JP2009178721A - Continuous casting method for cast bloom - Google Patents

Continuous casting method for cast bloom Download PDF

Info

Publication number
JP2009178721A
JP2009178721A JP2008017683A JP2008017683A JP2009178721A JP 2009178721 A JP2009178721 A JP 2009178721A JP 2008017683 A JP2008017683 A JP 2008017683A JP 2008017683 A JP2008017683 A JP 2008017683A JP 2009178721 A JP2009178721 A JP 2009178721A
Authority
JP
Japan
Prior art keywords
slab
casting
casting speed
bloom
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008017683A
Other languages
Japanese (ja)
Other versions
JP5029391B2 (en
Inventor
Shinsuke Watanabe
信輔 渡辺
Michikazu Koga
道和 古賀
Keigo Matsumoto
圭吾 松本
Yoshiki Ito
義起 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2008017683A priority Critical patent/JP5029391B2/en
Publication of JP2009178721A publication Critical patent/JP2009178721A/en
Application granted granted Critical
Publication of JP5029391B2 publication Critical patent/JP5029391B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous casting method capable of manufacturing a cast bloom having an excellent internal quality by stabilizing the internal segregation state of a cast bloom by improving control accuracy of a casting speed. <P>SOLUTION: When casting the cast bloom, which has a cross-sectional area of 1,200-1,600 cm<SP>2</SP>, at a casting speed of 0.55-0.85 m/min with a specific water quantity of a secondary cooling water of 0.15-0.70 L/kg-steel, the casting speed of the cast bloom during casting is controlled to a target casting speed, by measuring the casting speed of the bloom by analyzing the image of the bloom photographed with a CCD camera set in a continuous casting machine and calculating the deviation between the casting speed and a target casting speed. In the above method, the surface temperature of the cast bloom at the photographing position of the camera is preferably made 900-1,100°C, and the camera is preferably set at the position where secondary cooling is completed and a center solid-phase ratio of the bloom is 0.05-0.50. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、炭素鋼、合金鋼などを対象として、良好な内部品質を有するブルーム鋳片の連続造方法に関し、詳しくは、鋳造速度の制御精度を向上させることにより、鋳片の内部偏析性状を安定化させ、内部品質の良好なブルーム鋳片を製造できる連続鋳造方法に関する。   The present invention relates to a continuous casting method for bloom cast pieces having good internal quality for carbon steel, alloy steel, etc., and more specifically, by improving the control accuracy of the casting speed, the internal segregation properties of the cast pieces are improved. The present invention relates to a continuous casting method capable of producing a bloom cast slab having good internal quality.

従来の炭素鋼、合金鋼などの連続鋳造方法では、連続鋳造鋳片を引き抜く際に使用する駆動ロールやタッチロールを用いてロール回転数を検知することによって鋳造速度を計測し、この鋳造速度が所定の範囲内となるように引き抜き速度を制御することにより、鋳片内部の偏析状況の制御を行っていた。しかし、上記のロールを用いた鋳造速度測定方式は、ロールを高温の鋳片表面に接触させる必要があることから、メンテナンス性が悪く、維持管理に工数がかかる。その他、ロールを用いた鋳造速度測定方式では、ロールの磨耗、ロールと鋳片との間の摩擦係数が低下した際や鋳片の引き抜き抵抗が増加した際に発生する駆動ロールのスリップ現象に起因する速度制御の誤差または変動などにより、内部偏析の安定的制御ができなくなるという問題があった。   In conventional continuous casting methods such as carbon steel and alloy steel, the casting speed is measured by detecting the number of rotations of the roll using a drive roll or touch roll used when pulling out a continuous cast slab. The segregation state inside the slab has been controlled by controlling the drawing speed so as to be within a predetermined range. However, since the casting speed measurement method using the above roll needs to contact the surface of the slab with a high temperature, the maintainability is poor and the man-hour is required for maintenance. In addition, in the casting speed measurement method using a roll, it is caused by the slip phenomenon of the drive roll that occurs when the wear of the roll, the friction coefficient between the roll and the slab decreases, or when the pulling resistance of the slab increases. There is a problem that the internal segregation cannot be stably controlled due to errors or fluctuations in speed control.

連続鋳造による炭素鋼、合金鋼鋳片などの製造において、得られた鋼鋳片の品質は、凝固プロセスに大きく影響されるため、その製造管理基準は非常に厳しい。その中で、鋳造速度の管理は特に重要項目であり、鋳造速度の変動などが発生した場合には、鋳片内部に炭素(以下「C」とも記す)、マンガン(以下「Mn」とも記す)などの成分偏析帯が発生し、これらが問題となる。このように、内部に偏析帯の発生した鋳片は、熱間圧延によっても、鋳片の偏析帯が消失せず、ほぼそのままの偏析状態が製品にも残存し、これが原因となって製品の延性、靱性、強度などが劣化する。   In the production of carbon steel, alloy steel slabs and the like by continuous casting, the quality of the obtained steel slabs is greatly influenced by the solidification process, and therefore the production control standards are very strict. Among them, the management of the casting speed is an especially important item. When a fluctuation in the casting speed occurs, carbon (hereinafter also referred to as “C”), manganese (hereinafter also referred to as “Mn”) inside the slab. Component segregation zones such as these occur, and these become problems. In this way, the slab with the segregation band inside does not disappear, even after hot rolling, and the segregation state of the slab remains almost as it is in the product. Ductility, toughness, strength, etc. deteriorate.

炭素鋼、合金鋼などの鋳片における内部偏析は、連続鋳造機内での連続鋳造鋳片内における最終凝固位置近傍において溶質成分の濃化した溶鋼の流動に起因してC、Mnの濃化帯が生成されることによって発生する。   Internal segregation in slabs such as carbon steel and alloy steel is caused by the flow of C and Mn in the continuous cast slab in the continuous casting machine due to the flow of molten steel with concentrated solute components in the vicinity of the final solidification position. It is generated by generating.

鋳片の内部偏析は、鋼中に含有されるCの質量含有率、Mnの質量含有率に大きく影響され、それぞれの質量含有率が大きいほど、内部偏析は発生しやすくなる。連続鋳造プロセスにおいては、鋳片は、鋳型を通過後、機内に設けられた鋳片駆動ロールにより引き抜かれる。このとき、駆動ロールと鋳片表面との間で駆動ロールのスリップ現象が発生すると、連続鋳造機内において鋳片移動速度の変動現象が発生する。この速度変動が発生すると、所定の管理範囲を超えた鋳造速度で連続鋳造を行うこととなり、目標管理範囲内の鋳造速度で速度制御を行った場合の連続鋳造鋳片の内部偏析性状に比較して明確な差異が発生する。   The internal segregation of the slab is greatly influenced by the mass content of C and the mass content of Mn contained in the steel, and the larger the mass content, the more likely the internal segregation occurs. In the continuous casting process, the slab is drawn out by a slab drive roll provided in the machine after passing through the mold. At this time, if a slip phenomenon of the drive roll occurs between the drive roll and the slab surface, a fluctuation phenomenon of the slab moving speed occurs in the continuous casting machine. When this speed fluctuation occurs, continuous casting will be performed at a casting speed exceeding the predetermined control range, and compared with the internal segregation properties of the continuous cast slab when speed control is performed at a casting speed within the target control range. A clear difference.

上記のとおり、連続鋳造における鋳造速度の制御方法としては、駆動ロールやタッチロールの回転数を検知し、これに基づいて鋳造速度を制御する方法(以下、「ロール式鋳造速度制御」とも記す)が一般的である。しかしながら、この方法では、ロールの磨耗や、鋳造条件の変化にともなうロール部での鋳片表面温度などの諸条件のバラツキの影響により、ロールと鋳片間とのスリップ現象に起因して鋳造速度に変動が発生する場合がある。このように鋳造速度に変動が発生すると、鋳造速度の変動に起因して内部偏析性状に変動が生じ、良好な内部偏析状況を確保することが困難になるといった問題があった。   As described above, as a method for controlling the casting speed in continuous casting, the number of rotations of the drive roll and the touch roll is detected, and the casting speed is controlled based on this (hereinafter also referred to as “roll type casting speed control”). Is common. However, in this method, the casting speed is caused by the slip phenomenon between the roll and the slab due to the influence of variations in various conditions such as the wear of the roll and the surface temperature of the slab at the roll part as the casting conditions change. There may be fluctuations. When the casting speed fluctuates as described above, there is a problem that the internal segregation property fluctuates due to the fluctuation of the casting speed, and it becomes difficult to ensure a good internal segregation situation.

特開2007−209995号公報(特許請求の範囲および段落[0013])JP 2007-209995 A (claims and paragraph [0013])

本発明は、上記の問題に鑑みてなされたものであり、その課題は、下記のとおりである。すなわち、第1の課題は、CCDカメラを使用して鋳片表面を撮影し、画像解析手法により、鋳片表面に酸化鉄(以下、「スケール」とも記す)が付着している部分と、スケールの付着していない表面部分との輝度のコントラストを利用して、単位時間におけるスケール付着部分の移動距離から鋳造速度を求め、安定した鋳造速度制御を可能とすることにある。これにより、ロールと鋳片との間のスリップに影響されるロール式鋳造速度制御方法の問題点を解消することができる。   This invention is made | formed in view of said problem, The subject is as follows. That is, the first problem is that the surface of the slab is photographed using a CCD camera, and a portion where iron oxide (hereinafter also referred to as “scale”) adheres to the surface of the slab by an image analysis technique, and the scale The object is to obtain a casting speed from the moving distance of the scale-adhered portion per unit time using the brightness contrast with the surface portion to which no adhesion is made, thereby enabling stable casting speed control. Thereby, the problem of the roll type casting speed control method affected by the slip between the roll and the slab can be solved.

また、第2の課題は、鋳片の圧下帯の直前にCCDカメラを設置し、その画像解析に基づいて鋳造速度制御を行うことにより鋳片未凝固部の均一な圧下を達成し、内部偏析性状の安定したブルーム鋳片の連続鋳造方法を提供することにある。ここで、上記のCCDカメラを活用した鋳造速度の制御を「非接触式鋳造速度制御」と称することとする。   In addition, the second problem is that a CCD camera is installed immediately before the slab reduction zone, and the casting speed is controlled based on the image analysis to achieve uniform reduction of the unsolidified portion of the slab. An object of the present invention is to provide a continuous casting method for bloom slabs having stable properties. Here, the control of the casting speed using the CCD camera is referred to as “non-contact type casting speed control”.

本発明者らは、上述の課題を解決するために、従来の問題点を踏まえて、炭素鋼および合金鋼の連続鋳造工程における内部偏析性状の安定化方法について検討し、下記の知見を得て本発明を完成させた。   In order to solve the above-described problems, the present inventors have studied a method for stabilizing internal segregation properties in a continuous casting process of carbon steel and alloy steel based on conventional problems, and obtained the following knowledge. The present invention has been completed.

(a)ブルーム鋳片の内部偏析は、連続鋳造鋳片における最終凝固位置近傍での鋳造速度と凝固速度によって大きく影響され、鋳造速度の変動による影響がより支配的である。したがって、鋳片の内部品質を改善するには、CCDカメラによる撮影画像を解析し、鋳片表面のスケールの有無による輝度のコントラストからスケール付着部分の移動速度を計測して鋳造速度を求め、目標の鋳造速度との偏差を算出することにより、鋳片の鋳造速度を精度良く目標の鋳造速度に制御する方法が有効である。   (A) The internal segregation of the bloom slab is greatly influenced by the casting speed and the solidification speed in the vicinity of the final solidification position in the continuous cast slab, and the influence due to the fluctuation of the casting speed is more dominant. Therefore, in order to improve the internal quality of the slab, the image taken by the CCD camera is analyzed, the moving speed of the scale adhering part is measured from the brightness contrast depending on the presence or absence of the scale on the slab surface, and the casting speed is obtained. A method of accurately controlling the casting speed of the slab to the target casting speed by calculating the deviation from the casting speed is effective.

(b)上記(a)に記載のCCDカメラを活用した鋳造速度の計測方法および計測結果に基づく鋳造速度の制御方法としては、特許文献1に開示された計測および制御方法を用いることができる。ただし、上記のCCDカメラを活用した鋳造速度の制御方法は、ブルーム鋳片表面のスケール付着量の変動による影響を受ける。したがって、鋳片周辺温度の変動および鋳造鋼種の変化にともなって、鋳片表面のスケール付着量の変動が生じる場合には、鋳造速度の安定した制御は困難となる。   (B) The measurement and control method disclosed in Patent Document 1 can be used as a casting speed measurement method using the CCD camera described in (a) above and a casting speed control method based on the measurement result. However, the casting speed control method utilizing the above-described CCD camera is affected by fluctuations in the amount of scale attached to the surface of the bloom slab. Therefore, stable control of the casting speed becomes difficult when the amount of scale adhesion on the surface of the slab varies with the variation of the slab ambient temperature and the type of cast steel.

(c)鋳片表面のスケール付着部分の移動速度の計測精度を確保し、精度の高い鋳造速度制御を可能とするには、CCDカメラによるブルーム鋳片表面の撮影位置における鋳片表面の温度は、1100℃以下とすることが好ましい。1100℃を超えて高くなると、鋳片からの輻射輝度が強すぎて撮影画面全体が明るくなりすぎ、スケール付着部分の移動速度を精度良く検知することが難しくなるからである。また、同鋳片表面の温度は、鋳片の内部偏析性状を安定化することが可能な中心固相率が0.50以下の領域に相当する温度範囲、すなわち900℃以上とすることが好ましい。   (C) In order to ensure the measurement accuracy of the moving speed of the scale adhering portion on the slab surface and enable high-precision casting speed control, the temperature of the slab surface at the shooting position of the bloom slab surface by the CCD camera is It is preferable to set it as 1100 degrees C or less. If the temperature exceeds 1100 ° C., the radiance from the slab becomes so strong that the entire photographing screen becomes too bright, and it becomes difficult to accurately detect the moving speed of the scale adhering portion. Further, the temperature of the slab surface is preferably set to a temperature range corresponding to a region having a central solid fraction of 0.50 or less capable of stabilizing the internal segregation property of the slab, that is, 900 ° C. or more. .

(d)CCDカメラによるブルーム鋳片移動速度の計測位置は、鋳片の二次冷却終了後であって、かつ、鋳片の中心固相率が0.05〜0.50に相当する位置とすることが好ましい。二次冷却帯内においては、鋳片移動速度を精度良く計測することが難しいからである。また、非接触方式により鋳造速度の計測制御を行う位置は、未凝固部の圧下を開始する部位であることが好ましく、中心固相率が0.05未満の領域で鋳造速度の測定を行っても、圧下による中心偏析の抑制効果が現れにくい。一方、中心固相率が0.50を超えて高い位置で鋳片移動速度を計測し鋳造速度を制御しても、鋳片の内部偏析を安定して制御することは難しい。   (D) The measurement position of the bloom slab moving speed by the CCD camera is after the end of secondary cooling of the slab, and the center solid phase ratio of the slab is equivalent to 0.05 to 0.50. It is preferable to do. This is because it is difficult to accurately measure the slab moving speed in the secondary cooling zone. Further, the position at which the casting speed measurement control is performed by the non-contact method is preferably a part where the reduction of the unsolidified portion is started, and the casting speed is measured in a region where the central solid fraction is less than 0.05. However, the effect of suppressing the center segregation due to the reduction is unlikely to appear. On the other hand, even if the slab moving speed is measured at a position where the central solid fraction exceeds 0.50 and the casting speed is controlled, it is difficult to stably control the internal segregation of the slab.

(e)ブルーム鋳片の未凝固部を圧下する際には、CCDカメラを、鋳片の二次冷却帯の終了後で、かつ未凝固部圧下の直前までの領域に配置することが好ましい。未凝固圧下を行うことにより内部偏析を安定的に制御するには、未凝固圧下による鋳片の伸びなどの変動要因を含まない圧下直前までの位置において鋳造速度を精度良く計測し、この計測値に基づいて制御することが好ましいからである。   (E) When the unsolidified portion of the bloom slab is reduced, the CCD camera is preferably disposed in a region after the end of the secondary cooling zone of the slab and immediately before the unsolidified portion is reduced. In order to stably control internal segregation by performing unsolidified reduction, the casting speed is accurately measured at the position immediately before the reduction that does not include fluctuation factors such as slab elongation due to unsolidified reduction. It is because it is preferable to control based on this.

本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記の(1)〜(4)に示すブルーム鋳片の連続鋳造方法にある。   This invention is completed based on said knowledge, The summary exists in the continuous casting method of the bloom cast piece shown to following (1)-(4).

(1)横断面積が1200〜1600cm2のブルーム鋳片を、鋳造速度が0.55〜0.85m/min、二次冷却水の比水量が0.15〜0.70リットル/kg−steelの範囲で鋳造するに際して、連続鋳造機内に配置したCCDカメラによるブルーム鋳片の撮影画像を解析することにより、連続鋳造機内のブルーム鋳片の鋳造速度を測定し、目標の鋳造速度との偏差を求めることにより、鋳造中のブルーム鋳片の鋳造速度を目標の鋳造速度に制御することを特徴とするブルーム鋳片の連続鋳造方法。 (1) A bloom slab having a cross-sectional area of 1200 to 1600 cm 2 having a casting speed of 0.55 to 0.85 m / min and a specific amount of secondary cooling water of 0.15 to 0.70 liter / kg-steel. When casting in a range, by analyzing the captured image of the bloom slab with a CCD camera placed in the continuous casting machine, the casting speed of the bloom slab in the continuous casting machine is measured and the deviation from the target casting speed is obtained. Thus, the continuous casting method of the bloom slab characterized by controlling the casting speed of the bloom slab during casting to a target casting speed.

(2)連続鋳造機内に配置した前記CCDカメラによる撮影位置におけるブルーム鋳片の表面温度を900〜1100℃とすることを特徴とする前記(1)に記載のブルーム鋳片の連続鋳造方法。   (2) The bloom cast slab continuous casting method according to (1), wherein the surface temperature of the bloom cast slab at a photographing position by the CCD camera disposed in the continuous caster is set to 900 to 1100 ° C.

(3)前記CCDカメラを、ブルーム鋳片の二次冷却終了後で、かつブルーム鋳片の中心固相率が0.05〜0.50に相当する領域に配置することを特徴とする前記(1)または(2)に記載のブルーム鋳片の連続鋳造方法。   (3) The CCD camera is disposed after completion of secondary cooling of the bloom slab and in a region where the central solid fraction of the bloom slab corresponds to 0.05 to 0.50. The continuous casting method for bloom slabs according to 1) or (2).

(4)ブルーム鋳片の未凝固部を圧下する際に、前記CCDカメラを、ブルーム鋳片の二次冷却帯の終了後で、かつ未凝固部圧下の直前までの領域に配置することを特徴とする前記(1)、(2)または(3)のいずれか1項に記載のブルーム鋳片の連続鋳造方法。   (4) When the unsolidified portion of the bloom slab is reduced, the CCD camera is disposed in a region after the end of the secondary cooling zone of the bloom cast and immediately before the unsolidified portion is reduced. The continuous casting method for bloom slab according to any one of (1), (2) and (3).

本発明において、「CCDカメラ」とは、荷電結合デバイスを用いたカメラをはじめとして、被写体の移動速度を求めるための解析用の画像を撮影できるカメラを総称していう。ここで、荷電結合デバイスとは、半導体基板表面の薄い絶縁膜上に近接して多数配列した転送電極配列からなり、転送電極の印加電圧により転送電極下に形成された電位の井戸を適宜制御して信号電荷を転送または蓄積するデバイスを指す。   In the present invention, the “CCD camera” is a generic term for cameras that can take an image for analysis for determining the moving speed of a subject, including a camera using a charge coupled device. Here, the charge-coupled device is composed of a plurality of transfer electrode arrays arranged close to each other on a thin insulating film on the surface of the semiconductor substrate, and appropriately controls the potential well formed under the transfer electrode by the applied voltage of the transfer electrode. Refers to a device that transfers or stores signal charges.

また、「撮影画像の解析」とは、例えば、鋳片の表面に付着したスケールの移動量をピクセル単位で測定し、その移動量を所要時間で除すことにより移動速度を算出する手法を用い、鋳片の鋳造方向の線速度を算出する解析方法を意味する。   In addition, “analysis of the photographed image” uses, for example, a method of calculating the moving speed by measuring the moving amount of the scale attached to the surface of the slab in units of pixels and dividing the moving amount by the required time. This means an analysis method for calculating the linear velocity in the casting direction of the slab.

「中心固相率」とは、鋳片の横断面中心部において、固相と液相の総和に対して、固相の占める比率を意味する。   “Central solid phase ratio” means the ratio of the solid phase to the total of the solid phase and the liquid phase in the center of the cross section of the slab.

そして、「二次冷却」とは、鋳型の下方に位置するロール帯において鋳片表面に冷却水を噴射することにより鋳片を直接冷却することを意味する。   The “secondary cooling” means that the slab is directly cooled by spraying cooling water onto the surface of the slab in the roll band located below the mold.

本発明の方法によれば、CCDカメラによる鋳片の撮影画像を解析することにより、連続鋳造機内の鋳片の鋳造速度を測定し、目標の鋳造速度との偏差を求めることにより、鋳造中のブルーム鋳片の鋳造速度を目標値に制御するので、ロール接触式鋳造速度制御において発生するロールの摩耗や、ロールと鋳片との間のスリップ現象に起因する鋳造速度の計測誤差に起因する制御の変動を防止し、鋳造速度の制御精度を向上させて、内部偏析性状の良好な炭素鋼および合金鋼のブルーム鋳片を鋳造することができる。   According to the method of the present invention, by analyzing a photographed image of a slab by a CCD camera, the casting speed of the slab in a continuous casting machine is measured, and a deviation from the target casting speed is obtained, thereby obtaining a deviation during casting. Since the casting speed of the bloom slab is controlled to the target value, control due to the measurement error of the casting speed caused by the roll wear and the slip phenomenon between the roll and the slab in the roll contact type casting speed control Thus, it is possible to cast a bloom slab of carbon steel and alloy steel with good internal segregation properties by preventing the fluctuation of the casting speed and improving the control accuracy of the casting speed.

本発明は、ブルーム鋳片の横断面積、鋳造速度および二次冷却水の比水量を所定の範囲内として鋳片を鋳造するに際して、連続鋳造機内に配置したCCDカメラによるブルーム鋳片の撮影画像を解析することにより、連続鋳造機内のブルーム鋳片の鋳造速度を測定し、目標の鋳造速度との偏差を求めることにより、鋳造中のブルーム鋳片の鋳造速度を目標の鋳造速度に制御するブルーム鋳片の連続鋳造方法である。   The present invention provides an image of a bloom slab taken by a CCD camera placed in a continuous casting machine when casting the slab with the cross-sectional area of the bloom slab, the casting speed and the specific amount of secondary cooling water within a predetermined range. By analyzing, the casting speed of the bloom slab in the continuous casting machine is measured, and the deviation from the target casting speed is obtained, thereby controlling the casting speed of the bloom slab during casting to the target casting speed. This is a continuous casting method.

図1は、本発明を実施するための連続鋳造装置の例を示す図である。取鍋1内からタンディッシュ2内に注入された溶鋼3は、さらに連続鋳造鋳型4内に注入され、上記鋳型4内にて冷却されて凝固シェルを形成しながら下部に引き抜かれ、さらに、鋳型4の下方に位置する二次冷却装置5から噴射される冷却水により二次冷却されて、連続鋳造鋳片6となる。鋳片の移動速度(鋳造速度)の測定は、符号7にて示す位置においてCCDカメラにより鋳片表面に付着したスケールを撮影し、その画像解析からスケールの移動速度を求めることにより行った。また、鋳片未凝固部の圧下は、符号8により示される領域の圧下ロール(サポートロール)のロール間隔を縮小させることにより実施した。   FIG. 1 is a view showing an example of a continuous casting apparatus for carrying out the present invention. The molten steel 3 poured into the tundish 2 from the ladle 1 is further poured into the continuous casting mold 4, cooled in the mold 4 and pulled out to the bottom while forming a solidified shell. The secondary cooling is performed by the cooling water sprayed from the secondary cooling device 5 located below 4, and the continuous cast slab 6 is obtained. The moving speed of the slab (casting speed) was measured by photographing the scale attached to the slab surface with a CCD camera at the position indicated by reference numeral 7 and obtaining the moving speed of the scale from the image analysis. Further, the reduction of the slab unsolidified portion was performed by reducing the roll interval of the reduction roll (support roll) in the region indicated by reference numeral 8.

ブルーム鋳片6の鋳造速度の制御は、下記の方法により行った。すなわち、上記のようにして測定された鋳造速度と目標の鋳造速度との偏差を算出し、算出された偏差を時間について積分し、その積分値を目標の鋳造速度に加算した値を、駆動ロールの目標速度とすることにより、逐次、速度制御を実施した。   The casting speed of the bloom slab 6 was controlled by the following method. That is, the deviation between the casting speed measured as described above and the target casting speed is calculated, the calculated deviation is integrated over time, and the value obtained by adding the integrated value to the target casting speed is calculated as the driving roll. The speed control was carried out sequentially by setting the target speed of.

上記の目標鋳造速度の設定については、例えば、製品中心部のEPMA線分析法により得られた炭素濃度の偏析度、ブルーム鋳片のマルロ偏析などの内部品質評価において、良好な成績が得られたときの実績鋳造速度のデータをもとに、統計的処理を行って適正な鋳造速度を求め、これを設定するのが好ましい。以下に、本発明を前記のように規定した理由および好ましい態様について説明する。   Regarding the setting of the above target casting speed, good results were obtained in the internal quality evaluation such as the segregation degree of the carbon concentration obtained by the EPMA line analysis method at the center of the product and the Marlo segregation of the bloom slab. It is preferable to perform statistical processing to obtain an appropriate casting speed based on the actual casting speed data, and to set this. The reason why the present invention is defined as described above and preferred embodiments will be described below.

1)鋳片横断面積の適正範囲
ブルーム鋳片の横断面積は、1200〜1600cm2の範囲とすることが適切である。上記鋳片の横断面積が1200cm2未満では、鋳片表面に付着しているスケールの輝度のコントラストが小さくなって、CCDカメラによるスケール位置の検出精度が低下するからである。一方、横断面積が1600cm2を超えて大きくなると、鋳片の熱容量の増大に起因して輻射輝度が高くなりすぎ、スケール付着部分の移動速度の検知精度が低下して、良質な中心偏析性状を得るための鋳造速度制御範囲内に制御できなくなるおそれがある。
1) Appropriate range of slab cross-sectional area It is appropriate that the cross-sectional area of the bloom slab is in the range of 1200 to 1600 cm 2 . This is because when the cross-sectional area of the slab is less than 1200 cm 2 , the contrast of the brightness of the scale attached to the slab surface becomes small, and the accuracy of detection of the scale position by the CCD camera decreases. On the other hand, when the cross-sectional area is larger than 1600 cm 2 , the radiance becomes too high due to the increase in the heat capacity of the slab, the accuracy of detecting the moving speed of the scale adhering portion is lowered, and a good center segregation property is obtained. There is a possibility that it becomes impossible to control within the casting speed control range for obtaining.

2)鋳造速度の適正範囲
ブルーム鋳片の鋳造速度の適正範囲は、0.55〜0.85m/minである。鋳造速度が0.85m/minを超えて大きい場合には、鋳片の表面温度が高温になりすぎ、鋳片表面に付着したスケールの移動速度の検知精度が低下して、鋳造速度の制御精度が悪化するからである。一方、鋳造速度が0.55m/min未満になると、連続鋳造機内における鋳片の温度低下に起因して鋳片の引き抜き抵抗が増大し、安定した鋳造速度制御を達成することが困難となる。
2) Appropriate range of casting speed The appropriate range of the casting speed of the bloom slab is 0.55 to 0.85 m / min. When the casting speed is higher than 0.85 m / min, the surface temperature of the slab becomes too high, the detection accuracy of the moving speed of the scale attached to the slab surface is lowered, and the casting speed control accuracy This is because it gets worse. On the other hand, when the casting speed is less than 0.55 m / min, the drawing resistance of the slab increases due to the temperature drop of the slab in the continuous casting machine, and it becomes difficult to achieve stable casting speed control.

3)二次冷却水比水量の適正範囲
鋳片の二次冷却の比水量は、0.15〜0.70リットル/kg−steelの範囲とすることが適切である。比水量が0.15リットル/kg−steel未満では、連続鋳造装置内での二次冷却水用配管自体の冷却としても作用する二次冷却水量が不足し、二次冷却配管に歪みが発生して、横断面積が1200〜1600cm2のビレット鋳片の正常な鋳造が困難となるからである。一方、比水量が0.70リットル/kg−steelを超えて高くなると、連続鋳造装置内における鋳片の矯正時に、鋳片表面温度が低下しすぎて、鋳片の表面割れが発生し、安定した鋳造を行うことが困難となる。
3) Appropriate range of the secondary cooling water specific water amount It is appropriate that the specific water amount of the secondary cooling of the slab is in the range of 0.15 to 0.70 liter / kg-steel. If the specific water amount is less than 0.15 liter / kg-steel, the amount of secondary cooling water acting as cooling of the secondary cooling water pipe itself in the continuous casting apparatus is insufficient, and the secondary cooling pipe is distorted. This is because normal casting of billet slabs having a cross-sectional area of 1200 to 1600 cm 2 becomes difficult. On the other hand, when the specific water amount is higher than 0.70 liter / kg-steel, the slab surface temperature is too low when the slab is corrected in the continuous casting machine, and the slab surface cracks occur and is stable. It is difficult to perform casting.

4)CCDカメラによる撮影位置における鋳片の表面温度
CCDカメラによる撮影位置における鋳片の表面温度は900〜1100℃とすることが好ましい。CCDカメラによる撮影位置における鋳片の表面温度が900℃未満では、この温度領域における中心固相率は0.50を超えて高い値となり、鋳片の内部品質を安定化することが可能な中心固相率の上限を逸脱するおそれがあるからである。一方、撮影位置における表面温度が1100℃を超えて高くなると、鋳片表面のスケール付着部分の輝度のコントラストが低下し、CCDカメラによるスケール付着部分の移動速度の検知精度が低下するおそれがある。
4) Surface temperature of the slab at the photographing position by the CCD camera The surface temperature of the slab at the photographing position by the CCD camera is preferably 900 to 1100 ° C. When the surface temperature of the slab at the photographing position by the CCD camera is less than 900 ° C., the center solid phase ratio in this temperature region is a high value exceeding 0.50, and it is possible to stabilize the internal quality of the slab. This is because the upper limit of the solid phase ratio may be deviated. On the other hand, if the surface temperature at the photographing position is higher than 1100 ° C., the contrast of the brightness of the scale attached portion on the surface of the slab is lowered, and the detection accuracy of the moving speed of the scale attached portion by the CCD camera may be lowered.

5)ブルーム鋳片移動速度の計測位置
CCDカメラによるブルーム鋳片移動速度の計測位置は、鋳片の二次冷却終了後であって、かつ、鋳片の中心固相率が0.05〜0.50に相当する位置とすることが好ましい。鋳片の二次冷却帯内においては、冷却水などの影響により、鋳片移動速度を精度良く計測することが難しい。また、鋳片の中心固相率が0.05未満に相当する位置で計測を行った場合には、計測位置が完全な未凝固状態に近いため、鋳片未凝固部の圧下を行ったとしても、鋳片の中心部に溶質成分の濃化した溶鋼が存在しないことから、中心偏析の抑制に良好な効果を及ぼしにくく、好ましくないからである。一方、中心固相率が0.50を超えて高い位置で計測し速度制御を行っても、上記4)にて述べたのと同様に、鋳片の内部偏析を安定して制御することは難しい。
6)鋳片の未凝固圧下を行う場合の鋳片移動速度の計測位置
鋳片の未凝固部を圧下する際には、CCDカメラを、鋳片の二次冷却帯の終了後で、かつ鋳片未凝固部の圧下直前までの領域に配置し、この領域における鋳片の移動速度を計測することが好ましい。未凝固圧下を行うことにより内部偏析を安定的に制御するには、未凝固圧下による鋳片の伸びなどによる移動速度の変動要因を含まない位置で移動速度を計測することが好ましく、したがって、圧下直前までの領域において鋳片の移動速度を精度良く計測し、これを制御することが好ましいからである。
5) Measurement position of the bloom slab moving speed The measurement position of the bloom slab moving speed by the CCD camera is after completion of the secondary cooling of the slab, and the center solid phase ratio of the slab is 0.05-0. It is preferable that the position corresponds to .50. In the secondary cooling zone of the slab, it is difficult to accurately measure the slab moving speed due to the influence of cooling water or the like. In addition, when the measurement is performed at a position corresponding to the central solid fraction of the slab of less than 0.05, the measurement position is close to a completely unsolidified state, so the slab unsolidified part is reduced. This is because there is no molten steel enriched with a solute component at the center of the slab, which is not preferable because it is difficult to exert a favorable effect on the suppression of center segregation. On the other hand, even if the central solid fraction is measured at a high position exceeding 0.50 and speed control is performed, the internal segregation of the slab can be controlled stably as described in 4) above. difficult.
6) Measurement position of the slab moving speed when the slab is subjected to unsolidified reduction When the unsolidified portion of the slab is reduced, the CCD camera is used after the end of the secondary cooling zone of the slab and after casting. It is preferable to arrange in the region immediately before the reduction of the unsolidified part of the piece and measure the moving speed of the cast piece in this region. In order to stably control internal segregation by performing unsolidified reduction, it is preferable to measure the movement speed at a position that does not include a fluctuation factor of movement speed due to elongation of the slab due to unsolidified reduction. This is because it is preferable to accurately measure and control the moving speed of the slab in the region up to immediately before.

本発明の連続鋳造鋳片の製造方法の効果を確認するため、下記に示す試験を行い、その結果を評価した。   In order to confirm the effect of the method for producing a continuous cast slab of the present invention, the following tests were conducted and the results were evaluated.

1.実施例1
1)試験方法
図1に示される垂直曲げ型連続鋳造設備を用いて、下記の成分組成を有する炭素鋼および合金鋼による鋳造試験を行い、厚さ:300mm、幅:400mmのブルーム鋳片(鋳片の横断面積:1200cm2)を製造した。
1)炭素鋼:質量%にて、C:0.01〜0.99%、Si:0.10〜0.40%、Mn:0.20〜0.45%、P:0.030%以下、S:0.004〜0.025%、Al:0.060%以下、N:0.080%以下。
1. Example 1
1) Testing method Using the vertical bending type continuous casting equipment shown in FIG. 1, a casting test was performed with carbon steel and alloy steel having the following composition, and a bloom slab having a thickness of 300 mm and a width of 400 mm (casting) A cross-sectional area of the piece: 1200 cm 2 ) was produced.
1) Carbon steel:% by mass, C: 0.01 to 0.99%, Si: 0.10 to 0.40%, Mn: 0.20 to 0.45%, P: 0.030% or less , S: 0.004 to 0.025%, Al: 0.060% or less, N: 0.080% or less.

2)合金鋼:質量%にて、C:0.01〜0.99%、Si:0.10〜0.40%、Mn:0.30〜2.50%、P:0.030%以下、S:0.004〜0.080%、Cr:0.40〜1.70%、Mo:1.00%以下、Al:0.060%以下、N:0.030%以下。   2) Alloy steel:% by mass, C: 0.01 to 0.99%, Si: 0.10 to 0.40%, Mn: 0.30 to 2.50%, P: 0.030% or less , S: 0.004 to 0.080%, Cr: 0.40 to 1.70%, Mo: 1.00% or less, Al: 0.060% or less, N: 0.030% or less.

鋳造速度は0.55〜0.85m/minとし、二次冷却水の比水量は0.15〜0.70リットル/kg−steelの範囲とした。また、鋳片サポートロールの鋳片厚さ方向の間隔を変化させ、そのロール間隔を鋳片の凝固収縮代にフィッティングさせた。   The casting speed was 0.55 to 0.85 m / min, and the specific amount of secondary cooling water was in the range of 0.15 to 0.70 liter / kg-steel. Moreover, the interval of the slab support roll in the slab thickness direction was changed, and the roll interval was fitted to the solidification shrinkage allowance of the slab.

上記のようにして得られたブルーム鋳片を、110〜220mm角の角材または110〜220mmφの丸棒材に分塊圧延し、さらに、18〜120mm角もしくは18〜120mmφの棒鋼または5〜21mmφの線材製品に加工した。   The bloom slab obtained as described above is rolled into a square bar of 110 to 220 mm square or a round bar of 110 to 220 mmφ, and further, 18 to 120 mm square or 18 to 120 mmφ bar steel or 5 to 21 mmφ Processed into wire products.

2)試験結果
表1に試験条件および試験結果を示した。
2) Test results Table 1 shows test conditions and test results.

Figure 2009178721
Figure 2009178721

同表において、鋳造速度、二次冷却水の比水量、および鋳造速度測定位置での鋳片表面温度は、各チャージ毎の定常鋳造操業期間における平均値を表す。また、鋳造速度測定位置での鋳片中心固相率は、同様に、定常鋳造操業期間における操業諸元に基づいて伝熱解析により求めた鋳片内の温度分布から固相率分布を算出し、鋳造速度測定位置における中心固相率の時間平均値を採用した。   In the table, the casting speed, the specific amount of secondary cooling water, and the slab surface temperature at the casting speed measurement position represent the average values during the steady casting operation period for each charge. Similarly, the slab center solid fraction at the casting speed measurement position is calculated by calculating the solid fraction distribution from the temperature distribution in the slab obtained by heat transfer analysis based on the operation specifications during the steady casting operation period. The time average value of the central solid fraction at the casting speed measurement position was adopted.

さらに、鋳造速度変動の標準偏差(σ)は、各チャージ毎の定常鋳造操業期間における速度変動の標準偏差を表す。そして、製品中心部の炭素濃度偏析比(C/Co)は、同様に、定常鋳造区間に相当する圧延後の製品部位における中心部の炭素含有率(C%)を同製品部位内の平均炭素含有率(Co%)により除して求めた。ここで、炭素含有率CおよびCoは、各チャージ当たり製品長手方向の2箇所を選定し、製品の横断面中心部および断面中心部以外の6箇所(中心部を通り、鋳造方向と直交する直線上の6箇所)について、EPMAによる線分析を行い、上記2箇所の測定値を平均することにより求めた。上記(C/Co)の値は1.0に近いほど内部偏析性状は良好であることを表す。   Furthermore, the standard deviation (σ) of the casting speed fluctuation represents the standard deviation of the speed fluctuation during the steady casting operation period for each charge. Similarly, the carbon concentration segregation ratio (C / Co) in the center of the product is the average carbon content (C%) in the center of the product part after rolling corresponding to the steady casting section. It was obtained by dividing by the content rate (Co%). Here, the carbon content C and Co are selected at two locations in the product longitudinal direction for each charge, and 6 locations other than the center of the cross section of the product and the center of the cross section (straight line passing through the center and orthogonal to the casting direction) The upper six places) were subjected to line analysis by EPMA, and the measured values at the two places were averaged. The closer the value of (C / Co) is to 1.0, the better the internal segregation properties.

試験番号1〜4は、本発明で規定する要件を満足する本発明例についての試験である。また、試験番号5および6は、ロール式鋳造速度制御を行った比較例についての試験であり、試験番号7および8は、非接触式鋳造速度制御を行ったものの、鋳造速度が本発明で規定する適正範囲を外れた比較例についての試験である。   Test numbers 1 to 4 are tests for the present invention examples that satisfy the requirements defined in the present invention. Test numbers 5 and 6 are tests for a comparative example in which roll type casting speed control was performed. Test numbers 7 and 8 were subjected to non-contact type casting speed control, but the casting speed was specified in the present invention. This is a test for a comparative example that deviates from the appropriate range.

本発明例の試験番号1〜4は、請求項1で規定する本発明の要件を全て満足していることから、鋳造速度変動の標準偏差が0.004以下の高精度の鋳造速度制御が達成され、その結果、製品中心部の炭素濃度偏析比(C/Co)も1.05以下となって、良好な内部偏析性状が実現できた。   Since test numbers 1 to 4 of the present invention examples satisfy all the requirements of the present invention defined in claim 1, high-precision casting speed control with a standard deviation of casting speed fluctuation of 0.004 or less is achieved. As a result, the carbon concentration segregation ratio (C / Co) at the center of the product was 1.05 or less, and good internal segregation properties were realized.

これに対して、ロール式鋳造速度制御を行った比較例の試験番号5および6では、鋳造速度の制御精度が低く、鋳造速度変動の標準偏差は0.010〜0.019と高い値となった。その結果、製品中心部の(C/Co)も1.096〜1.106と増大し、内部偏析性状は悪化した。   On the other hand, in the test numbers 5 and 6 of the comparative examples in which the roll type casting speed control was performed, the casting speed control accuracy was low, and the standard deviation of the casting speed fluctuation was as high as 0.010 to 0.019. It was. As a result, (C / Co) at the center of the product also increased to 1.096 to 1.106, and the internal segregation properties deteriorated.

また、試験番号7は、非接触式鋳造速度制御を行ったものの、鋳造速度が本発明で規定する適正範囲未満であることから、鋳造速度測定位置での鋳片の中心固相率が0.5を超えて高くなり、表面温度も比較的低くなって、鋳造速度変動の標準偏差値は0.098と悪化した。また、試験番号8は、非接触式鋳造速度制御を行ったものの、鋳造速度が本発明で規定する適正範囲を超えて高いことから、鋳造速度測定位置での鋳片の表面温度が1100℃を超えて高くなり、鋳造速度変動の標準偏差値は0.146と極めて悪化した。製品中心部の偏析比の調査は特に行っていないものの、鋳造速度変動の標準偏差が大きいことから、製品中心部の炭素濃度偏析比(C/Co)は高い値となり、内部偏析性状も悪化していることが容易に推測できる。   In Test No. 7, although non-contact casting speed control was performed, since the casting speed was less than the appropriate range specified in the present invention, the center solid phase ratio of the slab at the casting speed measurement position was 0. As the temperature exceeded 5 and the surface temperature became relatively low, the standard deviation value of the casting speed fluctuation deteriorated to 0.098. In Test No. 8, although non-contact casting speed control was performed, the casting speed was higher than the appropriate range specified in the present invention, so the surface temperature of the slab at the casting speed measurement position was 1100 ° C. The standard deviation value of the casting speed fluctuation was extremely deteriorated to 0.146. Although the investigation of the segregation ratio at the center of the product has not been conducted, the standard deviation of the casting speed fluctuation is large, so the carbon concentration segregation ratio (C / Co) at the center of the product is high and the internal segregation properties are also deteriorated. It can be easily guessed.

2.実施例2
さらに、前記の試験番号1〜8と同様の試験条件において連続鋳造を行った各チャージ毎の操業データを整理し、下記の結果を得た。
2. Example 2
Furthermore, the operation data for each charge in which continuous casting was performed under the same test conditions as the above test numbers 1 to 8 were organized, and the following results were obtained.

図2は、非接触式鋳造速度制御およびロール式鋳造速度制御の各場合について、鋳造速度と製品中心炭素濃度偏析比(C/Co)との関係を示す図である。同図はC:0.80〜0.84質量%の炭素鋼についての結果を整理したものである。同図の結果より、少なくとも鋳造速度が0.695〜0.720m/minの範囲内において、非接触式鋳造速度制御を用いる本発明の方法を適用すれば、図中の○印で示されるように、製品中心部における炭素濃度偏析比(C/Co)が1.05以下の良好な内部偏析性状が得られることがわかる。   FIG. 2 is a diagram showing the relationship between the casting speed and the product center carbon concentration segregation ratio (C / Co) in each case of non-contact casting speed control and roll casting speed control. The figure arranges the results for C: 0.80 to 0.84 mass% carbon steel. From the results shown in the figure, when the method of the present invention using the non-contact type casting speed control is applied at least in the range of the casting speed of 0.695 to 0.720 m / min, as indicated by the circles in the figure. Further, it can be seen that a good internal segregation property having a carbon concentration segregation ratio (C / Co) in the product center of 1.05 or less is obtained.

図3は、非接触式鋳造速度制御とロール式鋳造速度制御とについて、鋳造速度変動の標準偏差を比較して示す図である。同図において、本発明例における鋳造速度変動の標準偏差は、前記図2における本発明例(○印)の各チャージ毎の鋳造速度変動の標準偏差を本発明例全体について平均した値であり、また、比較例における鋳造速度変動の標準偏差は、前記図2における比較例(×印)の各チャージ毎の鋳造速度変動の標準偏差を比較例全体について平均した値である。   FIG. 3 is a diagram showing a comparison of standard deviations of casting speed fluctuations for non-contact casting speed control and roll casting speed control. In the figure, the standard deviation of the casting speed fluctuation in the present invention example is a value obtained by averaging the standard deviation of the casting speed fluctuation for each charge of the example of the present invention (circle) in FIG. The standard deviation of the casting speed fluctuation in the comparative example is a value obtained by averaging the standard deviation of the casting speed fluctuation for each charge in the comparative example (x mark) in FIG.

同図の結果によれば、非接触式鋳造速度制御を用いる本発明の方法を適用することにより、鋳造速度変動の標準偏差を、ロール式鋳造速度制御を用いた比較例の場合の標準偏差の1/3以下に低下させることができる。   According to the result of the figure, by applying the method of the present invention using the non-contact type casting speed control, the standard deviation of the casting speed fluctuation is equal to the standard deviation in the comparative example using the roll type casting speed control. It can be reduced to 1/3 or less.

本発明の方法によれば、CCDカメラによる鋳片の撮影画像を解析することにより、連続鋳造機内の鋳片の鋳造速度を測定し、目標の鋳造速度との偏差を求めることにより、鋳造中のブルーム鋳片の鋳造速度を目標値に制御するので、ロール接触方式の鋳造速度制御において発生するロールの摩耗や、ロールと鋳片との間のスリップ現象に起因する鋳造速度の変動を防止し、鋳造速度を安定に制御して、内部品質の良好な炭素鋼および合金鋼のブルーム鋳片を鋳造することができる。これにより、本発明の方法は、ロール接触方式による鋳造速度制御の問題点を解消するとともに、未凝固圧下を行う連続鋳造においても、鋳片未凝固部を均一に圧下し、内部偏析性状の安定したブルーム鋳片を得ることのできる連続鋳造方法として、広範に活用できる実用価値の高い発明である。   According to the method of the present invention, by analyzing a photographed image of a slab by a CCD camera, the casting speed of the slab in a continuous casting machine is measured, and a deviation from the target casting speed is obtained, thereby obtaining a deviation during casting. Since the casting speed of the bloom slab is controlled to the target value, the roll wear caused by the roll contact type casting speed control and the fluctuation of the casting speed due to the slip phenomenon between the roll and the slab are prevented, It is possible to stably control the casting speed and cast a bloom slab of carbon steel and alloy steel with good internal quality. As a result, the method of the present invention solves the problem of casting speed control by the roll contact method, and even in continuous casting in which unsolidified reduction is performed, the unsolidified portion of the slab is uniformly reduced to stabilize the internal segregation property. It is a highly practical invention that can be widely used as a continuous casting method capable of obtaining a bloom slab.

本発明を実施するための連続鋳造装置の例を示す図である。It is a figure which shows the example of the continuous casting apparatus for implementing this invention. 非接触式鋳造速度制御およびロール式鋳造速度制御の各場合についての、鋳造速度と製品中心炭素濃度偏析比(C/Co)との関係を示す図である。It is a figure which shows the relationship between a casting speed and a product center carbon concentration segregation ratio (C / Co) about each case of non-contact-type casting speed control and roll-type casting speed control. 非接触式鋳造速度制御とロール式鋳造速度制御とについて、鋳造速度変動の標準偏差を比較して示す図である。It is a figure which compares and shows the standard deviation of a casting speed fluctuation | variation about non-contact-type casting speed control and roll type casting speed control.

符号の説明Explanation of symbols

1:取鍋、 2:タンディッシュ、 3:溶鋼、 4:連続鋳造鋳型、
5:二次冷却装置、 6:連続鋳造鋳片(ブルーム鋳片)、 7:鋳片移動速度計測位置、
8:未凝固圧下帯
1: ladle, 2: tundish, 3: molten steel, 4: continuous casting mold,
5: Secondary cooling device, 6: Continuous cast slab (bloom slab), 7: Slab moving speed measurement position,
8: Unsolidified rolling zone

Claims (4)

横断面積が1200〜1600cm2のブルーム鋳片を、鋳造速度が0.55〜0.85m/min、二次冷却水の比水量が0.15〜0.70リットル/kg−steelの範囲で鋳造するに際して、
連続鋳造機内に配置したCCDカメラによるブルーム鋳片の撮影画像を解析することにより、連続鋳造機内のブルーム鋳片の鋳造速度を測定し、目標の鋳造速度との偏差を求めることにより、
鋳造中のブルーム鋳片の鋳造速度を目標の鋳造速度に制御することを特徴とするブルーム鋳片の連続鋳造方法。
Casting bloom slabs with a cross-sectional area of 1200 to 1600 cm 2 at a casting speed of 0.55 to 0.85 m / min and a specific amount of secondary cooling water of 0.15 to 0.70 liter / kg-steel. When doing
By analyzing the shot image of the bloom slab by the CCD camera placed in the continuous casting machine, measuring the casting speed of the bloom slab in the continuous casting machine, and obtaining the deviation from the target casting speed,
A continuous casting method of a bloom slab, wherein the casting speed of the bloom slab during casting is controlled to a target casting speed.
連続鋳造機内に配置した前記CCDカメラによる撮影位置におけるブルーム鋳片の表面温度を900〜1100℃とすることを特徴とする請求項1に記載のブルーム鋳片の連続鋳造方法。   The method for continuous casting of a bloom slab according to claim 1, wherein the surface temperature of the bloom slab at a photographing position by the CCD camera disposed in a continuous casting machine is set to 900 to 1100 ° C. 前記CCDカメラを、ブルーム鋳片の二次冷却終了後で、かつブルーム鋳片の中心固相率が0.05〜0.50に相当する領域に配置することを特徴とする請求項1または2に記載のブルーム鋳片の連続鋳造方法。   The CCD camera is disposed after the secondary cooling of the bloom slab, and in a region where the central solid phase ratio of the bloom slab corresponds to 0.05 to 0.50. The continuous casting method of bloom slab described in 2. ブルーム鋳片の未凝固部を圧下する際に、前記CCDカメラを、ブルーム鋳片の二次冷却帯の終了後で、かつ未凝固部圧下の直前までの領域に配置することを特徴とする請求項1、2または3のいずれか1項に記載のブルーム鋳片の連続鋳造方法。   When the unsolidified portion of the bloom slab is reduced, the CCD camera is disposed in a region after the end of the secondary cooling zone of the bloom slab and immediately before the unsolidified portion is reduced. Item 4. The continuous casting method for bloom slab according to any one of items 1, 2 or 3.
JP2008017683A 2008-01-29 2008-01-29 Bloom casting slab continuous casting method Expired - Fee Related JP5029391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008017683A JP5029391B2 (en) 2008-01-29 2008-01-29 Bloom casting slab continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008017683A JP5029391B2 (en) 2008-01-29 2008-01-29 Bloom casting slab continuous casting method

Publications (2)

Publication Number Publication Date
JP2009178721A true JP2009178721A (en) 2009-08-13
JP5029391B2 JP5029391B2 (en) 2012-09-19

Family

ID=41033101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008017683A Expired - Fee Related JP5029391B2 (en) 2008-01-29 2008-01-29 Bloom casting slab continuous casting method

Country Status (1)

Country Link
JP (1) JP5029391B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62244560A (en) * 1986-04-16 1987-10-24 Kobe Steel Ltd Drawing speed measuring method for casting slab
JPS6448651A (en) * 1987-08-13 1989-02-23 Nippon Steel Corp Method for assuming crater end
JP2003334641A (en) * 2002-05-17 2003-11-25 Sumitomo Metal Ind Ltd Continuous steel casting method
JP2004223572A (en) * 2003-01-23 2004-08-12 Sumitomo Metal Ind Ltd Method for continuous casting and cast slab
JP2005118804A (en) * 2003-10-15 2005-05-12 Jfe Steel Kk Method for detecting fully solidified position of continuously-cast bloom
JP2007209995A (en) * 2006-02-07 2007-08-23 Sumitomo Metal Ind Ltd Control method and control apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62244560A (en) * 1986-04-16 1987-10-24 Kobe Steel Ltd Drawing speed measuring method for casting slab
JPS6448651A (en) * 1987-08-13 1989-02-23 Nippon Steel Corp Method for assuming crater end
JP2003334641A (en) * 2002-05-17 2003-11-25 Sumitomo Metal Ind Ltd Continuous steel casting method
JP2004223572A (en) * 2003-01-23 2004-08-12 Sumitomo Metal Ind Ltd Method for continuous casting and cast slab
JP2005118804A (en) * 2003-10-15 2005-05-12 Jfe Steel Kk Method for detecting fully solidified position of continuously-cast bloom
JP2007209995A (en) * 2006-02-07 2007-08-23 Sumitomo Metal Ind Ltd Control method and control apparatus

Also Published As

Publication number Publication date
JP5029391B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
JP5082683B2 (en) Method for predicting surface cracks in continuous cast slabs
KR101257472B1 (en) Measuring apparatus for slag and measuring method thereof
JP6384679B2 (en) Manufacturing method of hot-rolled steel sheet
JP5029391B2 (en) Bloom casting slab continuous casting method
CN110315049B (en) Continuous casting secondary cooling water control device and method
CN103402672B (en) Pig metal manufacture method, level control method, superfine copper alloy wire
JP2007185675A (en) Method for predicting dangerous portion causing surface defect in continuously cast slab, and method for manufacturing continuously cast slab
KR20150025233A (en) Design methods of mold powder for low carbon steel
JP6098577B2 (en) Method for adjusting roll interval of continuous casting machine and method for continuous casting of steel slab
Guo et al. Mould heat transfer in the continuous casting of round billet
JP5831118B2 (en) Method and apparatus for continuous casting of steel
JP5381468B2 (en) Secondary cooling method in continuous casting machine
JP2010025835A (en) Acceptance decision method of steel strip
JP5402790B2 (en) Method for cooling continuous cast bloom slab and method for manufacturing the slab
JP4461075B2 (en) Continuous casting method
JP2020171954A (en) Continuous casting method for steel
JP2006021218A (en) Method for determining amount of scarfing for ingot
JP2012110917A (en) Method for detecting defect and defect detection device in continuously cast slab for thin steel sheet
KR102634137B1 (en) Surface quality control method in continuous casting
JP3275828B2 (en) Continuous casting method
JP2011121063A (en) Continuous casting method with soft reduction
JP5020687B2 (en) Continuous casting method of slab steel with little center segregation
KR101748951B1 (en) Apparatus of measuring upper-lower coolant amount ratio of accelerated cooling machine
JP3015994B2 (en) Method for producing Cu, Sn-containing steel without surface cracks
JP2001062547A (en) Manufacture of compound roll

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5029391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees