JP2009177009A - Imaging apparatus and driving method of solid-state imaging device - Google Patents

Imaging apparatus and driving method of solid-state imaging device Download PDF

Info

Publication number
JP2009177009A
JP2009177009A JP2008015110A JP2008015110A JP2009177009A JP 2009177009 A JP2009177009 A JP 2009177009A JP 2008015110 A JP2008015110 A JP 2008015110A JP 2008015110 A JP2008015110 A JP 2008015110A JP 2009177009 A JP2009177009 A JP 2009177009A
Authority
JP
Japan
Prior art keywords
charge transfer
solid
voltage
imaging device
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008015110A
Other languages
Japanese (ja)
Inventor
Shunsuke Tanaka
俊介 田中
Tomoki Inoue
知己 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2008015110A priority Critical patent/JP2009177009A/en
Publication of JP2009177009A publication Critical patent/JP2009177009A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an imaging apparatus capable of lowering the reading voltage of a solid-state imaging device. <P>SOLUTION: A digital camera, an example of the imaging apparatus, has a solid-state imaging device 5 containing a photoelectric conversion element 51 formed in a semiconductor substrate, a charge transfer channel 52a for transferring charges generated in the photoelectric conversion element 51 formed in the semiconductor substrate, and charge transfer electrodes V1-V6 formed above the charge transfer channel 52a through an insulation film 62. The digital camera has a reading electrode such that a charge transfer electrode V2 reads charge from the photoelectric conversion element 51 to the charge transfer channel 52a, a conductive light-shielding film 59 having an opening above the photoelectric conversion element 51 formed above the semiconductor substrate and the charge transfer electrodes V1-V6, and an imaging device driving part 10 for impressing a voltage, of which the polarity is inverted to that of reading pulse, to the light-shielding film 59 during the period for impressing the reading pulse to the reading electrode in the imaging period. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体基板内に形成された光電変換素子と、前記半導体基板内に形成され前記光電変換素子で発生した電荷を転送する電荷転送チャネルと、前記電荷転送チャネル上方に絶縁膜を介して形成された電荷転送電極とを含む固体撮像素子を有する撮像装置に関する。   The present invention includes a photoelectric conversion element formed in a semiconductor substrate, a charge transfer channel formed in the semiconductor substrate for transferring charges generated by the photoelectric conversion element, and an insulating film above the charge transfer channel. The present invention relates to an imaging apparatus having a solid-state imaging device including a formed charge transfer electrode.

従来、CCD(Charge Coupled Device)型の固体撮像素子において、低スミア、低読み出し電圧、及び低暗電流を実現するために、固体撮像素子に含まれる遮光膜に、電荷の読み出し期間にはプラスの電圧を印加し、それ以外の期間にはマイナスの電圧を印加する方法が提案されている(特許文献1参照)。   Conventionally, in a CCD (Charge Coupled Device) type solid-state imaging device, in order to realize low smear, low readout voltage, and low dark current, the light shielding film included in the solid-state imaging device has a positive charge readout period. A method of applying a voltage and applying a negative voltage during other periods has been proposed (see Patent Document 1).

CCD型の固体撮像素子には、光電変換素子と、光電変換素子で発生した電荷を転送する電荷転送チャネルと、電荷転送チャネル上方に形成された電荷転送電極とが含まれる。通常は、n型シリコン基板内にpウェル層を形成し、このpウェル層の表面部にフォトダイオード(PD)を構成するn層と垂直電荷転送部(VCCD)のチャネルを構成するn層を形成する。   The CCD solid-state imaging device includes a photoelectric conversion element, a charge transfer channel that transfers charges generated by the photoelectric conversion element, and a charge transfer electrode formed above the charge transfer channel. Usually, a p-well layer is formed in an n-type silicon substrate, and an n-layer constituting a photodiode (PD) and an n-layer constituting a channel of a vertical charge transfer portion (VCCD) are formed on the surface of the p-well layer. Form.

固体撮像素子のシリコン基板表面は、以下の(1)、(2)の理由により、VCCDがn層である以外は通常p層となっている。このため、シリコン基板表面付近の電位は、通常、一定電位(0V)に保たれている。
(1)PDにおいては暗電流を抑制するため、シリコン基板表面をp層で覆う必要がある。
(2)VCCDのチャネルがnチャネルであるため、素子分離をp層で形成する必要がある。
The surface of the silicon substrate of the solid-state imaging device is usually a p-layer, except for the VCCD being an n-layer, for the following reasons (1) and (2). For this reason, the potential in the vicinity of the silicon substrate surface is normally kept at a constant potential (0 V).
(1) In the PD, it is necessary to cover the surface of the silicon substrate with a p layer in order to suppress dark current.
(2) Since the VCCD channel is an n-channel, it is necessary to form element isolation by a p-layer.

一般的に、電荷転送電極は、読み出し電極を兼ねており、電荷読み出し時には、PDとVCCDのチャネルとの間の読み出しゲート部以外にもプラスの電圧が印加される。このとき、pウェル層、とりわけシリコン基板表面の(電荷転送電極全体が覆っている部分の)pウェル層全体の電位がプラス側に変動してしまう。   Generally, the charge transfer electrode also serves as a readout electrode, and a positive voltage is applied to the charge transfer electrode other than the readout gate portion between the PD and the VCCD channel. At this time, the potential of the p-well layer, particularly the entire p-well layer on the surface of the silicon substrate (where the entire charge transfer electrode is covered) fluctuates to the positive side.

そこで、特許文献2に開示されているように、電荷読み出し時に、読み出し電極以外の電荷転送電極に、読み出し電圧とは逆極性の電圧(以下、相殺パルスという)を印加し、pウェル層の電位を一定にすることが有効となる。   Therefore, as disclosed in Patent Document 2, a voltage having a polarity opposite to the read voltage (hereinafter referred to as a cancellation pulse) is applied to the charge transfer electrode other than the read electrode at the time of charge read, and the potential of the p-well layer It is effective to keep the value constant.

特許文献1に記載のように、読み出し時に遮光膜にプラスの電圧を印加する方法では、読み出し電極のゲート長が実効的に長くなり、読み出しゲート部のポテンシャル変調が良くなる効果はある。しかし、遮光膜は読み出し電極以外(例えば、遮光膜のPDの上部や素子分離層)の上にも形成されているため、遮光膜にプラス電圧を印加することにより、pウェル層、とりわけシリコン基板表面のpウェル層の電位がプラス側に深くなる。したがって、相殺パルスなしでは、かえって空乏化電圧の上昇を招くといった不具合が発生してしまう。   As described in Patent Document 1, the method of applying a positive voltage to the light shielding film at the time of reading has an effect of effectively increasing the gate length of the reading electrode and improving the potential modulation of the reading gate portion. However, since the light shielding film is also formed on other than the readout electrode (for example, the upper part of the PD of the light shielding film or the element isolation layer), by applying a positive voltage to the light shielding film, the p well layer, particularly the silicon substrate. The potential of the p-well layer on the surface is deepened to the plus side. Therefore, in the absence of the canceling pulse, a problem such as an increase in the depletion voltage occurs.

つまり、特許文献1の技術を実際に実施しようとする際には、特許文献2に記載のように、相殺パルスを併用して用いる必要がある。しかし、例えば、PDからVCCDに電荷を読み出すときに、VCCDのチャネルのバリアを形成している電荷転送電極と読み出しパルスを印加している読み出し電極との間にVCCDのチャネルのパケットを形成している電荷転送電極が1つだけ存在するように1PDあたりの電荷転送電極の数やVCCDの駆動相数が決められた固体撮像素子において相殺パルスを適用すると、読み出し電極の隣の電極に相殺パルスが必ず印加されるため、読み出し電極と隣接電極とに大きな電位差が発生してしまい、素子の信頼性が低下してしまうという問題がある。又、限られた電荷転送電極の中で相殺パルスの印加を行うため、タイミング設計上の制約が大きいという問題もある。
特開2006−121112号公報 特開平7−322143号公報
That is, when actually trying the technique of Patent Document 1, it is necessary to use a cancellation pulse in combination as described in Patent Document 2. However, for example, when a charge is read from the PD to the VCCD, a packet of the VCCD channel is formed between the charge transfer electrode forming the barrier of the VCCD channel and the readout electrode to which the readout pulse is applied. When a cancellation pulse is applied to a solid-state imaging device in which the number of charge transfer electrodes per PD and the number of driving phases of a VCCD are determined so that only one charge transfer electrode exists, the cancellation pulse is applied to the electrode adjacent to the readout electrode. Since it is always applied, there is a problem that a large potential difference is generated between the readout electrode and the adjacent electrode, and the reliability of the element is lowered. In addition, since the cancellation pulse is applied in the limited charge transfer electrode, there is a problem that the restriction on the timing design is large.
JP 2006-121112 A JP-A-7-322143

本発明は、上記事情に鑑みてなされたものであり、固体撮像素子の電荷転送電極に読み出し時に相殺パルスを与えずに、固体撮像素子の読み出し電圧を低くすることが可能な撮像措置を提供することを目的とする。又、タイミング設計上の自由度も向上させることが可能な撮像装置の駆動方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides an imaging measure capable of reducing the readout voltage of the solid-state imaging device without giving a canceling pulse to the charge transfer electrode of the solid-state imaging device at the time of readout. For the purpose. It is another object of the present invention to provide a method for driving an imaging apparatus that can improve the degree of freedom in timing design.

本発明の撮像装置は、半導体基板内に形成された光電変換素子と、前記半導体基板内に形成され前記光電変換素子で発生した電荷を転送する電荷転送チャネルと、前記電荷転送チャネル上方に絶縁膜を介して形成された電荷転送電極とを含む固体撮像素子を有する撮像装置であって、前記電荷転送電極が前記光電変換素子から前記電荷転送チャネルに電荷を読み出すための読み出しパルスが印加される読み出し電極を含み、前記固体撮像素子が、前記半導体基板及び前記電荷転送電極の上方に形成され、前記光電変換素子上方に開口を有する導電性の遮光膜を含み、少なくとも前記読み出し電極に前記読み出しパルスを印加する期間、前記読み出しパルスとは逆極性の電圧を前記遮光膜に印加する電圧印加手段を備える。   An imaging apparatus according to the present invention includes a photoelectric conversion element formed in a semiconductor substrate, a charge transfer channel formed in the semiconductor substrate for transferring charges generated in the photoelectric conversion element, and an insulating film above the charge transfer channel An image pickup apparatus having a solid-state image pickup device including a charge transfer electrode formed via the read transfer electrode, wherein the charge transfer electrode is applied with a read pulse for reading charge from the photoelectric conversion device to the charge transfer channel An electrode, the solid-state imaging device is formed above the semiconductor substrate and the charge transfer electrode, includes a conductive light-shielding film having an opening above the photoelectric conversion device, and at least the readout pulse is applied to the readout electrode Voltage application means for applying a voltage having a polarity opposite to that of the readout pulse to the light shielding film during the application period is provided.

本発明の撮像装置は、前記電圧印加手段が、前記読み出しパルスを印加する期間以外の期間にも前記読み出しパルスとは逆極性の電圧を前記遮光膜に印加する。   In the imaging apparatus of the present invention, the voltage application unit applies a voltage having a polarity opposite to that of the readout pulse to the light shielding film during a period other than the period of applying the readout pulse.

本発明の撮像装置は、前記電圧印加手段が、前記読み出しパルスを印加する期間以外の期間では、前記読み出しパルスを印加する期間に前記遮光膜に印加する電圧よりも絶対値が小さい電圧を前記遮光膜に印加する。   In the imaging apparatus according to the aspect of the invention, in a period other than the period in which the voltage application unit applies the readout pulse, a voltage whose absolute value is smaller than the voltage applied to the light shielding film in the period in which the readout pulse is applied. Apply to membrane.

本発明の撮像装置は、前記電荷転送電極には前記電荷転送チャネルに電荷を蓄積するパケットを形成するための第一の電圧と、前記電荷転送チャネルに前記パケット同士のバリアを形成するための前記第一の電圧よりも低い第二の電圧とが印加可能であり、前記読み出しパルスを印加する期間に前記遮光膜に印加する電圧が前記第二の電圧と同じである。   The image pickup apparatus according to the present invention includes a first voltage for forming a packet for accumulating charges in the charge transfer channel on the charge transfer electrode, and the barrier for forming a barrier between the packets in the charge transfer channel. A second voltage lower than the first voltage can be applied, and the voltage applied to the light shielding film during the period of applying the readout pulse is the same as the second voltage.

本発明の撮像装置は、前記遮光膜と前記電荷転送電極との距離が、隣接する2つの前記電荷転送電極間の距離よりも大きい。   In the imaging device of the present invention, the distance between the light shielding film and the charge transfer electrode is larger than the distance between two adjacent charge transfer electrodes.

本発明の撮像装置は、前記遮光膜と前記電荷転送電極との間に、隣接する2つの前記電荷転送電極間より耐圧の高い材料の膜が含まれている。   In the imaging device of the present invention, a film made of a material having a higher breakdown voltage than that between two adjacent charge transfer electrodes is included between the light shielding film and the charge transfer electrode.

本発明の撮像装置は、前記耐圧の高い材料が窒化珪素である。   In the imaging device of the present invention, the material having a high breakdown voltage is silicon nitride.

本発明の撮像装置は、前記遮光膜が、平面視において前記光電変換素子と重なりを有している。   In the imaging device of the present invention, the light shielding film overlaps the photoelectric conversion element in a plan view.

本発明の撮像装置は、前記固体撮像素子が、前記光電変換素子から前記電荷転送チャネルに電荷を読み出すときに、前記電荷転送チャネルに電荷を蓄積するパケットのバリアを形成するための電圧が印加される前記電荷転送電極と、前記読み出しパルスが印加される前記読み出し電極との間に、前記パケットを形成するための電圧が印加される前記電荷転送電極が1つだけ存在するような構成の固体撮像素子である。   In the imaging device of the present invention, when the solid-state imaging device reads charges from the photoelectric conversion device to the charge transfer channel, a voltage is applied to form a barrier of a packet that accumulates charges in the charge transfer channel. Solid-state imaging having a configuration in which only one charge transfer electrode to which a voltage for forming the packet is applied exists between the charge transfer electrode to which the read pulse is applied It is an element.

本発明の固体撮像素子の駆動方法は、半導体基板内に形成された光電変換素子と、前記半導体基板内に形成され前記光電変換素子で発生した電荷を転送する電荷転送チャネルと、前記電荷転送チャネル上方に絶縁膜を介して形成された電荷転送電極とを含む固体撮像素子の駆動方法であって、前記電荷転送電極が前記光電変換素子から前記電荷転送チャネルに電荷を読み出すための読み出しパルスが印加される読み出し電極を含み、前記固体撮像素子が、前記半導体基板及び前記電荷転送電極の上方に形成され、前記光電変換素子上方に開口を有する導電性の遮光膜を含み、少なくとも前記読み出し電極に前記読み出しパルスを印加する期間、前記読み出しパルスとは逆極性の電圧を前記遮光膜に印加する。   The solid-state imaging device driving method according to the present invention includes a photoelectric conversion element formed in a semiconductor substrate, a charge transfer channel formed in the semiconductor substrate for transferring charges generated in the photoelectric conversion element, and the charge transfer channel. A solid-state imaging device driving method comprising a charge transfer electrode formed above via an insulating film, wherein the charge transfer electrode applies a read pulse for reading charge from the photoelectric conversion device to the charge transfer channel The solid-state imaging element includes a conductive light-shielding film formed above the semiconductor substrate and the charge transfer electrode, and having an opening above the photoelectric conversion element, and at least the readout electrode includes the reading electrode. During the period of applying the readout pulse, a voltage having a polarity opposite to that of the readout pulse is applied to the light shielding film.

本発明の固体撮像素子の駆動方法は、前記読み出しパルスを印加する期間以外の期間にも前記読み出しパルスとは逆極性の電圧を前記遮光膜に印加する。   In the solid-state imaging device driving method of the present invention, a voltage having a polarity opposite to that of the readout pulse is applied to the light-shielding film even during a period other than the period of applying the readout pulse.

本発明の固体撮像素子の駆動方法は、前記読み出しパルスを印加する期間以外の期間では、前記読み出しパルスを印加する期間に前記遮光膜に印加する電圧よりも絶対値が小さい電圧を前記遮光膜に印加する。   In the solid-state imaging device driving method according to the present invention, in a period other than the period in which the readout pulse is applied, a voltage having an absolute value smaller than the voltage applied to the light shielding film in the period in which the readout pulse is applied is applied to the light shielding film. Apply.

本発明の固体撮像素子の駆動方法は、前記電荷転送電極には前記電荷転送チャネルに電荷を蓄積するパケットを形成するための第一の電圧と、前記電荷転送チャネルに前記パケット同士のバリアを形成するための第二の電圧とが印加可能であり、前記読み出しパルスを印加する期間に前記遮光膜に印加する電圧が前記第二の電圧と同じである。   In the solid-state imaging device driving method according to the present invention, a first voltage for forming a packet for accumulating charges in the charge transfer channel is formed on the charge transfer electrode, and a barrier between the packets is formed on the charge transfer channel. The voltage applied to the light shielding film during the period of applying the readout pulse is the same as the second voltage.

本発明の固体撮像素子の駆動方法は、前記遮光膜と前記電荷転送電極との距離が、隣接する2つの前記電荷転送電極間の距離よりも大きい。   In the solid-state imaging device driving method of the present invention, the distance between the light shielding film and the charge transfer electrode is larger than the distance between two adjacent charge transfer electrodes.

本発明の固体撮像素子の駆動方法は、前記遮光膜と前記電荷転送電極との間に、隣接する2つの前記電荷転送電極間より耐圧の高い材料の膜が含まれている。   In the solid-state imaging device driving method of the present invention, a film made of a material having a higher breakdown voltage than that between two adjacent charge transfer electrodes is included between the light shielding film and the charge transfer electrode.

本発明の固体撮像素子の駆動方法は、前記耐圧の高い材料が窒化珪素である。   In the method for driving a solid-state imaging device according to the present invention, the material having a high withstand voltage is silicon nitride.

本発明の固体撮像素子の駆動方法は、前記遮光膜が、平面視において前記光電変換素子と重なりを有している。   In the solid-state imaging device driving method of the present invention, the light-shielding film overlaps the photoelectric conversion device in plan view.

本発明の固体撮像素子の駆動方法は、前記固体撮像素子が、前記光電変換素子から前記電荷転送チャネルに電荷を読み出すときに、前記電荷転送チャネルに電荷を蓄積するパケットのバリアを形成するための電圧が印加される前記電荷転送電極と、前記読み出しパルスが印加される前記読み出し電極との間に、前記パケットを形成するための電圧が印加される前記電荷転送電極が1つだけ存在するような構成の固体撮像素子である。   The solid-state imaging device driving method of the present invention is for forming a packet barrier that accumulates charges in the charge transfer channel when the solid-state imaging device reads charges from the photoelectric conversion device to the charge transfer channel. There is only one charge transfer electrode to which a voltage for forming the packet is applied between the charge transfer electrode to which a voltage is applied and the read electrode to which the read pulse is applied. It is a solid-state image sensor of composition.

本発明によれば、固体撮像素子の電荷転送電極に読み出し時に相殺パルスを与えずに、固体撮像素子の読み出し電圧を低くすることが可能な撮像措置を提供することを目的とする。又、タイミング設計上の自由度も向上させることが可能な撮像装置の駆動方法を提供することができる。   According to the present invention, an object of the present invention is to provide an imaging measure that can lower the readout voltage of a solid-state imaging device without giving a canceling pulse to the charge transfer electrode of the solid-state imaging device during readout. In addition, it is possible to provide a driving method of an imaging apparatus that can improve the degree of freedom in timing design.

以下、本発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第一実施形態)
図1は、本発明の第一実施形態を説明するための撮像装置の一例であるデジタルカメラの概略構成を示す図である。
図示するデジタルカメラの撮像系は、撮影レンズ1と、CCD型の固体撮像素子5と、この両者の間に設けられた絞り2と、赤外線カットフィルタ3と、光学ローパスフィルタ4とを備える。
(First embodiment)
FIG. 1 is a diagram showing a schematic configuration of a digital camera which is an example of an imaging apparatus for explaining a first embodiment of the present invention.
The imaging system of the digital camera shown in the figure includes a photographic lens 1, a CCD type solid-state imaging device 5, a diaphragm 2 provided therebetween, an infrared cut filter 3, and an optical low-pass filter 4.

デジタルカメラの電気制御系全体を統括制御するシステム制御部11は、フラッシュ発光部12及び受光部13を制御し、レンズ駆動部8を制御して撮影レンズ1の位置をフォーカス位置に調整したりズーム調整を行ったりし、絞り駆動部9を介し絞り2の開口量を制御して露光量調整を行う。   A system control unit 11 that performs overall control of the electrical control system of the digital camera controls the flash light emitting unit 12 and the light receiving unit 13 and controls the lens driving unit 8 to adjust the position of the photographing lens 1 to the focus position and zoom. The exposure amount is adjusted by adjusting the aperture amount of the aperture 2 via the aperture drive unit 9.

又、システム制御部11は、撮像素子駆動部10を介して固体撮像素子5を駆動し、撮影レンズ1を通して撮像した被写体画像を色信号として出力させる。システム制御部11には、操作部14を通してユーザからの指示信号が入力される。   Further, the system control unit 11 drives the solid-state imaging device 5 via the imaging device driving unit 10 and outputs a subject image captured through the photographing lens 1 as a color signal. An instruction signal from the user is input to the system control unit 11 through the operation unit 14.

デジタルカメラの電気制御系は、更に、固体撮像素子5の出力に接続された相関二重サンプリング処理等のアナログ信号処理を行うアナログ信号処理部6と、このアナログ信号処理部6から出力されたRGBの色信号をデジタル信号に変換するA/D変換回路7とを備え、これらはシステム制御部11によって制御される。   The electric control system of the digital camera further includes an analog signal processing unit 6 that performs analog signal processing such as correlated double sampling processing connected to the output of the solid-state imaging device 5, and RGB output from the analog signal processing unit 6. And an A / D conversion circuit 7 for converting the color signals into digital signals, which are controlled by the system control unit 11.

更に、このデジタルカメラの電気制御系は、メインメモリ16と、メインメモリ16に接続されたメモリ制御部15と、補間演算やガンマ補正演算,RGB/YC変換処理等を行って画像データを生成するデジタル信号処理部17と、デジタル信号処理部17で生成された画像データをJPEG形式に圧縮したり圧縮画像データを伸張したりする圧縮伸張処理部18と、測光データを積算しデジタル信号処理部17が行うホワイトバランス補正のゲインを求める積算部19と、着脱自在の記録媒体21が接続される外部メモリ制御部20と、カメラ背面等に搭載された液晶表示部23が接続される表示制御部22とを備え、これらは、制御バス24及びデータバス25によって相互に接続され、システム制御部11からの指令によって制御される。   Furthermore, the electric control system of this digital camera generates image data by performing main memory 16, memory control unit 15 connected to main memory 16, interpolation calculation, gamma correction calculation, RGB / YC conversion processing, and the like. A digital signal processing unit 17, a compression / decompression processing unit 18 that compresses image data generated by the digital signal processing unit 17 into a JPEG format or decompresses compressed image data, and a digital signal processing unit 17 that integrates photometric data. The integration unit 19 for obtaining the gain of white balance correction performed by the camera, the external memory control unit 20 to which the removable recording medium 21 is connected, and the display control unit 22 to which the liquid crystal display unit 23 mounted on the back of the camera is connected. These are connected to each other by a control bus 24 and a data bus 25, and are controlled by commands from the system control unit 11. That.

図2は、図1に示すデジタルカメラに搭載される固体撮像素子の構成例を示す平面模式図である。
図2に示す固体撮像素子は、垂直方向とこれに直交する水平方向に正方格子状に配列された多数の光電変換素子(例えばフォトダイオード)51と、各光電変換素子51で発生した電荷を垂直方向に転送する複数の垂直電荷転送部52と、複数の垂直電荷転送部52を転送されてきた電荷を水平方向に転送する水平電荷転送部53と、水平電荷転送部53を転送されてきた電荷に応じた信号を出力する出力部54とを備える。
FIG. 2 is a schematic plan view showing a configuration example of a solid-state imaging device mounted on the digital camera shown in FIG.
The solid-state imaging device shown in FIG. 2 has a large number of photoelectric conversion elements (for example, photodiodes) 51 arranged in a square lattice pattern in a vertical direction and a horizontal direction perpendicular thereto, and charges generated in each photoelectric conversion element 51 are vertically aligned. A plurality of vertical charge transfer units 52 that transfer in the direction, a horizontal charge transfer unit 53 that transfers the charges transferred through the plurality of vertical charge transfer units 52 in the horizontal direction, and a charge that has been transferred through the horizontal charge transfer unit 53 And an output unit 54 for outputting a signal corresponding to the above.

垂直電荷転送部52は、垂直方向に並ぶ光電変換素子51からなる光電変換素子列に対応してその右側部に垂直方向に延びて形成された電荷転送チャネル52a(一部のみ図示)と、その電荷転送チャネル52a上方に垂直方向に配列された、それぞれ独立に電圧を印加可能な電荷転送電極V1,V2,V3,V4,V5,V6とで構成されている。   The vertical charge transfer section 52 includes a charge transfer channel 52a (only part of which is shown) formed to extend in the vertical direction on the right side corresponding to the photoelectric conversion element array composed of the photoelectric conversion elements 51 arranged in the vertical direction, The charge transfer electrodes V1, V2, V3, V4, V5, and V6 are arranged in the vertical direction above the charge transfer channel 52a and can be independently applied with voltages.

光電変換素子列の各光電変換素子51と、それに対応する電荷転送チャネル52aとの間には、各光電変換素子51で発生して蓄積された電荷を該電荷転送チャネル52aに読み出すための電荷読出し部55(図では模式的に矢印で示してある)が形成されている。   Charge readout for reading out the charge generated and accumulated in each photoelectric conversion element 51 to the charge transfer channel 52a between each photoelectric conversion element 51 of the photoelectric conversion element array and the corresponding charge transfer channel 52a. A portion 55 (shown schematically by an arrow in the figure) is formed.

水平方向に並ぶ光電変換素子51からなる光電変換素子行のうち、奇数行の光電変換素子51には3つの電荷転送電極V1〜V3が対応して設けられ、偶数行の光電変換素子51には3つの電荷転送電極V4〜V6が対応して設けられている。電荷転送電極V1〜V6には、それぞれ、電荷転送チャネル52aに電荷を蓄積するパケットを形成するためのローレベル(以下VLという。例えば−8V)の転送パルスと、電荷転送チャネル52aに該パケット同士のバリアを形成するためのVLよりも高いミドルレベル(以下VMという。例えば0V)の転送パルスとが、撮像素子駆動部10から印加可能になっている。以下では、VLの転送パルスが印加された状態の電荷転送電極のことをバリア電極とも言い、VMの転送パルスが印加された状態の電荷転送電極のことをパケット電極とも言う。   Among the photoelectric conversion element rows composed of the photoelectric conversion elements 51 arranged in the horizontal direction, the odd-numbered photoelectric conversion elements 51 are provided with three charge transfer electrodes V1 to V3 corresponding to the even-numbered photoelectric conversion elements 51. Three charge transfer electrodes V4 to V6 are provided correspondingly. The charge transfer electrodes V1 to V6 each have a low level (hereinafter referred to as VL; for example, −8V) transfer pulse for forming a packet for accumulating charges in the charge transfer channel 52a, and the packets transferred to the charge transfer channel 52a. A transfer pulse having a middle level (hereinafter referred to as VM; for example, 0 V) higher than VL for forming the barrier is applicable from the image sensor driving unit 10. Hereinafter, the charge transfer electrode to which the VL transfer pulse is applied is also referred to as a barrier electrode, and the charge transfer electrode to which the VM transfer pulse is applied is also referred to as a packet electrode.

電荷転送電極V2と電荷転送電極V5は、光電変換素子51から電荷転送チャネル52aに電荷を読み出すための読み出し電極も兼ねており、対応する光電変換素子51に隣接する電荷読出し部55も覆って形成されている。電荷転送電極V2,V5にはVMよりも高いハイレベル(以下VHという。例えば12〜13V)の読み出しパルスも印加可能となっている。この読み出し電極に読み出しパルスを印加することで、光電変換素子51から電荷転送チャネル52aに電荷を読み出すことができる。   The charge transfer electrode V2 and the charge transfer electrode V5 also serve as a readout electrode for reading out charges from the photoelectric conversion element 51 to the charge transfer channel 52a, and also cover the charge readout portion 55 adjacent to the corresponding photoelectric conversion element 51. Has been. A high-level (hereinafter referred to as VH, for example, 12 to 13 V) read pulse higher than VM can also be applied to the charge transfer electrodes V2 and V5. By applying a read pulse to the read electrode, charge can be read from the photoelectric conversion element 51 to the charge transfer channel 52a.

図2に示した固体撮像素子は、例えば、第1フィールドでは、電荷転送電極V4をバリア電極、それ以外の電荷転送電極をパケット電極にした状態で、電荷転送電極V2に読み出しパルスを印加して奇数行の光電変換素子51から電荷を読み出した後、電荷転送電極V1〜V6に6相の転送パルスを印加してこの電荷を転送する。次に、第2フィールドでは、電荷転送電極V1をバリア電極、それ以外の電荷転送電極をパケット電極にした状態で、電荷転送電極V5に読み出しパルスを印加して偶数行の光電変換素子51から電荷を読み出した後、電荷転送電極V1〜V6に6相の転送パルスを印加してこの電荷を転送する。このような動作により、全ての光電変換素子51から電荷を読み出すことができる。   In the solid-state imaging device shown in FIG. 2, for example, in the first field, a read pulse is applied to the charge transfer electrode V2 while the charge transfer electrode V4 is a barrier electrode and the other charge transfer electrodes are packet electrodes. After reading out the charges from the odd-numbered photoelectric conversion elements 51, a six-phase transfer pulse is applied to the charge transfer electrodes V1 to V6 to transfer the charges. Next, in the second field, with the charge transfer electrode V1 as a barrier electrode and the other charge transfer electrode as a packet electrode, a read pulse is applied to the charge transfer electrode V5 to charge from the photoelectric conversion elements 51 in even rows. Then, a six-phase transfer pulse is applied to the charge transfer electrodes V1 to V6 to transfer this charge. With such an operation, charges can be read from all the photoelectric conversion elements 51.

図3は、図1に示すデジタルカメラに搭載される固体撮像素子の別の構成例を示す平面模式図である。図3において図2と同じ構成には同一符号を付してある。
図3に示す固体撮像素子は、図2に示す垂直電荷転送部52を垂直電荷転送部52’に変更した構成となっている。
FIG. 3 is a schematic plan view showing another configuration example of the solid-state imaging device mounted on the digital camera shown in FIG. In FIG. 3, the same components as those in FIG.
The solid-state imaging device shown in FIG. 3 has a configuration in which the vertical charge transfer unit 52 shown in FIG. 2 is changed to a vertical charge transfer unit 52 ′.

垂直電荷転送部52’は、電荷転送チャネル52aと、その電荷転送チャネル52a上方に垂直方向に配列された、それぞれ独立に電圧を印加可能な電荷転送電極V1,V2,V3,V4とで構成されている。   The vertical charge transfer unit 52 ′ is composed of a charge transfer channel 52a and charge transfer electrodes V1, V2, V3, and V4 that are arranged in the vertical direction above the charge transfer channel 52a and that can independently apply a voltage. ing.

奇数行の光電変換素子51には2つの電荷転送電極V1,V2が対応して設けられ、偶数行の光電変換素子51には2つの電荷転送電極V3,V4が対応して設けられている。電荷転送電極V1〜V4には、それぞれ、VLの転送パルスとVMの転送パルスとが撮像素子駆動部10から印加可能になっている。   The odd-numbered photoelectric conversion elements 51 are provided with two charge transfer electrodes V1 and V2, and the even-numbered photoelectric conversion elements 51 are provided with two charge transfer electrodes V3 and V4. A VL transfer pulse and a VM transfer pulse can be applied to the charge transfer electrodes V1 to V4 from the image sensor driving unit 10, respectively.

電荷転送電極V1と電荷転送電極V3は、光電変換素子51から電荷転送チャネル52aに電荷を読み出すための読み出し電極も兼ねており、対応する光電変換素子51に隣接する電荷読出し部55も覆って形成されている。電荷転送電極V1,V3には読み出しパルスも印加可能となっている。この読み出し電極に読み出しパルスを印加することで、光電変換素子51から電荷転送チャネル52aに電荷を読み出すことができる。   The charge transfer electrode V1 and the charge transfer electrode V3 also serve as a readout electrode for reading out charges from the photoelectric conversion element 51 to the charge transfer channel 52a, and also cover the charge readout portion 55 adjacent to the corresponding photoelectric conversion element 51. Has been. A readout pulse can also be applied to the charge transfer electrodes V1, V3. By applying a read pulse to the read electrode, charge can be read from the photoelectric conversion element 51 to the charge transfer channel 52a.

図3に示した固体撮像素子は、例えば、第1フィールドでは、電荷転送電極V3をバリア電極、それ以外の電荷転送電極をパケット電極にした状態で、電荷転送電極V1に読み出しパルスを印加して奇数行の光電変換素子51から電荷を読み出した後、電荷転送電極V1〜V4に4相の転送パルスを印加してこの電荷を転送する。次に、第2フィールドでは、電荷転送電極V1をバリア電極、それ以外の電荷転送電極をパケット電極にした状態で、電荷転送電極V3に読み出しパルスを印加して偶数行の光電変換素子51から電荷を読み出した後、電荷転送電極V1〜V4に4相の転送パルスを印加してこの電荷を転送する。このような動作により、全ての光電変換素子51から電荷を読み出すことができる。   In the solid-state imaging device shown in FIG. 3, for example, in the first field, a read pulse is applied to the charge transfer electrode V1 while the charge transfer electrode V3 is a barrier electrode and the other charge transfer electrode is a packet electrode. After reading out the charges from the odd-numbered photoelectric conversion elements 51, a four-phase transfer pulse is applied to the charge transfer electrodes V1 to V4 to transfer the charges. Next, in the second field, with the charge transfer electrode V1 as a barrier electrode and the other charge transfer electrodes as packet electrodes, a read pulse is applied to the charge transfer electrode V3 to charge from the photoelectric conversion elements 51 in the even-numbered rows. Then, a four-phase transfer pulse is applied to the charge transfer electrodes V1 to V4 to transfer this charge. With such an operation, charges can be read from all the photoelectric conversion elements 51.

図3に示した固体撮像素子は、光電変換素子51から電荷転送チャネル52aに電荷を読み出した状態で、電荷転送チャネル52aのバリアを形成している電荷転送電極と読み出しパルスを印加している読み出し電極との間に、パケットを形成している電荷転送電極が1つだけ存在するように1光電変換素子あたりの電荷転送電極の数(=2個)や垂直電荷転送部52’の駆動相数(=4相)が決められている。このため、相殺パルスを適用しようとすると、読み出し電極の隣に相殺パルスが印加されることになり、素子の信頼性が低下するという問題がある。   The solid-state imaging device shown in FIG. 3 is a state in which a charge is transferred from the photoelectric conversion element 51 to the charge transfer channel 52a and a read transfer pulse is applied to the charge transfer electrode forming the barrier of the charge transfer channel 52a. The number of charge transfer electrodes per photoelectric conversion element (= 2) and the number of drive phases of the vertical charge transfer unit 52 ′ so that there is only one charge transfer electrode forming a packet between the electrodes. (= 4 phases) is determined. For this reason, if an attempt is made to apply a cancellation pulse, the cancellation pulse is applied next to the readout electrode, and there is a problem that the reliability of the element is lowered.

図4は、図1に示すデジタルカメラに搭載される固体撮像素子の別の構成例を示す平面模式図である。
図4に示す固体撮像素子は、図2に示す固体撮像素子の水平方向に並ぶ光電変換素子51からなる光電変換素子行のうち、偶数番目にある光電変換素子行を、奇数番目にある光電変換素子行に対して、各光電変換素子行の光電変換素子51の配列ピッチの1/2だけ水平方向にずらしたものとなっている。更に、偶数番目の光電変換素子行の各光電変換素子51の位置をずらしたため、電荷転送チャネル52aを、光電変換素子列の間を各光電変換素子51を避けて垂直方向に延びる蛇行形状としている。
FIG. 4 is a schematic plan view showing another configuration example of the solid-state imaging device mounted on the digital camera shown in FIG.
The solid-state imaging device shown in FIG. 4 is configured such that even-numbered photoelectric conversion device rows are converted into odd-numbered photoelectric conversion devices among the photoelectric conversion device rows composed of the photoelectric conversion devices 51 arranged in the horizontal direction of the solid-state imaging device shown in FIG. The element rows are shifted in the horizontal direction by ½ of the arrangement pitch of the photoelectric conversion elements 51 of each photoelectric conversion element row. Further, since the positions of the photoelectric conversion elements 51 in the even-numbered photoelectric conversion element rows are shifted, the charge transfer channel 52a has a meandering shape extending in the vertical direction between the photoelectric conversion element columns so as to avoid the photoelectric conversion elements 51. .

図4に示す固体撮像素子の電荷転送チャネル52a上方には、電荷転送電極V1,V2,V3,V4が設けられている。電荷転送電極V1〜V4は、それぞれ光電変換素子行の間を各光電変換素子51を避けて水平方向に延びる蛇行形状となっている。電荷転送電極V1〜V4には、それぞれVLとVMの転送パルスが撮像素子駆動部10により印加可能となっている。   Charge transfer electrodes V1, V2, V3, and V4 are provided above the charge transfer channel 52a of the solid-state imaging device shown in FIG. The charge transfer electrodes V <b> 1 to V <b> 4 each have a meandering shape extending in the horizontal direction while avoiding each photoelectric conversion element 51 between the photoelectric conversion element rows. VL and VM transfer pulses can be applied to the charge transfer electrodes V1 to V4 by the image sensor driving unit 10, respectively.

奇数番目の光電変換素子行の各光電変換素子には電荷転送電極V3,V4,V1,V2をこの順に並べた電極群が対応し、偶数番目の光電変換素子行の各光電変換素子には電荷転送電極V1,V2,V3,V4をこの順に並べた電極群が対応している。   Each photoelectric conversion element in the odd-numbered photoelectric conversion element row corresponds to an electrode group in which charge transfer electrodes V3, V4, V1, and V2 are arranged in this order, and each photoelectric conversion element in the even-numbered photoelectric conversion element row has a charge. An electrode group in which the transfer electrodes V1, V2, V3, and V4 are arranged in this order corresponds.

光電変換素子列の各光電変換素子51と、それに対応する電荷転送チャネル52aとの間には、各光電変換素子51で発生して蓄積された電荷を該電荷転送チャネル52aに読み出すための電荷読出し部55(図では一部のみ図示した)が形成されている。   Charge readout for reading out the charge generated and accumulated in each photoelectric conversion element 51 to the charge transfer channel 52a between each photoelectric conversion element 51 of the photoelectric conversion element array and the corresponding charge transfer channel 52a. A portion 55 (only part of which is shown in the figure) is formed.

電荷転送電極V1と電荷転送電極V3は、光電変換素子51から電荷転送チャネル52aに電荷を読み出すための読み出し電極も兼ねており、対応する光電変換素子51に隣接する電荷読出し部55も覆って形成されている。電荷転送電極V1,V3にはVHの読み出しパルスも印加可能となっている。この読み出し電極に読み出しパルスを印加することで、光電変換素子51から電荷転送チャネル52aに電荷を読み出すことができる。   The charge transfer electrode V1 and the charge transfer electrode V3 also serve as a readout electrode for reading out charges from the photoelectric conversion element 51 to the charge transfer channel 52a, and also cover the charge readout portion 55 adjacent to the corresponding photoelectric conversion element 51. Has been. A VH readout pulse can also be applied to the charge transfer electrodes V1, V3. By applying a read pulse to the read electrode, charge can be read from the photoelectric conversion element 51 to the charge transfer channel 52a.

図4に示した固体撮像素子は、例えば、まず、電荷転送電極V3をバリア電極、それ以外の電荷転送電極をパケット電極にした状態で、電荷転送電極V1に読み出しパルスを印加して奇数行の光電変換素子51から電荷を読み出した後、電荷転送電極V1をバリア電極、それ以外の電荷転送電極をパケット電極にし、この状態で電荷転送電極V3に読み出しパルスを印加して偶数行の光電変換素子51から電荷を読み出す。その後は、電荷転送電極V1〜V4に4相の転送パルスを印加してこの電荷を転送する。このような動作により、全ての光電変換素子51から電荷を読み出すことができる。   In the solid-state imaging device shown in FIG. 4, for example, first, in a state where the charge transfer electrode V3 is a barrier electrode and the other charge transfer electrodes are packet electrodes, a read pulse is applied to the charge transfer electrode V1 to generate odd-numbered rows. After the charge is read from the photoelectric conversion element 51, the charge transfer electrode V1 is used as a barrier electrode, and the other charge transfer electrode is used as a packet electrode. In this state, a read pulse is applied to the charge transfer electrode V3, The charge is read from 51. Thereafter, a four-phase transfer pulse is applied to the charge transfer electrodes V1 to V4 to transfer this charge. With such an operation, charges can be read from all the photoelectric conversion elements 51.

図4に示した固体撮像素子は、光電変換素子51から電荷転送チャネル52aに電荷を読み出した状態で、電荷転送チャネル52aのバリアを形成している電荷転送電極と読み出しパルスを印加している読み出し電極との間に、パケットを形成している電荷転送電極が1つだけ存在するように1光電変換素子あたりの電荷転送電極の数(=4個)や垂直電荷転送部52’の駆動相数(=4相)が決められている。このため、相殺パルスを適用しようとすると、読み出し電極の隣に相殺パルスが印加されることになり、素子の信頼性が低下するという問題がある。   The solid-state imaging device shown in FIG. 4 is a state in which a charge is transferred from the photoelectric conversion element 51 to the charge transfer channel 52a and a read transfer pulse is applied to the charge transfer electrode forming the barrier of the charge transfer channel 52a. The number of charge transfer electrodes per photoelectric conversion element (= 4) and the number of drive phases of the vertical charge transfer unit 52 ′ so that there is only one charge transfer electrode forming a packet between the electrodes. (= 4 phases) is determined. For this reason, when an attempt is made to apply a cancellation pulse, the cancellation pulse is applied next to the readout electrode, and there is a problem that the reliability of the element is lowered.

図5は、図2〜図4に示した固体撮像素子のA−A線断面模式図である。
光電変換素子51と電荷転送チャネル52aと電荷読出し部55は、それぞれ、n型シリコン基板上に形成されたpウェル層57内に形成されている。このn型シリコン基板とpウェル層57とにより半導体基板が構成されている。
FIG. 5 is a schematic cross-sectional view taken along line AA of the solid-state imaging device shown in FIGS.
The photoelectric conversion element 51, the charge transfer channel 52a, and the charge reading unit 55 are each formed in a p-well layer 57 formed on an n-type silicon substrate. The n-type silicon substrate and the p well layer 57 constitute a semiconductor substrate.

光電変換素子51は、pウェル層57表面から内側に形成されたn型不純物層51aと、n型不純物層51a表面から内側に形成された暗電流抑制のためのp型不純物層51bとで構成されている。   The photoelectric conversion element 51 includes an n-type impurity layer 51a formed on the inner side from the surface of the p-well layer 57, and a p-type impurity layer 51b formed on the inner side from the surface of the n-type impurity layer 51a for suppressing dark current. Has been.

光電変換素子51と、該光電変換素子51に対応しない電荷転送チャネル52aとの間には、p型不純物層からなる素子分離層56が形成されている。   An element isolation layer 56 made of a p-type impurity layer is formed between the photoelectric conversion element 51 and the charge transfer channel 52a not corresponding to the photoelectric conversion element 51.

電荷転送チャネル52aはpウェル層57表面から内側に形成されたn型不純物層によって構成されている。電荷読出し部55は、光電変換素子51と電荷転送チャネル52aとの間のpウェル層57の一領域によって形成されている。   The charge transfer channel 52a is constituted by an n-type impurity layer formed inside from the surface of the p-well layer 57. The charge reading unit 55 is formed by a region of the p-well layer 57 between the photoelectric conversion element 51 and the charge transfer channel 52a.

電荷転送電極V2は、電荷転送チャネル52aだけでなく電荷読出し部55上方も覆って形成されている。電荷転送電極V2は、pウェル層57上に形成されたゲート絶縁膜62の上に形成されている。電荷転送電極V2及びゲート絶縁膜62上には、電荷転送電極V2と隣接する電荷転送電極との絶縁を図るための絶縁膜58が形成されている。   The charge transfer electrode V2 is formed so as to cover not only the charge transfer channel 52a but also the upper part of the charge reading portion 55. The charge transfer electrode V2 is formed on the gate insulating film 62 formed on the p-well layer 57. On the charge transfer electrode V2 and the gate insulating film 62, an insulating film 58 for insulating the charge transfer electrode V2 from the adjacent charge transfer electrode is formed.

絶縁膜58上には導電性があり且つ遮光性があるタングステン等からなる遮光膜59が形成されている。遮光膜59は、光電変換素子51の上方に開口を有しており、この開口面積によって光電変換素子51の受光範囲が規定される。遮光膜59の開口は、平面視において光電変換素子51よりも内側に形成されており、遮光膜59は、平面視において光電変換素子51と重なる部分を有している。又、遮光膜59には図示しない配線が接続され、この配線には、撮像素子駆動部10から所定の電圧が印加可能となっている。   A light shielding film 59 made of tungsten or the like having conductivity and light shielding properties is formed on the insulating film 58. The light shielding film 59 has an opening above the photoelectric conversion element 51, and the light receiving range of the photoelectric conversion element 51 is defined by the opening area. The opening of the light shielding film 59 is formed inside the photoelectric conversion element 51 in a plan view, and the light shielding film 59 has a portion that overlaps the photoelectric conversion element 51 in a plan view. In addition, a wiring (not shown) is connected to the light shielding film 59, and a predetermined voltage can be applied to the wiring from the image sensor driving unit 10.

尚、図1に示すデジタルカメラに搭載する固体撮像素子は、遮光膜を有するCCD型の固体撮像素子であれば良く、図2,3,4に示したものに限らない。   The solid-state imaging device mounted on the digital camera shown in FIG. 1 may be any CCD type solid-state imaging device having a light shielding film, and is not limited to that shown in FIGS.

以下、デジタルカメラの撮像時の動作について説明する。
図6は、図2に示す固体撮像素子の駆動方法を説明するためのタイミングチャートである。図7は、図3に示す固体撮像素子の駆動方法を説明するためのタイミングチャートである。図8は、図4に示す固体撮像素子の駆動方法を説明するためのタイミングチャートである。
Hereinafter, the operation at the time of imaging of the digital camera will be described.
FIG. 6 is a timing chart for explaining a method of driving the solid-state imaging device shown in FIG. FIG. 7 is a timing chart for explaining a method of driving the solid-state imaging device shown in FIG. FIG. 8 is a timing chart for explaining a method of driving the solid-state imaging device shown in FIG.

(図2に示す固体撮像素子の駆動例)
図6に示すように、まず、第1フィールドでは、電荷読み出し前に電荷転送電極V4をバリア電極、それ以外の電荷転送電極をパケット電極にし、遮光膜59にVMのパルスを印加しておく。この状態で、電荷転送電極V2に読み出しパルスを印加して奇数行の光電変換素子51から電荷を読み出す。電荷転送電極V2に読み出しパルスを印加している期間は、遮光膜59にVLのパルスを印加する。電荷の読み出し完了後は、電荷転送電極V1〜V6に6相の転送パルスを印加して、読み出した電荷を転送する。
(Driving example of solid-state imaging device shown in FIG. 2)
As shown in FIG. 6, first, in the first field, the charge transfer electrode V4 is used as a barrier electrode, the other charge transfer electrodes are used as packet electrodes, and a VM pulse is applied to the light shielding film 59 before charge reading. In this state, a read pulse is applied to the charge transfer electrode V2 to read charges from the odd-numbered photoelectric conversion elements 51. During the period in which the readout pulse is applied to the charge transfer electrode V2, a VL pulse is applied to the light shielding film 59. After the completion of charge reading, a six-phase transfer pulse is applied to the charge transfer electrodes V1 to V6 to transfer the read charge.

次に、第2フィールドでは、電荷読み出し前に電荷転送電極V1をバリア電極、それ以外の電荷転送電極をパケット電極にし、遮光膜59にVMのパルスを印加しておく。この状態で、電荷転送電極V5に読み出しパルスを印加して偶数行の光電変換素子51から電荷を読み出す。電荷転送電極V5に読み出しパルスを印加している期間は、遮光膜59にVLのパルスを印加する。電荷の読み出し完了後は、電荷転送電極V1〜V6に6相の転送パルスを印加して、読み出した電荷を転送する。
撮像素子駆動部10は、固体撮像素子5が動作している期間のうち、読み出し電極に読み出しパルスが印加されている期間を除く期間では、遮光膜59にVMのパルスを印加し続ける。
Next, in the second field, before charge reading, the charge transfer electrode V1 is used as a barrier electrode, the other charge transfer electrodes are used as packet electrodes, and a VM pulse is applied to the light shielding film 59. In this state, a read pulse is applied to the charge transfer electrode V5 to read out charges from the even number of photoelectric conversion elements 51. During the period in which the readout pulse is applied to the charge transfer electrode V5, a VL pulse is applied to the light shielding film 59. After the completion of charge reading, a six-phase transfer pulse is applied to the charge transfer electrodes V1 to V6 to transfer the read charge.
The imaging element driving unit 10 continues to apply the VM pulse to the light shielding film 59 during the period in which the solid-state imaging element 5 is operating, excluding the period in which the readout pulse is applied to the readout electrode.

このように、読み出し電極に読み出しパルスを印加している期間、遮光膜59に読み出しパルスとは逆極性の電圧を印加することで、pウェル層57、とりわけその表面の電位を安定にしたまま、電荷の読み出しを行うことが可能となり、空乏化電圧の上昇を抑えることができる。pウェル層57の電位が安定することで、電荷読み出し時にパケット電極となっている電荷転送電極のいずれかに読み出しパルスとは逆極性の相殺パルスを印加する必要がなくなるため、電荷読み出し時にパケット電極数が1つ減ってしまうことがなく、垂直電荷転送部52の飽和容量を稼ぐことができる。   In this way, by applying a voltage having a polarity opposite to that of the readout pulse to the light shielding film 59 during the period in which the readout pulse is applied to the readout electrode, the potential of the p-well layer 57, particularly the surface thereof, is stabilized. It is possible to read out charges and suppress an increase in depletion voltage. Since the potential of the p-well layer 57 is stabilized, it is not necessary to apply a cancel pulse having a polarity opposite to that of the read pulse to any of the charge transfer electrodes that are packet electrodes at the time of charge reading. The saturation capacity of the vertical charge transfer unit 52 can be increased without reducing the number by one.

(図3に示す固体撮像素子の駆動例)
図7に示すように、まず、第1フィールドでは、電荷読み出し前に電荷転送電極V3をバリア電極、それ以外の電荷転送電極をパケット電極にし、遮光膜59にVMのパルスを印加しておく。この状態で、電荷転送電極V1に読み出しパルスを印加して奇数行の光電変換素子51から電荷を読み出す。電荷転送電極V1に読み出しパルスを印加している期間は、遮光膜59にVLのパルスを印加する。電荷の読み出し完了後は、電荷転送電極V1〜V4に4相の転送パルスを印加して、読み出した電荷を転送する。
(Driving example of solid-state imaging device shown in FIG. 3)
As shown in FIG. 7, first, in the first field, the charge transfer electrode V3 is used as a barrier electrode, the other charge transfer electrodes are used as packet electrodes, and a VM pulse is applied to the light shielding film 59 before charge reading. In this state, a read pulse is applied to the charge transfer electrode V <b> 1 to read charges from the odd-numbered photoelectric conversion elements 51. During the period in which the readout pulse is applied to the charge transfer electrode V1, a VL pulse is applied to the light shielding film 59. After the completion of the charge reading, a four-phase transfer pulse is applied to the charge transfer electrodes V1 to V4 to transfer the read charge.

次に、第2フィールドでは、電荷読み出し前に電荷転送電極V1をバリア電極、それ以外の電荷転送電極をパケット電極にし、遮光膜59にVMのパルスを印加しておく。この状態で、電荷転送電極V3に読み出しパルスを印加して偶数行の光電変換素子51から電荷を読み出す。電荷転送電極V3に読み出しパルスを印加している期間は、遮光膜59にVLのパルスを印加する。電荷の読み出し完了後は、電荷転送電極V1〜V4に4相の転送パルスを印加して、読み出した電荷を転送する。
撮像素子駆動部10は、固体撮像素子5が動作している期間のうち、読み出し電極に読み出しパルスが印加されている期間を除く期間では、遮光膜59にVMのパルスを印加し続ける。
Next, in the second field, before charge reading, the charge transfer electrode V1 is used as a barrier electrode, the other charge transfer electrodes are used as packet electrodes, and a VM pulse is applied to the light shielding film 59. In this state, a read pulse is applied to the charge transfer electrode V3 to read charges from the even number of photoelectric conversion elements 51. During the period in which the read pulse is applied to the charge transfer electrode V3, a VL pulse is applied to the light shielding film 59. After the completion of the charge reading, a four-phase transfer pulse is applied to the charge transfer electrodes V1 to V4 to transfer the read charge.
The imaging element driving unit 10 continues to apply the VM pulse to the light shielding film 59 during the period in which the solid-state imaging element 5 is operating, excluding the period in which the readout pulse is applied to the readout electrode.

このように、読み出し電極に読み出しパルスを印加している期間、遮光膜59に読み出しパルスとは逆極性の電圧を印加することで、pウェル層57、とりわけその表面の電位を安定にしたまま、電荷の読み出しを行うことが可能となり、空乏化電圧の上昇を抑えることができる。pウェル層57の電位が安定することで、電荷読み出し時にパケット電極となっている電荷転送電極のいずれかに読み出しパルスとは逆極性の相殺パルスを印加する必要がなくなるため、電荷読み出し時にパケット電極数が1つ減ってしまうことがなく、垂直電荷転送部52の飽和容量を稼ぐことができる。   In this way, by applying a voltage having a polarity opposite to that of the readout pulse to the light shielding film 59 during the period in which the readout pulse is applied to the readout electrode, the potential of the p-well layer 57, particularly the surface thereof, is stabilized. It is possible to read out charges and suppress an increase in depletion voltage. Since the potential of the p-well layer 57 is stabilized, it is not necessary to apply a cancel pulse having a polarity opposite to that of the read pulse to any of the charge transfer electrodes that are packet electrodes at the time of charge reading. The saturation capacity of the vertical charge transfer unit 52 can be increased without reducing the number by one.

又、図3に示したような構成の固体撮像素子において相殺パルスの手法を採用する場合には、読み出し電極に隣接する電荷転送電極には必ず相殺パルスが印加されることになる。このように、読み出し電極の隣の電荷転送電極に相殺パルスが印加されてしまうと、読み出し電極と、その隣の電荷転送電極との電位差が大きくなり、ブレークダウン、電荷転送電極間の絶縁破壊、信頼性低下(連続駆動による空乏化電圧の経時劣化、転送効率の経時劣化等)等の問題を引き起こしてしまう。このため、図3に示したような構成の固体撮像素子においては、相殺パルスの手法を採用することは特に好ましくない。そこで、遮光膜59への印加電圧を制御する上述した駆動を採用することが特に有効となる。   Further, when the cancellation pulse method is employed in the solid-state imaging device having the configuration shown in FIG. 3, the cancellation pulse is always applied to the charge transfer electrode adjacent to the readout electrode. In this way, when a cancellation pulse is applied to the charge transfer electrode adjacent to the readout electrode, the potential difference between the readout electrode and the adjacent charge transfer electrode increases, and breakdown, dielectric breakdown between the charge transfer electrodes, This causes problems such as a decrease in reliability (depletion voltage deterioration due to continuous driving, transfer efficiency deterioration over time, etc.). For this reason, in the solid-state imaging device having the configuration as shown in FIG. 3, it is not particularly preferable to employ the cancellation pulse method. Therefore, it is particularly effective to employ the above-described driving that controls the voltage applied to the light shielding film 59.

(図4に示す固体撮像素子の駆動例)
図8に示すように、まず、電荷読み出し前に電荷転送電極V3をバリア電極、それ以外の電荷転送電極をパケット電極にし、遮光膜59にVMのパルスを印加しておく。この状態で、電荷転送電極V1に読み出しパルスを印加して奇数行の光電変換素子51から電荷を読み出す。電荷転送電極V1に読み出しパルスを印加している期間は、遮光膜59にVLのパルスを印加する。
(Driving example of solid-state imaging device shown in FIG. 4)
As shown in FIG. 8, first, before charge reading, the charge transfer electrode V3 is used as a barrier electrode, the other charge transfer electrodes are used as packet electrodes, and a VM pulse is applied to the light shielding film 59. In this state, a read pulse is applied to the charge transfer electrode V <b> 1 to read charges from the odd-numbered photoelectric conversion elements 51. During the period in which the readout pulse is applied to the charge transfer electrode V1, a VL pulse is applied to the light shielding film 59.

奇数行の光電変換素子51からの電荷の読み出し後、電荷転送電極V1をバリア電極、それ以外の電荷転送電極をパケット電極にし、遮光膜59にVMのパルスを印加しておく。この状態で、電荷転送電極V3に読み出しパルスを印加して偶数行の光電変換素子51から電荷を読み出す。電荷転送電極V3に読み出しパルスを印加している期間は、遮光膜59にVLのパルスを印加する。電荷の読み出し完了後は、電荷転送電極V1〜V4に4相の転送パルスを印加して、読み出した電荷を転送する。   After reading out the charges from the odd-numbered photoelectric conversion elements 51, the charge transfer electrode V1 is used as a barrier electrode, the other charge transfer electrodes are used as packet electrodes, and a VM pulse is applied to the light shielding film 59. In this state, a read pulse is applied to the charge transfer electrode V3 to read charges from the even number of photoelectric conversion elements 51. During the period in which the read pulse is applied to the charge transfer electrode V3, a VL pulse is applied to the light shielding film 59. After the completion of the charge reading, a four-phase transfer pulse is applied to the charge transfer electrodes V1 to V4 to transfer the read charge.

このように、読み出し電極に読み出しパルスを印加している期間、遮光膜59に読み出しパルスとは逆極性の電圧を印加することで、pウェル層57、とりわけその表面の電位を安定にしたまま、電荷の読み出しを行うことが可能となり、空乏化電圧の上昇を抑えることができる。pウェル層57の電位が安定することで、電荷読み出し時にパケット電極となっている電荷転送電極のいずれかに読み出しパルスとは逆極性の相殺パルスを印加する必要がなくなるため、電荷読み出し時にパケット電極数が1つ減ってしまうことがなく、垂直電荷転送部52の飽和容量を稼ぐことができる。   In this way, by applying a voltage having a polarity opposite to that of the readout pulse to the light shielding film 59 during the period in which the readout pulse is applied to the readout electrode, the potential of the p-well layer 57, particularly the surface thereof, is stabilized. It is possible to read out charges and suppress an increase in depletion voltage. Since the potential of the p-well layer 57 is stabilized, it is not necessary to apply a cancel pulse having a polarity opposite to that of the read pulse to any of the charge transfer electrodes that are packet electrodes at the time of charge reading. The saturation capacity of the vertical charge transfer unit 52 can be increased without reducing the number by one.

又、図4に示したような構成の固体撮像素子において相殺パルスの手法を採用する場合には、読み出し電極に隣接する電荷転送電極には必ず相殺パルスが印加されることになる(図8に示した破線が相殺パルスを印加する場合の波形)。このように、読み出し電極の隣の電荷転送電極に相殺パルスが印加されてしまうと、読み出し電極と、その隣の電荷転送電極との電位差が大きくなり、ブレークダウン、電荷転送電極間の絶縁破壊、信頼性低下(連続駆動による空乏化電圧の経時劣化、転送効率の経時劣化等)等の問題を引き起こしてしまう。このため、図4に示したような構成の固体撮像素子においては、相殺パルスの手法を採用することは特に好ましくない。そこで、遮光膜59への印加電圧を制御する上述した駆動を採用することが特に有効となる。   Further, when the cancellation pulse method is adopted in the solid-state imaging device having the configuration shown in FIG. 4, the cancellation pulse is always applied to the charge transfer electrode adjacent to the readout electrode (FIG. 8). The broken line shown is the waveform when the cancellation pulse is applied). In this way, when a cancellation pulse is applied to the charge transfer electrode adjacent to the readout electrode, the potential difference between the readout electrode and the adjacent charge transfer electrode increases, and breakdown, dielectric breakdown between the charge transfer electrodes, This causes problems such as a decrease in reliability (depletion voltage deterioration due to continuous driving, transfer efficiency deterioration over time, etc.). For this reason, in the solid-state imaging device having the configuration as shown in FIG. Therefore, it is particularly effective to employ the above-described driving that controls the voltage applied to the light shielding film 59.

尚、以上の説明では、固体撮像素子5が動作している期間のうち、読み出し電極に読み出しパルスが印加されている期間にのみ遮光膜59に読み出しパルスとは逆極性のパルスを印加するものとしているが、この期間以外の期間において遮光膜59に読み出しパルスとは逆極性のパルスを印加するようにしても良い。つまり、固体撮像素子5が動作している期間中、遮光膜59に読み出しパルスとは逆極性のパルス(例えばVLのパルス)を常に印加し続けるようにしても良い。このようにすることで、スミアや暗電流を低減することができる。   In the above description, it is assumed that a pulse having a polarity opposite to that of the readout pulse is applied to the light shielding film 59 only during a period in which the readout pulse is applied to the readout electrode during the period in which the solid-state imaging device 5 is operating. However, a pulse having a polarity opposite to that of the readout pulse may be applied to the light shielding film 59 in a period other than this period. In other words, during the period when the solid-state imaging device 5 is operating, a pulse having a polarity opposite to that of the readout pulse (for example, a pulse of VL) may be continuously applied to the light shielding film 59. By doing so, smear and dark current can be reduced.

このように、遮光膜59に読み出しパルスとは逆極性のパルスを常に印加し続ける場合には、読み出しパルスが印加されている期間以外の期間に遮光膜59に印加するパルスの絶対値を、読み出しパルスが印加されている期間に遮光膜59に印加するパルスの絶対値よりも小さく(例えば−2,3V)しておくことが好ましい。このようにすることで、消費電力を低く抑えることができると共に、待機時のスミアを低減することができる   As described above, when a pulse having a polarity opposite to that of the readout pulse is continuously applied to the light shielding film 59, the absolute value of the pulse applied to the light shielding film 59 during a period other than the period during which the readout pulse is applied is read out. It is preferable that the absolute value of the pulse applied to the light shielding film 59 during the period in which the pulse is applied is smaller (for example, −2, 3 V). By doing so, power consumption can be kept low and smear during standby can be reduced.

又、以上の説明では、読み出しパルスが印加されている期間中に遮光膜59に印加するパルスをVLのパルスとしているが、このパルスは、読み出しパルスと逆極性のパルスであれば良く、その絶対値はいくらであっても良い。例えば−2Vや−3Vでも構わない。上述したように、遮光膜59に印加するパルスをVLのパルスとすることで、遮光膜59に印加するパルスを生成するドライバと、電荷転送電極に印加するパルスを生成するドライバとを共通化することができ、コスト削減が可能となる。   In the above description, the pulse applied to the light shielding film 59 during the period in which the readout pulse is applied is a VL pulse. However, this pulse may be a pulse having a polarity opposite to that of the readout pulse. Any value is acceptable. For example, -2V or -3V may be used. As described above, by making the pulse applied to the light shielding film 59 a VL pulse, the driver that generates the pulse applied to the light shielding film 59 and the driver that generates the pulse applied to the charge transfer electrode are shared. Cost reduction.

又、以上の説明では、読み出しパルスの印加と遮光膜59へのVLのパルスの印加とを同時に行っているが、遮光膜59に印加するVLのパルスの立ち上がり又は立ち下がりにおいて、VLのパルスを読み出しパルスと時間差をつけて印加しても構わない。このようにすることで、遮光膜59及び電荷転送電極間に急に電界がかかるのを防ぐことができる。又、図4に示す固体撮像素子の場合には、図8の括弧内に図示したように、電荷転送電極V1への読み出しパルス印加開始から、電荷転送電極V3への読み出しパルス印加終了までの期間、遮光膜59にVLのパルスを印加し続けるようにしても良い。   In the above description, the read pulse and the VL pulse are simultaneously applied to the light shielding film 59. However, at the rising or falling of the VL pulse applied to the light shielding film 59, the VL pulse is applied. It may be applied with a time difference from the readout pulse. By doing so, it is possible to prevent an electric field from being suddenly applied between the light shielding film 59 and the charge transfer electrode. In the case of the solid-state imaging device shown in FIG. 4, as shown in parentheses in FIG. 8, the period from the start of applying the read pulse to the charge transfer electrode V1 to the end of applying the read pulse to the charge transfer electrode V3. The VL pulse may be continuously applied to the light shielding film 59.

又、図5に示すように、遮光膜59は素子分離層56も覆っているため、上述した駆動を行うことで、隣接する垂直電荷転送部52同士の間でのブルーミングや、電荷読み出し時のブルーミングを抑制する効果も得られる。   Further, as shown in FIG. 5, since the light shielding film 59 also covers the element isolation layer 56, by performing the above-described driving, blooming between adjacent vertical charge transfer units 52 and charge reading are performed. An effect of suppressing blooming is also obtained.

(第二実施形態)
図9は、図5に示す固体撮像素子の変形例を示す図である。
図9に示す固体撮像素子は、図5に示す固体撮像素子の絶縁膜58内に、窒化珪素(SiN)等からなる反射防止膜61を埋設した構成となっている。反射防止膜61には、固体撮像素子の製造工程であるシンターリング工程において水素の通り道とするための開口が設けられている。
(Second embodiment)
FIG. 9 is a diagram showing a modification of the solid-state imaging device shown in FIG.
The solid-state imaging device shown in FIG. 9 has a configuration in which an antireflection film 61 made of silicon nitride (SiN) or the like is embedded in the insulating film 58 of the solid-state imaging device shown in FIG. The antireflection film 61 is provided with an opening for passing hydrogen in a sintering process, which is a manufacturing process of a solid-state imaging device.

反射防止膜61を設けることで、光電変換素子51表面での入射光の乱反射を抑えることができるため、感度を向上させることができる。   By providing the antireflection film 61, irregular reflection of incident light on the surface of the photoelectric conversion element 51 can be suppressed, so that sensitivity can be improved.

尚、図9には図示していないが、電荷転送電極V2には他の電荷転送電極が隣接して設けられており、これらは酸化珪素等の電極間絶縁膜によって絶縁されている。又、各電荷転送電極と遮光膜59との間には、該電極間絶縁膜と反射防止膜61とが存在する。このため、遮光膜59と各電荷転送電極との距離は、隣接する2つの電荷転送電極間の距離よりも大きくなっており、反射防止膜61を設けることで、遮光膜59と電荷転送電極間の耐圧を、電荷転送電極間の耐圧よりも上げることができる。又、窒化珪素は、酸化珪素よりも耐圧が遥かに高いため、このような理由からも、遮光膜59と電荷転送電極間の耐圧を、電荷転送電極同士の間の耐圧よりも上げることができる。   Although not shown in FIG. 9, another charge transfer electrode is provided adjacent to the charge transfer electrode V2, and these are insulated by an interelectrode insulating film such as silicon oxide. In addition, the inter-electrode insulating film and the antireflection film 61 exist between each charge transfer electrode and the light shielding film 59. For this reason, the distance between the light shielding film 59 and each charge transfer electrode is larger than the distance between two adjacent charge transfer electrodes. By providing the antireflection film 61, the distance between the light shielding film 59 and the charge transfer electrodes is increased. Can be higher than the voltage between the charge transfer electrodes. In addition, since silicon nitride has a much higher breakdown voltage than silicon oxide, for this reason, the breakdown voltage between the light shielding film 59 and the charge transfer electrode can be higher than the breakdown voltage between the charge transfer electrodes. .

本発明の第一実施形態を説明するための撮像装置の一例であるデジタルカメラの概略構成を示す図The figure which shows schematic structure of the digital camera which is an example of the imaging device for demonstrating 1st embodiment of this invention. 図1に示すデジタルカメラに搭載される固体撮像素子の構成例を示す平面模式図FIG. 1 is a schematic plan view showing a configuration example of a solid-state imaging device mounted on the digital camera shown in FIG. 図1に示すデジタルカメラに搭載される固体撮像素子の別の構成例を示す平面模式図The plane schematic diagram which shows another structural example of the solid-state image sensor mounted in the digital camera shown in FIG. 図1に示すデジタルカメラに搭載される固体撮像素子の別の構成例を示す平面模式図The plane schematic diagram which shows another structural example of the solid-state image sensor mounted in the digital camera shown in FIG. 図2及び図3及び図4のA−A線断面模式図A cross-sectional schematic view taken along line AA in FIGS. 2, 3, and 4. 図2に示す固体撮像素子の駆動タイミングチャートを示す図The figure which shows the drive timing chart of the solid-state image sensor shown in FIG. 図3に示す固体撮像素子の駆動タイミングチャートを示す図The figure which shows the drive timing chart of the solid-state image sensor shown in FIG. 図4に示す固体撮像素子の駆動タイミングチャートを示す図The figure which shows the drive timing chart of the solid-state image sensor shown in FIG. 図5に示す固体撮像素子の変形例(第二実施形態)を示す図The figure which shows the modification (2nd embodiment) of the solid-state image sensor shown in FIG.

符号の説明Explanation of symbols

5 固体撮像素子
10 撮像素子駆動部
51 光電変換素子
52 電荷転送チャネル
59 遮光膜
62 絶縁膜
V1〜V3 電荷転送電極
DESCRIPTION OF SYMBOLS 5 Solid-state image sensor 10 Image sensor drive part 51 Photoelectric conversion element 52 Charge transfer channel 59 Light-shielding film 62 Insulating film V1-V3 Charge transfer electrode

Claims (18)

半導体基板内に形成された光電変換素子と、前記半導体基板内に形成され前記光電変換素子で発生した電荷を転送する電荷転送チャネルと、前記電荷転送チャネル上方に絶縁膜を介して形成された電荷転送電極とを含む固体撮像素子を有する撮像装置であって、
前記電荷転送電極が前記光電変換素子から前記電荷転送チャネルに電荷を読み出すための読み出しパルスが印加される読み出し電極を含み、
前記固体撮像素子が、前記半導体基板及び前記電荷転送電極の上方に形成され、前記光電変換素子上方に開口を有する導電性の遮光膜を含み、
少なくとも前記読み出し電極に前記読み出しパルスを印加する期間、前記読み出しパルスとは逆極性の電圧を前記遮光膜に印加する電圧印加手段を備える撮像装置。
A photoelectric conversion element formed in a semiconductor substrate, a charge transfer channel formed in the semiconductor substrate for transferring charges generated by the photoelectric conversion element, and a charge formed above the charge transfer channel via an insulating film An imaging apparatus having a solid-state imaging device including a transfer electrode,
The charge transfer electrode includes a read electrode to which a read pulse for reading charge from the photoelectric conversion element to the charge transfer channel is applied;
The solid-state imaging device includes a conductive light-shielding film formed above the semiconductor substrate and the charge transfer electrode and having an opening above the photoelectric conversion device;
An imaging apparatus comprising: a voltage applying unit that applies a voltage having a polarity opposite to that of the readout pulse to the light shielding film during a period in which the readout pulse is applied to at least the readout electrode.
請求項1記載の撮像装置であって、
前記電圧印加手段が、前記読み出しパルスを印加する期間以外の期間にも前記読み出しパルスとは逆極性の電圧を前記遮光膜に印加する撮像装置。
The imaging apparatus according to claim 1,
The imaging apparatus in which the voltage applying unit applies a voltage having a polarity opposite to that of the readout pulse to the light shielding film during a period other than the period of applying the readout pulse.
請求項2記載の撮像装置であって、
前記電圧印加手段が、前記読み出しパルスを印加する期間以外の期間では、前記読み出しパルスを印加する期間に前記遮光膜に印加する電圧よりも絶対値が小さい電圧を前記遮光膜に印加する撮像装置。
The imaging apparatus according to claim 2,
The imaging apparatus in which the voltage application unit applies a voltage having a smaller absolute value to the light shielding film than a voltage applied to the light shielding film during a period during which the readout pulse is applied during a period other than the period during which the readout pulse is applied.
請求項1〜3のいずれか1項記載の撮像装置であって、
前記電荷転送電極には前記電荷転送チャネルに電荷を蓄積するパケットを形成するための第一の電圧と、前記電荷転送チャネルに前記パケット同士のバリアを形成するための前記第一の電圧よりも低い第二の電圧とが印加可能であり、
前記読み出しパルスを印加する期間に前記遮光膜に印加する電圧が前記第二の電圧と同じである撮像装置。
The imaging apparatus according to any one of claims 1 to 3,
The charge transfer electrode has a first voltage for forming a packet for accumulating charges in the charge transfer channel and lower than the first voltage for forming a barrier between the packets in the charge transfer channel. A second voltage can be applied,
An imaging apparatus in which a voltage applied to the light shielding film during the period of applying the readout pulse is the same as the second voltage.
請求項1〜4のいずれか1項記載の撮像装置であって、
前記遮光膜と前記電荷転送電極との距離が、隣接する2つの前記電荷転送電極間の距離よりも大きい撮像装置。
The imaging apparatus according to any one of claims 1 to 4,
An imaging apparatus in which a distance between the light shielding film and the charge transfer electrode is larger than a distance between two adjacent charge transfer electrodes.
請求項5記載の撮像装置であって、
前記遮光膜と前記電荷転送電極との間には、隣接する2つの前記電荷転送電極間より耐圧の高い材料の膜が含まれている撮像装置。
The imaging apparatus according to claim 5, wherein
An imaging device in which a film having a higher withstand voltage than that between two adjacent charge transfer electrodes is included between the light shielding film and the charge transfer electrode.
請求項6記載の撮像装置であって、
前記耐圧の高い材料が窒化珪素である撮像装置。
The imaging apparatus according to claim 6,
An imaging device in which the material having a high breakdown voltage is silicon nitride.
請求項1〜7のいずれか1項記載の撮像装置であって、
前記遮光膜が、平面視において前記光電変換素子と重なりを有している撮像装置。
The imaging device according to any one of claims 1 to 7,
An imaging apparatus in which the light shielding film has an overlap with the photoelectric conversion element in plan view.
請求項1〜8のいずれか1項記載の撮像装置であって、
前記固体撮像素子が、前記光電変換素子から前記電荷転送チャネルに電荷を読み出すときに、前記電荷転送チャネルに電荷を蓄積するパケットのバリアを形成するための電圧が印加される前記電荷転送電極と、前記読み出しパルスが印加される前記読み出し電極との間に、前記パケットを形成するための電圧が印加される前記電荷転送電極が1つだけ存在するような構成の固体撮像素子である撮像装置。
The imaging apparatus according to any one of claims 1 to 8,
The charge transfer electrode to which a voltage for forming a barrier of a packet for accumulating charge in the charge transfer channel is applied when the solid-state imaging device reads out charge from the photoelectric conversion device to the charge transfer channel; An imaging apparatus, which is a solid-state imaging device having a configuration in which only one charge transfer electrode to which a voltage for forming the packet is applied exists between the readout electrode to which the readout pulse is applied.
半導体基板内に形成された光電変換素子と、前記半導体基板内に形成され前記光電変換素子で発生した電荷を転送する電荷転送チャネルと、前記電荷転送チャネル上方に絶縁膜を介して形成された電荷転送電極とを含む固体撮像素子の駆動方法であって、
前記電荷転送電極が前記光電変換素子から前記電荷転送チャネルに電荷を読み出すための読み出しパルスが印加される読み出し電極を含み、
前記固体撮像素子が、前記半導体基板及び前記電荷転送電極の上方に形成され、前記光電変換素子上方に開口を有する導電性の遮光膜を含み、
少なくとも前記読み出し電極に前記読み出しパルスを印加する期間、前記読み出しパルスとは逆極性の電圧を前記遮光膜に印加する固体撮像素子の駆動方法。
A photoelectric conversion element formed in a semiconductor substrate, a charge transfer channel formed in the semiconductor substrate for transferring charges generated by the photoelectric conversion element, and a charge formed above the charge transfer channel via an insulating film A solid-state imaging device driving method including a transfer electrode,
The charge transfer electrode includes a read electrode to which a read pulse for reading charge from the photoelectric conversion element to the charge transfer channel is applied;
The solid-state imaging device includes a conductive light-shielding film formed above the semiconductor substrate and the charge transfer electrode and having an opening above the photoelectric conversion device;
A method for driving a solid-state imaging device, wherein a voltage having a polarity opposite to that of the readout pulse is applied to the light shielding film at least during a period in which the readout pulse is applied to the readout electrode.
請求項10記載の固体撮像素子の駆動方法であって、
前記読み出しパルスを印加する期間以外の期間にも前記読み出しパルスとは逆極性の電圧を前記遮光膜に印加する固体撮像素子の駆動方法。
A method for driving a solid-state imaging device according to claim 10,
A method for driving a solid-state imaging device, wherein a voltage having a polarity opposite to that of the readout pulse is applied to the light shielding film during a period other than the period during which the readout pulse is applied.
請求項11記載の固体撮像素子の駆動方法であって、
前記読み出しパルスを印加する期間以外の期間では、前記読み出しパルスを印加する期間に前記遮光膜に印加する電圧よりも絶対値が小さい電圧を前記遮光膜に印加する固体撮像素子の駆動方法。
It is a drive method of the solid-state image sensing device according to claim 11,
A method for driving a solid-state imaging element, wherein a voltage having an absolute value smaller than a voltage applied to the light-shielding film is applied to the light-shielding film during a period other than the period during which the readout pulse is applied.
請求項10〜12のいずれか1項記載の固体撮像素子の駆動方法であって、
前記電荷転送電極には前記電荷転送チャネルに電荷を蓄積するパケットを形成するための第一の電圧と、前記電荷転送チャネルに前記パケット同士のバリアを形成するための第二の電圧とが印加可能であり、
前記読み出しパルスを印加する期間に前記遮光膜に印加する電圧が前記第二の電圧と同じである固体撮像素子の駆動方法。
A method for driving a solid-state imaging device according to any one of claims 10 to 12,
A first voltage for forming a packet for accumulating charges in the charge transfer channel and a second voltage for forming a barrier between the packets in the charge transfer channel can be applied to the charge transfer electrode. And
A solid-state imaging device driving method, wherein a voltage applied to the light-shielding film during the period of applying the readout pulse is the same as the second voltage.
請求項10〜13のいずれか1項記載の固体撮像素子の駆動方法であって、
前記遮光膜と前記電荷転送電極との距離が、隣接する2つの前記電荷転送電極間の距離よりも大きい固体撮像素子の駆動方法。
It is a drive method of the solid-state image sensing device according to any one of claims 10 to 13,
A method for driving a solid-state imaging device, wherein a distance between the light shielding film and the charge transfer electrode is larger than a distance between two adjacent charge transfer electrodes.
請求項14記載の固体撮像素子の駆動方法であって、
前記遮光膜と前記電荷転送電極との間には、隣接する2つの前記電荷転送電極間より耐圧の高い材料の膜が含まれている固体撮像素子の駆動方法。
The solid-state imaging device driving method according to claim 14,
A method for driving a solid-state imaging device, wherein a film of a material having a higher withstand voltage is included between the light shielding film and the charge transfer electrode than between the two adjacent charge transfer electrodes.
請求項15記載の固体撮像素子の駆動方法であって、
前記耐圧の高い材料が窒化珪素である固体撮像素子の駆動方法。
A method for driving a solid-state imaging device according to claim 15,
A method for driving a solid-state imaging device, wherein the material having a high breakdown voltage is silicon nitride.
請求項10〜16のいずれか1項記載の固体撮像素子の駆動方法であって、
前記遮光膜が、平面視において前記光電変換素子と重なりを有している固体撮像素子の駆動方法。
A driving method of a solid-state imaging device according to any one of claims 10 to 16,
A method for driving a solid-state imaging element, wherein the light-shielding film overlaps the photoelectric conversion element in plan view.
請求項10〜17のいずれか1項記載の固体撮像素子の駆動方法であって、
前記固体撮像素子が、前記光電変換素子から電荷を前記電荷転送チャネルに読み出すときに、前記電荷転送チャネルに電荷を蓄積するパケットのバリアを形成するための電圧が印加される前記電荷転送電極と、前記読み出しパルスが印加される前記読み出し電極との間に、前記パケットを形成するための電圧が印加される前記電荷転送電極が1つだけ存在するような構成の固体撮像素子である
固体撮像素子の駆動方法。
A method for driving a solid-state imaging device according to any one of claims 10 to 17,
The charge transfer electrode to which a voltage for forming a barrier of a packet for accumulating charge in the charge transfer channel is applied when the solid-state imaging device reads out charge from the photoelectric conversion device to the charge transfer channel; A solid-state imaging device, which is a solid-state imaging device having a configuration in which only one charge transfer electrode to which a voltage for forming the packet is applied exists between the readout electrode to which the readout pulse is applied. Driving method.
JP2008015110A 2008-01-25 2008-01-25 Imaging apparatus and driving method of solid-state imaging device Withdrawn JP2009177009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008015110A JP2009177009A (en) 2008-01-25 2008-01-25 Imaging apparatus and driving method of solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008015110A JP2009177009A (en) 2008-01-25 2008-01-25 Imaging apparatus and driving method of solid-state imaging device

Publications (1)

Publication Number Publication Date
JP2009177009A true JP2009177009A (en) 2009-08-06

Family

ID=41031787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008015110A Withdrawn JP2009177009A (en) 2008-01-25 2008-01-25 Imaging apparatus and driving method of solid-state imaging device

Country Status (1)

Country Link
JP (1) JP2009177009A (en)

Similar Documents

Publication Publication Date Title
US8810703B2 (en) Solid-state image pickup device, driving method of solid-state image pickup device, and electronic device
TWI504256B (en) Solid-state imaging device, signal processing method of solid-state imaging device, and electronic apparatus
JP4774311B2 (en) Solid-state imaging device, driving method thereof, and imaging apparatus
US8908070B2 (en) Solid state imaging device and digital camera
JP2013033896A (en) Imaging element, drive method for imaging element, manufacturing method for imaging element, and electronic apparatus
CN107408566B (en) Solid-state imaging device and electronic apparatus
KR20150002593A (en) Solid-state imaging device and electronic device
WO2012144196A1 (en) Solid-state imaging device
JP2008228265A (en) Imaging apparatus
KR20120139553A (en) Imaging device, driving method and electronic apparatus
JP2024040460A (en) Imaging device
JP2009070912A (en) Solid-state imaging element and imaging apparatus
JP2009088706A (en) Imaging apparatus, and method for driving solid-state imaging element
JP2006120966A (en) Solid-state imaging device
JP6532265B2 (en) Imaging device
WO2011105018A1 (en) Solid-state imaging device and camera system
JP2006210680A (en) Solid-state imaging element
JPWO2020054162A1 (en) Imaging device and imaging method
JP2009177009A (en) Imaging apparatus and driving method of solid-state imaging device
JP2007201092A (en) Solid state imaging element and its driving method
WO2023079795A1 (en) Imaging device
JP4001904B2 (en) Driving method of solid-state imaging device
JP2009177601A (en) Imaging apparatus
JP2011211121A (en) Solid-state imaging element, imaging device, method of driving solid-state imaging element, and method of manufacturing solid-state imaging element
JP5211072B2 (en) Driving method of solid-state imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100707

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110606