JP2009178174A - Ophthalmologic measuring apparatus - Google Patents

Ophthalmologic measuring apparatus Download PDF

Info

Publication number
JP2009178174A
JP2009178174A JP2008017001A JP2008017001A JP2009178174A JP 2009178174 A JP2009178174 A JP 2009178174A JP 2008017001 A JP2008017001 A JP 2008017001A JP 2008017001 A JP2008017001 A JP 2008017001A JP 2009178174 A JP2009178174 A JP 2009178174A
Authority
JP
Japan
Prior art keywords
eye
amount
fixation
movement
tear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008017001A
Other languages
Japanese (ja)
Other versions
JP5038925B2 (en
Inventor
Norihiko Yokoi
則彦 横井
Yutaka Mizukusa
豊 水草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kowa Co Ltd
Original Assignee
Kowa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kowa Co Ltd filed Critical Kowa Co Ltd
Priority to JP2008017001A priority Critical patent/JP5038925B2/en
Publication of JP2009178174A publication Critical patent/JP2009178174A/en
Application granted granted Critical
Publication of JP5038925B2 publication Critical patent/JP5038925B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/101Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for examining the tear film

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ophthalmologic measuring apparatus capable of measuring the accurate severity of dry eyes even with flicks. <P>SOLUTION: Illumination light is projected to a lacrimal fluid layer on a cornea of an eye to be examined. The lacrimal fluid layer is imaged by a CCD camera 14, and the image is processed to compute the vertical moving amount of the lacrimal fluid layer. A fixation bright point projected on the cornea by a fixation light source 12 is imaged by the CCD camera 10 to obtain the fixation moving amount of the eye to be examined. The moving amount of the lacrimal fluid layer is corrected based on the fixation moving amount, and a value indicating the amount of lacrimal fluid stored in the eye to be examined is determined from the rate of temporal change of the corrected moving amount of the lacrimal fluid layer. With this constitution, a symptom of the dry eye even in a moderate dry eye state can be quantified with high reliability even with flicks during measurement. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、眼科測定装置、更に詳細には、ドライアイの重症度を定量的に測定する眼科測定装置に関する。   The present invention relates to an ophthalmic measurement apparatus, and more particularly to an ophthalmic measurement apparatus that quantitatively measures the severity of dry eye.

近年、VDT(visual display terminal)作業者の増加や冷暖房による部屋の乾燥などによりドライアイ患者が増加している。ドライアイになると角膜上皮障害や結膜障害、その他にも種々の眼障害を併発するおそれがあり、ドライアイの診断は眼科診断の上で重要なテーマとなっている。   In recent years, the number of dry eye patients has increased due to an increase in the number of VDT (visual display terminal) workers and the drying of rooms by air conditioning. Dry eye may cause corneal epithelial disorder, conjunctival disorder, and various other eye disorders. Dry eye diagnosis is an important theme in ophthalmologic diagnosis.

従来は、生体染色検査、シルマーテストによる涙液分泌量検査などによりドライアイの診断を行なっていたが、薬物点眼や異物接触を伴うため被検者の苦痛は避けられなかった。そこで、非接触的にドライアイを検出するために、被検眼にコヒーレント光を照射して涙液層でのカラーの干渉縞(干渉模様)を観察する方法が試みられている。これら装置では、被検眼の涙液の油層で形成される干渉模様を撮像して、それをモニタに表示して観察することにより涙液層の状態を知り、ドライアイの簡易的診断を行っている。   Conventionally, dry eye was diagnosed by a vital staining test, a tear secretion test using a Schirmer test, etc., but suffering from the subject was unavoidable due to drug instillation and foreign object contact. Therefore, in order to detect dry eye in a non-contact manner, a method of observing color interference fringes (interference patterns) in the tear film by irradiating the eye to be examined with coherent light has been attempted. With these devices, the interference pattern formed by the tear fluid layer of the eye to be examined is imaged, displayed on a monitor and observed to know the state of the tear fluid layer, and a simple diagnosis of dry eye is performed. Yes.

また、ドライアイの重症度を定量的に評価するために、上記涙液油層の干渉模様の強度を測定し、その測定値からドライアイの重症度を示す値を演算したり(特許文献1)、あるいは、干渉模様の像に複数のエリアを設定し、各エリアの色相に基づいて涙液表層を評価したり(特許文献2)、あるいは干渉縞の色相の経時変化を解析してドライアイを診断することが行われている(特許文献3)。また、このような干渉模様からドライアイを特定する他の例として、被検眼の涙液層で形成される干渉模様をカラー撮影し、そのカラー画像を色成分に分解して、各色成分で判定される干渉縞の数又はその信号レベル変化に基づいてドライアイの進行状態を判定することが行われている(特許文献4)。   Further, in order to quantitatively evaluate the severity of dry eye, the strength of the interference pattern of the tear fluid layer is measured, and a value indicating the severity of dry eye is calculated from the measured value (Patent Document 1). Alternatively, by setting a plurality of areas in the image of the interference pattern and evaluating the tear surface layer based on the hue of each area (Patent Document 2), or analyzing the temporal change of the hue of the interference fringe, Diagnosis is performed (Patent Document 3). As another example of identifying dry eye from such interference patterns, color images of interference patterns formed by the tear film of the eye to be examined are taken, the color image is decomposed into color components, and each color component is determined. The progress of dry eye is determined based on the number of interference fringes or the change in signal level thereof (Patent Document 4).

また、干渉模様からドライアイを判定するのではなく、被検眼開瞼後に涙液層が破砕されて発生するドライスポット領域の経時的変化を、ドライスポット領域の面積比データの経時的変化として把握し、そのドライスポット領域の経時変化をモニタに表示することによりドライアイの涙液の安定性の異常を検査することが行われている(特許文献5)。さらに、被検眼にトレーサーを点眼し、この点眼したトレーサーの移動を測定することによりドライアイの定量化が行われている(特許文献6)。   Also, instead of judging the dry eye from the interference pattern, the change over time in the dry spot area that occurs when the tear film is crushed after the eye is opened is grasped as the change over time in the area ratio data of the dry spot area. In addition, a change in the dry spot area over time is displayed on a monitor to examine abnormal stability of dry eye tears (Patent Document 5). Furthermore, quantification of dry eye is performed by applying a tracer to the eye to be examined and measuring the movement of the instilled tracer (Patent Document 6).

また、ドライアイ患者の瞬目後の涙液油層の伸展状態がVoit modelで良好に近似でき涙液貯留量と関連することが述べられている(非特許文献1)。さらに、撮像された油層画像に矩形の観察領域を設定し、一定時間後の油層画像から該観察領域の油層画像と最も一致する矩形領域を相関法を用いて認識し、その領域の垂直方向の変位量からVoit modelを用いて垂直方向の油層伸展初速度を求め、この初速度と涙液メニスカス曲率半径との関係が検討されている(非特許文献2)。   Further, it has been described that the stretch state of the tear fluid layer after blinking in a dry eye patient can be well approximated by the Voit model and is related to the tear fluid accumulation amount (Non-patent Document 1). Furthermore, a rectangular observation region is set in the captured oil layer image, and a rectangular region that most closely matches the oil layer image of the observation region is recognized from the oil layer image after a certain time by using the correlation method, and the vertical direction of the region is recognized. The initial velocity of oil layer extension in the vertical direction is obtained from the amount of displacement using a Voit model, and the relationship between this initial velocity and the lacrimal meniscus radius of curvature has been studied (Non-Patent Document 2).

また、被検眼の固視状態が変動すると、信頼性のある眼科検査ないし測定を行うことができないので、固視の移動状況から撮影画像を補正したり(特許文献7)、瞳が移動しても安定した波面補正を行って被検眼の光学特性を測定し、あるいは眼底像を形成することが行われている(特許文献8)。
特開2000−287930号公報 特許第3556033号公報 特許第3718104号公報 特開2005−211173号公報 特許第3699853号公報 特開2006−314651号公報 特開2006−61328号公報 特開2006−6362号公報 Frontiers in Dry Eye 2006.10 Vol.1 No.1 20,21 メディカルレビュー社 第31回角膜カンファランス、第23回日本角膜移植学会 プログラム・抄録集 2007年2月9日 38頁 「1 相関法による涙液油層伸展動態の自動解析法の開発とその臨床応用」
Further, if the fixation state of the eye to be examined changes, reliable ophthalmic examination or measurement cannot be performed. Therefore, the captured image is corrected from the movement state of the fixation (Patent Document 7), or the pupil moves. However, stable wavefront correction is performed to measure the optical characteristics of the eye to be examined, or a fundus image is formed (Patent Document 8).
JP 2000-287930 A Japanese Patent No. 3556033 Japanese Patent No. 3718104 JP 2005-211173 A Japanese Patent No. 3699853 JP 2006-314651 A JP 2006-61328 A JP 2006-6362 A Frontiers in Dry Eye 2006.10 Vol.1 No.1 20,21 Medical Review The 31st Corneal Conference, The 23rd Annual Meeting of the Japan Corneal Transplant Society Program and Abstracts Collection, February 9, 2007, page 38 "1. Development of an automated analysis method for tear film fluid dynamics by correlation method and its clinical application"

従来、被検眼の涙液油層の伸展状態を検査してドライアイの重症度を測る方法は、重度のドライアイ(Grade4といわれている)では、油層の移動境界面がはっきりわかったため、油層のエリアを自動的に判別して、油層面積を計算することができた。しかし中度のドライアイ(Grade2,3といわれている)に関してははっきりとした油層の境界面が現れないので、従来の方法では対処できなかった。ちなみに、この油層の面積を測る方法は、画像からマニュアルで境界面を引くことも不可能であった。   Conventionally, the method of measuring the severity of dry eye by examining the extension state of the tear fluid layer in the subject's eye has been known for severe dry eye (referred to as Grade 4) because the boundary of movement of the oil layer was clearly known. The area was automatically identified and the oil layer area could be calculated. However, with regard to moderate dry eyes (referred to as Grades 2 and 3), a clear boundary of the oil layer does not appear, so that conventional methods cannot cope with it. Incidentally, this method of measuring the area of the oil layer was impossible to manually draw a boundary surface from the image.

また、特許文献6、非特許文献2に見られるように、涙液油層の移動量に着目するドライアイ判定方法では、被検眼を固視させるとき、被検眼の固視移動(固視微動)があると、その固視移動量も油層移動量に反映されてしまうため正確な測定ができない、という問題があった。   Further, as can be seen in Patent Document 6 and Non-Patent Document 2, in the dry eye determination method that focuses on the amount of movement of the tear oil layer, when the subject's eye is fixed, the subject's eye is moved (fixed eye movement). Then, there is a problem that accurate measurement cannot be performed because the amount of fixation movement is reflected in the amount of movement of the oil layer.

本発明は、このような問題点を解消するためになされたもので、中度のドライアイ状態でも、また固視微動があっても、正確なドライアイの重症度を測定することが可能な眼科測定装置を提供することを課題とする。   The present invention has been made to solve such problems, and it is possible to accurately measure the severity of dry eye even in a moderate dry eye state or in the presence of microscopic fixation. It is an object of the present invention to provide an ophthalmic measurement apparatus.

本発明は、
照明光を被検眼角膜上の涙液油層に投光する光学系と、
涙液油層からの反射光を受光し、涙液油層を撮像する油層撮像手段と、
撮像された涙液油層の画像を処理して角膜上の涙液油層の移動量を演算する演算処理手段と、
被検眼の固視移動量を検知する検知手段とを有し、
前記検知された固視移動量に基づいて涙液油層の移動量を補正し、補正された涙液油層の移動量の時間変化率を求めて被検眼に貯留する涙液量を示す値とすることを特徴とする。
The present invention
An optical system that projects illumination light onto the tear fluid layer on the eye cornea;
An oil layer imaging means for receiving reflected light from the tear fluid layer and imaging the tear fluid layer;
An arithmetic processing means for processing the image of the taken tear film and calculating the amount of movement of the tear film on the cornea;
Detection means for detecting the amount of fixation movement of the eye to be examined,
Based on the detected amount of fixation movement, the amount of movement of the tear fluid layer is corrected, and the time change rate of the corrected amount of movement of the tear fluid layer is determined to indicate the amount of tear fluid stored in the eye to be examined. It is characterized by that.

本発明では、被検眼を固視させて測定を行うとき、被検眼が移動したときに被検眼の移動量(固視移動量)を検知し、検知された固視移動量に基づいて涙液油層の移動量を補正して涙液油層の移動量の時間変化率を求めるようにしているので、測定中に固視微動があっても、また中度のドライアイ状態でも信頼性よくドライアイの症状を定量化することができる。   In the present invention, when performing measurement while fixing the eye to be examined, the amount of movement of the eye to be examined (the amount of fixation movement) is detected when the eye to be examined is moved, and tear fluid is detected based on the detected amount of fixation fixation. Since the amount of movement of the oil layer is corrected to determine the rate of change in the amount of movement of the tear oil layer over time, dry eye can be reliably measured even when there is slight eye movement during measurement or in moderate dry eye conditions. The symptoms of can be quantified.

以下、図面に示す実施例に基づいて、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

図1は、本発明に係わる眼科測定装置の概略構成を示す。同図において、符号1で図示するものは、被検眼Eを照明するための白色光源でハロゲンランプ等によって構成される。白色光源1から射出された光は、照明視野を制限するマスク2を通過後、レンズ3、ハーフミラー4、レンズ5、変倍レンズ6、ハーフミラー7、対物レンズ8を介して被検眼E上の所定点Pを照明する。点Pの位置は被検眼Eの角膜上の涙液層に選択される。なお、白色光源1は調光回路(不図示)により光量が調節できるようになっている。   FIG. 1 shows a schematic configuration of an ophthalmologic measuring apparatus according to the present invention. In the figure, what is indicated by reference numeral 1 is a white light source for illuminating the eye E, and is constituted by a halogen lamp or the like. The light emitted from the white light source 1 passes through the mask 2 that restricts the illumination visual field, and then passes through the lens 3, the half mirror 4, the lens 5, the variable power lens 6, the half mirror 7, and the objective lens 8 on the eye E. The predetermined point P is illuminated. The position of the point P is selected in the tear film on the cornea of the eye E to be examined. Note that the amount of light of the white light source 1 can be adjusted by a dimming circuit (not shown).

点Pからの反射光は、涙液層の最上層の涙液油層(液膜ともいう)の厚みその他の状態により種々の干渉模様を形成する。涙液油層からの反射光は、対物レンズ8に入射し、ハーフミラー7、変倍レンズ6、レンズ5、ハーフミラー4、レンズ9を介してカラーCCDカメラ(油層撮像手段)10で受光され、涙液油層がCCDカメラ10によりカラー画像(RGB画像)として撮像される。   The reflected light from the point P forms various interference patterns depending on the thickness and other states of the tear film oil layer (also referred to as a liquid film) as the uppermost layer of the tear film. The reflected light from the tear oil layer enters the objective lens 8 and is received by the color CCD camera (oil layer imaging means) 10 through the half mirror 7, the variable magnification lens 6, the lens 5, the half mirror 4, and the lens 9. The tear oil layer is imaged as a color image (RGB image) by the CCD camera 10.

図1で右上に一点鎖線で囲った部分はドライアイ光学系を構成する。本発明では、被検眼Eの固視微動を測定するために、ドライアイ光学系とは別に、固視を観察撮影するための光学系が設けられる。この固視光学系は、可視光発光ダイオード(LED)などからなる固視光源12を有し、固視光源12からの光束はハーフミラー13と7で反射され、対物レンズ8で被検眼Eの角膜に点状に輝点として投影される。この輝点の反射像は対物レンズ8を通過してハーフミラー7で反射され、ハーフミラー13を透過して固視観察撮像用のCCDカメラ(固視撮像手段)14により撮像される。   In FIG. 1, a portion surrounded by a one-dot chain line on the upper right side constitutes a dry eye optical system. In the present invention, in order to measure the fixation fine movement of the eye E, an optical system for observing and photographing the fixation is provided separately from the dry eye optical system. This fixation optical system has a fixation light source 12 composed of a visible light emitting diode (LED) or the like. A light beam from the fixation light source 12 is reflected by half mirrors 13 and 7, and the objective lens 8 is used for the eye E to be examined. Projected as bright spots in the form of dots on the cornea. The reflected image of the bright spot passes through the objective lens 8, is reflected by the half mirror 7, passes through the half mirror 13, and is picked up by a CCD camera (fixed image pickup means) 14 for fixation observation imaging.

CCDカメラ10と14の画像は、ビデオ同期信号回路15からフレームレイトに同期してそれぞれビデオキャプチャユニット21、22で静止画像としてキャプチャされ、開眼後の画像がタイムスタンプとともに演算処理部(演算処理手段)23のフレームメモリ23a、23bに入力されそこに格納される。そして、これらの画像は表示モニタ24で表示されるとともに、演算処理部23で画像処理され、後述するように涙液油層の移動量並びに固視移動量が演算される。   The images of the CCD cameras 10 and 14 are captured as still images by the video capture units 21 and 22 in synchronization with the frame rate from the video synchronization signal circuit 15, respectively. ) It is input to 23 frame memories 23a and 23b and stored therein. These images are displayed on the display monitor 24 and are subjected to image processing by the arithmetic processing unit 23, and the movement amount and fixation movement amount of the tear fluid layer are calculated as will be described later.

次に、このように構成された装置においてドライアイの症状を測定するときの動作を説明する。   Next, an operation when measuring symptoms of dry eye in the apparatus configured as described above will be described.

光源1を点灯して被検眼Eの角膜を照明し、またLED光源12を点灯して被検眼を固視させる。固視が安定した状態で、被検眼を瞬きさせ開眼後角膜上の涙液油層をCCDカメラ10で撮像する。   The light source 1 is turned on to illuminate the cornea of the eye E, and the LED light source 12 is turned on to fix the eye to be examined. With the fixation fixed, the eye to be examined is blinked, and the tear oil layer on the cornea is imaged by the CCD camera 10 after opening the eye.

図2は撮像された画像を示し、2aはマスク2の画像、31は角膜の画像、30は涙液油層を示す。涙液油層30は、その表面と裏面の反射光の干渉により干渉模様を形成し、開眼後図2(a)から(b)に示したように伸展し、移動する。本実施例では、瞬き後の涙液油層の移動量と時間の関係を、数式化することによりドライアイの症状の定量化を行う。   FIG. 2 shows a captured image, 2a shows an image of the mask 2, 31 shows an image of the cornea, and 30 shows a tear oil layer. The tear oil layer 30 forms an interference pattern by interference of reflected light on the front surface and the back surface, and extends and moves as shown in FIGS. 2A to 2B after opening the eye. In this embodiment, dry eye symptoms are quantified by formulating the relationship between the amount of movement of the tear fluid layer after blinking and time.

涙液油層の移動量を求めるために、CCDカメラ10で撮像された涙液油層の画像がビデオキャプチャユニット21で取得され、フレームメモリ23aに格納される。図2において、Aは所定の大きさの測定エリアを示し、この測定エリアA内の画像の垂直方向の移動量Δyを求める。   In order to determine the amount of movement of the tear fluid layer, an image of the tear fluid layer captured by the CCD camera 10 is acquired by the video capture unit 21 and stored in the frame memory 23a. In FIG. 2, A indicates a measurement area having a predetermined size, and the amount of movement Δy in the vertical direction of the image in the measurement area A is obtained.

図4には、その移動量の求め方が図示されている。開眼後の時点tにおけるフレームメモリ23aのスタート画像(フレームnの画像;図2(a)に対応)に、xw画素×yw画素の大きさの測定エリアAを設定する。続いて、時点t+1において、涙液油層を撮像し、同様にフレームメモリ23aにフレームn+1の画像として格納する(図2(b)の画像に対応)。このとき、図4の右側に示したように、計算対象エリアBを設定する。その大きさは、想定される測定エリアAの移動範囲をカバーするように、測定エリアAのX方向に−xa画素、+xa画素、Y方向に−10画素、+ya画素拡大させた大きさに設定される。   FIG. 4 shows how to determine the amount of movement. A measurement area A having a size of xw pixels × yw pixels is set in the start image (image of frame n; corresponding to FIG. 2A) at the time t after opening the eye. Subsequently, at the time point t + 1, the tear fluid layer is imaged and similarly stored in the frame memory 23a as an image of the frame n + 1 (corresponding to the image of FIG. 2B). At this time, the calculation target area B is set as shown on the right side of FIG. The size is set to a size obtained by enlarging −xa pixel, + xa pixel in the X direction, −10 pixel in the Y direction, and + ya pixel so as to cover an assumed movement range of the measurement area A. Is done.

計算対象エリアB内で、測定エリアAの画像に最も近い画像を求めるために、測定エリアAの画像で計算対象エリアB内の画像を順次x、y方向に走査し、その相関を調べ、輝度値の差の総和が最小になる位置、つまり相関が最も高くなる位置を求める。これを数式化すると、   In order to obtain an image closest to the image in the measurement area A in the calculation target area B, the image in the calculation target area B is sequentially scanned in the x and y directions with the image in the measurement area A, and the correlation is examined. A position where the sum of the difference of values is minimized, that is, a position where the correlation is highest is obtained. If you formulate this,

Figure 2009178174
となる。nは画像のフレーム番号であり、撮像される時点でもある。Gn、Gn+1は、それぞれフレームn、n+1の画像の括弧内に示した座標位置での輝度値を示す。minはその最小値を示す。
Figure 2009178174
It becomes. n is the frame number of the image, and is also the time when the image is taken. Gn and Gn + 1 indicate the luminance values at the coordinate positions indicated in parentheses of the images of frames n and n + 1, respectively. min indicates the minimum value.

図4において、測定エリアAの画像40に最も近い画像41が図示した位置で得られたとすると、涙液油層は時点n+1の後に両画像のy座標の差、つまりΔy(n)だけy軸方向(垂直方向)に移動したことになる。   In FIG. 4, when an image 41 closest to the image 40 in the measurement area A is obtained at the illustrated position, the tear oil layer has a difference between the y coordinates of both images after the time point n + 1, that is, Δy (n) in the y-axis direction. It has moved in the (vertical direction).

このようにして、撮像された油層画像に一定の矩形領域(測定エリアA)を設定し、一定時間後の油層画像から該矩形領域の油層画像と最も一致する矩形領域を相関法を用いて求めることにより、一定時間後の油層画像の垂直方向の移動量を求めることができる。   In this way, a fixed rectangular region (measurement area A) is set in the captured oil layer image, and a rectangular region that most closely matches the oil layer image of the rectangular region is obtained from the oil layer image after a predetermined time by using the correlation method. Thus, the amount of movement in the vertical direction of the oil layer image after a certain time can be obtained.

このように、涙液油層の進展中のΔyを経時に加算して移動量の総和H(t)を求めると、図5に点線で示したようになり、移動量の経時的な変化は、実線で示したように、
H(t) = p[1−exp(−t/λ)]
の指数関数として近似することができる。ここで、pは定数、tは時間、λは緩和時間である。
Thus, when Δy during the development of the tear fluid layer is added over time to obtain the total amount of movement H (t), it becomes as shown by the dotted line in FIG. As shown by the solid line,
H (t) = p [1-exp (−t / λ)]
It can be approximated as an exponential function. Here, p is a constant, t is time, and λ is relaxation time.

涙液油層は、開瞼後角膜上で伸展するが、その伸展状態は、上述したように、指数関数で近似できることから、涙液油層を粘弾性体として取り扱い、その伸展挙動(油層面積、油層の移動量などの経時変化)をレオロジーモデル、つまりフォークトモデル(Voigt model)を用いて解析することができる。   The tear oil layer extends on the cornea after opening, but the extension state can be approximated by an exponential function as described above. Therefore, the tear oil layer is treated as a viscoelastic body, and its extension behavior (oil layer area, oil layer) Change with time) can be analyzed using a rheological model, that is, a Vogt model.

涙液油層の垂直方向の移動量の経時変化をフォークトモデルにあてはめて解析し、涙液油層の伸展初速度(開瞼時点での油層移動量の時間変化率mm/sec)、つまり上記指数関数の時間t=0における1次微分
H'(0) = dH(0)/dt
を求める。
Analyzing the change in the amount of movement of the tear fluid layer in the vertical direction by applying it to the Forked model, the initial stretching speed of the tear fluid layer (time rate of change in the amount of movement of the oil layer at the time of opening mm / sec), that is, the above exponential function First derivative at time t = 0 of H ′ (0) = dH (0) / dt
Ask for.

特開平11−267102号公報には、涙液表面に投影された開口の像倍率を求め、この像倍率から下眼瞼縁に沿った涙液表面(涙液メニスカス)の曲率半径Rを演算し、その曲率半径Rからドライアイの重症度を評価する方法が記載されており、この曲率半径Rは、信頼性よく眼表面に貯留する涙液量を示す値として用いることが判明している。   In JP-A-11-267102, the image magnification of the opening projected on the tear film surface is obtained, and the curvature radius R of the tear film surface (tear meniscus) along the lower eyelid edge is calculated from this image magnification, A method for evaluating the severity of dry eye from the radius of curvature R is described, and it has been found that this radius of curvature R is used as a value indicating the amount of tear fluid stored on the eye surface with high reliability.

そこで、上述した各被検眼に対して、涙液メニスカス曲率半径R(mm)を計測し、これを、涙液油層の伸展初速度H'(0)の関係を調べてみると、H'(0)とRとの間には、m、nを定数として[H'(0)=m×R−n]の有意な正の直線相関が認められる。   Therefore, the tear meniscus radius of curvature R (mm) is measured for each eye to be examined, and the relationship between the tear initial velocity H ′ (0) of the tear fluid layer is examined, and H ′ ( A significant positive linear correlation of [H ′ (0) = m × R−n] is recognized between 0) and R, where m and n are constants.

このことから、涙液油層は、開瞼後フォークトモデルの粘弾性体に近似しうる挙動を示しながら伸展し、その伸展初速度は涙液貯留量の増加に比例して増加することが分かる。そこで、本発明では、開瞼時点(t=0)における涙液油層の垂直方向の移動量の時間変化率を算出し、これを被検眼に貯留する涙液量を示す値とし、ドライアイの重症度を判定するための定量化の値とする。   From this, it can be seen that the tear oil layer stretches while exhibiting a behavior that can be approximated to the vault elastic body of the Forked model after opening, and that the initial stretching speed increases in proportion to the increase in the tear fluid storage amount. Therefore, in the present invention, the time change rate of the amount of movement of the tear fluid layer in the vertical direction at the time of opening (t = 0) is calculated, and this is used as a value indicating the amount of tear fluid stored in the eye to be examined. Use the quantification value to determine severity.

このように、本実施例では、指定したエリアの画像濃淡パターンの移動量に着目したため、グレード2、3の中度のドライアイ状態でも定量化することができる。   In this way, in the present embodiment, attention is paid to the moving amount of the image shading pattern in the designated area, and therefore, it can be quantified even in a moderate dry eye state of grades 2 and 3.

ここで、涙液油層の移動量を計る測定時間が開眼後5〜10秒程度であるので、被検眼が固視微動も含め、被検眼が動いたときに、涙液油層の移動量が乱れて、フォークトモデルにあてはまらなくなる。そのため、以下に述べるように、CCDカメラ14により固視微動を測定し、固視移動量を、油膜移動量に反映して計算するようにする。   Here, since the measurement time for measuring the amount of movement of the tear fluid layer is about 5 to 10 seconds after opening the eye, the amount of movement of the tear fluid layer is disturbed when the subject's eye moves, including microscopic movements of the fixation. This is not the case with the Forked model. Therefore, as will be described below, the fixation fine movement is measured by the CCD camera 14, and the fixation movement amount is reflected in the oil film movement amount and calculated.

測定中固視光源12が点灯されているので、CCDカメラ14には、図3に示したように、被検眼の前眼部(角膜)51に投影された固視光源12による輝点50が撮像される。CCDカメラ14の画像は、ビデオ同期信号回路15からのフレームレイトに合わせて、CCDカメラ10からの涙液油層の画像と同期して、ビデオキャプチャユニット22で静止画像としてキャプチャされ、フレームメモリ23bに入力されそこに格納される。   Since the fixation light source 12 is turned on during measurement, the CCD camera 14 has a bright spot 50 by the fixation light source 12 projected onto the anterior eye portion (cornea) 51 of the eye to be examined, as shown in FIG. Imaged. The image of the CCD camera 14 is captured as a still image by the video capture unit 22 in synchronization with the image of the tear oil layer from the CCD camera 10 in accordance with the frame rate from the video synchronization signal circuit 15, and is captured in the frame memory 23b. It is input and stored there.

固視微動等被検眼が動いた場合は、輝点50の反射方向が変わるため、この輝点50の位置も、被検眼の動きによって移動する。演算処理部23は、フレームメモリ23b内の輝点50の中心座標を求め、nフレームと(n+1)フレーム間での、輝点の中心位置の水平方向、垂直方向の被検眼の動きによる移動量(Δ(n)xs,Δ(n)ys)を求め、それを上式数1に加算して、下記式を演算する。そして   When the eye to be examined moves, such as fixation fixation fine movement, the reflection direction of the luminescent spot 50 changes, so the position of the luminescent spot 50 is also moved by the movement of the eye to be examined. The arithmetic processing unit 23 obtains the center coordinates of the bright spot 50 in the frame memory 23b, and the amount of movement of the center position of the bright spot between the n and (n + 1) frames due to the movement of the eye to be examined in the horizontal and vertical directions. (Δ (n) xs, Δ (n) ys) is obtained and added to the above equation 1 to calculate the following equation. And

Figure 2009178174
に従い、輝度値の差の総和が最小になる画像位置を求め、固視移動量に起因する涙液油層の移動量の補正を行う。そして、この補正された涙液油層の移動量の経時変化H(t)を求め、その時間t=0における時間変化率を求めて、これを被検眼に貯留する涙液量を示す値とする。
Figure 2009178174
Accordingly, the image position where the sum of the differences in luminance values is minimized is obtained, and the movement amount of the tear fluid layer due to the fixation movement amount is corrected. Then, a time-dependent change H (t) of the corrected amount of movement of the tear fluid layer is obtained, a time change rate at time t = 0 is obtained, and this is a value indicating the amount of tear fluid stored in the eye to be examined. .

これにより、固視移動があった場合にも、その移動量を補正して、涙液油層の移動量を演算することができるので、固視移動があっても、ドライアイの重症度を信頼性よく定量化することができる。   As a result, even if there is a fixation movement, the movement amount of the tear oil layer can be calculated by correcting the movement amount. It can be quantified with good quality.

本発明の眼科測定装置の概略構成を示した構成図である。It is the block diagram which showed schematic structure of the ophthalmic measurement apparatus of this invention. 涙液油層の伸展を示した説明図である。It is explanatory drawing which showed extension of the tear fluid layer. 角膜に投影される固視輝点を示した説明図である。It is explanatory drawing which showed the fixation luminescent point projected on a cornea. 涙液油層の移動量を求める過程を示した説明図である。It is explanatory drawing which showed the process of calculating | requiring the movement amount of a tear fluid layer. 涙液油層の移動量の経時変化を示した線図である。It is the diagram which showed the time-dependent change of the moving amount | distance of a tear fluid layer.

符号の説明Explanation of symbols

10、14 CCDカメラ
12 固視光源
15 ビデオ同期信号回路
21、22 ビデオキャプチャユニット
23 演算処理部
23a、23b フレームメモリ
30 涙液油層
50 固視輝点
DESCRIPTION OF SYMBOLS 10, 14 CCD camera 12 Fixation light source 15 Video synchronous signal circuit 21, 22 Video capture unit 23 Arithmetic processing part 23a, 23b Frame memory 30 Tear oil layer 50 Fixation bright spot

Claims (3)

照明光を被検眼角膜上の涙液油層に投光する光学系と、
涙液油層からの反射光を受光し、涙液油層を撮像する油層撮像手段と、
撮像された涙液油層の画像を処理して角膜上の涙液油層の移動量を演算する演算処理手段と、
被検眼の固視移動量を検知する検知手段とを有し、
前記検知された固視移動量に基づいて涙液油層の移動量を補正し、補正された涙液油層の移動量の時間変化率を求めて被検眼に貯留する涙液量を示す値とすることを特徴とする眼科測定装置。
An optical system that projects illumination light onto the tear fluid layer on the eye cornea;
An oil layer imaging means for receiving reflected light from the tear fluid layer and imaging the tear fluid layer;
An arithmetic processing means for processing the image of the taken tear film and calculating the amount of movement of the tear film on the cornea;
Detection means for detecting the amount of fixation movement of the eye to be examined,
Based on the detected amount of fixation movement, the amount of movement of the tear fluid layer is corrected, and the time change rate of the corrected amount of movement of the tear fluid layer is determined to indicate the amount of tear fluid stored in the eye to be examined. An ophthalmologic measuring apparatus characterized by that.
前記検知手段が、前記油層撮像手段とは別に設けられた撮像手段で、被検眼前眼部に投影された輝点の反射像を撮像する固視撮像手段によって構成されることを特徴とする請求項1に記載の眼科測定装置。   The detection means is an imaging means provided separately from the oil layer imaging means, and is constituted by a fixation imaging means for capturing a reflected image of a bright spot projected on the anterior eye portion of the eye to be examined. Item 4. The ophthalmologic measurement apparatus according to Item 1. 前記油層撮像手段と固視撮像手段は、同じフレームレイトでそれぞれ涙液油層と輝点反射像を同期撮像することを特徴とする請求項2に記載の眼科測定装置。   The ophthalmic measurement apparatus according to claim 2, wherein the oil layer imaging unit and the fixation imaging unit capture a tear oil layer and a bright spot reflection image at the same frame rate, respectively.
JP2008017001A 2008-01-29 2008-01-29 Ophthalmic measuring device Active JP5038925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008017001A JP5038925B2 (en) 2008-01-29 2008-01-29 Ophthalmic measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008017001A JP5038925B2 (en) 2008-01-29 2008-01-29 Ophthalmic measuring device

Publications (2)

Publication Number Publication Date
JP2009178174A true JP2009178174A (en) 2009-08-13
JP5038925B2 JP5038925B2 (en) 2012-10-03

Family

ID=41032630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008017001A Active JP5038925B2 (en) 2008-01-29 2008-01-29 Ophthalmic measuring device

Country Status (1)

Country Link
JP (1) JP5038925B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093209A1 (en) * 2010-01-29 2011-08-04 興和株式会社 Ophthalmology device and image categorizing method
JP2013056152A (en) * 2011-08-30 2013-03-28 Oculus Optikgeraete Gmbh Ophthalmic analytical instrument and method
JP2018166648A (en) * 2017-03-29 2018-11-01 株式会社トプコン Ophthalmologic apparatus
WO2020250922A1 (en) * 2019-06-10 2020-12-17 株式会社トプコン Ophthalmic device
EP3888529A4 (en) * 2018-11-27 2022-08-24 Topcon Corporation Ophthalmological device
EP3888527A4 (en) * 2018-11-27 2022-08-24 Topcon Corporation Ophthalmological device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07136120A (en) * 1993-11-11 1995-05-30 Kowa Co Ophthalmologic apparatus
JPH11267102A (en) * 1998-03-20 1999-10-05 Kowa Co Ophthalmologic measuring apparatus
JP2000237135A (en) * 1999-02-18 2000-09-05 Nidek Co Ltd Ophthalmologic device
JP2006167002A (en) * 2004-12-13 2006-06-29 Tomey Corporation Ophthalmologic apparatus
JP2007209370A (en) * 2006-02-07 2007-08-23 Norihiko Yokoi Opthalmological device
JP2008011983A (en) * 2006-07-04 2008-01-24 Ehime Univ Ophthalmologic apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07136120A (en) * 1993-11-11 1995-05-30 Kowa Co Ophthalmologic apparatus
JPH11267102A (en) * 1998-03-20 1999-10-05 Kowa Co Ophthalmologic measuring apparatus
JP2000237135A (en) * 1999-02-18 2000-09-05 Nidek Co Ltd Ophthalmologic device
JP2006167002A (en) * 2004-12-13 2006-06-29 Tomey Corporation Ophthalmologic apparatus
JP2007209370A (en) * 2006-02-07 2007-08-23 Norihiko Yokoi Opthalmological device
JP2008011983A (en) * 2006-07-04 2008-01-24 Ehime Univ Ophthalmologic apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093209A1 (en) * 2010-01-29 2011-08-04 興和株式会社 Ophthalmology device and image categorizing method
JP2011156030A (en) * 2010-01-29 2011-08-18 Kyoto Prefectural Public Univ Corp Ophthalmologic apparatus and image classifying method
US9028065B2 (en) 2010-01-29 2015-05-12 Kowa Company, Ltd. Ophthalmologic apparatus and image classification method
EP2529661A4 (en) * 2010-01-29 2017-07-19 Kowa Company, Ltd. Ophthalmology device and image categorizing method
JP2013056152A (en) * 2011-08-30 2013-03-28 Oculus Optikgeraete Gmbh Ophthalmic analytical instrument and method
JP2018166648A (en) * 2017-03-29 2018-11-01 株式会社トプコン Ophthalmologic apparatus
EP3888529A4 (en) * 2018-11-27 2022-08-24 Topcon Corporation Ophthalmological device
EP3888527A4 (en) * 2018-11-27 2022-08-24 Topcon Corporation Ophthalmological device
WO2020250922A1 (en) * 2019-06-10 2020-12-17 株式会社トプコン Ophthalmic device

Also Published As

Publication number Publication date
JP5038925B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP5572407B2 (en) Ophthalmic apparatus and image classification program
JP4852316B2 (en) Ophthalmic equipment
JP5628839B2 (en) Ocular surface disease detection system and ocular surface inspection device
EP1844702B1 (en) Ophthalmologic instrument
JP6716752B2 (en) Ophthalmic equipment
US9241622B2 (en) Method for ocular surface imaging
JP5038925B2 (en) Ophthalmic measuring device
JP2008505673A (en) Reflection microscope for examination of corneal endothelium and method of operating the microscope
JP5850292B2 (en) Ophthalmic equipment
JP2008104628A (en) Conjunctiva and sclera imaging apparatus
JP4766919B2 (en) Ophthalmic measuring method and ophthalmic measuring apparatus
JP2002000567A (en) Method of measuring pupil center position and method of detecting view point position
WO2020250922A1 (en) Ophthalmic device
JP6293300B2 (en) Observation apparatus, observation method, and computer program
JPH04279143A (en) Eyeball motion inspector
US20220338730A1 (en) Device and method for detecting tear film breakup
JP7283932B2 (en) ophthalmic equipment
WO2020075656A1 (en) Ophthalmic device and ophthalmic device control program
JP2005211632A (en) Ophthalmologic apparatus
CN114727755A (en) Methods for assessing stability of tear film
JPH11318826A (en) Opthalmoscope
JP2022074224A (en) Ophthalmologic information processing device, ophthalmologic device, ophthalmologic information processing method and program
JP2021154105A (en) Ophthalmologic apparatus and operation method thereof
JP4125156B2 (en) Ophthalmic equipment
JP2004097728A (en) Ophthalmological instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5038925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250