JP2009180508A - Earthquake disaster prevention system - Google Patents

Earthquake disaster prevention system Download PDF

Info

Publication number
JP2009180508A
JP2009180508A JP2008017071A JP2008017071A JP2009180508A JP 2009180508 A JP2009180508 A JP 2009180508A JP 2008017071 A JP2008017071 A JP 2008017071A JP 2008017071 A JP2008017071 A JP 2008017071A JP 2009180508 A JP2009180508 A JP 2009180508A
Authority
JP
Japan
Prior art keywords
disaster prevention
earthquake
prevention system
control signal
seismic intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008017071A
Other languages
Japanese (ja)
Other versions
JP5085352B2 (en
Inventor
Nobuhiko Omori
伸彦 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OKI KANKYO TECHNOLOGY KK
Lapis Semiconductor Co Ltd
Original Assignee
OKI KANKYO TECHNOLOGY KK
Oki Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OKI KANKYO TECHNOLOGY KK, Oki Semiconductor Co Ltd filed Critical OKI KANKYO TECHNOLOGY KK
Priority to JP2008017071A priority Critical patent/JP5085352B2/en
Publication of JP2009180508A publication Critical patent/JP2009180508A/en
Application granted granted Critical
Publication of JP5085352B2 publication Critical patent/JP5085352B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To construct a highly reliable earthquake disaster prevention system with a relatively simple constitution. <P>SOLUTION: This hybrid type earthquake disaster prevention system has a measuring type earthquake disaster prevention system part 40, and a predicting type earthquake disaster prevention system part 50. The system part 40 makes an analysis by receiving an emergency earthquake quick report, and predicts seismic intensity and the arrival time of earthquake main motion, and outputs a control signal S41c for operating an apparatus 45 from a control means 41c before its swinging comes when predicting that a certain seismic intensity or more arrives. The system part 50 outputs a control signal S53 for operating the apparatus 45 from a control means 53 when measuring swinging of an earthquake by a certain seismic intensity or more by using a seismic intensity meter 51. The control means 41c and 53 set a threshold value TH2 for outputting the control signal S41c to seismic intensity higher than a threshold value TH1 for outputting the control signal S53 by taking into consideration a prediction error Δth of the system part 40, and operates the apparatus 45 in control target seismic intensity or more. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、現地地震計で実測される計測震度で被制御対象を制御する地震防災システムと、地震発生時に気象庁等から配信される緊急地震速報により与えられる情報から推定される予測震度で被制御対象を制御する地震防災システムとを併用した所謂ハイブリッド型の地震防災システムに関するものである。   The present invention is a seismic disaster prevention system that controls a controlled object with a measured seismic intensity measured by a local seismometer, and a controlled seismic intensity estimated from information given by an emergency earthquake bulletin distributed from the Japan Meteorological Agency etc. when an earthquake occurs The present invention relates to a so-called hybrid type earthquake disaster prevention system that is used in combination with an earthquake disaster prevention system that controls an object.

図8(a)、(b)は、従来の一般的な地震防災システムの構成を示す概念図であり、同図(a)は地震計を用いた地震防災システム(この明細書では「計測型地震防災システム」という。)の構成図、及び同図(b)は緊急地震速報を用いた地震防災システム(この明細書では「予測型地震防災システム」という。)の構成図である。   FIGS. 8A and 8B are conceptual diagrams showing a configuration of a conventional general earthquake disaster prevention system. FIG. 8A is an earthquake disaster prevention system using a seismometer (in this specification, “measurement type”). The configuration diagram of the “earthquake disaster prevention system” and the diagram (b) are the configuration diagrams of the earthquake disaster prevention system using the earthquake early warning (referred to as “predictive earthquake disaster prevention system” in this specification).

計測型地震防災システム10は、地震1の発生時(時刻t0)に、設置点に到達した主要動1bを地震計11で観測し、ある一定以上の揺れを観測した時点(時刻t3)で、被制御対象である制御対象機器15に対して制御信号S11を出力する。これにより、制御対象機器15が動作し、例えば、緊急放送アラームの報知、製造装置等の停止といった防災対策が実施される。   At the time of occurrence of earthquake 1 (time t0), the measurement type earthquake disaster prevention system 10 observes the main motion 1b reaching the installation point with the seismometer 11, and at the time of observing a certain level of vibration (time t3), The control signal S11 is output to the control target device 15 that is the control target. Thereby, the control object apparatus 15 operate | moves and the disaster prevention measures, such as alerting | reporting of an emergency broadcast alarm, a stop of a manufacturing apparatus, etc., are implemented, for example.

一方、予測型地震防災システム20は、緊急地震速報S3から予測震度を推定する方式であり、地震1の発生時に、初期微動1aを地震観測網2で観測した時点で、例えば、気象庁3から配信されてくる緊急地震速報S3を緊急地震速報受信/解析システム部21で受け取り、設置点における震度を推定し、予め決められた制御信号出力条件となる震度を越えると判断される場合、主要動1bの到達前(時刻t3―Δt)に、制御対象機器15に対して制御信号S21を出力する。これにより、制御対象機器15が動作し、例えば、緊急放送アラームの報知、製造装置等の停止といった防災対策が実施される。   On the other hand, the predictive earthquake disaster prevention system 20 is a method for estimating the predicted seismic intensity from the emergency earthquake bulletin S3. When the initial tremor 1a is observed by the seismic observation network 2 when the earthquake 1 occurs, for example, it is distributed from the Japan Meteorological Agency 3. When the earthquake early warning S3 received is received by the emergency earthquake bulletin reception / analysis system unit 21, the seismic intensity at the installation point is estimated, and when it is determined that the seismic intensity exceeds the predetermined control signal output condition, the main motion 1b Before reaching (time t3−Δt), a control signal S21 is output to the control target device 15. Thereby, the control object apparatus 15 operate | moves and the disaster prevention measures, such as alerting | reporting of an emergency broadcast alarm, a stop of a manufacturing apparatus, etc., are implemented, for example.

緊急地震速報S3とは、地震1の発生時に、日本全国に配置された地震計からなる地震観測網2が、地震1の初期微動1aを検知した時点で、震源位置(緯度、経度)や、地震1の規模を表す単位であるマグニチュード(M)を推定し、ユーザに配信される情報いう。緊急地震速報受信/解析システム部21は、緊急地震速報S3を受け取り、地震1の揺れ方の程度を表す震度(震度0〜7の8段階)を推定する装置であり、緊急地震速報S3とその設置点情報(緯度、経度、地盤増幅率)から到達予測震度と到達予想時刻を算出し、予め決められた制御信号出力条件となる震度を越えると判断される場合に、制御信号S21を出力する。   The earthquake early warning S3 is the time when the earthquake observation network 2 composed of seismometers located all over Japan detects the initial tremor 1a of the earthquake 1 when the earthquake 1 occurs. This is information that estimates the magnitude (M), which is a unit representing the magnitude of earthquake 1, and is distributed to the user. The earthquake early warning reception / analysis system unit 21 is a device that receives the earthquake early warning S3 and estimates the seismic intensity (eight levels of seismic intensity 0 to 7) indicating the degree of shaking of the earthquake 1. The earthquake early warning S3 and its The predicted arrival seismic intensity and the predicted arrival time are calculated from the installation point information (latitude, longitude, ground amplification factor), and when it is determined that the seismic intensity that is a predetermined control signal output condition is exceeded, the control signal S21 is output. .

震度に対応するガル(gal)は、地震の揺れの強さを表すのに用いる加速度の単位であり、1galは毎秒1cmの割合で加速度が増すこと(加速度)を示しており、980galは1G(地球重力)となる。最大加速度(gal)と震度階級の関係は、概ね以下の通りである。
最大加速度(gal) :震度階級
0(無感)、1(微震)、2(軽震)、3(弱震)
40〜110程度 :4(中震)
110〜240程度 :5弱(強震)
240〜520程度 :5強(強震)
520〜830程度 :6弱(烈震)
830〜1,500程度:6強(烈震)
1,500程度 :7(激震)
The gal corresponding to the seismic intensity is a unit of acceleration used to express the strength of the earthquake, 1 gal indicates that the acceleration increases at a rate of 1 cm per second (acceleration), and 980 gal indicates 1 G ( Earth gravity). The relationship between the maximum acceleration (gal) and the seismic intensity class is as follows.
Maximum acceleration (gal): Seismic intensity class
0 (no feeling), 1 (minor earthquake), 2 (light earthquake), 3 (weak earthquake)
About 40-110: 4 (Middle earthquake)
110-240: 5 weak (strong earthquake)
About 240-520: 5 strong (strong earthquake)
About 520-830: A little under 6 (severe earthquake)
About 830 to 1,500: 6 strong (severe earthquake)
About 1,500: 7 (severe earthquake)

従来の地震防災システムに関連する技術は、例えば、次のような文献等に記載されている。   Technologies related to conventional earthquake disaster prevention systems are described in the following documents, for example.

特開2007−108012号公報JP 2007-108012 A

しかしながら、従来の一般的な地震防災システムでは、次のような課題があった。
図8の計測型地震防災システム10では、主要動1bの到達後に制御信号S11を出力するため、大きく揺れる中でその制御信号S11が制御対象機器15に正確に届くこと、又、その制御信号S11を受け取った制御対象機器15が正常に作動することは保証されない。そして、震度が大きくなればなる程、その危険性は大きくなる。
However, the conventional general earthquake disaster prevention system has the following problems.
In the measurement type earthquake disaster prevention system 10 of FIG. 8, since the control signal S11 is output after the main motion 1b arrives, the control signal S11 accurately reaches the control target device 15 while greatly shaking, and the control signal S11. It is not guaranteed that the control-target device 15 that has received the message will operate normally. And the greater the seismic intensity, the greater the risk.

一方、予測型地震防災システム20では、主要動1aの到達前に震度を予測して制御信号S21を出力するため、その制御信号S21が正確に届き、又、その制御信号S21を受け取った制御対象機器15の動作も保証される。ところが、緊急地震速報S3から算出する推定震度には推定誤差が含まれるため、制御信号S21を出力すべきでない場合(例えば、出力条件閾値が180galの時、予測型地震防災システム20は200galを推定するが、実測値が150galのような場合)に制御信号S21を出力してしまうことがあり、誤報や無用な操業停止等が生じて多大な損害が生じる虞がある。   On the other hand, in the predictive earthquake disaster prevention system 20, since the seismic intensity is predicted and the control signal S21 is output before the main motion 1a arrives, the control signal S21 arrives accurately and the control object that has received the control signal S21 The operation of the device 15 is also guaranteed. However, since the estimated seismic intensity calculated from the earthquake early warning S3 includes an estimation error, when the control signal S21 should not be output (for example, when the output condition threshold is 180 gal, the predictive earthquake disaster prevention system 20 estimates 200 gal). However, when the actual measurement value is 150 gal), the control signal S21 may be output, and there is a possibility that an erroneous report, an unnecessary operation stop, etc. may occur and a great deal of damage may occur.

本発明の地震防災システムは、第1の地震防災システム部と、第2の地震防災システム部と、制御手段とを備えている。   The earthquake disaster prevention system of the present invention includes a first earthquake disaster prevention system unit, a second earthquake disaster prevention system unit, and a control means.

前記第1の地震防災システム部は、震度計を用いて、地震の揺れをある震度以上計測した時点で被制御対象を動作させるための第1の制御信号を出力するものである。前記第2の地震防災システム部は、震源位置及びマグニチュード情報を含む緊急地震速報を受信して解析を行い、地震主要動の震度及び到達時刻を予測し、ある震度以上が到来すると予測される場合に、その揺れが来る前に前記被制御対象を動作させるための第2の制御信号を出力するものである。更に、前記制御手段は、前記第2の地震防災システム部の予測誤差を考慮し、前記第2の地震防災システム部から前記第2の制御信号を出力するための第2の閾値を、前記第1の地震防災システム部から前記第1の制御信号を出力するための第1の閾値より高い震度に設定(例えば、第2の閾値=第1の閾値+予測誤差)することにより、前記被制御対象を制御目標震度以上で動作させる機能を有している。   The first earthquake disaster prevention system unit outputs a first control signal for operating a controlled object when a seismic intensity is measured by a seismic intensity meter or more. When the second earthquake disaster prevention system section receives and analyzes the earthquake early warning including the location of the epicenter and magnitude information, predicts the seismic intensity and arrival time of the main earthquake motion, and it is predicted that a certain seismic intensity will arrive In addition, a second control signal for operating the controlled object is output before the shaking occurs. Further, the control means considers a prediction error of the second earthquake disaster prevention system unit, and sets a second threshold value for outputting the second control signal from the second earthquake disaster prevention system unit. By setting the seismic intensity higher than the first threshold for outputting the first control signal from one earthquake disaster prevention system unit (for example, second threshold = first threshold + prediction error), It has the function to operate the target at the control target seismic intensity or higher.

本発明の他の地震防災システムは、前記地震防災システムと同様の第1及び第2の地震防災システム部と、前記地震防災システムとは異なる構成の制御手段とを備えている。前記制御手段は、前記第2の地震防災システム部から前記第2の制御信号が出力される前に前記地震主要動が到達した時に、前記第1の地震防災システム部から前記第1の制御信号を出力して前記被制御対象を動作させる機能を有している。   Another earthquake disaster prevention system of the present invention includes first and second earthquake disaster prevention system units similar to the earthquake disaster prevention system, and control means having a configuration different from that of the earthquake disaster prevention system. The control means receives the first control signal from the first earthquake disaster prevention system unit when the main earthquake motion arrives before the second control signal is output from the second earthquake disaster prevention system unit. Is output to operate the controlled object.

本発明によれば、第1及び第2の地震防災システム部を組み合わせてハイブリッド型の地震防災システムを構築し、第2の地震防災システム部の予測誤差を見込んで、制御信号出力条件閾値となる設定震度に差を持たせるようにしたので、強い地震の到来時には、その主要動到達前に確実に被制御対象に制御信号を送信し、動作させることができ、且つ、制御目標震度以下で誤って制御信号を送信することなく、制御目標震度以上でのみ制御信号を出力することができる。従って、比較的簡単な構成で、信頼性の高い地震防災システムを実現できる。   According to the present invention, a hybrid-type earthquake disaster prevention system is constructed by combining the first and second earthquake disaster prevention system units, and the control signal output condition threshold is set in anticipation of the prediction error of the second earthquake disaster prevention system unit. Because the set seismic intensity has a difference, when a strong earthquake arrives, the control signal can be reliably transmitted to the controlled object before the main motion arrives, and the control seismic intensity is less than the target seismic intensity. Therefore, the control signal can be output only at the control target seismic intensity or higher without transmitting the control signal. Therefore, a highly reliable earthquake disaster prevention system can be realized with a relatively simple configuration.

ハイブリッド型地震防災システムは、計測型地震防災システム部と、予測型地震防災システム部と、制御手段とを備えている。   The hybrid type earthquake disaster prevention system includes a measurement type earthquake disaster prevention system unit, a prediction type earthquake disaster prevention system unit, and a control means.

前記計測型地震防災システム部は、震度計を用いて、地震の揺れをある震度以上計測した時点で被制御対象を動作させるための第1の制御信号を出力する。前記予測型地震防災システム部は、緊急地震速報を受信して解析を行い、地震主要動の震度及び到達時刻を予測し、ある震度以上が到来すると予測される場合に、その揺れが来る前に前記被制御対象を動作させるための第2の制御信号を出力する。更に、前記制御手段は、前記予測型地震防災システム部の予測誤差を考慮し、前記予測型地震防災システム部から前記第2の制御信号を出力するための第2の閾値を、前記計測型地震防災システム部から前記第1の制御信号を出力するための第1の閾値より高い震度に設定(例えば、第2の閾値=第1の閾値+予測誤差)することにより、前記被制御対象を制御目標震度以上で動作させる。   The said measurement type earthquake disaster prevention system part outputs the 1st control signal for operating a to-be-controlled object at the time of measuring the earthquake shake more than a certain seismic intensity using a seismic intensity meter. The Predictive Earthquake Disaster Prevention System receives emergency earthquake bulletins, analyzes them, predicts the seismic intensity and arrival time of major earthquake motion, and if it is predicted that a certain seismic intensity will arrive, before that shake comes A second control signal for operating the controlled object is output. Further, the control means considers a prediction error of the predictive earthquake disaster prevention system unit, and sets a second threshold value for outputting the second control signal from the predictive earthquake disaster prevention system unit as the measurement earthquake. The controlled object is controlled by setting the seismic intensity higher than the first threshold for outputting the first control signal from the disaster prevention system unit (for example, second threshold = first threshold + prediction error). Operate at or above the target seismic intensity.

(実施例1の構成)
図1は、本発明の実施例1を示すハイブリッド型地震防災システムの構成の概念図である。
(Configuration of Example 1)
FIG. 1 is a conceptual diagram of a configuration of a hybrid type earthquake disaster prevention system showing Embodiment 1 of the present invention.

ハイブリッド型地震防災システムは、地震30の発生時に地震発生情報サービス局(例えば、気象庁)32から配信される緊急地震速報S32に基づいて設置点の予測震度を推定する第2の地震防災システム部(例えば、予測型地震防災システム部)40と、地震計を用いた第1の地震防災システム部(例えば、計測型地震防災システム部)50とを備えている。   The hybrid type earthquake disaster prevention system is a second earthquake disaster prevention system section that estimates the predicted seismic intensity at the installation point based on the emergency earthquake bulletin S32 delivered from the earthquake occurrence information service station (for example, the Japan Meteorological Agency) 32 when the earthquake 30 occurs ( For example, a prediction type earthquake disaster prevention system unit) 40 and a first earthquake disaster prevention system unit (for example, a measurement type earthquake disaster prevention system unit) 50 using a seismometer are provided.

予測型地震防災システム部40は、緊急地震速報受信/解析システム部41により構成されている。この緊急地震速報受信/解析システム部41は、地震30の発生時(時刻t0)に地震観測網31が地震30の初期微動30aを検知した時点(時刻t1)で無線や有線で配信(時刻t2)される緊急地震速報S32を受信する受信部41aと、受信した緊急地震速報S32を解析して地震30の主要動30bの設置点における震度及び到達時刻を予測し、ある震度以上が到来すると予測される場合に、その揺れが来る前に被制御対象(例えば、緊急放送アラーム装置、ガス等の遮断装置、生産装置等の停止装置等といった制御対象機器)45を動作させるための第2の制御信号S41cを生成する解析部41bと、第2の閾値TH2に基づき規定された制御信号出力条件に従い、その制御信号S41cを制御対象機器45へ出力(時刻t3−Δt)するか否かを制御する制御手段(例えば、制御信号出力制御手段)41cとを有している。解析部41b及び制御信号出力制御手段41cは、コンピュータのソフトウェア又は個別回路(ハードウェア)により構成されている。   The predictive earthquake disaster prevention system unit 40 includes an emergency earthquake warning reception / analysis system unit 41. This earthquake early warning reception / analysis system unit 41 delivers wirelessly or by wire (time t2) when the earthquake observation network 31 detects the initial tremor 30a of the earthquake 30 (time t1) when the earthquake 30 occurs (time t0). ) The receiving unit 41a that receives the earthquake early warning S32 and the received earthquake early warning S32 are used to predict the seismic intensity and arrival time at the installation point of the main motion 30b of the earthquake 30, and to predict that a certain seismic intensity or more will arrive. In this case, the second control for operating the controlled object 45 (for example, the control target device such as an emergency broadcast alarm device, a gas shut-off device, a production device stop device, etc.) 45 before the shaking occurs. The control signal S41c is output to the control target device 45 in accordance with a control signal output condition defined based on the analysis unit 41b that generates the signal S41c and the second threshold TH2 (time t3). Control means for controlling whether Delta] t) (e.g., and a control signal output control means) 41c. The analysis unit 41b and the control signal output control unit 41c are configured by computer software or individual circuits (hardware).

計測型防災システム部50は、設置点に到達(時刻t3)した地震30の主要動30bの揺れを計測する1台又は複数台の地震計51と、その計測値に対する判定処理を行い、地震30の揺れをある震度以上計測した時点で制御対象機器45を動作させるための第1の制御信号S53を生成する判定処理部52と、第1の閾値TH1に基づき規定された制御信号出力条件に従い、その制御信号S53を制御対象機器45へ出力(時刻t3)するか否かを制御する制御手段(例えば、制御信号出力制御手段)53とを有している。地震計51は、加速度センサ等により構成されている。判定処理部52及び制御信号出力制御手段53は、コンピュータのソフトウェア又は個別回路(ハードウェア)により構成されている。   The measurement-type disaster prevention system unit 50 performs one or a plurality of seismometers 51 that measure the shaking of the main motion 30b of the earthquake 30 that has reached the installation point (time t3), and a determination process for the measurement value. In accordance with a control signal output condition defined based on the first threshold TH1, a determination processing unit 52 that generates a first control signal S53 for operating the device to be controlled 45 at the time when the vibration of the device is measured more than a certain seismic intensity, Control means (for example, control signal output control means) 53 for controlling whether or not to output the control signal S53 to the control target device 45 (time t3) is provided. The seismometer 51 includes an acceleration sensor or the like. The determination processing unit 52 and the control signal output control means 53 are configured by computer software or individual circuits (hardware).

図2は、図1の制御信号出力制御手段41c,53における制御信号出力条件と仮定条件の例を示す図である。   FIG. 2 is a diagram showing an example of control signal output conditions and assumption conditions in the control signal output control means 41c and 53 of FIG.

制御信号出力条件例において、例えば、計測型地震防災システム部50は、計測震度が120galを超えた場合に制御信号S53を出力し、予測型地震防災システム部40は、震度が170galを超えると予測される主要動到達予測時刻5秒前に制御信号S41cを出力するように規定されている。この制御信号出力条件例は、以下を仮定した場合の設定例である。
・計測型地震防災システム部50の第1の閾値TH1である制御目標震度を120galとする。
・予測型地震防災システム部40の第2の閾値TH2(即ち、緊急地震速報S32から計算される推定震度)は、
TH2=TH1+Δth=170gal
但し、TH1;第1の閾値(=120gal)
Δth;予測型地震防災システム部40の予測誤差(=50gal)
であり、±50galの予測誤差Δthを含む。
・220gal以下の揺れなら制御信号S41c,S53が正常に制御対象機器45へ伝送されること。
・220gal以下の揺れなら制御対象機器45が正常に動作すること。
In the control signal output condition example, for example, the measurement type earthquake disaster prevention system unit 50 outputs the control signal S53 when the measured seismic intensity exceeds 120 gal, and the predictive earthquake disaster prevention system unit 40 predicts that the seismic intensity exceeds 170 gal. The control signal S41c is defined to be output 5 seconds before the predicted main movement arrival time. This control signal output condition example is a setting example when the following is assumed.
The control target seismic intensity that is the first threshold TH1 of the measurement-type earthquake disaster prevention system unit 50 is 120 gal.
The second threshold TH2 of the predictive earthquake disaster prevention system unit 40 (that is, the estimated seismic intensity calculated from the emergency earthquake bulletin S32) is
TH2 = TH1 + Δth = 170 gal
However, TH1; 1st threshold value (= 120 gal)
Δth; prediction error of the predictive earthquake disaster prevention system 40 (= 50 gal)
And includes a prediction error Δth of ± 50 gal.
-If the vibration is 220 gal or less, the control signals S41c and S53 are normally transmitted to the control target device 45.
-If the vibration is 220 gal or less, the controlled device 45 should operate normally.

(実施例1の動作)
図3は、図1において地震発生時の計測型地震防災システム部50と予測型地震防災システム部40におけるそれぞれの制御信号出力条件が成立した時の出力タイミングの例を示す図である。図4は、図1において予測型地震防災システム部40が誤差無しで予測した場合の出力結果の例を示す図である。これらの例では、予測型地震防災システム部40は計測型地震防災システム部50よりΔt(=5)秒前に制御信号S41cを出力するように設定されている。
(Operation of Example 1)
FIG. 3 is a diagram illustrating an example of output timing when the control signal output conditions in the measurement-type earthquake disaster prevention system unit 50 and the prediction-type earthquake disaster prevention system unit 40 when an earthquake occurs in FIG. FIG. 4 is a diagram illustrating an example of an output result when the prediction type earthquake disaster prevention system unit 40 in FIG. 1 predicts without error. In these examples, the predictive earthquake disaster prevention system unit 40 is set to output the control signal S41c before Δt (= 5) seconds from the measurement type earthquake disaster prevention system unit 50.

地震が発生(時刻t0)すると、地震観測網31が初期微動30aを検知(時刻t1)し、気象庁32から緊急地震速報S32が配信される(時刻t2)。予測型地震防災システム部40における緊急地震速報受信/解析システム部41では、受信部41aにより緊急地震速報S32を受信した時点で、解析部41bにより主要動30bの予測震度と到達時刻t3を算出し、到達震度が第2の閾値TH2(=170gal)を超えると予想される場合には、制御信号出力制御手段41cにより、時刻t3の5秒前の時刻t3−5に制御対象機器45へ制御信号S41cを出力する。これにより、例えば、緊急放送アラームの報知、製造装置等の停止といった防災対策が実施される。   When an earthquake occurs (time t0), the earthquake observation network 31 detects initial tremor 30a (time t1), and an emergency earthquake bulletin S32 is distributed from the Japan Meteorological Agency 32 (time t2). In the earthquake early warning reception / analysis system unit 41 in the predictive earthquake disaster prevention system unit 40, when the receiving unit 41a receives the earthquake early warning S32, the analysis unit 41b calculates the predicted seismic intensity and arrival time t3 of the main motion 30b. When the ultimate seismic intensity is expected to exceed the second threshold TH2 (= 170 gal), the control signal output control means 41c sends a control signal to the control target device 45 at time t3-5, 5 seconds before time t3. S41c is output. Thereby, for example, disaster prevention measures such as notification of an emergency broadcast alarm and stop of a manufacturing apparatus or the like are implemented.

もし、予測震度が第2の閾値(=170gal)未満と算出され、予測型地震防災システム部40は制御信号S41cの出力を行わなかったが、実際の揺れが第1の閾値TH1(=120gal)を超えた場合には、計測型地震防災システム部50が、地震計51により主要動30bを計測し、この計測結果に基づいて判定処理部52及び制御信号出力制御手段53により、時刻t3に制御信号S53を出力する。   If the predicted seismic intensity is calculated to be less than the second threshold value (= 170 gal) and the predicted earthquake disaster prevention system unit 40 did not output the control signal S41c, the actual shake is the first threshold value TH1 (= 120 gal). Is exceeded, the measurement type earthquake disaster prevention system unit 50 measures the main motion 30b with the seismometer 51, and the control is performed at time t3 by the determination processing unit 52 and the control signal output control means 53 based on the measurement result. The signal S53 is output.

そのため、強い揺れが予想される地震(予測震度170gal以上)においては、予測型地震防災システム部40がその主要動30bがくる前に制御信号S41cを出力するので、安全に制御対象機器45へ制御信号S41cが伝送され、制御対象機器45は主要動30bがくる前に確実に動作できる。又、予測型地震防災システム部40では出力条件が成立しない中程度の揺れが予想される地震30においては、計測型地震防災システム部50が、主要動30bが来た時点で制御目標震度以上(120gal)を計測した場合に、制御信号S53を出力するようになっている。   For this reason, in an earthquake in which strong shaking is expected (predicted seismic intensity of 170 gal or more), the predictive earthquake disaster prevention system unit 40 outputs the control signal S41c before the main motion 30b arrives. The signal S41c is transmitted, and the control target device 45 can reliably operate before the main motion 30b comes. Moreover, in the earthquake 30 in which the moderate shaking that the output condition is not satisfied in the predictive earthquake disaster prevention system unit 40 is expected, the measurement type earthquake disaster prevention system unit 50 exceeds the control target seismic intensity when the main motion 30b comes ( When 120 gal) is measured, the control signal S53 is output.

このように、予測型地震防災システム部40の算出結果に予測誤差Δthが含まれていても、制御目標震度以下(120gal以下)で制御信号S41cが出力されることが無く、誤って制御対象機器45が動作することは避けられ、且つ、制御目標震度以上の地震30で確実に制御対象機器45が動作できる仕組みになっている。又、予測型地震防災システム部40が制御信号S41cを出力前に、主要動30bが到達する場合も考えられ、この場合は計測型地震防災システム部50がその時点で、制御信号S53を出力することで、制御対象機器45を動作させることができる。   As described above, even when the prediction error Δth is included in the calculation result of the predictive earthquake disaster prevention system unit 40, the control signal S41c is not output below the control target seismic intensity (120 gal or less), and the control target device is erroneously detected. 45 is avoided, and the control target device 45 can be reliably operated in an earthquake 30 that is equal to or greater than the control target seismic intensity. In addition, the main motion 30b may be reached before the predictive earthquake disaster prevention system unit 40 outputs the control signal S41c. In this case, the measurement type earthquake disaster prevention system unit 50 outputs the control signal S53 at that time. Thus, the control target device 45 can be operated.

(実施例1の効果)
図5は、図2の制御信号出力条件において、予測型地震防災システム部40が計測震度に対し−50galの誤差で予測した場合の出力結果の例を示す図である。又、図6は、図2の制御信号出力条件において、予測型地震防災システム部40が計測震度に対し+50galの誤差で予測した場合の出力結果の例を示す図である。
(Effect of Example 1)
FIG. 5 is a diagram illustrating an example of an output result when the prediction type earthquake disaster prevention system unit 40 predicts with a -50 gal error with respect to the measured seismic intensity under the control signal output condition of FIG. 2. FIG. 6 is a diagram illustrating an example of an output result when the predictive earthquake disaster prevention system unit 40 predicts with an error of +50 gal with respect to the measured seismic intensity under the control signal output condition of FIG.

例えば、図5に示すように、計測震度に対し−50galで予測した場合、計測震度220gal以上の地震がくる場合に、予測型地震防災システム部40は170gal以上の地震が来ると予測し、主要動到達予想時刻5秒前の時刻t3−5に制御信号S41cを出力している。120〜220galの地震に対しては、計測型地震防災システム部50が主要動到達時刻t3に制御信号S53を出力する。又、図6に示すように、計測震度に対し+50galで予測した場合、計測震度120gal以上の地震がくる場合に、予測型地震防災システム部40は170gal以上の地震が来ると予測し、主要動到達予想時刻5秒前の時刻t3−5に制御信号S41cを出力している。   For example, as shown in FIG. 5, when the measured seismic intensity is predicted at −50 gal, when an earthquake with a measured seismic intensity of 220 gal or more comes, the predictive earthquake disaster prevention system unit 40 predicts that an earthquake of 170 gal or more will come. The control signal S41c is output at time t3-5, which is 5 seconds before the predicted movement arrival time. For an earthquake of 120 to 220 gal, the measurement type earthquake disaster prevention system unit 50 outputs a control signal S53 at the main motion arrival time t3. In addition, as shown in FIG. 6, when the predicted seismic intensity is predicted to be +50 gal, when an earthquake with a measured seismic intensity of 120 gal or higher comes, the predictive earthquake disaster prevention system unit 40 predicts that an earthquake of 170 gal or higher will come. The control signal S41c is output at time t3-5, which is 5 seconds before the estimated arrival time.

このように、ハイブリッド型地震防災システムを構築し、予測型地震防災システム部40の予測誤差Δthを見込んで、制御信号出力条件閾値となる設定震度に差を持たせることにより、強い地震の到来時には、その主要動到達前に確実に制御対象機器45へ制御信号S41cを送信して動作させることができ、且つ、制御目標震度以下で誤って制御信号S41cを送信することなく、制御目標震度以上でのみ制御信号S41c,S54を出力することができる。従って、比較的簡単な構成で、信頼性の高い地震防災システムを構築することができる。   In this way, by constructing a hybrid type earthquake disaster prevention system, expecting the prediction error Δth of the prediction type earthquake disaster prevention system unit 40, and making a difference in the set seismic intensity that becomes the control signal output condition threshold, when a strong earthquake arrives The control signal S41c can be reliably transmitted to the control target device 45 before the main motion arrives and can be operated, and the control signal S41c is not erroneously transmitted below the control target seismic intensity, and the control target seismic intensity is exceeded. Only the control signals S41c and S54 can be output. Therefore, a highly reliable earthquake disaster prevention system can be constructed with a relatively simple configuration.

図7は、本発明の実施例2を示すハイブリッド型地震防災システムの構成の概念図であり、実施例1を示す図1中の要素と共通の要素には共通の符号が付されている。   FIG. 7 is a conceptual diagram of the configuration of the hybrid earthquake disaster prevention system showing the second embodiment of the present invention. Elements common to the elements in FIG. 1 showing the first embodiment are denoted by common reference numerals.

本実施例2のハイブリッド型地震防災システムでは、実施例1の予想型地震防災システム部40及び計測型地震防災システム部50に代えて、これらとは構成の異なる予想型地震防災システム部40A及び計測型地震防災システム部50Aが設けられている。予想型地震防災システム部40Aは、実施例1とは構成の異なる緊急地震速報受信/解析システム部41Aにより構成されている。この緊急地震速報受信/解析システム部41Aは、実施例1と同様の受信部41a及び解析部41bを有している。計測型地震防災システム部50Aは、実施例1と同様の地震計51及び判定処理部52を有している。解析部41b及び判定処理部52の出力側には、共通の制御手段(例えば、制御信号出力制御手段)60が接続されている。共通の制御信号出力制御手段60は、実施例1の制御信号出力制御手段43及び53と同様の機能を有し、制御対象機器45に対して制御信号を出力するものである。   In the hybrid-type earthquake disaster prevention system of the second embodiment, instead of the predictive earthquake disaster prevention system unit 40 and the measurement-type earthquake disaster prevention system unit 50 of the first embodiment, the prediction-type earthquake disaster prevention system unit 40A and the measurement having different configurations from these are used. A type earthquake disaster prevention system unit 50A is provided. The predictive earthquake disaster prevention system unit 40A includes an emergency earthquake warning reception / analysis system unit 41A having a configuration different from that of the first embodiment. The earthquake early warning reception / analysis system unit 41A includes a reception unit 41a and an analysis unit 41b similar to those in the first embodiment. The measurement-type earthquake disaster prevention system unit 50A includes a seismometer 51 and a determination processing unit 52 similar to those in the first embodiment. A common control means (for example, control signal output control means) 60 is connected to the output sides of the analysis unit 41b and the determination processing unit 52. The common control signal output control means 60 has the same function as the control signal output control means 43 and 53 of the first embodiment, and outputs a control signal to the control target device 45.

本実施例2では、緊急地震速報受信/解析システム部41A及び計測型地震防災システム部50Aの出力側に、共通の制御信号出力制御手段60を設け、この制御信号出力制御手段60から出力される制御信号により、実施例1と同様に、制御対象機器45の動作を制御する構成になっている。そのため、実施例1と同様の作用効果を奏する。但し、実施例1の個別の制御信号出力制御手段41c,53に代えて、共通の制御信号出力制御手段60を設けているので、その構成を簡易化できる。   In the second embodiment, the common control signal output control means 60 is provided on the output side of the emergency earthquake warning reception / analysis system section 41A and the measurement type earthquake disaster prevention system section 50A, and is output from the control signal output control means 60. Similar to the first embodiment, the operation of the control target device 45 is controlled by the control signal. Therefore, the same effects as those of the first embodiment are obtained. However, since the common control signal output control means 60 is provided in place of the individual control signal output control means 41c and 53 of the first embodiment, the configuration can be simplified.

(変形例)
本発明は、上記実施例1、2に限定されず、例えば、緊急地震速報受信/解析システム部41,41A、計測型地震防災システム部50,50A、及び制御信号出力制御手段60を、図示以外の他の回路で構成したり、閾値TH1,TH2及び予測誤差Δthを他の数値に変更したり、あるいは、時刻Δtを5秒以外の時間に設定する等、種々の変形が可能である。
(Modification)
The present invention is not limited to the first and second embodiments. For example, the emergency earthquake warning reception / analysis system units 41 and 41A, the measurement type earthquake disaster prevention system units 50 and 50A, and the control signal output control unit 60 are not shown in the figure. Various modifications are possible, such as configuring with other circuits, changing the thresholds TH1 and TH2 and the prediction error Δth to other numerical values, or setting the time Δt to a time other than 5 seconds.

本発明の実施例1を示すハイブリッド型地震防災システムの構成の概念図である。It is a conceptual diagram of a structure of the hybrid type earthquake disaster prevention system which shows Example 1 of this invention. 図1の制御信号出力制御手段41c,53における制御信号出力条件と仮定条件の例を示す図である。It is a figure which shows the example of the control signal output conditions and assumption conditions in the control signal output control means 41c and 53 of FIG. 図1において地震発生時の計測型地震防災システム部50と予測型地震防災システム部40におけるそれぞれの制御信号出力条件が成立した時の出力タイミングの例を示す図である。It is a figure which shows the example of the output timing when each control-signal output condition in the measurement type earthquake disaster prevention system part 50 at the time of an earthquake occurrence in FIG. 1 and the prediction type earthquake disaster prevention system part 40 is satisfied. 図1において予測型地震防災システム部40が誤差無しで予測した場合の出力結果の例を示す図である。It is a figure which shows the example of an output result when the prediction type earthquake disaster prevention system part 40 is predicted without an error in FIG. 図2の制御信号出力条件において、予測型地震防災システム部40が計測震度に対し−50galの誤差で予測した場合の出力結果の例を示す図である。It is a figure which shows the example of an output result when the prediction type earthquake disaster prevention system part 40 estimates with the error of -50gal with respect to the measurement seismic intensity in the control signal output condition of FIG. 図2の制御信号出力条件において、予測型地震防災システム部40が計測震度に対し+50galの誤差で予測した場合の出力結果の例を示す図である。It is a figure which shows the example of an output result when the prediction type earthquake disaster prevention system part 40 estimates with the error of +50 gal with respect to the measured seismic intensity on the control signal output conditions of FIG. 本発明の実施例2を示すハイブリッド型地震防災システムの構成の概念図である。It is a conceptual diagram of a structure of the hybrid type earthquake disaster prevention system which shows Example 2 of this invention. 従来の一般的な地震防災システムの構成を示す概念図である。It is a conceptual diagram which shows the structure of the conventional general earthquake disaster prevention system.

符号の説明Explanation of symbols

30 地震
32 気象庁
40,40A 予測型地震防災システム部
41,41A 緊急地震速報受信/解析システム部
41a 受信部
41b 解析部
41c,53,60 制御信号出力制御手段
50,50A 計測型地震防災システム部
51 地震計
52 判定処理部
30 Earthquake 32 Japan Meteorological Agency 40, 40A Prediction type earthquake disaster prevention system part 41, 41A Earthquake early warning reception / analysis system part 41a Reception part 41b Analysis part 41c, 53, 60 Control signal output control means 50, 50A Measurement type earthquake disaster prevention system part 51 Seismometer 52 Judgment processing part

Claims (5)

震度計を用いて、地震の揺れをある震度以上計測した時点で被制御対象を動作させるための第1の制御信号を出力する第1の地震防災システム部と、
震源位置及びマグニチュード情報を含む緊急地震速報を受信して解析を行い、地震主要動の震度及び到達時刻を予測し、ある震度以上が到来すると予測される場合に、その揺れが来る前に前記被制御対象を動作させるための第2の制御信号を出力する第2の地震防災システム部と、
前記第2の地震防災システム部の予測誤差を考慮し、前記第2の地震防災システム部から前記第2の制御信号を出力するための第2の閾値を、前記第1の地震防災システム部から前記第1の制御信号を出力するための第1の閾値より高い震度に設定することにより、前記被制御対象を制御目標震度以上で動作させる制御手段と、
を備えたことを特徴とする地震防災システム。
A first earthquake disaster prevention system unit that outputs a first control signal for operating a controlled object when a seismic intensity is measured at a certain seismic intensity or more using a seismic intensity meter;
An earthquake early warning including the location of the earthquake and magnitude information is received and analyzed to predict the seismic intensity and arrival time of the main motion of the earthquake. A second earthquake disaster prevention system unit that outputs a second control signal for operating the controlled object;
In consideration of the prediction error of the second earthquake disaster prevention system unit, the second threshold value for outputting the second control signal from the second earthquake disaster prevention system unit is determined from the first earthquake disaster prevention system unit. Control means for operating the controlled object at a control target seismic intensity or higher by setting the seismic intensity higher than a first threshold for outputting the first control signal;
An earthquake disaster prevention system characterized by comprising
前記第2の閾値は、前記第1の閾値と前記予測誤差とを加算した震度に設定されていることを特徴とする請求項1記載の地震防災システム。   The earthquake disaster prevention system according to claim 1, wherein the second threshold value is set to a seismic intensity obtained by adding the first threshold value and the prediction error. 震度計を用いて、地震の揺れをある震度以上計測した時点で被制御対象を動作させるための第1の制御信号を出力する第1の地震防災システム部と、
震源位置及びマグニチュード情報を含む緊急地震速報を受信して解析を行い、地震主要動の震度及び到達時刻を予測し、ある震度以上が到来すると予測される場合に、その揺れが来る前に前記被制御対象を動作させるための第2の制御信号を出力する第2の地震防災システム部と、
前記第2の地震防災システム部から前記第2の制御信号が出力される前に前記地震主要動が到達した時に、前記第1の地震防災システム部から前記第1の制御信号を出力して前記被制御対象を動作させる制御手段と、
を備えたことを特徴とする地震防災システム。
A first earthquake disaster prevention system unit that outputs a first control signal for operating a controlled object when a seismic intensity is measured at a certain seismic intensity or more using a seismic intensity meter;
An earthquake early warning including the location of the earthquake and magnitude information is received and analyzed to predict the seismic intensity and arrival time of the main motion of the earthquake. A second earthquake disaster prevention system unit that outputs a second control signal for operating the controlled object;
When the main earthquake motion arrives before the second control signal is output from the second earthquake disaster prevention system unit, the first control signal is output from the first earthquake disaster prevention system unit and the first control signal is output. Control means for operating the controlled object;
An earthquake disaster prevention system characterized by comprising
前記制御手段は、前記第1及び第2の地震防災システム部内にそれぞれ設けられ、予め規定された制御信号出力条件に従い、前記第1及び第2の制御信号の出力を制御することを特徴とする請求項1〜3のいずれか1項に記載の地震防災システム。   The control means is provided in each of the first and second earthquake disaster prevention system units, and controls output of the first and second control signals in accordance with a predetermined control signal output condition. The earthquake disaster prevention system of any one of Claims 1-3. 前記制御手段は、前記第1及び第2の地震防災システム部に対して共通に設けられ、予め規定された制御信号出力条件に従い、前記第1及び第2の制御信号の出力を制御することを特徴とする請求項1〜3のいずれか1項に記載の地震防災システム。   The control means is provided in common for the first and second earthquake disaster prevention system units, and controls the output of the first and second control signals according to a predetermined control signal output condition. The earthquake disaster prevention system of any one of Claims 1-3 characterized by the above-mentioned.
JP2008017071A 2008-01-29 2008-01-29 Earthquake disaster prevention system Active JP5085352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008017071A JP5085352B2 (en) 2008-01-29 2008-01-29 Earthquake disaster prevention system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008017071A JP5085352B2 (en) 2008-01-29 2008-01-29 Earthquake disaster prevention system

Publications (2)

Publication Number Publication Date
JP2009180508A true JP2009180508A (en) 2009-08-13
JP5085352B2 JP5085352B2 (en) 2012-11-28

Family

ID=41034623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008017071A Active JP5085352B2 (en) 2008-01-29 2008-01-29 Earthquake disaster prevention system

Country Status (1)

Country Link
JP (1) JP5085352B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015190870A (en) * 2014-03-28 2015-11-02 日東工業株式会社 seismoscope
JP2015190887A (en) * 2014-03-28 2015-11-02 日東工業株式会社 seismoscope

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127583A (en) * 1987-11-11 1989-05-19 Hitachi Ltd Controller for elevator
JPH0943392A (en) * 1995-07-31 1997-02-14 Toshiba Corp Output control decision device for reactor
JP2006112922A (en) * 2004-10-14 2006-04-27 Toshiba Corp Emergency earthquake report device and method
JP2006170739A (en) * 2004-12-15 2006-06-29 Kajima Corp Earthquake disaster prevention system using urgent earthquake prompt report
JP2006184190A (en) * 2004-12-28 2006-07-13 Real Time Jishin Joho Riyo Kyogikai Disaster prevention system and device by using urgent earthquake news flash
JP2007108012A (en) * 2005-10-13 2007-04-26 Oki Electric Ind Co Ltd Earthquake disaster prevention system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127583A (en) * 1987-11-11 1989-05-19 Hitachi Ltd Controller for elevator
JPH0943392A (en) * 1995-07-31 1997-02-14 Toshiba Corp Output control decision device for reactor
JP2006112922A (en) * 2004-10-14 2006-04-27 Toshiba Corp Emergency earthquake report device and method
JP2006170739A (en) * 2004-12-15 2006-06-29 Kajima Corp Earthquake disaster prevention system using urgent earthquake prompt report
JP2006184190A (en) * 2004-12-28 2006-07-13 Real Time Jishin Joho Riyo Kyogikai Disaster prevention system and device by using urgent earthquake news flash
JP2007108012A (en) * 2005-10-13 2007-04-26 Oki Electric Ind Co Ltd Earthquake disaster prevention system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015190870A (en) * 2014-03-28 2015-11-02 日東工業株式会社 seismoscope
JP2015190887A (en) * 2014-03-28 2015-11-02 日東工業株式会社 seismoscope

Also Published As

Publication number Publication date
JP5085352B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
CN102870144B (en) Aspirating environmental sensor with webserver and email notification
JP4134020B2 (en) Tidal level monitoring system, maritime buoy and ground station device for tidal level monitoring system, tidal level monitoring method, tidal level monitoring program
JP2011521371A (en) Tsunami warning system and tsunami warning providing method
JP2009150817A (en) Early earthquake information processing system
KR101832337B1 (en) Earthquake detection system of building
KR101983938B1 (en) System and method for warning lightning
US9153122B2 (en) Environmental alert for computer systems
JP2004224469A (en) Control operation system of elevator when earthquake occurs
JP2008096203A (en) Information receiver, non-seismograph information receiver using the same, or information receiving system using the information receiver
JP5085352B2 (en) Earthquake disaster prevention system
KR101957763B1 (en) Processing device of multiple seismic information for real-time earthquake alert and the method thereof
JP2010164325A (en) System for predicting seismic vibration
JP2006112999A (en) Earthquake warning device
JP2008139267A (en) System and method for controlling supply of gas, district gas supply control device, and individual gas supply control device
JP2009258063A (en) Damage monitoring system and measuring device
JP2006112922A (en) Emergency earthquake report device and method
JP5939886B2 (en) Earthquake motion convergence judgment system
KR100927422B1 (en) Surveillance System Using Short Range Wireless Communication and Its Method
JP2008181458A (en) Remote monitoring system
JP4721850B2 (en) server
CN106157539A (en) Impending earthquake warning system
TWI622964B (en) Earthquake warning method and earthquake warning broadcast system thereof
JP6568818B2 (en) River monitoring system, river monitoring method and river monitoring program
JP2014095586A (en) Earthquake identification apparatus, and earthquake identification system and earthquake identification method using the same
JP2010025865A (en) Earthquake alarm system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101220

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20111220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120905

R150 Certificate of patent or registration of utility model

Ref document number: 5085352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250