JP2007108012A - Earthquake disaster prevention system - Google Patents
Earthquake disaster prevention system Download PDFInfo
- Publication number
- JP2007108012A JP2007108012A JP2005299166A JP2005299166A JP2007108012A JP 2007108012 A JP2007108012 A JP 2007108012A JP 2005299166 A JP2005299166 A JP 2005299166A JP 2005299166 A JP2005299166 A JP 2005299166A JP 2007108012 A JP2007108012 A JP 2007108012A
- Authority
- JP
- Japan
- Prior art keywords
- wave
- earthquake
- seismic intensity
- determination
- scheduled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000002265 prevention Effects 0.000 title claims description 42
- 238000001514 detection method Methods 0.000 claims abstract description 23
- 230000035939 shock Effects 0.000 abstract description 6
- 239000007789 gas Substances 0.000 description 12
- 239000004065 semiconductor Substances 0.000 description 10
- 239000000126 substance Substances 0.000 description 7
- 102100037985 Dickkopf-related protein 3 Human genes 0.000 description 6
- 101000951342 Homo sapiens Dickkopf-related protein 3 Proteins 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Geophysics And Detection Of Objects (AREA)
- Emergency Alarm Devices (AREA)
Abstract
Description
本発明は、緊急地震速報を利用して地震の到来前に、半導体工場等のプラントにおけるガス・薬品等の供給を遮断する等して地震の被害を防止する地震防災システムに関するものである。 The present invention relates to an earthquake disaster prevention system that uses earthquake early warnings to prevent earthquake damage by shutting off the supply of gas, chemicals and the like in a plant such as a semiconductor factory before the arrival of the earthquake.
従来、地震防災システムに関する技術としては、例えば、次のような文献に記載されるものがあった。 Conventionally, as a technique related to an earthquake disaster prevention system, for example, there are those described in the following documents.
図3は、特許文献1に記載された一般的な地震波形を示す図である。
特許文献1には、地震の発生を早期に検出して迅速にガスの供給を遮断するガス遮断装置の技術が記載されている。地震波は、図4に示されるように、初期微動である縦揺れ(プライマリ波、これを「P波」という。)と、主要振動である横揺れ(セカンダリ波、これを「S波」という。)とに分けられる。P波は、伝播速度が5〜7Km/Sと速く、これに対してS波は、伝播速度が3〜4Km/Sと遅いが大きな揺れを起こし、P波の発生からS波の到着までの時間差は、10秒(sec)前後が多い。P波の垂直成分Pvの加速度とS波の水平成分Shの加速度との関係は、ほぼ比例関係にあり、地震による被害を防止するために、S波の検出に代えてP波の検出を行っても良い。そこで、特許文献1の技術では、地震の縦揺れをP波感震器で検出し、この出力から特徴量抽出部で特徴量を抽出し、ガスの供給を遮断すべき地震であるか否かをファジイ推論部でファジイ推論し、この推論結果に応じてガスの遮断を行うようにしている。
FIG. 3 is a diagram showing a general seismic waveform described in Patent Document 1. As shown in FIG.
Patent Document 1 describes a technology of a gas shut-off device that detects the occurrence of an earthquake at an early stage and quickly shuts off the gas supply. As shown in FIG. 4, the seismic wave is pitched (primary wave, which is referred to as “P wave”), which is the initial fine movement, and rolls (secondary wave, which is referred to as “S wave”), which is the main vibration. ). The P wave has a high propagation speed of 5 to 7 Km / S, whereas the S wave has a slow propagation speed of 3 to 4 Km / S but causes a large fluctuation, and from the generation of the P wave to the arrival of the S wave. The time difference is often around 10 seconds (sec). The relationship between the acceleration of the vertical component Pv of the P wave and the acceleration of the horizontal component Sh of the S wave is almost proportional, and in order to prevent damage due to the earthquake, the P wave is detected instead of the S wave. May be. Therefore, in the technique of Patent Document 1, whether or not the earthquake should be cut off by detecting the pitch of the earthquake with a P-wave seismometer, extracting the feature value from the output by the feature value extraction unit, and cutting off the gas supply. Is fuzzy inferred by the fuzzy inference section, and the gas is shut off according to the inference result.
特許文献2には、震源からの距離に対応した適切な震度を地震波のS波の到来前に予測し、この予測地点での主要震動の規模の認識を容易にするための震度予測システムの技術が記載されている。この震度予測システムでは、震源付近の観測地点における地震波のP波到来からS波到来までの初動部分波形から観測地点の初動の震度と観測地点の震源距離、及び目的とする予測地点の震源距離を算出し、地震波の予測地点への到達前にこれらの算出値から距離減衰の回帰式を用いて予測地点の震度を予測している。 Patent Document 2 discloses a seismic intensity prediction system technology for predicting an appropriate seismic intensity corresponding to the distance from the epicenter before the arrival of the S wave of the seismic wave, and facilitating recognition of the magnitude of the main ground motion at the predicted point. Is described. In this seismic intensity prediction system, the seismic intensity at the observation point, the epicenter distance of the observation point, the epicenter distance of the target prediction point, and the seismic intensity at the observation point from the initial motion partial waveform from the arrival of the P wave to the S wave at the observation point near the hypocenter. The seismic intensity at the predicted point is predicted by using a regression equation of distance attenuation from these calculated values before reaching the predicted point of the seismic wave.
特許文献3には、地震のP波初動を検出して各種の稼働設備における最適な地震対策処理を行い、震災後の復旧を容易に行えるようにする地震警報システムの技術が記載されている。この地震警報システムでは、地震観測装置で常時P波を監視し、P波を検出すると、各種の検出信号を解析装置に出力する。解析装置の第1の推定部では、地震観測装置からの検出信号を受信し、地震の震源位置、大きさ等の推定データを第2の判定部に送出する。第2の判定部では、その推定データに基づいて、警報を行う稼働設備を選定し、且つ、その稼働設備に対する地震警報データを作成し、この地震警報データを稼働設備のアドレスと共に、警報装置に送出する。警報装置では、通信回線を介して地震警報データを稼働設備に送出する。この地震警報データを受信した稼働設備は、この受信した地震警報データに応じて所定の地震対策動作を実行するようになっている。 Patent Document 3 describes the technology of an earthquake warning system that detects the initial motion of a P wave of an earthquake, performs an optimal earthquake countermeasure process in various operating facilities, and facilitates recovery after the earthquake. . In this earthquake warning system, a P-wave is constantly monitored by an earthquake observation device, and when a P-wave is detected, various detection signals are output to the analysis device. The first estimation unit of the analysis device receives the detection signal from the earthquake observation device, and sends estimation data such as the location and size of the earthquake to the second determination unit. Based on the estimated data, the second determination unit selects an operation facility for performing an alarm, creates earthquake alarm data for the operation facility, and sends the earthquake alarm data to the alarm device together with the address of the operation facility. Send it out. In the alarm device, the earthquake alarm data is sent to the operation facility via the communication line. The operating facility that has received the earthquake warning data performs a predetermined earthquake countermeasure operation in accordance with the received earthquake warning data.
特許文献4には、地震の予測強度や予測到達時刻(時間)を知らせ、地震に対する咄嗟の備えを行うことを支援し、災害の防止を図るための地震予測即時報知システムの技術が記載されている。全国各地の地震の観測地域には、地震波形を観測し発信するための地震観測網が設置されている。地震観測網から発信される情報は、原データを含む地震に関するリアルタイム情報であり、この情報の種類としては、気象庁等の国の機関による全国データ、県・市町村等による地域データ、大規模施設等が自ら作成する局地データがある。地震に関するリアルタイム情報としては、原データと防災に使用可能な強度、到達時間等の地震パラメータがある。 Patent Document 4 describes the technology of an earthquake prediction immediate notification system for notifying earthquake prediction strength and predicted arrival time (time), assisting in preparing for the earthquake, and preventing disasters. Yes. Seismic observation networks for observing and transmitting seismic waveforms are installed in earthquake observation areas throughout Japan. The information sent from the seismic network is real-time information about the earthquake including the original data. The types of this information include national data from national agencies such as the Japan Meteorological Agency, regional data from prefectures, municipalities, etc., large-scale facilities, etc. Have local data that they create. As real-time information about earthquakes, there are earthquake parameters such as original data and strength and arrival time that can be used for disaster prevention.
特許文献4の技術は、地震に関するリアルタイム情報に基づき到来する地震波を予測し報知する地震予測即時報知システムであって、地震に関するリアルタイム情報を受信する第1、第2の受信手段と、この第1、第2の受信手段により受信したリアルタイム情報に基づき報知の要否を判定する第1の判定手段と、第1、第2の受信手段により受信したリアルタイム情報に基づき特定地に到達する地震波の予測演算を行う予測演算手段と、この予測演算手段により予測演算された地震波の到達を報知する第1、第2の報知手段とを備えている。そして、地震観測網で決定された地震パラメータを、当該地点に地震波が到達するより早く伝達し、当該地点の位置、地震学的特性を考慮して、その地点の必要な情報を即時に算出し表示するようになっている。 The technology of Patent Literature 4 is an earthquake prediction immediate notification system that predicts and notifies an incoming seismic wave based on real-time information about an earthquake, and includes first and second receiving means for receiving real-time information about an earthquake, First prediction means for determining necessity of notification based on real-time information received by the second reception means, and prediction of seismic waves reaching a specific location based on real-time information received by the first and second reception means Prediction calculation means for performing calculation and first and second notification means for notifying arrival of the seismic wave predicted and calculated by the prediction calculation means. Then, the seismic parameters determined by the seismic network are transmitted earlier than the seismic wave reaches the point, and the necessary information is immediately calculated in consideration of the location and seismological characteristics of the point. It is supposed to be displayed.
従来、プラントとして例えば超精密産業である半導体工場の地震防災システムでは、次のような課題があった。 Conventionally, for example, an earthquake disaster prevention system in a semiconductor factory, which is a super-precision industry, has the following problems.
日本全国至る所に建設された半導体工場では、特徴として多くの特殊危険性ガス、薬品を取り扱っているため、揺れによる漏洩、ひいては火災に至るまでの被害が発生する可能性がある。特に、半導体工場にはクリーンルームという、極めて塵埃の少ない環境の部屋が必要であり、このクリーンルームは通常2階以上に設置するため、揺れに対する応答加速度も高くなる。クリーンルームに設置される生産設備も非常に高価、且つ精密なものであるため、強い揺れで壊れたり、修理に多大な費用と時間を要することとなる。更に、通常1年、365日24時間稼動体制で工場を操業させているので、地震による操業停止は多大な損失に繋がることが多い。そのため、半導体工場の地震防災システムとして、種々の構造のものが構築されているが、未だ信頼性の高いシステムがなかった。 Semiconductor factories built all over Japan handle many special hazardous gases and chemicals, which can cause damage due to shaking and even fires. In particular, a semiconductor factory requires a clean room called a clean room, and this clean room is usually installed on the second floor or higher, so the response acceleration to shaking is also high. Since the production equipment installed in the clean room is also very expensive and precise, it can be broken by a strong shaking or requires a lot of cost and time for repair. Furthermore, since the factory is usually operated for 24 hours a day, 365 days a year, the suspension of operations due to an earthquake often leads to a great loss. For this reason, various structures have been constructed as earthquake disaster prevention systems for semiconductor factories, but there has not yet been a highly reliable system.
ここで、信頼性を向上させるための地震防災システムの構成として、次のようなものが考えられる。例えば、半導体工場の敷地内にS波地震計を設置し、このS波地震計が揺れを検知した際、この大きさが100〜200gal(震度5〜6)という閾値を超えた場合に、緊急防災システムの自動制御でトリガ信号を発信して制御システムを起動し、音声警報を発報して人の安全を確保すると共に、危険なガス・薬品の遮断弁を作動させて2次災害を防止する。
Here, as the configuration of the earthquake disaster prevention system for improving the reliability, the following can be considered. For example, when an S-wave seismometer is installed in the premises of a semiconductor factory and this S-wave seismometer detects a shake, if this size exceeds a threshold of 100 to 200 gal (
ところが、このような地震防災システムの場合は、実際の大きな揺れの中で作動するため、つまり、本震到来後に動作するため、遮断弁起動用の窒素(N2)ガス供給設備の故障、配管の破損、遮断機器の故障、或いは停電等のため、動作しない可能性があり、確実に遮断することができるか懸念されるので、システムの信頼性の点で問題がある。 However, in the case of such an earthquake disaster prevention system, it operates in an actual large shake, that is, it operates after the arrival of the mainshock, so failure of the nitrogen (N2) gas supply equipment for starting the shut-off valve, damage to the piping There is a possibility that the system may not operate due to a failure of a shut-off device or a power failure, and there is a problem in terms of system reliability because there is a concern that it can be shut off reliably.
この問題を解決するために、例えば、特許文献2〜4の内の特に文献4の技術を用いて、次のような地震防災システムを構築することが考えられる。 In order to solve this problem, for example, it is conceivable to construct the following earthquake disaster prevention system using the technique of Document 4 among Patent Documents 2 to 4, in particular.
特許文献4の地震予測即時報知システムでは、地震に関するリアルタイム情報を利用し、この情報に基づき到来する地震波を予測して報知する構成になっている。この技術を用いて半導体工場の地震防災システムを構築する場合、リアルタイム情報として、例えば、気象庁又は2次配信機関(例えば、(特定非営利活動法人)リアルタイム地震情報利用協議会、以下「REIC」という。)から伝送される緊急地震速報の地震発生情報サービスを利用することが考えられる。 The earthquake prediction immediate notification system of Patent Document 4 is configured to use real-time information about an earthquake and predict and notify an incoming seismic wave based on this information. When building an earthquake disaster prevention system for a semiconductor factory using this technology, as the real-time information, for example, the Japan Meteorological Agency or a secondary distribution organization (for example, (Non-Profit Organization) Real-time Earthquake Information Utilization Council, hereinafter referred to as “REIC”. It is possible to use the earthquake occurrence information service of the emergency earthquake warning transmitted from.
緊急地震速報は、震源地、速報受信地域の本震予測震度、震源地から速報受信地域へのS波(本震)到着までの猶予時間等の情報であり、震源地付近で検知したP波の初動データを使って求めた震源情報を瞬時に各速報受信地域へ伝送することで、遅れてくるS波の到達予想時刻、予想震度を事前に知らせる。速報受信地域では、震源地との距離にもよるが、P波発生検知からS波到達までの時間差が数秒から数十秒近くあるため、この猶予時間を活用し、受信した震源情報中のP波の大きさが予め設定した閾値を超えた場合に、S波の到来前に、緊急防災システムの自動制御でトリガ信号を発信して制御システムを起動し、音声警報の発報、及び危険なガス・薬品の遮断弁を作動させるいった地震防災システムを構築すれば、多くの2次災害を防ぐことが可能になる。 The Earthquake Early Warning is information on the seismic center, the mainshock predicted seismic intensity in the area receiving the breaking news, the grace time until the arrival of the S wave (main shock) from the epicenter to the area receiving the breaking news, and the initial motion of the P wave detected near the epicenter The epicenter information obtained using the data is instantly transmitted to each breaking news reception area, so that the estimated arrival time of the delayed S wave and the predicted seismic intensity are notified in advance. Depending on the distance from the epicenter, the time difference from the detection of the P wave to the arrival of the S wave is close to several seconds to several tens of seconds in the breaking news reception area. When the wave size exceeds a preset threshold, before the arrival of the S wave, a trigger signal is transmitted by automatic control of the emergency disaster prevention system, the control system is activated, a voice alarm is issued, and a dangerous By constructing an earthquake disaster prevention system that operates gas and chemical shut-off valves, many secondary disasters can be prevented.
しかし、この地震防災システムでは、緊急地震速報を利用して地震の到来前に防災対策を実施しているが、防災対象区域の地盤等の環境条件の相違によって緊急地震速報の予想値に大きな誤差が生じる虞があること、そのような予想値の誤差や設定閾値の誤差等によって誤報や無用な操業停止が生じた場合に多大な損害が生じる虞があること、直下型地震の場合は緊急地震速報を受信する前に地震が到来して防災対策を実施出来ずに大きな被害を受ける虞があること等から、信頼性の点で課題が残る。
以上のような課題は、半導体工場以外の種々のプラント等にも生じる。
However, in this earthquake disaster prevention system, emergency earthquake warnings are used to implement disaster prevention measures before the earthquake arrives, but there is a large error in the predicted value of emergency earthquake warnings due to differences in environmental conditions such as the ground in the disaster prevention area. That there is a risk of occurrence of a large amount of damage in the event of a false alarm or unnecessary shutdown due to such an error in the predicted value or an error in the set threshold, or an emergency earthquake in the case of a direct earthquake There is a problem in terms of reliability because there is a risk that an earthquake will occur before receiving the bulletin and disaster prevention measures cannot be implemented, causing serious damage.
The above problems also occur in various plants other than semiconductor factories.
本発明の地震防災システムでは、地震発生によるS波到達予測時刻及び予測震度を含む緊急地震速報が送られてくると、前記緊急地震速報を受信して前記予測震度が設定震度を超えるか否かを判定して第1の判定結果を出力する受信手段と、前記地震発生により到来するP波を検出するP波地震計を有し、前記P波地震計の検出結果に基づき、到来予定の地震の種類を判定すると共に到来予定のS波の震度を予測判定して第2の判定結果を出力するP波検出手段と、前記第1及び第2の判定結果に基づき、前記到来予定のS波の予測震度が設定値を超えるか否かの確認判定を行い、前記設定値を上回った時にトリガ信号を発信する判定手段と、前記トリガ信号を受信すると起動して、前記S波到来前に保護対象の動作又は停止を制御する制御手段とを有している。 In the earthquake disaster prevention system of the present invention, when an emergency earthquake warning including an S wave arrival prediction time and a predicted seismic intensity due to the occurrence of an earthquake is sent, whether or not the predicted earthquake intensity exceeds a set seismic intensity by receiving the emergency earthquake warning And receiving means for outputting a first determination result and a P-wave seismometer for detecting a P-wave that arrives due to the occurrence of the earthquake, and an earthquake that is scheduled to arrive based on the detection result of the P-wave seismometer P wave detection means for determining the type of the S wave and predicting and determining the seismic intensity of the S wave scheduled to arrive and outputting the second determination result, and based on the first and second determination results, the S wave scheduled to arrive To determine whether or not the predicted seismic intensity exceeds a set value, and when the trigger signal is received, a determination means for transmitting a trigger signal when the set seismic intensity is exceeded, and activation when receiving the trigger signal to protect before the arrival of the S wave Control that controls the operation or stop of the target And a stage.
本発明の地震防災システムによれば、緊急地震速報の受信手段とP波検出手段との2つの異なる手段から、S波到達時刻の予測と、震度の予測を行い、判定手段の確認判定により、予測震度が設定値を上回った時に該判定手段からトリガ信号を発信し、本震到着前に、自動的に制御手段を起動して保護対象を保護する構成になっているので、本震の予測精度が大幅に向上し、大陸型又はプレート型地震、或いは直下型地震による被害を的確に防止でき、地震防災システムの信頼性を著しく向上出来る。 According to the earthquake disaster prevention system of the present invention, the prediction of the S wave arrival time and the prediction of the seismic intensity are performed from the two different means of the emergency earthquake warning receiving means and the P wave detecting means, When the predicted seismic intensity exceeds the set value, a trigger signal is sent from the judging means, and the control means is automatically activated before the mainshock arrives to protect the protection target. This greatly improves the damage caused by continental or plate-type earthquakes or direct earthquakes, and can significantly improve the reliability of the earthquake disaster prevention system.
地震防災システムは、受信システムと、P波検出システムと、判定手段と、保護対象の制御システムとを有している。 The earthquake disaster prevention system has a receiving system, a P-wave detection system, a determination unit, and a control system to be protected.
前記受信システムは、地震発生によるS波到達予測時刻及び予測震度を含む緊急地震速報が送られてくると、前記緊急地震速報を受信して前記予測震度が設定震度を超えるか否かを判定して第1の判定結果を判定手段へ出力する。前記P波検出システムは、前記地震発生により到来するP波を検出するP波地震計を有し、前記P波地震計の検出結果に基づき、到来予定の地震の種類を判定すると共に到来予定のS波の震度を予測判定して第2の判定結果を前記判定手段へ出力する。前記判定手段は、前記第1及び第2の判定結果に基づき、前記到来予定のS波の予測震度が設定値を超えるか否かの確認判定を行い、前記設定値を上回った時にトリガ信号を前記制御システムへ発信する。前記制御システムでは、前記トリガ信号を受信すると起動して、前記S波到来前に前記保護対象となる各種の制御装置等のの動作又は停止を制御する。 The receiving system receives the emergency earthquake bulletin when the earthquake early warning including the predicted arrival time of the S wave due to the occurrence of the earthquake and the predicted seismic intensity is received, and determines whether the predicted seismic intensity exceeds the set seismic intensity. The first determination result is output to the determination means. The P-wave detection system includes a P-wave seismometer that detects a P-wave that arrives due to the occurrence of the earthquake, and determines a type of an earthquake that is scheduled to arrive based on a detection result of the P-wave seismometer. The seismic intensity of the S wave is predicted and output, and the second determination result is output to the determination means. The determination means determines whether or not the predicted seismic intensity of the scheduled S wave exceeds the set value based on the first and second determination results, and when the set value exceeds the set value, a trigger signal is generated. Call to the control system. The control system is activated when the trigger signal is received, and controls the operation or stop of various control devices to be protected before the arrival of the S wave.
(実施例1の構成)
図1は、本発明の実施例1を示す地震防災システムの概略の構成図である。
(Configuration of Example 1)
FIG. 1 is a schematic configuration diagram of an earthquake disaster prevention system showing Embodiment 1 of the present invention.
この地震防災システムは、緊急地震速報とP波地震計による震度予測を組み合わせたシステムであり、例えば、半導体工場等の防災対象区域に設置され、REIC1から伝送される緊急地震速報2を衛星回線3及び専用回線4を介して受信する受信手段(例えば、緊急地震速報の受信システム)10と、半導体工場等の防災対象区域に独自に設置されるP波検出手段(例えば、P波検出システム)20とを備え、この2つの異なるシステム10,20から、S波到達時刻TSの予測と、震度ESの予測を行い、判定手段30により、予測震度ESが設定値(例えば、震度5)を超えるか否かの判定を行い、設定値を上回った時に該判定手段30からトリガ信号31を発信し、本震到来前に、自動的に制御手段(例えば、制御システム)40を起動して保護対象である各種装置41〜43を保護する構成になっている。
This earthquake disaster prevention system is a system that combines emergency earthquake warning and seismic intensity prediction by a P-wave seismometer. For example, an earthquake early warning 2 installed in a disaster prevention area such as a semiconductor factory and transmitted from REIC 1 is connected to a satellite line 3. And a receiving means (for example, an earthquake early warning receiving system) 10 for receiving via the dedicated line 4 and a P wave detecting means (for example, a P wave detecting system) 20 uniquely installed in a disaster prevention area such as a semiconductor factory. Whether or not the S wave arrival time TS and the seismic intensity ES are predicted from the two
ここで、REIC1から伝送される緊急地震速報2は、S波到達予測時刻TS、予測震度ES等を含む震源情報である。受信システム10は、衛星回線3を介して送られてくる緊急地震速報2を受信する衛星通信受信設備11、専用回線4を介して送られてくる緊急地震速報2を受信するインターネット受信設備12、これらの受信設備11,12で受信した緊急地震速報2から予測震度ESが設定震度を超えるか否かを判定して第1の判定結果を判定手段31へ出力する震度設定手段13、及び時間校正機器14等を有している。震度設定手段13は、コンピュータのソフトウェア、又は個別回路(ハードウェア)により構成されている。
Here, the earthquake early warning 2 transmitted from the REIC 1 is epicenter information including the S wave arrival predicted time TS, the predicted seismic intensity ES, and the like. The receiving
P波検出システム20は、加速度センサ等でP波をそれぞれ検出する複数のP波地震計21,22,23、及びこのP波震度計21〜23の出力側に接続されたS波予測手段(例えば、高性能なS波予測システム)24等を有している。複数のP波震度計21〜23は、図示の便宜上、例えば3台設けられているが、これは防災対象区域の大きさ等に応じて適切な台数設置される。
The P-
S波予測システム24は、システム起動アルゴリズムをより高性能化し、より緊急性を必要とする直下型地震と時間猶予の大きい大陸型又はプレート型地震での動作アルゴリズムを使い分けるため、例えば、次のような2つの判定基準1、2(但し、判定基準1<判定基準2)を有している。
・判定基準1;震度4.5〜5.5
・判定基準2;5.5〜6.5
・判定1+0.5〜1.0=判定2、とするのが望ましい。
The S-
・ Criteria 1; seismic intensity 4.5-5.5
・ Criteria 2; 5.5-6.5
It is desirable that judgment 1 + 0.5 to 1.0 = judgment 2.
このS波予測システム24では、P波地震計21〜23で検出されたP波に基づき、判定基準1又は2を選択すると共に、到来する地震が大陸型又はプレート型か直下型かを判定し、選択された判定基準1又2により、コンピュータのアルゴリズム制御等によりS波の震度を予測して多数決で判定し、この第2の判定結果を判定手段30へ出力する機能を有している。
In this S
判定手段30は、震度設定手段13の第1の判定結果及びS波予測システム24の第2の判定結果に対し、論理積(以下「AND」という。)の判定アルゴリズム等を用いて、予測震度ESが設定値(例えば、震度5)を超えるか否かの確認判定を行い、設定値を上回った時にトリガ信号31を発信して制御システム40へ出力する機能を有している。制御システム40は、トリガ信号31を受信すると、例えば、人の安全確保のために緊急放送アラーム装置41を動作、2次災害防止のためにガス・薬品・ボイラ・純水設備等の遮断装置42を動作、及び生産装置(例えば、露光機、拡散炉等)の停止装置43等を動作させる装置であり、コンピュータのソフトウェア、又は個別回路(ハードウェア)により構成されている。
The determination means 30 uses a logical product (hereinafter referred to as “AND”) determination algorithm or the like for the first determination result of the seismic intensity setting means 13 and the second determination result of the S
(実施例1の動作)
図2(a)、(b)は、図1の動作を示すタイムチャートであり、同図(a)は大陸型又はプレート型地震に対するタイムチャート、及び同図(b)は直下型地震に対するタイムチャートである。図2(a)、(b)の横軸は、地震発生後の経過時間(sec)の一例である。
(Operation of Example 1)
2 (a) and 2 (b) are time charts showing the operation of FIG. 1, FIG. 2 (a) is a time chart for a continental type or plate type earthquake, and FIG. 2 (b) is a time for a direct type earthquake. It is a chart. The horizontal axes in FIGS. 2A and 2B are examples of the elapsed time (sec) after the occurrence of the earthquake.
(1) 図2(a)の動作
地震が発生すると(時刻t1)、全国に隈なく張り巡らされた地震観測網の震度計によりP波が検知され(時刻t2)、気象庁によりS波到達時刻TS、震度ES等が予測され、これらの予測値を含む震源情報が、緊急地震速報2としてREIC1から各防災対象区域へ衛星回線3及び専用回線4を介して配信される。
(1) Operation in Fig. 2 (a) When an earthquake occurs (time t1), P waves are detected by seismometers in the seismic observation network stretched throughout the country (time t2), and the S wave arrival time by the Japan Meteorological Agency TS, seismic intensity ES, and the like are predicted, and epicenter information including these predicted values is distributed as emergency earthquake early warning 2 from REIC 1 to each disaster prevention target area via satellite line 3 and dedicated line 4.
防災対象区域の地震防災システムでは、配信された緊急地震速報2を受信システム10内の衛星通信受信設備11及びインターネット受信設備12により受信すると(時刻t3)、震度設定手段13により、配信された予測震度ESが例えば5を超えるか否かが判定され、予測震度ESが5を超えると判定されると、この判定結果が判定手段30へ送られる。
In the earthquake disaster prevention system in the disaster prevention target area, when the distributed emergency earthquake bulletin 2 is received by the satellite
P波が到来してこれがP波検出システム20内のP波地震計21〜23で検出されると(時刻t4)、S波予測システム24により、P波到来よりも緊急地震速報2が先に入力されているので、大陸型又はプレート型地震と判定されると共に、判定基準1により本震(S波)の震度が予測判定されてこの判定結果が判定手段30へ送られる。判定手段30では、震度設定手段13の第1の判定結果とS波予測システム24の第2の判定結果のAND判定を行い、震度設定手段13から送られてくるS波の予測震度5が正しいか否かを確認判定する。
When the P wave arrives and is detected by the
地震の場合、発生個所の場所と同様に、防災保護区域の地盤依存等が震度・発生被害に大きく影響するので、緊急地震速報2における予測精度が低いことがあり、緊急地震速報2の予測値をそのまま利用すると、本来緊急停止を必要としない地震規模でも生産装置等が停止してしまい、これにより機会損失、製品のスクラップ等の被害が発生する。そこで、これを防止するために、地盤の伝播速度等の情報処理を行うS波予測システム24の判定結果により、震度設定手段13から送られてくるS波の予測震度5が正しいか否かを確認判定し、本震の予測精度を向上させている。
In the case of an earthquake, as well as the location of the occurrence site, the ground dependency of the disaster prevention protected area greatly affects the seismic intensity and occurrence damage, so the prediction accuracy of the Earthquake Early Warning 2 may be low, and the value of the Earthquake Early Warning 2 predicted value If the system is used as it is, the production equipment and the like will be stopped even in an earthquake scale that does not necessarily require an emergency stop, and this will result in lost opportunities, damage to product scraps, and the like. In order to prevent this, whether or not the predicted
判定手段30により、震度設定手段13から送られてくるS波の予測震度5が正しいことが確認判定されると、この判定手段30からトリガ信号31が発信されて制御システム40が起動し(時刻t5)、緊急放送アラーム装置41が動作して緊急放送が発報され(時刻t6)、遮断装置42が動作してガス・薬品等の供給が遮断されると共に、停止装置43が動作して生産装置等が停止する。その後、S波が到来するので(時刻t8)、地震による被害を未然に防止出来る。これに対し、判定手段30により、S波の予測震度が5よりも小さいと確認判定されると、制御システム40が起動しないか、或いは、起動しても必要最小限度の防災処理が行われるので、不必要な防災処理の実行を阻止出来る。
If the determination means 30 confirms that the predicted
(2) 図2(b)の動作
地震が発生(時刻t11)して地震観測網の震度計によりP波が検知され(時刻t12)、その後直ぐにP波が到来してこれがP波検出システム20内のP波地震計21〜23で検出されると(時刻t13)、S波予測システム24により、緊急地震速報2よりも先にP波が到来しているので、直下型地震と判定され、判定基準2により本震(S波)の震度が予測されて判定手段30へ送られる。判定手段30では、震度設定手段13の判定結果よりも優先させて、緊急動作必要と判断してトリガ信号31を直ちに発信して制御システム40を起動させる(時刻t14)。これにより、緊急放送アラーム装置41が動作して緊急放送が発報される(時刻t15)。発報後、S波が到来すると(時刻t16)、制御システム40の制御により、遮断装置42が動作してガス・薬品等の供給が遮断されると共に、停止装置43が動作して生産装置等が停止するので(時刻t17)、地震による被害を防止出来る。
(2) Operation in FIG. 2B An earthquake occurs (time t11) and a P wave is detected by the seismometer of the seismic observation network (time t12). Then, a P wave arrives immediately and this is detected by the P
その後、REICから配信された緊急地震速報2を受信システム10内の衛星通信受信設備11及びインターネット受信設備12により受信しても(時刻t18)、緊急防災処理が完了しているので、その緊急地震速報2がキャンセルされる。
After that, even if the earthquake early warning 2 distributed from the REIC is received by the satellite
(実施例1の効果)
本実施例1の地震防災システムでは、緊急地震速報2の受信システム10と独自に設置したP波検出システム20との2つの異なるシステムから、S波到達時刻TSの予測と、震度ESの予測を行い、判定手段30の確認判定により、予測震度ESが設定値(例えば、震度5)を上回った時に該判定手段30からトリガ信号31を発信し、本震到着前に、自動的に制御システム40を起動して各種装置を保護する構成になっている。そのため、本震の予測精度が大幅に向上し、大陸型又はプレート型地震、或いは直下型地震による被害を的確に防止でき、地震防災システムの信頼性を著しく向上出来る。更に、緊急地震速報2の受信システム10を、衛星回線3及び専用回線4により2重化しているので、受信の信頼性も確保出来る。
(Effect of Example 1)
In the earthquake disaster prevention system of the first embodiment, the prediction of the S wave arrival time TS and the prediction of the seismic intensity ES are performed from two different systems, that is, the receiving
なお、本発明は、上記実施例1に限定されず、受信システム10、P波検出システム20、判定手段30、及び制御システム40により制御される装置41〜43を、図示以外の種々の構成に変更することが可能である。
In addition, this invention is not limited to the said Example 1, The apparatuses 41-43 controlled by the receiving
1 REIC
2 緊急地震速報
3 衛星回線
4 専用回線
10 受信システム
20 P波検出システム
21〜23 P波地震計
24 S波予測システム
30 判定手段
40 制御システム
1 REIC
2 Earthquake early warning 3 Satellite line 4
Claims (4)
前記地震発生により到来するP波を検出するP波地震計を有し、前記P波地震計の検出結果に基づき、到来予定の地震の種類を判定すると共に到来予定のS波の震度を予測判定して第2の判定結果を出力するP波検出手段と、
前記第1及び第2の判定結果に基づき、前記到来予定のS波の予測震度が設定値を超えるか否かの確認判定を行い、前記設定値を上回った時にトリガ信号を発信する判定手段と、
前記トリガ信号を受信すると起動して、前記S波到来前に保護対象の動作又は停止を制御する制御手段と、
を有することを特徴とする地震防災システム。 When an earthquake early warning including an S wave arrival predicted time and an estimated seismic intensity due to the occurrence of an earthquake is sent, the emergency judgment is received to determine whether or not the predicted seismic intensity exceeds a set seismic intensity, and the first determination Receiving means for outputting the results;
It has a P-wave seismometer that detects the P-wave that arrives due to the occurrence of the earthquake, and based on the detection result of the P-wave seismometer, determines the type of earthquake that is scheduled to arrive and predicts the seismic intensity of the S-wave that is scheduled to arrive And a P wave detection means for outputting the second determination result;
Determination means for performing a determination of whether or not the predicted seismic intensity of the scheduled S wave exceeds a set value based on the first and second determination results, and transmitting a trigger signal when the set value exceeds the set value; ,
Control means that starts when receiving the trigger signal and controls the operation or stop of the protection target before the arrival of the S wave;
An earthquake disaster prevention system characterized by comprising:
前記P波検出手段は、前記P波を検出する前に、前記受信手段が前記緊急地震速報を受信すると、前記到来予定の地震が大陸型又はプレート型地震であると判定すると共に、前記P波の検出結果に基づき前記到来予定のS波の震度を予測判定して前記第2の判定結果を前記判定手段へ出力し、
前記判定手段は、前記受信手段からの前記第1の判定結果を、前記第2の判定結果により修正判定して前記トリガ信号の発信の是非を決定する構成にしたことを特徴とする地震防災システム。 In the earthquake disaster prevention system according to claim 1 or 2,
The P-wave detection means determines that the incoming earthquake is a continental or plate-type earthquake when the receiving means receives the emergency earthquake warning before detecting the P-wave, and the P-wave Predicting and determining the seismic intensity of the S wave scheduled to arrive based on the detection result, and outputting the second determination result to the determination means,
The determination unit is configured to determine whether the trigger signal is transmitted by correcting and determining the first determination result from the reception unit based on the second determination result. .
前記P波検出手段は、前記受信手段が前記緊急地震速報を受信する前に、前記P波を検出すると、前記到来予定の地震が直下型地震であると判定すると共に、前記P波の検出結果に基づき前記到来予定のS波の震度を予測判定して前記第2の判定結果を前記判定手段へ出力し、
前記判定手段は、前記受信手段からの前記第1の判定結果に優先して前記第2の判定結果を選択し、前記選択した第2の判定結果に基づき前記トリガ信号を発信する構成にしたことを特徴とする地震防災システム。 In the earthquake disaster prevention system according to claim 1 or 2,
When the P wave is detected before the receiving means receives the emergency earthquake bulletin, the P wave detecting means determines that the earthquake to arrive is a direct earthquake and the detection result of the P wave Predicting and determining the seismic intensity of the S wave scheduled to arrive and outputting the second determination result to the determination means,
The determination unit is configured to select the second determination result in preference to the first determination result from the reception unit, and to transmit the trigger signal based on the selected second determination result. Earthquake disaster prevention system characterized by
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005299166A JP4491399B2 (en) | 2005-10-13 | 2005-10-13 | Earthquake disaster prevention system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005299166A JP4491399B2 (en) | 2005-10-13 | 2005-10-13 | Earthquake disaster prevention system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007108012A true JP2007108012A (en) | 2007-04-26 |
JP4491399B2 JP4491399B2 (en) | 2010-06-30 |
Family
ID=38033983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005299166A Active JP4491399B2 (en) | 2005-10-13 | 2005-10-13 | Earthquake disaster prevention system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4491399B2 (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009002914A (en) * | 2007-06-25 | 2009-01-08 | Nippon Telegr & Teleph Corp <Ntt> | Facility disaster monitoring device and facility disaster monitoring method |
JP2009010233A (en) * | 2007-06-28 | 2009-01-15 | Canon Inc | Manufacturing apparatus, and device manufacturing method |
JP2009032141A (en) * | 2007-07-30 | 2009-02-12 | Kajima Corp | Earthquake early warning system |
JP2009092412A (en) * | 2007-10-04 | 2009-04-30 | Yamatake Corp | Emergency earthquake prediction warning system |
JP2009175130A (en) * | 2007-12-28 | 2009-08-06 | Cygnet Corp | Real-time seismic intensity meter and method of predicting seismic intensity, and the like, using the same |
JP2009174979A (en) * | 2008-01-24 | 2009-08-06 | Oki Semiconductor Co Ltd | Earthquake disaster prevention system |
JP2009180508A (en) * | 2008-01-29 | 2009-08-13 | Oki Semiconductor Co Ltd | Earthquake disaster prevention system |
JP2009264864A (en) * | 2008-04-24 | 2009-11-12 | Pioneer Electronic Corp | Flash report terminal of emergency earthquake |
JP2009301371A (en) * | 2008-06-16 | 2009-12-24 | Koyo Electronics Ind Co Ltd | Programmable controller with function for responding to emergency disaster information and programmable controller system including the same |
JP2010071939A (en) * | 2008-09-22 | 2010-04-02 | Nec Personal Products Co Ltd | Earthquake disaster prevention system, seismic detector, plug socket adapter, earthquake disaster prevention control device, and earthquake disaster prevention method |
JP2010078577A (en) * | 2008-08-25 | 2010-04-08 | Shimadzu Corp | Flame atomic absorptiometer |
JP2010084843A (en) * | 2008-09-30 | 2010-04-15 | Taiyo Nippon Sanso Corp | Earthquake signal processing device and earthquake signal processing method |
JP2010261888A (en) * | 2009-05-11 | 2010-11-18 | Toppan Printing Co Ltd | Earthquake disaster prevention system and earthquake information distribution system |
JP2011002371A (en) * | 2009-06-19 | 2011-01-06 | Hakusan Kogyo Kk | Seismic intensity estimation method and device |
JP2011091568A (en) * | 2009-10-21 | 2011-05-06 | Fujitsu Ltd | Disaster information receiver, disaster information receiving method and program |
JP2012078196A (en) * | 2010-10-01 | 2012-04-19 | Taisei Corp | Seismic ground motion forecasting system |
WO2013047008A1 (en) * | 2011-09-26 | 2013-04-04 | 日本電気株式会社 | Seismic intensity estimation device, seismic intensity estimation method, and computer-readable recording medium |
JP2013174455A (en) * | 2012-02-23 | 2013-09-05 | Taisei Corp | Earthquake motion prediction system |
JP2015045616A (en) * | 2013-08-29 | 2015-03-12 | 公益財団法人鉄道総合技術研究所 | Real-time earthquake motion prediction method utilizing underground earthquake motion |
KR102712553B1 (en) * | 2020-09-29 | 2024-10-04 | 가부시키가이샤 코쿠사이 엘렉트릭 | Substrate processing apparatus, manufacturing method of semiconductor device, and program |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06160541A (en) * | 1992-11-16 | 1994-06-07 | Omron Corp | Gas-blast circuit breaker |
JPH06324160A (en) * | 1993-01-12 | 1994-11-25 | Kajima Corp | Seismic intensity forecasting system |
JPH11143350A (en) * | 1997-11-14 | 1999-05-28 | Matsushita Joho System Kk | Device and method for simulating disaster prevention and record medium recording the simulation method |
JP2001134865A (en) * | 1999-11-05 | 2001-05-18 | Fujita Corp | Earthquake alarm system |
JP2001307265A (en) * | 2000-04-25 | 2001-11-02 | Fujita Corp | Alarm system for earthquake |
JP2002350226A (en) * | 2001-05-24 | 2002-12-04 | Katsushima Seisakusho:Kk | P-wave acceleration sensor for elevator |
JP2003066152A (en) * | 2001-08-28 | 2003-03-05 | National Research Institute For Earth Science & Disaster Provention | System for predicting and instantaneously reporting earthquake |
JP2004284758A (en) * | 2003-03-24 | 2004-10-14 | Toshiba Elevator Co Ltd | Emergency control operation system of elevator for earthquake |
JP2005145698A (en) * | 2003-11-19 | 2005-06-09 | Toshiba Elevator Co Ltd | Control operation system of escalator during earthquake |
-
2005
- 2005-10-13 JP JP2005299166A patent/JP4491399B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06160541A (en) * | 1992-11-16 | 1994-06-07 | Omron Corp | Gas-blast circuit breaker |
JPH06324160A (en) * | 1993-01-12 | 1994-11-25 | Kajima Corp | Seismic intensity forecasting system |
JPH11143350A (en) * | 1997-11-14 | 1999-05-28 | Matsushita Joho System Kk | Device and method for simulating disaster prevention and record medium recording the simulation method |
JP2001134865A (en) * | 1999-11-05 | 2001-05-18 | Fujita Corp | Earthquake alarm system |
JP2001307265A (en) * | 2000-04-25 | 2001-11-02 | Fujita Corp | Alarm system for earthquake |
JP2002350226A (en) * | 2001-05-24 | 2002-12-04 | Katsushima Seisakusho:Kk | P-wave acceleration sensor for elevator |
JP2003066152A (en) * | 2001-08-28 | 2003-03-05 | National Research Institute For Earth Science & Disaster Provention | System for predicting and instantaneously reporting earthquake |
JP2004284758A (en) * | 2003-03-24 | 2004-10-14 | Toshiba Elevator Co Ltd | Emergency control operation system of elevator for earthquake |
JP2005145698A (en) * | 2003-11-19 | 2005-06-09 | Toshiba Elevator Co Ltd | Control operation system of escalator during earthquake |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009002914A (en) * | 2007-06-25 | 2009-01-08 | Nippon Telegr & Teleph Corp <Ntt> | Facility disaster monitoring device and facility disaster monitoring method |
JP2009010233A (en) * | 2007-06-28 | 2009-01-15 | Canon Inc | Manufacturing apparatus, and device manufacturing method |
JP2009032141A (en) * | 2007-07-30 | 2009-02-12 | Kajima Corp | Earthquake early warning system |
JP2009092412A (en) * | 2007-10-04 | 2009-04-30 | Yamatake Corp | Emergency earthquake prediction warning system |
JP2009175130A (en) * | 2007-12-28 | 2009-08-06 | Cygnet Corp | Real-time seismic intensity meter and method of predicting seismic intensity, and the like, using the same |
JP2009174979A (en) * | 2008-01-24 | 2009-08-06 | Oki Semiconductor Co Ltd | Earthquake disaster prevention system |
JP2009180508A (en) * | 2008-01-29 | 2009-08-13 | Oki Semiconductor Co Ltd | Earthquake disaster prevention system |
JP2009264864A (en) * | 2008-04-24 | 2009-11-12 | Pioneer Electronic Corp | Flash report terminal of emergency earthquake |
JP2009301371A (en) * | 2008-06-16 | 2009-12-24 | Koyo Electronics Ind Co Ltd | Programmable controller with function for responding to emergency disaster information and programmable controller system including the same |
JP2010078577A (en) * | 2008-08-25 | 2010-04-08 | Shimadzu Corp | Flame atomic absorptiometer |
JP2010071939A (en) * | 2008-09-22 | 2010-04-02 | Nec Personal Products Co Ltd | Earthquake disaster prevention system, seismic detector, plug socket adapter, earthquake disaster prevention control device, and earthquake disaster prevention method |
JP2010084843A (en) * | 2008-09-30 | 2010-04-15 | Taiyo Nippon Sanso Corp | Earthquake signal processing device and earthquake signal processing method |
JP2010261888A (en) * | 2009-05-11 | 2010-11-18 | Toppan Printing Co Ltd | Earthquake disaster prevention system and earthquake information distribution system |
JP2011002371A (en) * | 2009-06-19 | 2011-01-06 | Hakusan Kogyo Kk | Seismic intensity estimation method and device |
JP2011091568A (en) * | 2009-10-21 | 2011-05-06 | Fujitsu Ltd | Disaster information receiver, disaster information receiving method and program |
JP2012078196A (en) * | 2010-10-01 | 2012-04-19 | Taisei Corp | Seismic ground motion forecasting system |
WO2013047008A1 (en) * | 2011-09-26 | 2013-04-04 | 日本電気株式会社 | Seismic intensity estimation device, seismic intensity estimation method, and computer-readable recording medium |
CN103827694A (en) * | 2011-09-26 | 2014-05-28 | 日本电气株式会社 | Seismic intensity estimation device, seismic intensity estimation method, and computer-readable recording medium |
JPWO2013047008A1 (en) * | 2011-09-26 | 2015-03-26 | 日本電気株式会社 | Seismic intensity estimation device, seismic intensity estimation method, and program |
CN103827694B (en) * | 2011-09-26 | 2016-11-02 | 日本电气株式会社 | Earthquake intensity estimation unit, earthquake intensity method of estimation and computer readable recording medium storing program for performing |
JP2013174455A (en) * | 2012-02-23 | 2013-09-05 | Taisei Corp | Earthquake motion prediction system |
JP2015045616A (en) * | 2013-08-29 | 2015-03-12 | 公益財団法人鉄道総合技術研究所 | Real-time earthquake motion prediction method utilizing underground earthquake motion |
KR102712553B1 (en) * | 2020-09-29 | 2024-10-04 | 가부시키가이샤 코쿠사이 엘렉트릭 | Substrate processing apparatus, manufacturing method of semiconductor device, and program |
Also Published As
Publication number | Publication date |
---|---|
JP4491399B2 (en) | 2010-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4491399B2 (en) | Earthquake disaster prevention system | |
KR101767343B1 (en) | Earthquake Warning and Evacuation Broadcasting System | |
TWI541770B (en) | Earthquake alarm broadcast equipment and method thereof | |
JP2006320193A (en) | Electric power shutdown system | |
JP2006170739A (en) | Earthquake disaster prevention system using urgent earthquake prompt report | |
KR20120122477A (en) | Integrated monitoring system for preventing disaster | |
JP2009041333A (en) | Water supply system and water supplying method | |
JP2006197130A (en) | Emergency broadcasting system | |
JP2006208249A (en) | Earthquake disaster mitigation system, earthquake disaster mitigation method, earthquake disaster mitigation program, and computer-readable storage medium | |
JP2008005981A (en) | Disaster prevention system and method of stopping operation of facility | |
JP5073515B2 (en) | Earthquake disaster prevention system | |
JP2010164325A (en) | System for predicting seismic vibration | |
Grasso et al. | Automated decision procedure for earthquake early warning | |
KR101050376B1 (en) | Vessel traffic observation system and method for predicting process of exraordinary circumstance on vts | |
JP5499515B2 (en) | Earthquake disaster prevention system and earthquake information distribution system | |
US20040034476A1 (en) | Seismic emergency response system for use in a wafer fabrication plant | |
JP2008037631A (en) | Elevator earthquake interlocking system | |
KR102100442B1 (en) | System and method for controlling equipment of earthquake vulnerable facilities | |
JP5791543B2 (en) | Earthquake motion prediction system | |
JP2010025865A (en) | Earthquake alarm system | |
JP2001522484A (en) | Damage mitigation system at the time of disaster | |
Honma et al. | Development and practical implementation of disaster prevention system with application of emergency earthquake bulletin | |
JP2010271193A (en) | Earthquake detection system | |
KR102357956B1 (en) | Firefighting facility management device and firefighting facility management system comprising thereof | |
JP2009180508A (en) | Earthquake disaster prevention system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070119 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080728 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20081203 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20090408 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091222 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100210 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100309 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100405 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130409 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4491399 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140409 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |