JP2010271193A - Earthquake detection system - Google Patents

Earthquake detection system Download PDF

Info

Publication number
JP2010271193A
JP2010271193A JP2009123472A JP2009123472A JP2010271193A JP 2010271193 A JP2010271193 A JP 2010271193A JP 2009123472 A JP2009123472 A JP 2009123472A JP 2009123472 A JP2009123472 A JP 2009123472A JP 2010271193 A JP2010271193 A JP 2010271193A
Authority
JP
Japan
Prior art keywords
shake
signal
output
earthquake
detection system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009123472A
Other languages
Japanese (ja)
Inventor
Sadayuki Shimoda
貞之 下田
Yoshihiro Shibuya
義博 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2009123472A priority Critical patent/JP2010271193A/en
Publication of JP2010271193A publication Critical patent/JP2010271193A/en
Pending legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Emergency Alarm Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an earthquake detection system which certainly operates and carries out a corresponding performance before an arrival of an S-wave by using a battery driving operation on the occurrence of an earthquake. <P>SOLUTION: The earthquake detection system includes: a quake measuring means for measuring a quake of the earthquake; and a signal processing means for receiving a signal output by the quake measuring means and executing an operation corresponding to the signal. The system is characterized in that the quake measuring means and the signal processing means are driven by a battery. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は地震の発生に応じて所定の対策動作を実行する地震検知システムに関し、特にP波の検知からS波の到達までの間に警報を発報し、また、適切な制御を行うことにより、地震による被害の減少を図る地震検知システムに関する。   The present invention relates to an earthquake detection system that executes a predetermined countermeasure operation in response to an earthquake occurrence, and in particular, issues an alarm between the detection of a P wave and the arrival of an S wave, and performs appropriate control. The present invention relates to an earthquake detection system for reducing damage caused by an earthquake.

従来、地震が発生した際には、その情報を広く一般に知らせるために、テレビやラジオ放送を通じて震源や地震規模、各地の震度及び津波に関する情報などを放送している。しかし、このようにテレビやラジオを通じて放送を行っても、実際に地震が発生してから早くても数分後に情報が提供されるのであって、大地震が発生したときには地震が発生した現地において、その情報が生かされない可能性が高い。   Conventionally, when an earthquake occurs, the information on the epicenter, the magnitude of the earthquake, the seismic intensity of each place, and the tsunami is broadcast through television and radio broadcasting in order to widely inform the public of the information. However, even when broadcasting through TV and radio in this way, information is provided at the earliest few minutes after the actual earthquake occurs. There is a high possibility that the information will not be utilized.

一方、火災発生やガス漏れ等を測定して警報等を発生する防災システムにあっては、受信機や感知器に感震センサを設け、地震発生時にはその感震センサからの信号により、各感知器を高感度化させるものが知られている(特許文献1)。   On the other hand, in a disaster prevention system that generates alarms, etc., by measuring the occurrence of fires and gas leaks, etc., a seismic sensor is installed in the receiver and detector, and when an earthquake occurs, each sensor is detected by a signal from the seismic sensor. A device that increases the sensitivity of a vessel is known (Patent Document 1).

また、地震を測定した際にガス遮断弁を閉じるようにするものも知られている(特許文献2)。   In addition, there is also known one that closes a gas cutoff valve when an earthquake is measured (Patent Document 2).

更に、地震による揺れは、初期微動と呼ばれるP波と、主要動と呼ばれるS波とに分けられる。P波とS波は地震の震源から同時に発生し、P波の方が地中を伝わる速度が速いために、地表にはP波が先に到達し、S波が遅れて到達する。地震のこの性質を利用し、P波の検知からS波の到達までの間に動作するシステムが開発されつつあり、その情報を利用した機器も考案されている(特許文献3)。   Furthermore, the shaking caused by an earthquake is divided into a P wave called initial tremor and an S wave called main movement. The P wave and S wave are generated simultaneously from the epicenter of the earthquake, and the P wave travels faster in the ground, so the P wave reaches the ground surface first, and the S wave arrives later. A system that operates between the detection of a P wave and the arrival of an S wave using this property of an earthquake is being developed, and a device that uses the information has been devised (Patent Document 3).

特開平10−188174号公報JP-A-10-188174 特開2002−230665号公報JP 2002-230665 A 特開2005−301542号公報JP 2005-301542 A

しかし、これら従来の防災システムにおいては、機器設置場所での大きな揺れを検知したり、遠隔地での情報を利用するために、地震による大きな揺れを測定した後で地震発生情報が伝えられたり、感知器を高感度化させたり、ガス供給弁を遮断したりするので、例えば家屋が倒壊するほどの大きな揺れがあった場合には、それらの制御が行われる前にガス供給弁の遮断動作や警報動作が行われるとは限らない。また、ガス供給弁のように機器設置場所の条件によって地震検知システムが電力供給を受けられない場合もある。   However, in these conventional disaster prevention systems, in order to detect a large shake at the equipment installation location, or to use information at a remote location, earthquake occurrence information is transmitted after measuring a large shake due to an earthquake, For example, if there is a large shaking that would cause the house to collapse, the gas supply valve will be shut off before the control is performed. The alarm action is not always performed. Moreover, there are cases where the earthquake detection system cannot receive power supply depending on the conditions of the equipment installation location, such as a gas supply valve.

本発明は、上記課題を鑑みてなされたものであり、特に電力供給を受けられない機器設置場所において、地震波の初期微動を測定し、かつ主要動であるS波到達前に地震動と判断して、それぞれの処理手段及び警報手段に対応した制御信号を出力する地震検知システムを提供することを目的とする。   The present invention has been made in view of the above-mentioned problems. In particular, in equipment installation places where power supply cannot be received, the initial tremor of the seismic wave is measured, and it is determined that the seismic motion is before the arrival of the S wave, which is the main motion. An object of the present invention is to provide an earthquake detection system that outputs a control signal corresponding to each processing means and alarm means.

上記課題を解決するため、本発明に係る地震検知システムの第1の形態は、機器設置場所での地震の揺れを測定し、測定値を出力する揺れ測定手段と前記揺れ測定手段から出力された信号を受け、信号に応じた処理を行う信号処理手段を備え、前記揺れ測定手段並びに前記信号処理手段を電池で駆動し、機器設置場所でのS波到達前に地震波と判断して、制御信号を出力することを特徴として構成されている。   In order to solve the above-mentioned problems, the first embodiment of the earthquake detection system according to the present invention measures the shaking of the earthquake at the place where the equipment is installed, and outputs the measured value and the shaking measuring means output from the shaking measuring means. A signal processing means for receiving a signal and performing processing according to the signal, driving the vibration measuring means and the signal processing means with a battery, and determining a seismic wave before arrival of an S wave at a device installation location; Is output.

さらに、前記信号処理手段においては、前記揺れ測定手段の出力された信号強度が決められた値以上であった場合、地震波形の分析を行う事を特徴とする。   Furthermore, the signal processing means analyzes the seismic waveform when the signal intensity output from the shake measuring means is equal to or greater than a predetermined value.

さらにまた、本発明に係る地震検知システムの第2の形態は、前記揺れ測定手段の出力を分析し、地震波と判断した場合に出力する前記信号処理手段からの制御信号を受け、音声もしくは警告音として発報する警報発生手段を備え、警報を発報させることを特徴として構成されている。   Furthermore, the second form of the earthquake detection system according to the present invention analyzes the output of the shaking measuring means, receives a control signal from the signal processing means that is output when it is determined as an earthquake wave, and receives a sound or warning sound. Is provided with an alarm generating means for issuing a warning as follows.

さらにまた、本発明に係る地震検知システムの第3の形態は、前記揺れ測定手段の出力を分析し、地震波と判断した場合に出力する前記信号処理手段からの制御信号を受け、表示もしくはライトを点灯もしくは点滅する表示手段を備え、警報を知らせることを特徴として構成されている。   Furthermore, the third form of the earthquake detection system according to the present invention analyzes the output of the shaking measuring means, receives a control signal from the signal processing means to be output when it is determined as an earthquake wave, and displays or lights the display. A display means that lights or blinks is provided, and an alarm is notified.

さらにまた、本発明に係る地震検知システムの第4の形態は、前記揺れ測定手段の出力を分析し、地震波と判断した場合に出力する前記信号処理手段から出力される制御信号を受け、火災または煙または炎または熱または漏電またはガス漏れ等の感知器の感度を高感度に切替える感度切替え手段で構成されることを特徴としている。   Furthermore, the fourth form of the earthquake detection system according to the present invention analyzes the output of the shaking measurement means, receives a control signal output from the signal processing means that is output when it is determined as an earthquake wave, It is characterized by comprising sensitivity switching means for switching the sensitivity of the sensor such as smoke, flame, heat, electric leakage or gas leakage to high sensitivity.

さらにまた、本発明に係る地震検知システムの第5の形態は、前記揺れ測定手段の出力を分析し、地震波と判断した場合に出力する前記信号処理手段からの制御信号を用い、例えばガス供給弁の開閉の制御することを特徴として構成されている。   Furthermore, a fifth embodiment of the earthquake detection system according to the present invention uses the control signal from the signal processing means that outputs when analyzing the output of the shaking measurement means and determines that it is an earthquake wave, for example, a gas supply valve It is characterized by controlling the opening and closing of.

さらにまた、本発明に係る地震検知システムの第6の形態は、前記揺れ測定手段の出力を分析し、地震波と判断した場合に出力する前記信号処理手段からの制御信号を受け、警報を送信する警報送信手段を備え、警報を送信させることを特徴として構成されている。   Furthermore, the sixth embodiment of the earthquake detection system according to the present invention analyzes the output of the shaking measuring means, receives a control signal from the signal processing means that is output when it is determined as an earthquake wave, and transmits an alarm. An alarm transmission means is provided, and an alarm is transmitted.

本発明によれば、地震発生時に機器設置場所において、S波が到達する前にそれぞれ対応した動作を行うことが出来るという効果がある。   According to the present invention, there is an effect that corresponding operations can be performed before an S wave arrives at an equipment installation place when an earthquake occurs.

本発明の地震検知システムの第1の形態を示す図である。It is a figure which shows the 1st form of the earthquake detection system of this invention. 実際の地震波形記録を示す図である。It is a figure which shows actual seismic waveform recording. 図1に示す地震検知システムのフローチャート図である。It is a flowchart figure of the earthquake detection system shown in FIG. 第2の揺れ測定手段を使用した本発明の地震検知システムを示す図である。It is a figure which shows the earthquake detection system of this invention using a 2nd shaking measurement means. 第2の揺れ測定手段を使用した地震検知システムのフローチャート図である。It is a flowchart figure of the earthquake detection system which uses the 2nd shaking measurement means. 本発明の地震検知システムの第2の形態を示す図である。It is a figure which shows the 2nd form of the earthquake detection system of this invention. 本発明の地震検知システムの第3の形態を示す図である。It is a figure which shows the 3rd form of the earthquake detection system of this invention. 本発明の地震検知システムの第4の形態を示す図である。It is a figure which shows the 4th form of the earthquake detection system of this invention. 本発明の地震検知システムの第5の形態を示す図である。It is a figure which shows the 5th form of the earthquake detection system of this invention. 本発明の地震検知システムの第6の形態を示す図である。It is a figure which shows the 6th form of the earthquake detection system of this invention.

本発明の代表的な実施形態の概要は次のとおりである。   An outline of a typical embodiment of the present invention is as follows.

本発明の実施形態について、図面に沿って詳細に説明する。図1は本発明の第1の形態の地震検知システム図である。図1に示すように、本実施形態における地震検知システムは、揺れ測定手段1と揺れ測定手段1から出力される信号100を受けS波到達前に適切な制御を行う信号処理手段2と揺れ測定手段1並びに信号処理手段2に電源を供給する電源3で構成される。この電源3は、一次電池、二次電池、コンデンサ、燃料電池、太陽電池、マイクロ波電力を受電して電力を得るマイクロ波受電装置、またはゼーベック効果を生じる半導体素子からなりこの半導体素子に温度差が生じると電力を生じる熱電発電器等によって構成され、それ自体が外部から有線で電力供給を受けることのない電力供給源である。   Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is an earthquake detection system diagram of the first embodiment of the present invention. As shown in FIG. 1, the earthquake detection system in the present embodiment receives the signal 100 output from the shake measurement means 1 and the shake measurement means 1 and the signal processing means 2 that performs appropriate control before reaching the S wave and the shake measurement. The power supply 3 supplies power to the means 1 and the signal processing means 2. The power source 3 is composed of a primary battery, a secondary battery, a capacitor, a fuel cell, a solar battery, a microwave power receiving device that receives microwave power to obtain power, or a semiconductor element that produces the Seebeck effect. This is a power supply source that is configured by a thermoelectric generator or the like that generates electric power when it occurs, and that does not receive power supply from outside by wire.

一般的に地震の初期微動であるP波は、6〜13km/秒の速度であるのに対し、地震の主要度であるS波は、3.5〜7.5km/秒の速度であるとされており、震源の近くでP波を測定できれば、震源から80km離れた地点ではP波が観測されてからS波の到達まで約10秒の時間を確保することができる。   In general, the P wave, which is the initial tremor of an earthquake, has a speed of 6 to 13 km / sec, whereas the S wave, which is the major degree of earthquake, has a speed of 3.5 to 7.5 km / sec. If a P wave can be measured near the epicenter, a time of about 10 seconds from the P wave being observed to the arrival of the S wave at a point 80 km away from the epicenter can be secured.

本発明の地震検知システムでは、揺れ測定手段1と信号処理手段2を内蔵した機器の設置場所において、揺れ測定手段1から出力される信号100を受け、信号処理手段2において、信号100の信号強度が決められた値以上であった場合、地震波形の分析を行い、図2に示す実際の地震波形のうち、初期微動であるP波を検知し、P波の大きさから主要動であるS波の大きさを予報し、主要動であるS波が到達する前に信号101を出力する。なお、揺れ測定手段1は、揺れの大きさが測定可能であれば良く、例えばメカ式の感震センサ、加速度センサ、歪センサ等が考えられる。   In the earthquake detection system of the present invention, the signal 100 output from the shake measuring means 1 is received at the installation location of the equipment incorporating the shake measuring means 1 and the signal processing means 2, and the signal processing means 2 receives the signal intensity of the signal 100. 2 is equal to or greater than a predetermined value, the seismic waveform is analyzed, and a P wave that is an initial fine motion is detected from the actual seismic waveform shown in FIG. The magnitude of the wave is predicted, and a signal 101 is output before the S wave that is the main motion arrives. Note that the vibration measuring means 1 only needs to be able to measure the magnitude of the vibration. For example, a mechanical seismic sensor, an acceleration sensor, a strain sensor, or the like can be considered.

次に、本発明の地震検知システムの動作について、図3の第1の形態のフローチャートに基づいて説明する。揺れ測定手段1において揺れの大きさを測定する(S1)。揺れ測定手段1の信号を受け、信号処理手段2では所定の大きさ以上であるかの判断を行う(S2)。 信号強度が事前に決められた値以上であれば、信号処理手段2で揺れ測定手段1から出力される信号100の分析を行う(S3)。分析の結果、地震波であるかを信号処理手段2で判断する(S4)。地震波と判断した場合、信号処理手段2より制御信号を出力する(S5)。 このように、信号処理手段2における信号分析を信号強度が決められた値以上の時のみ行う事により、信号処理の時間を少なくすることにより消費電流を低減することができる。 この結果、電池での駆動が可能となった。   Next, operation | movement of the earthquake detection system of this invention is demonstrated based on the flowchart of the 1st form of FIG. The magnitude of shaking is measured in the shaking measuring means 1 (S1). In response to the signal from the shake measuring means 1, the signal processing means 2 determines whether or not it is greater than a predetermined magnitude (S2). If the signal intensity is equal to or greater than a predetermined value, the signal processing means 2 analyzes the signal 100 output from the shake measuring means 1 (S3). As a result of the analysis, the signal processing means 2 determines whether it is a seismic wave (S4). If it is determined as an earthquake wave, a control signal is output from the signal processing means 2 (S5). In this way, by performing signal analysis in the signal processing means 2 only when the signal intensity is equal to or greater than a predetermined value, current consumption can be reduced by reducing the signal processing time. As a result, the battery can be driven.

また、揺れの大きさを測定する(S1)と所定の大きさ以上であるかの判断を行う(S2)を例えばメカ式の感震センサの様に同一手段で行い、揺れの大きさを測定する手段を別途配置する事も容易に考えられるが、説明の便宜上、揺れの大きさを測定する(S1)と所定の大きさ以上であるかの判断を行う(S2)は別の手段で行う事とした。   In addition, when the magnitude of the shake is measured (S1), it is judged whether it is equal to or larger than the predetermined magnitude (S2) by the same means, for example, a mechanical seismic sensor, and the magnitude of the shake is measured. However, for convenience of explanation, if the magnitude of the shaking is measured (S1), it is determined whether it is equal to or larger than the predetermined magnitude (S2) by another means. It was decided.

次に本発明のバリエーションとして、前記の地震検知システムをより省電力化した地震検知システムについて、図4に基づき説明する。図4の地震検知システムは、本発明の第1の形態の地震検知システムで説明した揺れ測定手段1と、信号処理手段2と、揺れ測定手段1と信号処理手段2を駆動する電源3に加え、前記揺れ測定手段1より省電力の第2の揺れ測定手段1aで構成される。   Next, as a variation of the present invention, an earthquake detection system in which the above-described earthquake detection system is further reduced in power will be described with reference to FIG. The earthquake detection system of FIG. 4 is added to the shake measuring means 1, the signal processing means 2, and the power source 3 that drives the shake measuring means 1 and the signal processing means 2 described in the earthquake detection system of the first embodiment of the present invention. The vibration measuring means 1 comprises power saving second vibration measuring means 1a.

この第2の揺れ測定手段1aは前記揺れ測定手段1と接続され、地震もしくは何等かの揺れを検知すると、揺れ測定手段1を起動させるように起動出力100aを出力する。なお、第2の揺れ測定手段も電源3によって駆動されている。   The second shaking measuring means 1a is connected to the shaking measuring means 1 and outputs an activation output 100a so as to activate the shaking measuring means 1 when an earthquake or any other shaking is detected. Note that the second shaking measuring means is also driven by the power source 3.

この地震検知システムでは、第2の揺れ測定手段1aと揺れ測定手段1と信号処理手段2を内蔵した機器の設置場所において、地震もしくは何等かの揺れを第2の揺れ測定手段1aで最初に検出し、揺れ測定手段1に対して起動信号100aを出力する。揺れ測定手段1は、起動信号100aを検出して揺れの測定を開始し、信号100を出力する。更に、信号処理手段2において、信号100の信号強度が決められた値以上であった場合、地震波形の分析を行い、図2に示す実際の地震波形のうち、初期微動であるP波を検知し、P波の大きさから主要動であるS波の大きさを予報し、主要動であるS波が到達する前に信号101を出力する。なお、第2の揺れ測定手段1aについても、先に説明した揺れ測定手段1と同様に、揺れの大きさが測定可能であれば良く、例えばメカ式の感震センサ、加速度センサ、歪センサ等を使用することが考えられる。   In this earthquake detection system, an earthquake or any other shake is first detected by the second shake measuring means 1a at the installation location of the equipment incorporating the second shake measuring means 1a, the shake measuring means 1 and the signal processing means 2. Then, an activation signal 100a is output to the shake measuring means 1. The shake measuring means 1 detects the activation signal 100a, starts measuring the shake, and outputs the signal 100. Furthermore, in the signal processing means 2, when the signal intensity of the signal 100 is equal to or greater than a predetermined value, the seismic waveform is analyzed, and the P wave that is the initial tremor is detected from the actual seismic waveform shown in FIG. Then, the magnitude of the S wave that is the main motion is predicted from the magnitude of the P wave, and the signal 101 is output before the S wave that is the main motion arrives. It should be noted that the second shake measuring means 1a is not limited as long as the magnitude of the shake can be measured, similar to the shake measuring means 1 described above. For example, a mechanical seismic sensor, an acceleration sensor, a strain sensor, etc. Can be considered.

次に、この地震検知システムの動作について図5のフローチャートに基づいて説明する。   Next, the operation of this earthquake detection system will be described based on the flowchart of FIG.

最初に、第2の揺れ測定手段が地震もしくは何等かの揺れの有無を検出し、起動信号100aを出力する(S11)。揺れ測定手段1は、起動信号100aを検出すると、地震の揺れの測定を開始する(S12)。次に、揺れ測定手段1の信号を受け、信号処理手段2は所定の大きさ以上であるかの判断を行う(S13)。信号強度が事前に決められた値以上であれば、信号処理手段2は揺れ測定手段1から出力される信号100の分析を行う(S14)。分析の結果、地震波であるかを信号処理手段2が判断する(S15)。地震波と判断した場合、信号処理手段2より制御信号を出力する(S16)。   First, the second shaking measuring means detects the presence or absence of an earthquake or any shaking, and outputs a start signal 100a (S11). When the shaking measuring means 1 detects the activation signal 100a, the shaking measuring means 1 starts measuring earthquake shaking (S12). Next, the signal processing means 2 receives the signal from the shake measuring means 1 and determines whether or not the signal processing means 2 is greater than a predetermined magnitude (S13). If the signal intensity is equal to or greater than a predetermined value, the signal processing means 2 analyzes the signal 100 output from the shake measuring means 1 (S14). As a result of the analysis, the signal processing means 2 determines whether it is a seismic wave (S15). If it is determined as an earthquake wave, a control signal is output from the signal processing means 2 (S16).

このように、省電力の第2の揺れ測定手段1aで地震もしくは何等かの揺れを検出して、揺れ測定手段1を起動するように地震検知システムを構成することにより、揺れ測定手段1の駆動時間を最小限にすることが可能になる。更に信号処理手段の駆動時間も少なくすることが可能となり、地震検知システムのトータルの消費電流を低減し、電池駆動による地震検知システムを実現することが可能になる。   In this way, the earthquake detection system is configured to detect the earthquake or any other shake by the power-saving second shake measuring means 1a and activate the shake measuring means 1, thereby driving the shake measuring means 1. Time can be minimized. Furthermore, the drive time of the signal processing means can be reduced, the total current consumption of the earthquake detection system can be reduced, and a battery-driven earthquake detection system can be realized.

図6は本発明の第2の形態の地震検知システム図である。図6に示すように、本実施形態における地震検知システムは、揺れ測定手段1と揺れ測定手段1から出力される信号100を受けS波到達前に適切な信号処理を行う信号処理手段2と揺れ測定手段1並びに信号処理手段2に電源を供給する電源3と信号処理手段2から出力される制御信号102を受け、警報を発報する警報発生手段4で構成される。警報発生手段4では、音声もしくは警告音を発し、所定の規模以上の主要動であるS波が到達する前に警報を発報する。なお、警報発生手段4に供給される電源は、電源3としてもかまわない。   FIG. 6 is an earthquake detection system diagram of the second embodiment of the present invention. As shown in FIG. 6, the earthquake detection system in the present embodiment includes a signal processing unit 2 that receives the signal 100 output from the vibration measurement unit 1 and the vibration measurement unit 1 and performs appropriate signal processing before reaching the S wave. It comprises a power supply 3 for supplying power to the measuring means 1 and the signal processing means 2 and an alarm generating means 4 for receiving a control signal 102 output from the signal processing means 2 and issuing an alarm. The alarm generating means 4 emits a sound or a warning sound and issues an alarm before an S wave, which is a main motion of a predetermined magnitude or larger, arrives. The power source supplied to the alarm generating means 4 may be the power source 3.

図7は本発明の第3の形態の地震検知システム図である。図7に示すように、本実施形態における地震検知システムは、揺れ測定手段1と揺れ測定手段1から出力される信号100を受けS波到達前に適切な信号処理を行う信号処理手段2と揺れ測定手段1並びに信号処理手段2に電源を供給する電源3と信号処理手段2から出力される制御信号103を受け、表示もしくはライトを点灯もしくは点滅する表示手段5で構成される。表示手段5では、表示もしくはライトを点灯することにより、所定の規模以上の主要度であるS波が到達する前に警告を促す。なお、表示手段5に供給される電源は、電源3としてもかまわない。   FIG. 7 is an earthquake detection system diagram according to the third embodiment of the present invention. As shown in FIG. 7, the earthquake detection system in this embodiment receives the signal 100 output from the shake measuring means 1 and the shake measuring means 1 and the signal processing means 2 that performs appropriate signal processing before reaching the S wave and the shake. The power supply 3 supplies power to the measurement means 1 and the signal processing means 2 and the display means 5 receives the control signal 103 output from the signal processing means 2 and turns on or blinks the display or light. In the display means 5, a warning is urged before the S wave having a degree of importance of a predetermined scale or more arrives by turning on the display or the light. Note that the power supplied to the display means 5 may be the power supply 3.

図8は本発明の第4の形態の地震検知システム図である。図8に示すように、本実施形態における地震検知システムは、揺れ測定手段1と揺れ測定手段1から出力される信号100を受けS波到達前に適切な信号処理を行う信号処理手段2と揺れ測定手段1並びに信号処理手段2に電源を供給する電源3と信号処理手段2から出力される制御信号104を受け、感知器7の感度を高感度に制御する感度制御信号105を出力する感度切替え手段6で構成される。 感知器7が火災を検知するものである場合には、より低温の測定でも火災発生の判断を行うようにし、感知器7がガス漏れを検知するものである場合には、より低いガス濃度の測定でもガス漏れの判断を行うようにする。例えば、感知器7が火災を検知するものであった場合に、通常時には熱感知器から65℃の信号が出力された場合に火災と判断していたものを、50℃で火災発生と判断するように変更する。すなわち、P波を認識した時点でS波の到来が予測される。このS波が大きければ火災発生の確率が高くなるので熱感知器の閾値を下げることによって、火災発生の検知力を上げることができる。   FIG. 8 is an earthquake detection system diagram according to the fourth embodiment of the present invention. As shown in FIG. 8, the earthquake detection system according to the present embodiment receives the signal 100 outputted from the shake measuring means 1 and the shake measuring means 1 and the signal processing means 2 that performs appropriate signal processing before reaching the S wave and the shake. Sensitivity switching that outputs a sensitivity control signal 105 that controls the sensitivity of the sensor 7 with high sensitivity in response to the power supply 3 that supplies power to the measuring means 1 and the signal processing means 2 and the control signal 104 that is output from the signal processing means 2. Consists of means 6. When the sensor 7 detects a fire, the fire occurrence is judged even at a lower temperature measurement. When the sensor 7 detects a gas leak, a lower gas concentration is detected. The measurement of gas leakage should also be made in the measurement. For example, when the sensor 7 detects a fire, when a 65 ° C. signal is output from the heat sensor during normal operation, it is determined that a fire has occurred at 50 ° C. Change as follows. That is, the arrival of the S wave is predicted when the P wave is recognized. If this S wave is large, the probability of fire occurrence increases, so the detection power of fire occurrence can be increased by lowering the threshold value of the heat detector.

地震発生の際には、火災やガス漏れが発生する可能性が高くなるので、S波の到達前に予め感知器7を高感度化しておくことにより、S波の到達後に実際に火災やガス漏れが発生しても、早期にそれを検知することができ、迅速な対応を取ることができる。なお、感知器7は、火災、煙、炎、熱、漏電、ガス等検出感度を変更できるものであればかまわない。   In the event of an earthquake, there is a high possibility of fire and gas leaks. Therefore, by increasing the sensitivity of the sensor 7 in advance before the arrival of the S wave, the actual fire or gas after the arrival of the S wave. Even if a leak occurs, it can be detected early and a quick response can be taken. The sensor 7 may be any sensor that can change detection sensitivity such as fire, smoke, flame, heat, electric leakage, and gas.

図9は本発明の第5の形態の地震検知システム図である。図9に示すように、本実施形態における地震検知システムは、揺れ測定手段1と揺れ測定手段1から出力される信号100を受けS波到達前に適切な信号処理を行う信号処理手段2と揺れ測定手段1並びに信号処理手段2に電源を供給する電源3と信号処理手段2から出力される制御信号106を受け、弁開閉を行うガス開閉弁8で構成される。ガス開閉弁8では、所定の規模以上の主要度であるS波が到達する前にガス弁を閉じる事により、ガス漏れを防止する。なお、ガス開閉弁8は、液体の流れを制御する液体用弁、電気通電を制御する電気ブレーカ等でもかまわない。   FIG. 9 is an earthquake detection system diagram according to the fifth embodiment of the present invention. As shown in FIG. 9, the earthquake detection system according to the present embodiment receives the signal 100 output from the shake measuring means 1 and the shake measuring means 1 and the signal processing means 2 that performs appropriate signal processing before reaching the S wave and the shake. The power supply 3 supplies power to the measuring means 1 and the signal processing means 2 and the control signal 106 output from the signal processing means 2 is received and the gas on-off valve 8 is opened and closed. The gas on-off valve 8 prevents gas leakage by closing the gas valve before an S wave having a major degree of a predetermined scale or more arrives. The gas on-off valve 8 may be a liquid valve that controls the flow of liquid, an electric breaker that controls electric conduction, or the like.

図10は本発明の第6の形態の地震検知システム図である。図10に示すように、本実施形態における地震検知システムは、揺れ測定手段1と揺れ測定手段1から出力される信号100を受けS波到達前に適切な信号処理を行う信号処理手段2と揺れ測定手段1並びに信号処理手段2に電源を供給する電源3と信号処理手段2から出力される制御信号107を受け、警報を送信する警報送信手段9で構成される。警報送信手段9では所定の規模以上の主要度であるS波が到達する前に、地震検知システムが無い機器に対して、警報を発する。   FIG. 10 is an earthquake detection system diagram according to the sixth embodiment of the present invention. As shown in FIG. 10, the earthquake detection system according to the present embodiment includes a signal processing unit 2 that receives the signal 100 output from the vibration measurement unit 1 and the vibration measurement unit 1 and performs appropriate signal processing before reaching the S wave. The power supply 3 supplies power to the measuring means 1 and the signal processing means 2 and the alarm transmission means 9 receives the control signal 107 output from the signal processing means 2 and transmits an alarm. The alarm transmission means 9 issues an alarm to a device that does not have an earthquake detection system before the arrival of an S wave having a major degree of a predetermined scale or more.

例えば、地震検知システムが1階に設置していた場合、2階部分には警報が聞こえない。 1階に設置した警報送信手段9からの警告を受信できる受信機を2階に設置することにより、地震検知システムを設置していない2階でも警報を発報する事が可能となる。   For example, if the earthquake detection system is installed on the first floor, no alarm is heard on the second floor. By installing a receiver on the second floor that can receive a warning from the alarm transmission means 9 installed on the first floor, it is possible to issue an alarm even on the second floor where no earthquake detection system is installed.

以上、本発明の実施形態について説明したが、本発明の適用は本実施形態には限られず、その技術的思想の範囲内において様々に適用されうるものである。例えば、地震により影響を受ける装置などに応用する事により、所定の規模以上の主要度であるS波が到達する前に適切な対応を取る事ができる。   Although the embodiment of the present invention has been described above, the application of the present invention is not limited to this embodiment, and can be applied in various ways within the scope of its technical idea. For example, by applying to an apparatus affected by an earthquake, it is possible to take an appropriate action before an S wave having a degree of importance of a predetermined scale or more arrives.

1 揺れ測定手段
1a 第2の揺れ測定手段
2 信号処理手段
3 電源
4 警報発生手段
5 表示手段
6 感度切替え手段
7 感知器
8 ガス開閉弁
9 警報送信手段
DESCRIPTION OF SYMBOLS 1 Shaking measuring means 1a 2nd shaking measuring means 2 Signal processing means 3 Power supply 4 Alarm generating means 5 Display means 6 Sensitivity switching means 7 Sensor 8 Gas on-off valve 9 Alarm transmitting means

Claims (8)

地震の揺れを測定する揺れ測定手段と前記揺れ測定手段から出力された信号を受け、信号に応じた処理を行い、制御信号を出力する信号処理手段を備え、前記揺れ測定手段並びに前記信号処理手段を電池により駆動することを特徴とした地震検知システム。   A shake measuring means for measuring an earthquake shake and a signal processing means for receiving a signal output from the shake measuring means, performing a process according to the signal, and outputting a control signal, the shake measuring means and the signal processing means Is an earthquake detection system that is driven by a battery. 地震の揺れを測定する揺れ測定手段と前記揺れ測定手段から出力された信号を受け、信号に応じた処理を行う信号処理手段を備え、前記信号処理手段は、前記揺れ測定手段から出力された信号の信号強度が決められた値以上になった場合のみ前記揺れ測定手段から出力された信号を分析し、地震波であるかを判断し、制御信号を出力することを特徴とした地震検知システム。   A shake measuring means for measuring an earthquake shake and a signal processing means for receiving a signal output from the shake measuring means and performing processing according to the signal, the signal processing means is a signal output from the shake measuring means. An earthquake detection system characterized by analyzing a signal output from the shake measuring means only when the signal intensity of the signal exceeds a predetermined value, judging whether it is an earthquake wave, and outputting a control signal. 前記揺れ測定手段と比較して省電力の第2の揺れ測定手段を備えるとともに、前記第2の揺れ測定手段は、揺れを検出すると前記揺れ測定手段を起動させて地震の揺れの検知を開始させる起動信号を出力する請求項1もしくは2に記載の地震検知システム。   Compared with the shake measurement means, the second shake measurement means includes power saving second shake measurement means. When the second shake measurement means detects a shake, the shake measurement means is activated to start detection of an earthquake shake. The earthquake detection system according to claim 1 or 2, which outputs a start signal. 前記揺れ測定手段の出力を分析し、地震波と判断した場合に出力する前記信号処理手段からの制御信号を受け、音声もしくは警告音として発報する警報発生手段を備えることを特徴とした請求項1〜3のいずれか1項に記載の地震検知システム。   2. An alarm generating means for analyzing the output of the shaking measuring means and receiving a control signal from the signal processing means to be output when it is determined as an earthquake wave, and issuing a sound or a warning sound. The earthquake detection system of any one of -3. 前記揺れ測定手段の出力を分析し、地震波と判断した場合に出力する前記信号処理手段からの制御信号を受け、表示もしくはライトを点灯もしくは点滅する表示手段を備えることを特徴とした請求項1〜3のいずれか1項に記載の地震検知システム。   The output of the said shake measurement means is analyzed, The control means from the said signal processing means output when it judges that it is a seismic wave is received, The display means which lights or blinks a display or a light is provided. 4. The earthquake detection system according to any one of 3 above. 前記揺れ測定手段の出力を分析し、地震波と判断した場合に出力する前記信号処理手段からの制御信号を、感度切替え手段に入力し、前記感度切替え手段の出力信号により火災または煙または炎または熱または漏電またはガス漏れの感知器の感度を高感度に切替えることを特徴とした請求項1〜3のいずれか1項に記載の地震検知システム。   The control signal from the signal processing means that is output when the output of the shaking measuring means is analyzed and determined as a seismic wave is input to the sensitivity switching means, and fire, smoke, flame or heat is output by the output signal of the sensitivity switching means. The earthquake detection system according to any one of claims 1 to 3, wherein the sensitivity of the sensor for leakage or gas leakage is switched to high sensitivity. 前記揺れ測定手段の出力を分析し、地震波と判断した場合に出力する前記信号処理手段からの制御信号を受け、ガス供給弁の開閉を制御することを特徴とした請求項1〜3のいずれか1項に記載の地震検知システム。   4. The output of the shake measuring means is analyzed, and a control signal from the signal processing means that is output when it is determined as an earthquake wave is received to control the opening and closing of the gas supply valve. The earthquake detection system according to item 1. 前記揺れ測定手段の出力を分析し、地震波と判断した場合に出力する請求項1〜3のいずれか1項に記載の前記信号処理手段からの制御信号を受け、警報を送信する警報送信手段を備えることを特徴とした地震検知システム。   An alarm transmitting means for receiving a control signal from the signal processing means according to any one of claims 1 to 3 and outputting an alarm when analyzing the output of the shake measuring means and determining that the output is a seismic wave. An earthquake detection system characterized by comprising.
JP2009123472A 2009-05-21 2009-05-21 Earthquake detection system Pending JP2010271193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009123472A JP2010271193A (en) 2009-05-21 2009-05-21 Earthquake detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009123472A JP2010271193A (en) 2009-05-21 2009-05-21 Earthquake detection system

Publications (1)

Publication Number Publication Date
JP2010271193A true JP2010271193A (en) 2010-12-02

Family

ID=43419333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009123472A Pending JP2010271193A (en) 2009-05-21 2009-05-21 Earthquake detection system

Country Status (1)

Country Link
JP (1) JP2010271193A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209195A (en) * 2012-03-30 2013-10-10 Toshiba Mitsubishi-Electric Industrial System Corp Continuous unloader
JP2021162461A (en) * 2020-03-31 2021-10-11 オムロン株式会社 Seismic sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209195A (en) * 2012-03-30 2013-10-10 Toshiba Mitsubishi-Electric Industrial System Corp Continuous unloader
JP2021162461A (en) * 2020-03-31 2021-10-11 オムロン株式会社 Seismic sensor

Similar Documents

Publication Publication Date Title
US9928709B2 (en) Fire detection device and method of detecting fire
KR101219176B1 (en) Integrated monitoring system for preventing disaster
JP2007108012A (en) Earthquake disaster prevention system
CN101796409A (en) Detector system and method to detect or determine a specific gas within a gas mixture
JP5474361B2 (en) Alarm device
KR101832337B1 (en) Earthquake detection system of building
US20130321161A1 (en) Cloud-based fire alarm control system
KR101185405B1 (en) Terminal and Exit course guide system using that terminal and method thereof
JP2005301542A (en) Disaster prevention system
JP2010271193A (en) Earthquake detection system
KR101145414B1 (en) Fire alarm system linked power monitoring unit
KR20180061091A (en) Earthquake detection system of building using sensor
JP2019015713A (en) Seismoscopic relay
KR101909671B1 (en) Seismic Monitoring Field Control Panel
JP2009174979A (en) Earthquake disaster prevention system
KR20180061092A (en) Earthquake detection system constructed in building works
JP2006011791A (en) Fire alarm system for residence
KR101993291B1 (en) A method of performing disaster prevention measures in a facility by detecting an earthquake and a device for performing the same
JP2008202815A (en) Gas safety device
JPH06265437A (en) Gas leak detecting method
JP2008269439A (en) Gas meter, gas leakage alarm and gas security system
JP2012103937A (en) Gas shut-off device
JP5682092B2 (en) Alarm device
JP2006223677A (en) Control system for electric appliance and gas appliance
JP7270432B2 (en) audio output system