b. The first disconnector 20 includes a first terminal 20a and a second terminal 20b. The second disconnector 30 includes a first terminal 30a and a second terminal 30b. The commutation circuit 40 includes a first terminal 40a and a second terminal 40b. The commutation switch 50 includes a first terminal 50a and a second terminal 50b. The surge switch 80 includes a first terminal 80a and a second terminal 80b.
 第1断路器20と、機械式遮断器10と、第2断路器30とは、第1直流送電線路LN1と、第2直流送電線路LN2との間に、記載の順に直列に接続される。具体的には、第1断路器20の第1端子10aは、第1直流送電線路LN1に接続され、第1断路器20の第2端子20bと、機械式遮断器10の第1端子10aとが接続され、機械式遮断器10の第2端子10bと第2断路器30の第1端子30aとが接続され、第2断路器30の第2端子30bは、第2直流送電線路LN2に接続される。 The first disconnector 20, the mechanical circuit breaker 10, and the second disconnector 30 are connected in series between the first DC transmission line LN1 and the second DC transmission line LN2 in the order described. Specifically, the first terminal 10a of the first disconnector 20 is connected to the first DC transmission line LN1, and the second terminal 20b of the first disconnector 20 and the first terminal 10a of the mechanical circuit breaker 10 Is connected, the second terminal 10b of the mechanical circuit breaker 10 and the first terminal 30a of the second disconnector 30 are connected, and the second terminal 30b of the second disconnector 30 is connected to the second DC transmission line LN2. Will be done.
 避雷器15と、転流回路40とは、機械式遮断器10に互いに並列に接続される。具体的には、機械式遮断器10の第1端子10aと、避雷器15の一端と、転流回路40の第1端子40aとが互いに接続され、機械式遮断器10の第2端子10bと、避雷器15の他端と、転流回路40の第2端子40bとが互いに接続される。 The lightning arrester 15 and the commutation circuit 40 are connected to the mechanical circuit breaker 10 in parallel with each other. Specifically, the first terminal 10a of the mechanical circuit breaker 10, one end of the lightning arrester 15, and the first terminal 40a of the commutation circuit 40 are connected to each other, and the second terminal 10b of the mechanical circuit breaker 10 and the second terminal 10b. The other end of the lightning arrester 15 and the second terminal 40b of the commutation circuit 40 are connected to each other.
 転流回路40において、転流スイッチ50と、転流コンデンサ60と、転流リアクトル70とは、記載の順に第1端子40aと、第2端子40bとの間に直列に接続される。具体的には、第1端子40aと、転流スイッチ50の第1端子50aとが接続され、転流スイッチ50の第2端子50bと、転流コンデンサ60の一端(図示では、正極端子)とが接続され、転流コンデンサ60の他端(図示では、負極端子)と、転流リアクトル70の一端とが接続され、転流リアクトル70の他端と第2端子40bとが接続される。また、転流回路40において、サージスイッチ80と、サージ抵抗90とは、記載の順に直列に接続され、且つ転流スイッチ50に並列に接続される。具体的には、サージスイッチ80の第1端子80aは、転流スイッチ50の第1端子50aと接続され、サージスイッチ80の第2端子80bは、サージ抵抗90の一端に接続され、サージ抵抗90の他端は、転流スイッチ50の第2端子50bに接続される。 In the commutation circuit 40, the commutation switch 50, the commutation capacitor 60, and the commutation reactor 70 are connected in series between the first terminal 40a and the second terminal 40b in the order described. Specifically, the first terminal 40a and the first terminal 50a of the commutation switch 50 are connected to the second terminal 50b of the commutation switch 50 and one end of the commutation capacitor 60 (positive electrode terminal in the figure). Is connected, the other end of the commutation capacitor 60 (negative electrode terminal in the figure) and one end of the commutation reactor 70 are connected, and the other end of the commutation reactor 70 and the second terminal 40b are connected. Further, in the commutation circuit 40, the surge switch 80 and the surge resistor 90 are connected in series in the order described and connected in parallel to the commutation switch 50. Specifically, the first terminal 80a of the surge switch 80 is connected to the first terminal 50a of the commutation switch 50, the second terminal 80b of the surge switch 80 is connected to one end of the surge resistance 90, and the surge resistance 90 The other end of is connected to the second terminal 50b of the commutation switch 50.
 なお、上述では、転流回路40が、第1端子40a、及び第2端子40bを備える場合について説明したが、これに限られず、転流回路40は、第1端子40a、及び第2端子40bを備えていなくてもよい。この場合、上述した構成において、第1端子40a、及び第2端子40bを介して接続されている各部は、直接接続される。以下、説明の便宜上、転流回路40が、第1端子40a、及び第2端子40bを備えるものとして説明する。 In the above description, the case where the commutation circuit 40 includes the first terminal 40a and the second terminal 40b has been described, but the present invention is not limited to this, and the commutation circuit 40 includes the first terminal 40a and the second terminal 40b. It does not have to be provided. In this case, in the above-described configuration, the parts connected via the first terminal 40a and the second terminal 40b are directly connected. Hereinafter, for convenience of explanation, the commutation circuit 40 will be described as including the first terminal 40a and the second terminal 40b.
 避雷器15は、機械式遮断器10が閉状態に制御されたことにより発生するサージ電圧を吸収する。避雷器15の制限電圧は、直流系統に事故等の異常が発生していない状態における第1電圧VDC1や第2電圧VDC2を基準とした場合、1.5[p.u]程度の大きさである。 The lightning arrester 15 absorbs the surge voltage generated when the mechanical circuit breaker 10 is controlled to the closed state. The limiting voltage of the lightning arrester 15 is 1.5 [p.] When the first voltage VDC1 and the second voltage VDC2 are used as a reference in a state where no abnormality such as an accident has occurred in the DC system. u] is about the size.
 転流スイッチ50は、例えば、機械式スイッチである。具体的には、転流スイッチ50は、一対の電極を有し、制御部100の制御に基づいて電極のうち少なくとも一方を移動させて電極間の距離を近づけ、電極間の絶縁性能を開状態よりも下げて絶縁破壊させることで閉状態にさせる接触方式スイッチである。転流スイッチ50は、「第1スイッチ」の一例である。 The commutation switch 50 is, for example, a mechanical switch. Specifically, the commutation switch 50 has a pair of electrodes, and at least one of the electrodes is moved based on the control of the control unit 100 to bring the distance between the electrodes closer, and the insulation performance between the electrodes is opened. It is a contact type switch that closes by lowering it and breaking the insulation. The commutation switch 50 is an example of a “first switch”.
 なお、転流スイッチ50は、非接触方式スイッチであってもよい。この場合、転流スイッチ50は、固定された一対の電極を有し、制御部100の制御に基づいて電極間の絶縁性能を開状態よりも下げて絶縁破壊させることで閉状態にさせる。 The commutation switch 50 may be a non-contact switch. In this case, the commutation switch 50 has a pair of fixed electrodes, and the insulation performance between the electrodes is lowered from the open state to break down the insulation based on the control of the control unit 100, so that the commutation switch 50 is closed.
 転流コンデンサ60は、例えば、初期状態において不図示の充電装置によって、正極端子と負極端子との間に生じる電圧(以下、コンデンサ電圧)が、直流系統に事故等の異常が発生していない状態における第1電圧VDC1や第2電圧VDC2と一致、又は略一致するように充電される。初期状態とは、例えば、直流遮断器1の設置時や、直流遮断器1の運用開始時である。充電装置は、例えば、直流系統の系統電圧を印加することによって転流コンデンサ60を充電してもよく、直流系統の系統電圧以外の外部電源によって転流コンデンサ60を充電してもよい。転流コンデンサ60は、例えば、数~数十[μF]程度の充電容量を有するコンデンサである。 The commutation capacitor 60 is, for example, in a state in which the voltage generated between the positive electrode terminal and the negative electrode terminal (hereinafter referred to as the capacitor voltage) by a charging device (not shown) in the initial state does not cause an abnormality such as an accident in the DC system. It is charged so as to match or substantially match the first voltage VDC1 and the second voltage VDC2 in the above. The initial state is, for example, when the DC circuit breaker 1 is installed or when the operation of the DC circuit breaker 1 is started. The charging device may charge the commutation capacitor 60 by applying a system voltage of the DC system, for example, or may charge the commutation capacitor 60 by an external power source other than the system voltage of the DC system. The commutation capacitor 60 is, for example, a capacitor having a charging capacity of several to several tens [μF].
 転流コンデンサ60と、転流リアクトル70とは、転流スイッチ50が閉状態に制御されることに伴い、LC共振回路を構成し、転流コンデンサ60のコンデンサ成分と、転流リアクトル70のリアクトル成分とに応じた共振周波数によって直流系統電流を共振させ、直流系統電流が0[A]となるタイミングを生成する。以下、直流系統電流が0[A]となるタイミングを生成することを、「ゼロ点を生成する」とも記載する。転流リアクトル70は、後述する時刻tg~thまでの再閉路時間が、所定の再閉路時間を確保しつつ、予め定められた再閉路時間の最大値を超えない範囲となるように、転流コンデンサ60の容量に応じた値が設定される。 The commutation capacitor 60 and the commutation reactor 70 form an LC resonance circuit as the commutation switch 50 is controlled to a closed state, and the capacitor component of the commutation capacitor 60 and the reactor of the commutation reactor 70 are formed. The DC system current is resonated by the resonance frequency corresponding to the component, and the timing at which the DC system current becomes 0 [A] is generated. Hereinafter, generating the timing at which the DC system current becomes 0 [A] is also described as "generating a zero point". The commutation reactor 70 is commutated so that the reclosing time from the time tg to th, which will be described later, does not exceed a predetermined maximum value of the reclosing time while ensuring a predetermined reclosing time. A value is set according to the capacity of the capacitor 60.
 サージスイッチ80は、例えば、機械式スイッチである。サージスイッチ80は、「第2スイッチ」の一例である。 The surge switch 80 is, for example, a mechanical switch. The surge switch 80 is an example of a “second switch”.
 サージ抵抗90は、サージスイッチ80が閉状態に制御された状態において、転流スイッチ50が絶縁破壊によって閉状態に制御されることに伴い発生するサージを低減する。サージ抵抗90は、例えば、数百~数k[Ω]程度の抵抗値の抵抗である。 The surge resistor 90 reduces the surge generated when the commutation switch 50 is controlled to the closed state by dielectric breakdown while the surge switch 80 is controlled to the closed state. The surge resistor 90 is, for example, a resistor having a resistance value of about several hundred to several k [Ω].
 以下、図2~図11を参照して、直流遮断器1の各状態を説明する。また、図12を参照して、直流遮断器1の各部の開閉状態の経時的変化、又は各部の電気的な経時変化を説明する。図12は、直流遮断器1に係る経時変化の一例を示すグラフである。図12において、横軸は、時間を示す。波形W10は、機械式遮断器10の開閉状態を示し、波形W12は、サージスイッチ80の開閉状態を示し、波形W14は、転流スイッチ50の開閉状態を示し、波形W16は、断路器の開閉状態を示す。波形W10~W16において、「C」は、閉状態(Close)を表し、「O」は、開状態(Open)を表す。 Hereinafter, each state of the DC circuit breaker 1 will be described with reference to FIGS. 2 to 11. Further, with reference to FIG. 12, a time-dependent change in the open / closed state of each part of the DC circuit breaker 1 or an electrical time-dependent change in each part will be described. FIG. 12 is a graph showing an example of a change with time of the DC circuit breaker 1. In FIG. 12, the horizontal axis represents time. The waveform W10 indicates the open / closed state of the mechanical circuit breaker 10, the waveform W12 indicates the open / closed state of the surge switch 80, the waveform W14 indicates the open / closed state of the commutation switch 50, and the waveform W16 indicates the open / closed state of the disconnector. Indicates the state. In the waveforms W10 to W16, "C" represents a closed state (Close), and "O" represents an open state (Open).
 また、波形W20~W26は、直流遮断器1に係る電流の経時変化を示す波形であり、波形W20~W26の縦軸は、電流の大きさを示す。波形W20~W26において、第1直流送電線路LN1から第2直流送電線路LN2の方向に流れる直流系統電流の値を正の値で示し、第2直流送電線路LN2から第1直流送電線路LN1の方向に流れる直流系統電流の値を負の値で示すものとする。 Further, the waveforms W20 to W26 are waveforms showing the time course of the current related to the DC circuit breaker 1, and the vertical axis of the waveforms W20 to W26 shows the magnitude of the current. In the waveforms W20 to W26, the value of the DC system current flowing in the direction from the first DC transmission line LN1 to the second DC transmission line LN2 is shown as a positive value, and the direction from the second DC transmission line LN2 to the first DC transmission line LN1. The value of the DC system current flowing through is indicated by a negative value.
 波形W20は、直流系電流の経時変化を示す波形である。波形W22は、機械式遮断器10に流れる電流の経時変化を示す波形である。波形W24は、転流コンデンサ60に流れる電流の経時変化を示す波形である。波形W26は、避雷器15に流れる電流の経時変化を示す波形である。 The waveform W20 is a waveform showing a change over time in the direct current system. The waveform W22 is a waveform showing a change over time in the current flowing through the mechanical circuit breaker 10. The waveform W24 is a waveform showing a change over time in the current flowing through the commutation capacitor 60. The waveform W26 is a waveform showing a change over time in the current flowing through the lightning arrester 15.
 波形W30,W32は、直流遮断器1に係る電圧の経時変化を示す波形であり、波形W30,W32の縦軸は、電圧の大きさを示す。波形W30は、機械式遮断器10の電極間にかかる電圧の経時変化を示す波形である。波形W34は、コンデンサ電圧の経時変化を示す波形である。 The waveforms W30 and W32 are waveforms showing the time course of the voltage related to the DC circuit breaker 1, and the vertical axis of the waveforms W30 and W32 shows the magnitude of the voltage. The waveform W30 is a waveform showing a change over time in the voltage applied between the electrodes of the mechanical circuit breaker 10. The waveform W34 is a waveform showing a change over time in the capacitor voltage.
[導通状態から異常発生まで]
 図1に示す通り、直流遮断器1によって第1直流送電線路LN1と、第2直流送電線路LN2とが電気的に導通されている状態(以下、導通状態)において、制御部100は、各部を以下のような状態に制御する。図12において導通状態とは、時刻t0~taの間である。
・機械式遮断器10:閉状態
・避雷器15:停止状態
・第1断路器20:閉状態
・第2断路器30:閉状態
・転流スイッチ50:開状態
・サージスイッチ80:開状態
・転流コンデンサ60:充電された状態
[From continuity to abnormal occurrence]
As shown in FIG. 1, in a state where the first DC power transmission line LN1 and the second DC power transmission line LN2 are electrically conducted by the DC circuit breaker 1 (hereinafter referred to as a conduction state), the control unit 100 sets each unit. Control to the following states. In FIG. 12, the conduction state is between time t0 and ta.
-Mechanical circuit breaker 10: Closed state-Lightning arrester 15: Stopped state-First disconnector 20: Closed state-Second disconnector 30: Closed state-Commutation switch 50: Open state-Surge switch 80: Open state-Rolling Flow capacitor 60: Charged state
 図2は、直流系統に発生した異常を模式的に示す図である。図2において、第2直流送電線路LN2には、地絡事故が発生し、第2電圧VDC2が接地電位となっている。図12に示す通り、地絡事故は、時刻taに発生する。このため、波形W20~W22が示す通り、直流系統電流、及び機械式遮断器10に流れる電流は、時刻t0から時刻taまでの間、所定の値を保持し、時刻taから転流回路40が動作するまで(後述する時刻tdまで)の間、上昇する。 FIG. 2 is a diagram schematically showing an abnormality occurring in a DC system. In FIG. 2, a ground fault has occurred in the second DC transmission line LN2, and the second voltage VDC2 has a ground potential. As shown in FIG. 12, the ground fault occurs at time ta. Therefore, as shown by the waveforms W20 to W22, the DC system current and the current flowing through the mechanical circuit breaker 10 hold predetermined values from the time t0 to the time ta, and the commutation circuit 40 moves from the time ta to the time ta. It rises until it operates (until the time td described later).
[異常発生後]
 図3は、機械式遮断器10が機械的開状態に制御された直流遮断器1の状態を示す図である。検出装置は、直流系統に異常が発生することに伴い、遮断指示信号を直流遮断器1に送信する。制御部100は、時刻tbにおいて検出装置から遮断指示信号を受信し、機械式遮断器10を開状態に制御する。この時の直流遮断器1の各部の状態は、以下のとおりである。
・機械式遮断器10:機械的開状態
・避雷器15:停止状態
・第1断路器20:閉状態
・第2断路器30:閉状態
・転流スイッチ50:開状態
・サージスイッチ80:開状態
・転流コンデンサ60:充電された状態
[After an abnormality occurs]
FIG. 3 is a diagram showing a state of the DC circuit breaker 1 in which the mechanical circuit breaker 10 is controlled to the mechanically open state. The detection device transmits a cutoff instruction signal to the DC circuit breaker 1 when an abnormality occurs in the DC system. The control unit 100 receives a cutoff instruction signal from the detection device at time tb, and controls the mechanical circuit breaker 10 in the open state. The state of each part of the DC circuit breaker 1 at this time is as follows.
-Mechanical circuit breaker 10: Mechanically open state-Lightning arrester 15: Stopped state-First disconnector 20: Closed state-Second disconnector 30: Closed state-Commutation switch 50: Open state-Surge switch 80: Open state・ Commuting capacitor 60: Charged state
 図12の波形W10が示す通り、機械式遮断器10は、時刻tbにおいて閉状態に制御され、電極間が物理的に離される。ただし、機械式遮断器10は、電極間が物理的に離されても、電極間にアークが生じるため、電気的には遮断されない(つまり、機械的開状態となる)。したがって、波形W20~W22が示す通り、直流系統電流、及び機械式遮断器10に流れる電流が時刻tb~tcの間も、上昇する。 As shown by the waveform W10 in FIG. 12, the mechanical circuit breaker 10 is controlled to be closed at time tb, and the electrodes are physically separated from each other. However, in the mechanical circuit breaker 10, even if the electrodes are physically separated from each other, an arc is generated between the electrodes, so that the mechanical circuit breaker 10 is not electrically cut off (that is, it is in a mechanically open state). Therefore, as the waveforms W20 to W22 show, the DC system current and the current flowing through the mechanical circuit breaker 10 increase even during the time tb to tk.
[サージ抑制]
 図4は、サージスイッチ80が閉状態に制御された直流遮断器1の状態を示す図である。制御部100は、転流スイッチ50を閉状態にすることに伴うサージを低減させるため、時刻tcにおいて、サージスイッチ80を閉状態に制御する(図12参照)。この時の直流遮断器1の各部の状態は、以下のとおりである。
・機械式遮断器10:機械的開状態
・避雷器15:停止状態
・第1断路器20:閉状態
・第2断路器30:閉状態
・転流スイッチ50:開状態
・サージスイッチ80:閉状態
・転流コンデンサ60:わずかに放電を開始する状態
[Surge suppression]
FIG. 4 is a diagram showing a state of the DC circuit breaker 1 in which the surge switch 80 is controlled to the closed state. The control unit 100 controls the surge switch 80 to be closed at time ct in order to reduce the surge associated with closing the commutation switch 50 (see FIG. 12). The state of each part of the DC circuit breaker 1 at this time is as follows.
-Mechanical circuit breaker 10: Mechanically open state-Lightning arrester 15: Stopped state-First disconnector 20: Closed state-Second disconnector 30: Closed state-Commutation switch 50: Open state-Surge switch 80: Closed state・ Commuting capacitor 60: A state in which discharge is slightly started.
 図4において、サージスイッチ80は、制御部100によって機械的に閉状態に制御されて電極間が接する以前に、電極間で絶縁破壊を起こすことによってアークが発生して、電気的に導通状態となる。したがって、サージスイッチ80が閉状態に制御されることによりサージが発生するが、このサージは、サージ抵抗90により抑制される。また、サージスイッチ80が閉状態に制御されることに伴い、直流遮断器1内では、機械式遮断器10、転流リアクトル70、転流コンデンサ60、サージ抵抗90、及びサージスイッチ80のループに、予め充電されていた転流コンデンサ60のコンデンサ電圧と、サージ抵抗90と、転流リアクトル70とが作用し、微小な転流電流L3が流れ始める。 In FIG. 4, the surge switch 80 is mechanically controlled to be in a closed state by the control unit 100, and before the electrodes come into contact with each other, an arc is generated by causing dielectric breakdown between the electrodes, and the surge switch 80 is in an electrically conductive state. Become. Therefore, a surge is generated by controlling the surge switch 80 in the closed state, and this surge is suppressed by the surge resistance 90. Further, as the surge switch 80 is controlled to the closed state, in the DC circuit breaker 1, the loop of the mechanical circuit breaker 10, the commutation reactor 70, the commutation capacitor 60, the surge resistance 90, and the surge switch 80 , The capacitor voltage of the commutation capacitor 60 that has been charged in advance, the surge resistance 90, and the commutation reactor 70 act, and a minute commutation current L3 begins to flow.
 この微小の転流電流L3が流れることによって、転流コンデンサ60が放電されるため、図12の波形W24が示す通り、時刻tcから転流回路40が動作するまでの間、転流コンデンサ60に流れる電流がわずかに上昇する。また、これに伴い、波形W32が示す通り、時刻tcから転流回路40が動作するまでの間、転流コンデンサ60のコンデンサ電圧がわずかに減少する。 Since the commutation capacitor 60 is discharged by the flow of this minute commutation current L3, the commutation capacitor 60 is charged from the time ct until the commutation circuit 40 operates, as shown by the waveform W24 in FIG. The flowing current rises slightly. Along with this, as shown by the waveform W32, the capacitor voltage of the commutation capacitor 60 slightly decreases from the time ct until the commutation circuit 40 operates.
[転流回路動作]
 図5は、転流スイッチ50が閉状態に制御された直流遮断器1の状態を示す図である。制御部100は、時刻tdにおいて転流スイッチ50を閉状態にし、転流回路40を動作させる(図12参照)。上述したように、サージ抵抗90によって既にサージが抑制されているため、転流スイッチ50が閉状態に制御された場合であっても、サージが発生しない、或いは周辺回路素子や他の周辺機器が誤動作や故障しない程度にサージが十分に抑制される。この時の各部の状態は、以下のとおりである。
・機械式遮断器10:機械的開状態
・避雷器15:停止状態
・第1断路器20:閉状態
・第2断路器30:閉状態
・転流スイッチ50:閉状態
・サージスイッチ80:閉状態
・転流コンデンサ60:放電状態
[Commutation circuit operation]
FIG. 5 is a diagram showing a state of the DC circuit breaker 1 in which the commutation switch 50 is controlled to the closed state. The control unit 100 closes the commutation switch 50 at time td and operates the commutation circuit 40 (see FIG. 12). As described above, since the surge is already suppressed by the surge resistance 90, the surge does not occur even when the commutation switch 50 is controlled to the closed state, or peripheral circuit elements and other peripheral devices are used. Surge is sufficiently suppressed to the extent that it does not malfunction or break down. The state of each part at this time is as follows.
-Mechanical circuit breaker 10: Mechanically open state-Lightning arrester 15: Stopped state-First disconnector 20: Closed state-Second disconnector 30: Closed state-Commutation switch 50: Closed state-Surge switch 80: Closed state・ Disconnecting capacitor 60: Discharged state
 転流スイッチ50が閉状態に制御されることに伴い、直流遮断器1内では、機械式遮断器10、転流リアクトル70、転流コンデンサ60、転流スイッチ50のループに、予め充電されていた転流コンデンサ60のコンデンサ電圧と、転流リアクトル70とが作用し、上述した図4の場面において流れた微小な転流電流L3に比して大きな転流電流L3が流れ始める。転流電流L3の方向は、転流コンデンサ60の正極端子と負極端子の接続方向や直流系統に発生した事故の場所等によって異なる。転流電流L3の方向が、直流系統電流の流れる方向と同じ(つまり、同極性)の場合、転流電流L3には、時刻tdから共振周波数の1/2~3/4周期までの間にゼロ点が生成される。また、転流電流L3の方向が直流系統電流の流れる方向と違う(つまり、逆極性)の場合、転流電流L3には、時刻tdから共振周波数の1/4周期までの間にゼロ点が生成される。本実施形態では、転流電流L3は、直流系統電流と同極性の電流である場合について説明する。 As the commutation switch 50 is controlled to the closed state, the loops of the mechanical circuit breaker 10, the commutation reactor 70, the commutation capacitor 60, and the commutation switch 50 are precharged in the DC circuit breaker 1. The capacitor voltage of the commutation capacitor 60 and the commutation reactor 70 act, and a commutation current L3 that is larger than the minute commutation current L3 that flowed in the scene of FIG. 4 described above starts to flow. The direction of the commutation current L3 differs depending on the connection direction between the positive electrode terminal and the negative electrode terminal of the commutation capacitor 60, the location of the accident that occurred in the DC system, and the like. When the direction of the commutation current L3 is the same as the direction in which the DC system current flows (that is, the same polarity), the commutation current L3 has a commutation current L3 between the time td and 1/2 to 3/4 of the resonance frequency. A zero point is generated. Further, when the direction of the commutation current L3 is different from the direction in which the DC system current flows (that is, the polarity is opposite), the commutation current L3 has a zero point between the time td and the quarter period of the resonance frequency. Will be generated. In the present embodiment, the case where the commutation current L3 is a current having the same polarity as the DC system current will be described.
 機械式遮断器10には、時刻td以降、転流コンデンサ60のコンデンサ成分と、転流リアクトル70のリアクトル成分とに応じた共振周波数によって共振した転流電流L3が流れる。具体的には、図12の波形W22と波形W24が示すように、機械式遮断器10と転流コンデンサ60には、時刻tdから共振周波数の3/4周期が経過する時刻teまでの間、共振周波数の3/4波未満の転流電流L3が流れ、時刻teにおいてゼロ点が生成される。また、波形W32が示すように、転流コンデンサ60が作用して転流電流L3が流れるため、時刻tdから時刻teまでの間、コンデンサ電圧が減少する。 After time td, a commutation current L3 resonating at a resonance frequency corresponding to the capacitor component of the commutation capacitor 60 and the reactor component of the commutation reactor 70 flows through the mechanical circuit breaker 10. Specifically, as shown by the waveforms W22 and W24 in FIG. 12, the mechanical breaker 10 and the commutation capacitor 60 are provided with the mechanical breaker 10 and the commutation capacitor 60 during the period from the time td to the time te when the 3/4 cycle of the resonance frequency elapses. A commutation current L3 with a resonance frequency of less than 3/4 wave flows, and a zero point is generated at time te. Further, as shown by the waveform W32, since the commutation capacitor 60 acts and the commutation current L3 flows, the capacitor voltage decreases from the time td to the time te.
[機械式遮断器10の電気的遮断]
 図6は、機械式遮断器10が電気的に開状態に制御された直流遮断器1の状態を示す図である。制御部100は、時刻teにおいて機械式遮断器10に流れる転流電流L3にゼロ点が生成されたことに伴い、機械式遮断器10を電気的に開状態に制御する。制御部100は、例えば、ゼロ点が生成されたことに伴い、ガス遮断や真空遮断によってアークを消弧して、機械式遮断器10を電気的に開状態に制御する。また、図6に示すように、機械式遮断器10が電気的に開状態に制御されることに伴い、直流系統電流は、第1直流送電線路LN1から、第1断路器20、転流スイッチ50、転流コンデンサ60、転流リアクトル70、及び第2断路器30の経路を介して第2直流送電線路LN2に流れる。この時の各部の状態は、以下のとおりである。
・機械式遮断器10:機械的にも電気的にも開状態
・避雷器15:停止状態
・第1断路器20:閉状態
・第2断路器30:閉状態
・転流スイッチ50:閉状態
・サージスイッチ80:閉状態
・転流コンデンサ60:放電状態
[Electrical circuit breaker 10]
FIG. 6 is a diagram showing a state of the DC circuit breaker 1 in which the mechanical circuit breaker 10 is electrically controlled to be in the open state. The control unit 100 electrically controls the mechanical circuit breaker 10 in an open state when a zero point is generated in the commutation current L3 flowing through the mechanical circuit breaker 10 at time te. The control unit 100 electrically controls the mechanical circuit breaker 10 in an open state by extinguishing the arc by, for example, gas shutoff or vacuum cutoff when a zero point is generated. Further, as shown in FIG. 6, as the mechanical circuit breaker 10 is electrically controlled to be in the open state, the DC system current is changed from the first DC transmission line LN1 to the first disconnector 20 and the commutation switch. It flows to the second DC transmission line LN2 through the path of 50, the commutation capacitor 60, the commutation reactor 70, and the second disconnector 30. The state of each part at this time is as follows.
-Mechanical circuit breaker 10: Open mechanically and electrically-Lightning arrester 15: Stopped-First disconnector 20: Closed-Second disconnector 30: Closed-Commuting switch 50: Closed- Surge switch 80: Closed state / commutation capacitor 60: Discharged state
 図12の波形W10が示すように、機械式遮断器10は、時刻teにおいてアークが消弧され、時刻te以降、機械的にも電気的にも開状態に制御される。また、波形W30が示すように、機械的にも電気的にも開状態に制御された機械式遮断器10の電極間には、過渡的な回復電圧が発生するため、時刻teから避雷器15が動作するまで(後述する時刻tfまで)の間、機械式遮断器10の電極間に係る電圧が上昇する。また、波形W24が示すように、時刻teから避雷器15が動作するまでの間、転流コンデンサ60には、充電方向に直流系統電流が流れる。このため、波形W32が示すように、時刻teから避雷器15が動作するまでの間、コンデンサ電圧が上昇する。 As the waveform W10 in FIG. 12 shows, the arc of the mechanical circuit breaker 10 is extinguished at time te, and after time te, the mechanical circuit breaker 10 is controlled to be in an open state both mechanically and electrically. Further, as shown by the waveform W30, since a transient recovery voltage is generated between the electrodes of the mechanical circuit breaker 10 that is mechanically and electrically controlled to be in the open state, the lightning arrester 15 is moved from time te. The voltage between the electrodes of the mechanical circuit breaker 10 rises until it operates (until the time tf described later). Further, as shown by the waveform W24, a direct current system current flows in the commutation capacitor 60 from the time te until the lightning arrester 15 operates. Therefore, as shown by the waveform W32, the capacitor voltage rises from the time te until the lightning arrester 15 operates.
[避雷器15の動作]
 図7は、避雷器15が動作した直流遮断器1の状態を示す図である。上述したように、時刻te以降、機械式遮断器10の電極間には、過渡的な回復電圧が発生するため、機械式遮断器10の電極間にかかる電圧(つまり、避雷器15の両端にかかる電圧)が上昇する。そして、機械式遮断器10の電極間に係る電圧は、避雷器15の動作電圧に到達し、避雷器15が動作する。避雷器15が動作することに伴い、直流系統電流は、第1直流送電線路LN1から、第1断路器20、避雷器15、第2断路器30の経路を介して第2直流送電線路LN2に流れる。この時の各部の状態は、以下のとおりである。
・機械式遮断器10:機械的にも電気的にも開状態
・避雷器15:動作状態
・第1断路器20:閉状態
・第2断路器30:閉状態
・転流スイッチ50:閉状態
・サージスイッチ80:閉状態
・転流コンデンサ60:ほぼ充放電をしていない状態
[Operation of lightning arrester 15]
FIG. 7 is a diagram showing a state of the DC circuit breaker 1 in which the lightning arrester 15 is operated. As described above, since the transient recovery voltage is generated between the electrodes of the mechanical circuit breaker 10 after the time te, the voltage applied between the electrodes of the mechanical circuit breaker 10 (that is, it is applied to both ends of the lightning arrester 15). Voltage) rises. Then, the voltage between the electrodes of the mechanical circuit breaker 10 reaches the operating voltage of the lightning arrester 15, and the lightning arrester 15 operates. As the lightning arrester 15 operates, the DC system current flows from the first DC transmission line LN1 to the second DC transmission line LN2 via the paths of the first disconnector 20, the lightning arrester 15, and the second disconnector 30. The state of each part at this time is as follows.
-Mechanical circuit breaker 10: Open mechanically and electrically-Lightning arrester 15: Operating state-First disconnector 20: Closed-Second disconnector 30: Closed-Commuting switch 50: Closed- Surge switch 80: Closed state / commutation capacitor 60: Almost no charge / discharge
 図12の波形W30が示すように、時刻tfにおいて機械式遮断器10の電極間に係る電圧は、避雷器15の動作電圧に到達する。そして、波形W26が示すように、時刻tfにおいて避雷器15が動作を開始し、回復電圧を吸収する。このため、波形W26が示すように、時刻tfにおいて急峻に増加した避雷器15に流れる電流が、時刻tfから時刻tgまでの間徐々に減少し、時刻tgにおいて0[A]となる。これに伴い、波形W20が示すように、時刻tfから時刻tgまでの間、直流系統電流が徐々に減少する。 As the waveform W30 of FIG. 12 shows, the voltage between the electrodes of the mechanical circuit breaker 10 reaches the operating voltage of the lightning arrester 15 at time tf. Then, as shown by the waveform W26, the lightning arrester 15 starts operating at time tf and absorbs the recovery voltage. Therefore, as shown by the waveform W26, the current flowing through the lightning arrester 15 that has increased sharply at the time tf gradually decreases from the time tf to the time tg, and becomes 0 [A] at the time tg. Along with this, as the waveform W20 shows, the DC system current gradually decreases from the time tf to the time tg.
 また、この時、第1直流送電線路LN1から転流回路40の方向には、直流系統電流がほとんど流れない。そのため、波形W30が示す機械式遮断器10の電極間に係る電圧と、波形W32が示すコンデンサ電圧とは、時刻tfから時刻tgまでの間、時刻tfのタイミングにおける値を保持する。波形W16が示すように、時刻tfから時刻tgまでの間、転流スイッチ50の電極間に生じるアークが消弧する。 At this time, almost no DC system current flows from the first DC transmission line LN1 in the direction of the commutation circuit 40. Therefore, the voltage between the electrodes of the mechanical circuit breaker 10 shown by the waveform W30 and the capacitor voltage shown by the waveform W32 hold the values at the timing of the time tf from the time tf to the time tg. As the waveform W16 shows, the arc generated between the electrodes of the commutation switch 50 is extinguished from the time tf to the time tg.
[転流コンデンサ60の充電]
 図8は、転流コンデンサ60を充電する状態に制御された直流遮断器1の状態を示す図である。避雷器15が回復電圧を抑制し終えると、直流系統電流は、第1直流送電線路LN1から第1断路器20、転流スイッチ50、転流コンデンサ60、転流リアクトル70、及び第2断路器30の経路を介して第2直流送電線路LN2に流れる。この時の各部の状態は、以下のとおりである。
・機械式遮断器10:機械的にも電気的にも開状態
・避雷器15:停止状態
・第1断路器20:閉状態
・第2断路器30:閉状態
・転流スイッチ50:閉状態
・サージスイッチ80:閉状態
・転流コンデンサ60:充電状態
[Charging the commutation capacitor 60]
FIG. 8 is a diagram showing a state of the DC circuit breaker 1 controlled in a state of charging the commutation capacitor 60. When the lightning arrester 15 finishes suppressing the recovery voltage, the DC system current is changed from the first DC transmission line LN1 to the first disconnector 20, the commutation switch 50, the commutation condenser 60, the commutation reactor 70, and the second disconnector 30. It flows to the second DC transmission line LN2 via the path of. The state of each part at this time is as follows.
-Mechanical circuit breaker 10: Open mechanically and electrically-Lightning arrester 15: Stopped-First disconnector 20: Closed-Second disconnector 30: Closed-Commuting switch 50: Closed- Surge switch 80: Closed state / commutation capacitor 60: Charged state
 図12の波形W20が示すように、直流系統電流は、時刻tgから転流コンデンサ60が過渡振動を終える時刻thまでの間、振動する。直流系統電流の振動は、過渡振動が落ち着くにつれて減衰する。このため、直流系統電流は、時刻tgから時刻thにかけて徐々に収束する。また、波形W24が示すように、転流コンデンサ60には、過渡振動により振動する直流系統電が流れる。このため、波形W32が示すように、コンデンサ電圧は、時刻tgから時刻thまでの間、過渡振動により振動しつつも、徐々に所定の電圧に収束する。所定の電圧とは、第1電圧VDC1と一致、又は略一致する電圧である。 As shown by the waveform W20 in FIG. 12, the DC system current oscillates from the time tg to the time th when the commutation capacitor 60 ends the transient vibration. The vibration of the DC system current is damped as the transient vibration subsides. Therefore, the DC system current gradually converges from the time tg to the time th. Further, as shown by the waveform W24, a DC system electric voltage vibrating due to transient vibration flows through the commutation capacitor 60. Therefore, as shown by the waveform W32, the capacitor voltage gradually converges to a predetermined voltage while oscillating due to transient vibration from time tg to time th. The predetermined voltage is a voltage that matches or substantially matches the first voltage VDC1.
 時刻tgから時刻thまでの間は、再閉路時間の一例である。再閉路時間は、直流遮断器1が第1直流送電線路LN1と、第2直流送電線路LN2とを電気的に遮断させてから、再度電気的に導通させるまでの時間である。上述したように、転流コンデンサ60の容量や転流リアクトル70の値は、所定の再閉路時間を確保しつつ、予め定められた再閉路時間の最大値を超えない範囲で過渡振動が収束するように設定される。 The period from time tg to time th is an example of the reclosing time. The reclosing time is the time from when the DC circuit breaker 1 electrically cuts off the first DC transmission line LN1 and the second DC transmission line LN2 until it is electrically conducted again. As described above, the capacitance of the commutation capacitor 60 and the value of the commutation reactor 70 ensure the predetermined reclosing time, and the transient vibration converges within a range not exceeding the predetermined maximum value of the reclosing time. Is set.
 ここで、コンデンサ電圧が所定の電圧に収束するよりも前に、転流スイッチ50の電極間の絶縁性能が回復し、転流スイッチ50のアークが裁断され、又は電流のゼロ点によってアークが消弧し、開状態となってしまう場合がある。この場合、転流コンデンサ60は、第1直流送電線路LN1からサージスイッチ80、及びサージ抵抗90の経路を介して第2直流送電線路LN2に流れる直流系統電流によって、所定の電圧まで充電される。 Here, before the capacitor voltage converges to a predetermined voltage, the insulation performance between the electrodes of the commutation switch 50 is restored, the arc of the commutation switch 50 is cut, or the arc is extinguished by the zero point of the current. It may arc and become open. In this case, the commutation capacitor 60 is charged to a predetermined voltage by the DC system current flowing from the first DC transmission line LN1 to the second DC transmission line LN2 via the path of the surge switch 80 and the surge resistance 90.
[転流スイッチ50の開状態]
 図9は、転流スイッチ50が開状態に制御された直流遮断器1の状態を示す図である。制御部100は、時刻tg以降、転流コンデンサ60のコンデンサ電圧が所定の電圧であるか否かを判定する。制御部100は、例えば、直流系統電流の過渡振動が収束している場合、転流コンデンサ60が所定の電圧まで充電されたと判定する。制御部100は、転流コンデンサ60が所定の電圧まで充電されたと判定した場合、転流スイッチ50を開状態に制御する。この時の各部の状態は、以下のとおりである。
・機械式遮断器10:機械的にも電気的にも開状態
・避雷器15:停止状態
・第1断路器20:閉状態
・第2断路器30:閉状態
・転流スイッチ50:開状態
・サージスイッチ80:閉状態
・転流コンデンサ60:充電された状態
[Open state of commutation switch 50]
FIG. 9 is a diagram showing a state of the DC circuit breaker 1 in which the commutation switch 50 is controlled to be in the open state. The control unit 100 determines whether or not the capacitor voltage of the commutation capacitor 60 is a predetermined voltage after the time tg. For example, when the transient vibration of the DC system current has converged, the control unit 100 determines that the commutation capacitor 60 has been charged to a predetermined voltage. When the control unit 100 determines that the commutation capacitor 60 has been charged to a predetermined voltage, the control unit 100 controls the commutation switch 50 to be in the open state. The state of each part at this time is as follows.
・ Mechanical circuit breaker 10: Open mechanically and electrically ・ Lightning arrester 15: Stopped ・ First disconnector 20: Closed ・ Second disconnector 30: Closed ・ Commuting switch 50: Open ・Surge switch 80: Closed state / commutation capacitor 60: Charged state
 図12の波形W20が示すように、制御部100は、時刻thにおいて転流コンデンサ60が所定の電圧まで充電されたと判定し、転流スイッチ50を開状態に制御する。 As shown by the waveform W20 in FIG. 12, the control unit 100 determines that the commutation capacitor 60 has been charged to a predetermined voltage at time th, and controls the commutation switch 50 to be in the open state.
[直流系統遮断]
 図10は、第1断路器20、及び第2断路器30が開状態に制御された直流遮断器1の状態を示す図である。図11は、サージスイッチ80が開状態に制御された直流遮断器1の状態を示す図である。制御部100は、転流スイッチ50を開状態に制御した後、第1断路器20、及び第2断路器30を開状態に制御する。そして、制御部100は、第1断路器20、及び第2断路器30を開状態に制御した後、サージスイッチ80を開状態に制御する。図11の場面における各部の状態は、以下のとおりである。
・機械式遮断器10:機械的にも電気的にも開状態
・避雷器15:停止状態
・第1断路器20:開状態
・第2断路器30:開状態
・転流スイッチ50:開状態
・サージスイッチ80:開状態
・転流コンデンサ60:充電された状態
[DC system cutoff]
FIG. 10 is a diagram showing a state of the DC circuit breaker 1 in which the first disconnector 20 and the second disconnector 30 are controlled to be in the open state. FIG. 11 is a diagram showing a state of the DC circuit breaker 1 in which the surge switch 80 is controlled to be in the open state. The control unit 100 controls the commutation switch 50 to be in the open state, and then controls the first disconnector 20 and the second disconnector 30 to be in the open state. Then, the control unit 100 controls the first disconnector 20 and the second disconnector 30 in the open state, and then controls the surge switch 80 in the open state. The state of each part in the scene of FIG. 11 is as follows.
-Mechanical circuit breaker 10: Mechanically and electrically open state-Lightning arrester 15: Stopped state-First disconnector 20: Open state-Second disconnector 30: Open state-Commutation switch 50: Open state- Surge switch 80: Open state / commutation capacitor 60: Charged state
 図12の波形W12が示すように、制御部100は、時刻tiにおいて第1断路器20、及び第2断路器30を開状態に制御する。また、波形W12が示すように、制御部100は、時刻tjにおいてサージスイッチ80を開状態に制御する。 As shown by the waveform W12 in FIG. 12, the control unit 100 controls the first disconnector 20 and the second disconnector 30 in the open state at time ti. Further, as shown by the waveform W12, the control unit 100 controls the surge switch 80 to be in the open state at time tj.
 なお、制御部100は、サージスイッチ80を開状態に制御した後、第1断路器20、及び第2断路器30を開状態に制御してもよく、第1断路器20、及び第2断路器30を順に開状態に制御してもよい。 The control unit 100 may control the first disconnector 20 and the second disconnector 30 in the open state after controlling the surge switch 80 in the open state, and the first disconnector 20 and the second disconnector 20 may be controlled in the open state. The vessel 30 may be controlled to the open state in order.
[動作フロー]
 図13は、直流遮断器1の動作の一例を示すフローチャートである。まず、制御部100は、検出装置から第1直流送電線路LN1と、第2直流送電線路LN2とを電気的に遮断させることを示す遮断指示信号を受信したか否かを判定する(ステップS100)。制御部100は、検出装置から遮断指示信号を受信するまでの間、待機する。制御部100は、遮断指示信号を受信した場合、機械式遮断器10を開状態に制御する(ステップS102)。次に、制御部100は、サージスイッチ80を閉状態に制御する(ステップS104)。この時、サージスイッチ80を閉状態に制御することに伴い発生するサージは、サージ抵抗90によって抑制される。
[Operation flow]
FIG. 13 is a flowchart showing an example of the operation of the DC circuit breaker 1. First, the control unit 100 determines whether or not a cutoff instruction signal indicating that the first DC power transmission line LN1 and the second DC power transmission line LN2 are electrically cut off has been received from the detection device (step S100). .. The control unit 100 waits until the cutoff instruction signal is received from the detection device. When the control unit 100 receives the cutoff instruction signal, the control unit 100 controls the mechanical circuit breaker 10 in the open state (step S102). Next, the control unit 100 controls the surge switch 80 to be in the closed state (step S104). At this time, the surge generated by controlling the surge switch 80 to the closed state is suppressed by the surge resistance 90.
 次に、制御部100は、転流スイッチ50を閉状態に制御する(ステップS106)。この時、サージ抵抗90によってサージが十分に抑制されているため、転流スイッチ50が閉状態となっても、サージが発生しない、或いは周辺回路素子や他の周辺機器が誤動作や故障しない程度にサージが十分に抑制される。また、転流スイッチ50が閉状態に制御されることに伴い、直流遮断器1内では、機械式遮断器10、転流リアクトル70、転流コンデンサ60、転流スイッチ50のループに、予め充電されていた転流コンデンサ60のコンデンサ電圧と、転流リアクトル70とが作用し、転流コンデンサ60のコンデンサ成分と、転流リアクトル70のリアクトル成分とに応じた共振周波数によって共振した転流電流L3が流れる。 Next, the control unit 100 controls the commutation switch 50 to be in the closed state (step S106). At this time, since the surge is sufficiently suppressed by the surge resistance 90, the surge does not occur even when the commutation switch 50 is closed, or the peripheral circuit elements and other peripheral devices do not malfunction or break down. Surge is sufficiently suppressed. Further, as the commutation switch 50 is controlled to the closed state, the loop of the mechanical circuit breaker 10, the commutation reactor 70, the commutation capacitor 60, and the commutation switch 50 is charged in advance in the DC circuit breaker 1. The capacitor voltage of the commutation capacitor 60 and the commutation reactor 70 act on each other, and the commutation current L3 resonates with the resonance frequency corresponding to the capacitor component of the commutation capacitor 60 and the reactor component of the commutation reactor 70. Flows.
 制御部100は、機械式遮断器10に流れる共振性の転流電流L3にゼロ点が生成されたことに伴い、機械式遮断器10を電気的に開状態に制御する(ステップS108)。機械式遮断器10が電気的に開状態に制御されることにより、機械式遮断器10の電極間には、過渡的な回復電圧が発生するため、機械式遮断器10の電極間にかかる電圧(つまり、避雷器15の両端にかかる電圧)が上昇する。そして、機械式遮断器10の電極間に係る電圧は、避雷器15の動作電圧に到達し、避雷器15が動作する(ステップS110)。 The control unit 100 electrically controls the mechanical circuit breaker 10 in an open state when a zero point is generated in the resonant commutation current L3 flowing through the mechanical circuit breaker 10 (step S108). Since the mechanical circuit breaker 10 is electrically controlled to be in the open state, a transient recovery voltage is generated between the electrodes of the mechanical circuit breaker 10, so that the voltage applied between the electrodes of the mechanical circuit breaker 10 is generated. (That is, the voltage applied to both ends of the lightning arrester 15) rises. Then, the voltage between the electrodes of the mechanical circuit breaker 10 reaches the operating voltage of the lightning arrester 15, and the lightning arrester 15 operates (step S110).
 避雷器15が動作することに伴い、直流系統電流は、第1直流送電線路LN1から、第1断路器20、避雷器15、第2断路器30の経路を介して第2直流送電線路LN2に流れる。直流系統電流は、転流コンデンサ60が過渡振動を終えるまでの間、振動する。直流系統電流は、過渡振動が落ち着くにつれて減衰する。また、転流コンデンサ60には、充電方向に直流系統電流が流れるため、コンデンサ電圧は、過渡振動により振動しつつも、徐々に所定の電圧に収束する。所定の電圧とは、第1直流送電線路LN1や第2直流送電線路LN2等の直流系統が供給する直流電圧と一致、又は略一致する電圧である。 As the lightning arrester 15 operates, the DC system current flows from the first DC transmission line LN1 to the second DC transmission line LN2 via the paths of the first disconnector 20, the lightning arrester 15, and the second disconnector 30. The DC system current vibrates until the commutation capacitor 60 finishes the transient vibration. The DC system current is damped as the transient oscillations subside. Further, since a direct current system current flows through the commutating capacitor 60 in the charging direction, the capacitor voltage gradually converges to a predetermined voltage while vibrating due to transient vibration. The predetermined voltage is a voltage that matches or substantially matches the DC voltage supplied by the DC system such as the first DC transmission line LN1 and the second DC transmission line LN2.
 制御部100は、転流コンデンサ60のコンデンサ電圧が所定の電圧であるか否かを判定する(ステップS112)。制御部100は、例えば、直流系統電流の過渡振動が収束している場合、転流コンデンサ60が所定の電圧まで充電されたと判定する。制御部100は、転流コンデンサ60が所定の電圧まで充電されるまでの間、待機する。制御部100は、転流コンデンサ60が所定の電圧まで充電されたと判定した場合、転流スイッチ50を開状態に制御する(ステップS114)。次に、制御部100は、断路器を開状態に制御する(ステップS116)。次に、制御部100は、サージスイッチ80を開状態に制御する(ステップS118)。これにより、直流遮断器1は、第1直流送電線路LN1と、第2直流送電線路LN2とを電気的に遮断させることができる。 The control unit 100 determines whether or not the capacitor voltage of the commutation capacitor 60 is a predetermined voltage (step S112). For example, when the transient vibration of the DC system current has converged, the control unit 100 determines that the commutation capacitor 60 has been charged to a predetermined voltage. The control unit 100 stands by until the commutation capacitor 60 is charged to a predetermined voltage. When the control unit 100 determines that the commutation capacitor 60 has been charged to a predetermined voltage, the control unit 100 controls the commutation switch 50 to be in the open state (step S114). Next, the control unit 100 controls the disconnector to the open state (step S116). Next, the control unit 100 controls the surge switch 80 to be in the open state (step S118). As a result, the DC circuit breaker 1 can electrically cut off the first DC transmission line LN1 and the second DC transmission line LN2.
[実施形態のまとめ]
 以上説明したように、実施形態の直流遮断器1は、機械式遮断器10と、避雷器15と、転流回路40とを持つ。機械式遮断器10は、第1端子10aが第1断路器20を介して第1直流送電線路LN1に接続され、第2端子10bが第2断路器30を介して第2直流送電線路LN2に接続される。転流回路40は、転流スイッチ50と、転流コンデンサ60と、転流リアクトル70と、サージスイッチ80と、サージ抵抗90とを有する。転流回路40と、避雷器15と、機械式遮断器10とは、第1直流送電線路LN1と、第2直流送電線路LN2との間に互いに並列に接続される。転流スイッチ50と、転流コンデンサ60と、転流リアクトル70とは、第1直流送電線路LN1と、第2直流送電線路LN2との間に直列に接続される。サージスイッチ80とサージスイッチ80とが直列に接続されたものが転流スイッチ50と並列に設けられている。
[Summary of Embodiment]
As described above, the DC circuit breaker 1 of the embodiment includes a mechanical circuit breaker 10, a lightning arrester 15, and a commutation circuit 40. In the mechanical circuit breaker 10, the first terminal 10a is connected to the first DC transmission line LN1 via the first disconnector 20, and the second terminal 10b is connected to the second DC transmission line LN2 via the second disconnector 30. Be connected. The commutation circuit 40 includes a commutation switch 50, a commutation capacitor 60, a commutation reactor 70, a surge switch 80, and a surge resistor 90. The commutation circuit 40, the lightning arrester 15, and the mechanical circuit breaker 10 are connected in parallel to each other between the first DC transmission line LN1 and the second DC transmission line LN2. The commutation switch 50, the commutation capacitor 60, and the commutation reactor 70 are connected in series between the first DC transmission line LN1 and the second DC transmission line LN2. A surge switch 80 and a surge switch 80 connected in series are provided in parallel with a commutation switch 50.
 ここで、転流スイッチ50に対して、サージスイッチ80とサージ抵抗90との直列回路が並列に設けられていない場合、コンデンサ電圧が所定の電圧に収束するよりも前に、転流スイッチ50の電極間の絶縁性能が回復し、転流スイッチ50が開状態となってしまう場合がある。コンデンサ電圧が所定の電圧に収束するよりも前に、転流スイッチ50が開状態となってしまうと、次回、第1直流送電線路LN1と、第2直流送電線路LN2とを遮断する際に、十分な転流電流L3を流せるだけの電力が転流コンデンサ60に充電されない、又は余剰な転流電流L3を流すだけの電力が転流コンデンサ60に過充電されてしまう場合がある。 Here, when the series circuit of the surge switch 80 and the surge resistor 90 is not provided in parallel with the commutation switch 50, the commutation switch 50 is set before the capacitor voltage converges to a predetermined voltage. The insulation performance between the electrodes may be restored, and the commutation switch 50 may be opened. If the commutation switch 50 is opened before the capacitor voltage converges to a predetermined voltage, the next time the first DC transmission line LN1 and the second DC transmission line LN2 are cut off, the commutation switch 50 is opened. There are cases where the commutation capacitor 60 is not charged with enough power to pass a sufficient commutation current L3, or the commutation capacitor 60 is overcharged with enough power to pass an excess commutation current L3.
 コンデンサ電圧が直流系統の電圧に対して大きい(つまり、転流コンデンサ60が過充電)の場合、共振性の転流電流L3が大きくなり、時刻td~teの期間の機械式遮断器10に流れる電流ゼロ点の電流変化率(di/dt)が大きくなる可能性が有る。機械式遮断器10の性能によっては、電流変化率(di/dt)が大きい転流電流L3では、電気的に開状態にすることができず、第1直流送電線路LN1と、第2直流送電線路LN2との遮断に失敗する可能性が有る。 When the capacitor voltage is larger than the voltage of the DC system (that is, the commutation capacitor 60 is overcharged), the resonant commutation current L3 becomes large and flows to the mechanical circuit breaker 10 during the period from time td to te. The current change rate (di / dt) at the current zero point may increase. Depending on the performance of the mechanical circuit breaker 10, the commutation current L3 having a large current change rate (di / dt) cannot be electrically opened, and the first DC transmission line LN1 and the second DC power transmission There is a possibility that the interruption with the line LN2 will fail.
 一方、コンデンサ電圧が直流系統の電圧に対して小さい(つまり、転流コンデンサ60が充電不足)の場合、再閉路を行う際の共振性の転流電流L3が小さくなり、機械式遮断器10に流れる転流電流L3によってゼロ点を生成できず、第1直流送電線路LN1と、第2直流送電線路LN2との遮断に失敗する可能性が有る。 On the other hand, when the capacitor voltage is smaller than the voltage of the DC system (that is, the commutation capacitor 60 is insufficiently charged), the resonant commutation current L3 at the time of reclosing is reduced, and the mechanical circuit breaker 10 is used. The zero point cannot be generated by the commutating current L3 that flows, and there is a possibility that the disconnection between the first DC transmission line LN1 and the second DC transmission line LN2 fails.
 実施形態の直流遮断器1によれば、転流スイッチ50に対して、サージスイッチ80とサージ抵抗90との直列回路が並列に設けられていることにより、転流スイッチ50の電極間の電流が裁断または電流のゼロ点にて消弧しても、転流コンデンサ60には、サージスイッチ80とサージ抵抗90を介して直流系統電流が流れ続けるので、転流コンデンサ60を確実に所定の電圧まで充電することができる。したがって、本実施形態の直流遮断器1は、サージを抑制しつつ、適切に再閉路を行うことができる。 According to the DC breaker 1 of the embodiment, the series circuit of the surge switch 80 and the surge resistance 90 is provided in parallel with the commutation switch 50, so that the current between the electrodes of the commutation switch 50 is increased. Even if the arc is cut or extinguished at the zero point of the current, the DC system current continues to flow through the surge switch 80 and the surge resistor 90 in the commutation capacitor 60, so that the commutation capacitor 60 is surely brought to a predetermined voltage. It can be charged. Therefore, the DC circuit breaker 1 of the present embodiment can appropriately reclose the circuit while suppressing the surge.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, as well as in the scope of the invention described in the claims and the equivalent scope thereof.
1…直流遮断器、10…機械式遮断器、10a、20a、30a、40a、50a、80a…第1端子、10b、20b、30b、40b、50b、80b…第2端子、15…避雷器、20…第1断路器、30…第2断路器、40…転流回路、50…転流スイッチ、60…転流コンデンサ、70…転流リアクトル、80…サージスイッチ、90…サージ抵抗、100…制御部、L3…転流電流、LN1…第1直流送電線路、LN2…第2直流送電線路 1 ... DC disconnector, 10 ... Mechanical disconnector, 10a, 20a, 30a, 40a, 50a, 80a ... First terminal, 10b, 20b, 30b, 40b, 50b, 80b ... Second terminal, 15 ... Lightning striker, 20 ... 1st disconnector, 30 ... 2nd disconnector, 40 ... commutation circuit, 50 ... commutation switch, 60 ... commutation capacitor, 70 ... commutation reactor, 80 ... surge switch, 90 ... surge resistance, 100 ... control Unit, L3 ... commutation current, LN1 ... first DC transmission line, LN2 ... second DC transmission line

Claims (8)

  1.  第1端が第1直流送電線路に接続され、第2端が第2直流送電線路に接続される機械式遮断器と、
     避雷器と、
     第1スイッチと、第2スイッチと、リアクトルと、コンデンサと、抵抗とを有する転流回路とを備え、
     前記転流回路と、前記避雷器と、前記機械式遮断器とは、前記第1直流送電線路と、前記第2直流送電線路との間に互いに並列に接続されており、
     前記第1スイッチと、前記コンデンサと、前記リアクトルとは、前記第1直流送電線路と、前記第2直流送電線路との間に直列に接続されており、
     前記第2スイッチと前記抵抗とが直列に接続されたものが、前記第1スイッチと並列に設けられている、
     直流遮断器。
    A mechanical circuit breaker whose first end is connected to the first DC transmission line and whose second end is connected to the second DC transmission line.
    With a lightning arrester
    A commutation circuit having a first switch, a second switch, a reactor, a capacitor, and a resistor is provided.
    The commutation circuit, the lightning arrester, and the mechanical circuit breaker are connected in parallel to each other between the first DC power transmission line and the second DC power transmission line.
    The first switch, the capacitor, and the reactor are connected in series between the first DC power transmission line and the second DC power transmission line.
    A switch in which the second switch and the resistor are connected in series is provided in parallel with the first switch.
    DC circuit breaker.
  2.  前記第1スイッチの開閉状態を制御する制御部を更に備え、
     前記第1スイッチは、固定された一対の電極を有する非接触方式スイッチであり、
     前記制御部は、前記電極間の絶縁性能を開状態に比して下げて絶縁破壊させることで前記非接触方式スイッチを閉状態に制御する、
     請求項1に記載の直流遮断器。
    A control unit for controlling the open / closed state of the first switch is further provided.
    The first switch is a non-contact switch having a pair of fixed electrodes.
    The control unit controls the non-contact switch to the closed state by lowering the insulation performance between the electrodes as compared with the open state and causing dielectric breakdown.
    The DC circuit breaker according to claim 1.
  3.  前記第1スイッチの開閉状態を制御する制御部を更に備え、
     前記第1スイッチは、一対の電極を有する接触方式スイッチであり、
     前記制御部は、前記電極のうち少なくとも一方を移動させて前記電極間の距離を近づけ、前記電極間の絶縁性能を開状態よりも下げて絶縁破壊させることで前記接触方式スイッチを閉状態に制御する、
     請求項1に記載の直流遮断器。
    A control unit for controlling the open / closed state of the first switch is further provided.
    The first switch is a contact type switch having a pair of electrodes.
    The control unit controls the contact type switch to be in the closed state by moving at least one of the electrodes to bring the distance between the electrodes closer, lowering the insulation performance between the electrodes from the open state and causing dielectric breakdown. To do,
    The DC circuit breaker according to claim 1.
  4.  前記制御部は、前記電極のうち少なくとも一方を移動させたときに前記電極間を接触させず、所定の距離だけ離れた位置まで移動させる、
     請求項3に記載の直流遮断器。
    When at least one of the electrodes is moved, the control unit does not bring the electrodes into contact with each other and moves them to a position separated by a predetermined distance.
    The DC circuit breaker according to claim 3.
  5.  前記コンデンサは、前記第1直流送電線路、又は前記第2直流送電線路に供給される直流系統の系統電圧が印加されることで充電される、
     請求項1から4のうちいずれか一項に記載の直流遮断器。
    The capacitor is charged by applying the system voltage of the DC system supplied to the first DC transmission line or the second DC transmission line.
    The DC circuit breaker according to any one of claims 1 to 4.
  6.  前記コンデンサは、他の装置から供給される電圧であって、前記第1直流送電線路、又は前記第2直流送電線路に供給される直流系統の系統電圧と同等の電圧が印加されることで充電される、
     請求項1から4のうちいずれか一項に記載の直流遮断器。
    The capacitor is charged by applying a voltage supplied from another device and equivalent to the system voltage of the DC system supplied to the first DC transmission line or the second DC transmission line. Be done,
    The DC circuit breaker according to any one of claims 1 to 4.
  7.  前記第1スイッチの開閉状態を制御する制御部を更に備え、
     前記リアクトルと、前記コンデンサとは、前記制御部によって前記第1スイッチが閉状態に制御されることに伴い、前記第1直流送電線路、又は前記第2直流送電線路に供給される直流系統の系統電流を共振周波数によって共振させて前記系統電流にゼロ点を生成する、
     請求項1から6のうちいずれか一項に記載の直流遮断器。
    A control unit for controlling the open / closed state of the first switch is further provided.
    The reactor and the capacitor are systems of a DC system supplied to the first DC power transmission line or the second DC power transmission line as the first switch is controlled to a closed state by the control unit. The current is resonated by the resonance frequency to generate a zero point in the system current.
    The DC circuit breaker according to any one of claims 1 to 6.
  8.  前記機械式遮断器、前記第1スイッチ、及び前記第2スイッチの開閉状態を制御する制御部を更に備え、
     前記制御部は、
      前記機械式遮断器を開状態にして前記第1端と前記第2端とを電気的に遮断する制御を開始し、
      前記機械式遮断器を開状態にする制御を開始した後、前記第2スイッチを閉状態に制御し、
      前記第2スイッチを閉状態に制御した後、前記第1スイッチを閉状態に制御し、
      前記第1スイッチを閉状態に制御した後に、前記第1直流送電線路、又は前記第2直流送電線路に供給される直流系統の系統電流を、前記リアクトルと前記コンデンサとが共振周波数によって共振させることに伴い生じたゼロ点において、前記機械式遮断器の前記第1端と前記第2端とを電気的に遮断し、
      前記コンデンサの電圧が、前記直流系統の系統電圧と同等の電圧となった場合に、前記第2スイッチを開状態に制御し、
      前記第2スイッチを開状態に制御した後、前記第1スイッチを開状態に制御し、
     前記避雷器は、前記機械式遮断器が電気的に遮断されたことに伴い前記第1端と前記第2端との間に生じる電圧を制限する、
     請求項1から7のうちいずれか一項に記載の直流遮断器。
    A control unit for controlling the open / closed state of the mechanical circuit breaker, the first switch, and the second switch is further provided.
    The control unit
    The mechanical circuit breaker is opened and the control for electrically shutting off the first end and the second end is started.
    After starting the control to open the mechanical circuit breaker, the second switch is controlled to be closed.
    After controlling the second switch to the closed state, the first switch is controlled to the closed state.
    After controlling the first switch to the closed state, the reactor and the capacitor resonate the system current of the DC system supplied to the first DC transmission line or the second DC transmission line by the resonance frequency. At the zero point generated by the above, the first end and the second end of the mechanical circuit breaker are electrically cut off.
    When the voltage of the capacitor becomes a voltage equivalent to the system voltage of the DC system, the second switch is controlled to be in the open state.
    After controlling the second switch to the open state, the first switch is controlled to the open state.
    The lightning arrester limits the voltage generated between the first end and the second end as the mechanical circuit breaker is electrically cut off.
    The DC circuit breaker according to any one of claims 1 to 7.
PCT/JP2019/046772 2019-11-29 2019-11-29 Direct-current circuit breaker WO2021106191A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980100995.XA CN114467161B (en) 2019-11-29 2019-11-29 DC circuit breaker
PCT/JP2019/046772 WO2021106191A1 (en) 2019-11-29 2019-11-29 Direct-current circuit breaker
JP2021561103A JP7214893B2 (en) 2019-11-29 2019-11-29 DC circuit breaker
EP19953832.3A EP4068326B1 (en) 2019-11-29 2019-11-29 Direct-current circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/046772 WO2021106191A1 (en) 2019-11-29 2019-11-29 Direct-current circuit breaker

Publications (1)

Publication Number Publication Date
WO2021106191A1 true WO2021106191A1 (en) 2021-06-03

Family

ID=76128699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046772 WO2021106191A1 (en) 2019-11-29 2019-11-29 Direct-current circuit breaker

Country Status (4)

Country Link
EP (1) EP4068326B1 (en)
JP (1) JP7214893B2 (en)
CN (1) CN114467161B (en)
WO (1) WO2021106191A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7134375B1 (en) * 2021-09-27 2022-09-09 三菱電機株式会社 DC circuit breaker

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152125A (en) * 1980-04-25 1981-11-25 Tokyo Shibaura Electric Co Breaker
JP2005197114A (en) * 2004-01-08 2005-07-21 Toshiba Corp D.c. circuit-breaker
JP2009181908A (en) * 2008-01-31 2009-08-13 Toshiba Mitsubishi-Electric Industrial System Corp Dc high-speed vacuum circuit breaker
WO2015166600A1 (en) 2014-05-01 2015-11-05 三菱電機株式会社 Direct current shutoff device
WO2016056274A1 (en) * 2014-10-09 2016-04-14 三菱電機株式会社 Dc circuit breaker

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4128806B2 (en) * 2002-06-05 2008-07-30 株式会社東芝 DC breaker
JP2009218054A (en) * 2008-03-10 2009-09-24 Ntt Data Ex Techno Corp Circuit breaker assistant circuit of direct current switch, direct current breaking circuit and direct current breaker
JP2010238391A (en) * 2009-03-30 2010-10-21 Toshiba Corp Direct-current breaker
WO2012100831A1 (en) * 2011-01-27 2012-08-02 Alstom Technology Ltd Circuit breaker apparatus
ES2613669T3 (en) * 2011-09-30 2017-05-25 Alevo International, S.A. Switching circuit breaker
CN103219698B (en) * 2013-02-06 2015-05-20 西安交通大学 Mixing type direct-current breaker
CN105393326B (en) * 2013-03-27 2017-10-03 Abb技术有限公司 Open circuit arrangement
EP3082208B1 (en) * 2013-12-11 2018-09-05 Mitsubishi Electric Corporation Dc breaker device
JP6049957B2 (en) * 2014-09-26 2016-12-21 三菱電機株式会社 DC circuit breaker
JP6024801B1 (en) * 2015-09-04 2016-11-16 ソニー株式会社 Switching device, moving body, power supply system, and switching method
CN205666617U (en) * 2016-05-16 2016-10-26 国家电网公司 Flexible DC electric network's circuit breaker mixing arrangement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152125A (en) * 1980-04-25 1981-11-25 Tokyo Shibaura Electric Co Breaker
JP2005197114A (en) * 2004-01-08 2005-07-21 Toshiba Corp D.c. circuit-breaker
JP2009181908A (en) * 2008-01-31 2009-08-13 Toshiba Mitsubishi-Electric Industrial System Corp Dc high-speed vacuum circuit breaker
WO2015166600A1 (en) 2014-05-01 2015-11-05 三菱電機株式会社 Direct current shutoff device
WO2016056274A1 (en) * 2014-10-09 2016-04-14 三菱電機株式会社 Dc circuit breaker

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4068326A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7134375B1 (en) * 2021-09-27 2022-09-09 三菱電機株式会社 DC circuit breaker

Also Published As

Publication number Publication date
EP4068326A4 (en) 2023-08-16
JP7214893B2 (en) 2023-01-30
EP4068326B1 (en) 2024-02-28
JPWO2021106191A1 (en) 2021-06-03
CN114467161B (en) 2024-03-08
CN114467161A (en) 2022-05-10
EP4068326A1 (en) 2022-10-05

Similar Documents

Publication Publication Date Title
JP6042035B2 (en) DC breaker
EP3091626B1 (en) High-voltage dc circuit breaker
KR101522412B1 (en) Bi-directional DC interruption device
JP6049957B2 (en) DC circuit breaker
EP2777059B1 (en) Hybrid dc circuit breaking device
KR101630093B1 (en) High-voltage DC circuit breaker
KR101483084B1 (en) Device and method to interrupt direct current
US9478974B2 (en) DC voltage circuit breaker
JP6042041B1 (en) DC circuit breaker
KR101872869B1 (en) High Speed DC Circuit Breaker using Charging Capacitor and Parallel LC Circuit
KR101679722B1 (en) Direct current circuit breaker
WO2012084693A1 (en) Method, circuit breaker and switching unit for switching off high-voltage dc currents
KR20150078704A (en) High-voltage DC circuit breaker
KR20150019416A (en) High-voltage DC circuit breaker
CN107005045A (en) High-voltage direct current tripper
JP6456575B1 (en) DC circuit breaker
JP2020013656A (en) Dc current cut-off device
WO2019234401A1 (en) High voltage direct current (hvdc) circuit breaker
KR20160080015A (en) DC circuit breaker
Tokoyoda et al. Development and testing of EHV mechanical DC circuit breaker
WO2021106191A1 (en) Direct-current circuit breaker
JP6424976B1 (en) DC blocking device
JP2018533835A (en) Circuit breaker for high voltage DC networks using forced oscillation of current
CN108923395B (en) A kind of logical method handling intermittent arc-earth fault
JP2021111449A (en) Dc cutoff device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953832

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021561103

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019953832

Country of ref document: EP

Effective date: 20220629