JP2011211121A - Solid-state imaging element, imaging device, method of driving solid-state imaging element, and method of manufacturing solid-state imaging element - Google Patents

Solid-state imaging element, imaging device, method of driving solid-state imaging element, and method of manufacturing solid-state imaging element Download PDF

Info

Publication number
JP2011211121A
JP2011211121A JP2010079908A JP2010079908A JP2011211121A JP 2011211121 A JP2011211121 A JP 2011211121A JP 2010079908 A JP2010079908 A JP 2010079908A JP 2010079908 A JP2010079908 A JP 2010079908A JP 2011211121 A JP2011211121 A JP 2011211121A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
solid
conversion element
state imaging
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010079908A
Other languages
Japanese (ja)
Inventor
Tatsuya Hagiwara
達也 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010079908A priority Critical patent/JP2011211121A/en
Publication of JP2011211121A publication Critical patent/JP2011211121A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid-state imaging element that reduces smears caused by leakage of electric charge generated on a surface of a photoelectric conversion element to a charge transfer portion.SOLUTION: The solid-state imaging element 5 including a plurality of photoelectric conversion elements formed in a semiconductor substrate 56 and the charge transfer portion 53 for transferring electric charge generated by the respective photoelectric conversion elements is equipped with a charge discharge portion (n-type silicon substrate 56) provided below the respective photoelectric conversion element and discharging electric charges accumulated in charge storage portions 60 of the respective photoelectric conversion elements. The plurality of photoelectric conversion elements are divided into photoelectric conversion elements 51 and photoelectric conversion elements 52, and a height of a first potential barrier between a charge storage portion 60 of a photoelectric conversion element 51 and the charge discharge portion below the photoelectric conversion element 51 is lower than a height of a second potential barrier between a charge storage portion 60 of a photoelectric conversion element 52 and the charge discharge portion below the photoelectric conversion element 52.

Description

本発明は、固体撮像素子、撮像装置、固体撮像素子の駆動方法、及び固体撮像素子の製造方法に関する。   The present invention relates to a solid-state imaging device, an imaging apparatus, a solid-state imaging device driving method, and a solid-state imaging device manufacturing method.

CCD(Charge Coupled Device)型の固体撮像素子では、光電変換素子の表面で発生した電荷が、その光電変換素子から電荷が読み出される垂直電荷転送部及びその光電変換素子から電荷が読み出されない隣の垂直電荷転送部に漏れこむことに起因してスミアが発生する。このスミアは、近年の固体撮像素子の多画素化、微細化、高感度化によって無視できないものとなってきている。特に、このスミアは、光電変換素子の表面で発生するノイズ電荷が原因であるため、画素数(光電変換素子数)1000万画素以上が当たり前となってきている近年では、スミアをいかに抑制するかが、画質向上の上で重要となっている。   In a CCD (Charge Coupled Device) type solid-state imaging device, a charge generated on the surface of the photoelectric conversion element is a vertical charge transfer unit from which the charge is read from the photoelectric conversion element, and an adjacent charge from which the charge is not read from the photoelectric conversion element. Smear occurs due to leakage into the vertical charge transfer section. This smear has become non-negligible due to the recent increase in the number of pixels, miniaturization, and high sensitivity of solid-state imaging devices. In particular, since this smear is caused by noise charges generated on the surface of the photoelectric conversion element, in recent years when the number of pixels (the number of photoelectric conversion elements) of 10 million pixels or more has become commonplace, how is smear suppressed? However, it is important to improve image quality.

固体撮像素子において動画撮像と静止画撮像を行う場合を考える。動画撮像時には、高速処理を行うために静止画撮像時よりは信号を読み出す画素数を減らす所謂間引き読み出しが実施される。このため、動画撮像時には、動画に使用する信号を出力する画素よりも、動画に使用しない信号を出力する不要画素の方が大幅に多くなる。   Consider a case in which moving image capturing and still image capturing are performed in a solid-state image sensor. At the time of moving image capturing, so-called thinning-out reading is performed in which the number of pixels from which signals are read out is reduced in order to perform high-speed processing, compared with still image capturing. For this reason, at the time of moving image capturing, the number of unnecessary pixels that output signals that are not used for moving images is significantly greater than the pixels that output signals used for moving images.

前述したように、光電変換素子の表面はスミアの発生源になるため、不要画素が多くなると、動画に使用しない画素で発生するスミアによって、動画に使用する信号に影響が出てしまう。特に、動画撮像時には、固体撮像素子に光が入射し続けるため、スミアが増大し、画質への影響は大きい。また、1000万画素以上の固体撮像素子になると、上記不要画素の数も当然増えるため、スミアは更に増大する。画素数を減らせば、スミアを減らすことは可能であるが、これでは多画素化の流れに逆行することになり、ユーザの望む機能を持った撮像装置を提供することができない。   As described above, since the surface of the photoelectric conversion element becomes a smear generation source, if the number of unnecessary pixels increases, smear generated in pixels not used in the moving image affects the signal used in the moving image. In particular, when moving images are picked up, light continues to enter the solid-state image sensor, so that smear increases and the influence on image quality is great. In addition, when the solid-state imaging device has 10 million pixels or more, the number of unnecessary pixels naturally increases, so that smear further increases. If the number of pixels is reduced, it is possible to reduce smear. However, this will go against the trend of increasing the number of pixels, and an imaging device having a function desired by the user cannot be provided.

特許文献1には、電荷転送期間において半導体基板に印加するオーバーフロードレイン(OFD)電圧を、電荷を蓄積している期間中よりも大きくして、電荷転送時に垂直電荷転送部に入り込むノイズ電荷を低減する撮像装置が開示されている。   In Patent Document 1, the overflow drain (OFD) voltage applied to the semiconductor substrate during the charge transfer period is made larger than during the charge accumulation period to reduce noise charges that enter the vertical charge transfer unit during charge transfer. An imaging apparatus is disclosed.

しかし、特許文献1に記載の方法であっても、動画撮像時において不要画素で発生するスミアを低減することはできない。   However, even with the method described in Patent Document 1, it is not possible to reduce smear that occurs in unnecessary pixels during moving image capturing.

特許文献2には、電荷蓄積期間のOFD電圧を変化させることで、垂直電荷転送部に過剰電荷が漏れ出すのを防ぐ方法が開示されているが、上述した光電変換素子表面で発生する電荷によるスミアの低減ができるものではない。   Patent Document 2 discloses a method for preventing excess charges from leaking to the vertical charge transfer unit by changing the OFD voltage during the charge accumulation period. It is not possible to reduce smear.

特開2000−101060号公報JP 2000-101060 A 特開平4−74073号公報JP-A-4-74073

本発明は、上記事情に鑑みてなされたものであり、光電変換素子表面で発生する電荷が電荷転送部に漏れ出すことに起因するスミアを低減することが可能な固体撮像素子、撮像装置、固体撮像素子の駆動方法、及び固体撮像素子の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is capable of reducing smear caused by leakage of charges generated on the surface of the photoelectric conversion element to the charge transfer unit. An object of the present invention is to provide a method for driving an image sensor and a method for manufacturing a solid-state image sensor.

本発明の固体撮像素子は、半導体基板内に形成された複数の光電変換素子と、前記各光電変換素子で発生した電荷を転送する電荷転送部とを含む固体撮像素子であって、前記各光電変換素子の下方に設けられた、前記各光電変換素子の電荷蓄積部に蓄積された電荷を排出する電荷排出部を備え、前記複数の光電変換素子は、第一の光電変換素子と第二の光電変換素子に分けられ、前記第一の光電変換素子の前記電荷蓄積部と当該第一の光電変換素子下方の前記電荷排出部との間の第一のポテンシャル障壁の高さが、前記第二の光電変換素子の前記電荷蓄積部と当該第二の光電変換素子下方の前記電荷排出部との間の第二のポテンシャル障壁の高さよりも低くなっているものである。   The solid-state imaging device of the present invention is a solid-state imaging device including a plurality of photoelectric conversion elements formed in a semiconductor substrate and a charge transfer unit that transfers charges generated in the photoelectric conversion elements. A charge discharging unit provided below the conversion element for discharging the charge stored in the charge storage unit of each photoelectric conversion element, wherein the plurality of photoelectric conversion elements include a first photoelectric conversion element and a second photoelectric conversion element; Divided into photoelectric conversion elements, the height of the first potential barrier between the charge storage part of the first photoelectric conversion element and the charge discharge part below the first photoelectric conversion element is the second The height of the second potential barrier between the charge storage part of the photoelectric conversion element and the charge discharge part below the second photoelectric conversion element is lower.

本発明の固体撮像素子の駆動方法は、前記固体撮像素子の駆動方法であって、前記固体撮像素子の全ての前記光電変換素子から信号を読み出す通常駆動と、前記固体撮像素子の前記第二の光電変換素子のみから信号を読み出す間引き駆動とを行う駆動ステップを備えるものである。   The solid-state imaging device driving method of the present invention is the solid-state imaging device driving method, wherein the solid-state imaging device reads out signals from all the photoelectric conversion elements of the solid-state imaging device, and the solid-state imaging device has the second driving method. A driving step for performing thinning driving for reading a signal only from the photoelectric conversion element is provided.

本発明の撮像装置は、前記固体撮像素子と、前記固体撮像素子の全ての前記光電変換素子から信号を読み出す通常駆動と、前記固体撮像素子の前記第二の光電変換素子のみから信号を読み出す間引き駆動とを行う駆動部を備えるものである。   The imaging apparatus of the present invention includes the solid-state imaging device, normal driving for reading signals from all the photoelectric conversion elements of the solid-state imaging device, and thinning-out for reading signals only from the second photoelectric conversion elements of the solid-state imaging device. A drive unit that performs driving is provided.

本発明の固体撮像素子の製造方法は、前記固体撮像素子の製造方法であって、前記半導体基板内の前記第一の光電変換素子を形成すべき領域下方の領域に前記半導体基板とは反対導電型の不純物を第一の注入量で注入するステップと、前記半導体基板内の前記第二の光電変換素子を形成すべき領域下方の領域に前記反対導電型の不純物を前記第一の注入量よりも多い第二の注入量で注入するステップとを備えるものである。   The method for manufacturing a solid-state imaging device according to the present invention is a method for manufacturing the solid-state imaging device, wherein a conductive material opposite to the semiconductor substrate is formed in a region below the region in which the first photoelectric conversion element is to be formed in the semiconductor substrate. And implanting the opposite conductivity type impurity in a region below the region where the second photoelectric conversion element is to be formed in the semiconductor substrate from the first implantation amount. And a step of injecting with a large second injection amount.

本発明の固体撮像素子の製造方法は、前記固体撮像素子の製造方法であって、前記半導体基板内の前記第一の光電変換素子及び前記第二の光電変換素子を形成すべき領域下方の領域に、前記半導体基板とは反対導電型の不純物を注入するステップと、前記ステップの後、前記半導体基板内の前記第二の光電変換素子を形成すべき領域下方の領域に前記反対導電型の不純物を注入するステップとを備えるものである。   The method for manufacturing a solid-state imaging device according to the present invention is a method for manufacturing the solid-state imaging device, wherein the region under the region in which the first photoelectric conversion device and the second photoelectric conversion device are to be formed in the semiconductor substrate. A step of implanting an impurity having a conductivity type opposite to that of the semiconductor substrate; and after the step, an impurity having a conductivity type opposite to that of the semiconductor substrate in a region below the region where the second photoelectric conversion element is to be formed. And injecting.

本発明の固体撮像素子の製造方法は、前記固体撮像素子の製造方法であって、前記半導体基板内の前記第一の光電変換素子及び前記第二の光電変換素子を形成すべき領域下方の領域に、前記半導体基板とは反対導電型の不純物を注入するステップと、前記ステップの後、前記半導体基板内の前記第一の光電変換素子を形成すべき領域下方の領域に前記半導体基板と同じ導電型の不純物を注入するステップとを備えるものである。   The method for manufacturing a solid-state imaging device according to the present invention is a method for manufacturing the solid-state imaging device, wherein the region under the region in which the first photoelectric conversion device and the second photoelectric conversion device are to be formed in the semiconductor substrate. A step of implanting an impurity having a conductivity type opposite to that of the semiconductor substrate; and after the step, in the region under the region where the first photoelectric conversion element is to be formed in the semiconductor substrate, the same conductivity as the semiconductor substrate is formed. Injecting a mold type impurity.

本発明によれば、光電変換素子表面で発生する電荷が電荷転送部に漏れ出すことに起因するスミアを低減することが可能な固体撮像素子、撮像装置、固体撮像素子の駆動方法、及び固体撮像素子の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the solid-state image sensor which can reduce the smear resulting from the electric charge which generate | occur | produces on the photoelectric conversion element surface leaks to an electric charge transfer part, an imaging device, the drive method of a solid-state image sensor, and solid-state imaging An element manufacturing method can be provided.

本発明の一実施形態を説明するための撮像装置の概略構成を示す図The figure which shows schematic structure of the imaging device for describing one Embodiment of this invention 図1に示したデジタルカメラにおける固体撮像素子の概略構成を示す平面模式図FIG. 1 is a schematic plan view showing a schematic configuration of a solid-state image sensor in the digital camera shown in FIG. 図2に示した固体撮像素子における52a−52a線の断面模式図Sectional schematic diagram of the line 52a-52a in the solid-state imaging device shown in FIG. 図2に示した固体撮像素子における51a−51a線の断面模式図Cross-sectional schematic diagram of line 51a-51a in the solid-state imaging device shown in FIG. 図3に示した52b−52b’線断面における基板深さ方向のポテンシャル分布と、図4に示した51b−51b’線断面における基板深さ方向のポテンシャル分布とを併せて示した図FIG. 4 is a diagram showing the potential distribution in the substrate depth direction in the section taken along the line 52b-52b ′ shown in FIG. 3 and the potential distribution in the substrate depth direction in the section taken along the line 51b-51b ′ shown in FIG. 静止画撮像モード時における固体撮像素子のポテンシャル分布を示す図The figure which shows the potential distribution of the solid-state image sensor at the time of still image imaging mode 動画撮像モード時における固体撮像素子のポテンシャル分布を示す図The figure which shows the potential distribution of the solid-state image sensor at the time of animation imaging mode 図7に示した電圧VOFD2を更に大きくした場合のポテンシャル分布を示す図The figure which shows potential distribution when the voltage VOFD2 shown in FIG. 通常駆動専用の光電変換素子と通常間引き兼用の光電変換素子を形成する際のマスクを示す図The figure which shows the mask at the time of forming the photoelectric conversion element only for a normal drive, and the photoelectric conversion element for normal thinning | combining 通常駆動専用の光電変換素子と通常間引き兼用の光電変換素子を形成する際のマスクを示す図The figure which shows the mask at the time of forming the photoelectric conversion element only for a normal drive, and the photoelectric conversion element for normal thinning | combining 図5に示したポテンシャル分布の変形例を示す図The figure which shows the modification of the potential distribution shown in FIG.

以下、本発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の一実施形態を説明するための撮像装置の概略構成を示す図である。撮像装置としては、デジタルカメラ及びデジタルビデオカメラ等の撮像装置、電子内視鏡及びカメラ付携帯電話機等に搭載される撮像モジュール、等があり、ここではデジタルカメラを例にして説明する。   FIG. 1 is a diagram showing a schematic configuration of an imaging apparatus for explaining an embodiment of the present invention. Examples of the imaging device include an imaging device such as a digital camera and a digital video camera, an imaging module mounted on an electronic endoscope, a camera-equipped mobile phone, and the like. Here, a digital camera will be described as an example.

図示するデジタルカメラの撮像系は、撮影レンズ1と、CCD型の固体撮像素子5と、この両者の間に設けられた絞り2と、赤外線カットフィルタ3と、光学ローパスフィルタ4とを備える。   The imaging system of the digital camera shown in the figure includes a photographic lens 1, a CCD type solid-state imaging device 5, a diaphragm 2 provided therebetween, an infrared cut filter 3, and an optical low-pass filter 4.

デジタルカメラの電気制御系全体を統括制御するシステム制御部11は、フラッシュ発光部12及び受光部13を制御し、レンズ駆動部8を制御して撮影レンズ1の位置をフォーカス位置に調整したりズーム調整を行ったりし、絞り駆動部9を介し絞り2の開口量を制御して露光量調整を行う。   A system control unit 11 that performs overall control of the electrical control system of the digital camera controls the flash light emitting unit 12 and the light receiving unit 13 and controls the lens driving unit 8 to adjust the position of the photographing lens 1 to the focus position and zoom. The exposure amount is adjusted by adjusting the aperture amount of the aperture 2 via the aperture drive unit 9.

また、システム制御部11は、撮像素子駆動部10を介して固体撮像素子5を駆動し、撮影レンズ1を通して撮像した被写体像を撮像信号として出力させる。システム制御部11には、操作部14を通してユーザからの指示信号が入力される。   In addition, the system control unit 11 drives the solid-state imaging device 5 via the imaging device driving unit 10 and outputs a subject image captured through the photographing lens 1 as an imaging signal. An instruction signal from the user is input to the system control unit 11 through the operation unit 14.

デジタルカメラの電気制御系は、更に、固体撮像素子5の出力に接続された相関二重サンプリング処理等のアナログ信号処理を行うアナログ信号処理部6と、このアナログ信号処理部6から出力されたRGBの色信号をデジタル信号に変換するA/D変換回路7とを備え、これらはシステム制御部11によって制御される。   The electric control system of the digital camera further includes an analog signal processing unit 6 that performs analog signal processing such as correlated double sampling processing connected to the output of the solid-state imaging device 5, and RGB output from the analog signal processing unit 6. And an A / D conversion circuit 7 for converting the color signals into digital signals, which are controlled by the system control unit 11.

更に、このデジタルカメラの電気制御系は、メインメモリ16と、メインメモリ16に接続されたメモリ制御部15と、補間演算やガンマ補正演算,RGB/YC変換処理等を行って画像データを生成するデジタル信号処理部17と、デジタル信号処理部17で生成された画像データをJPEG形式に圧縮したり圧縮画像データを伸張したりする圧縮伸張処理部18と、着脱自在の記録媒体21が接続される外部メモリ制御部20と、カメラ背面等に搭載された液晶表示部23が接続される表示制御部22とを備える。メモリ制御部15、デジタル信号処理部17、圧縮伸張処理部18、外部メモリ制御部20、及び表示制御部22は、制御バス24及びデータバス25によって相互に接続され、システム制御部11からの指令によって制御される。   Furthermore, the electric control system of this digital camera generates image data by performing main memory 16, memory control unit 15 connected to main memory 16, interpolation calculation, gamma correction calculation, RGB / YC conversion processing, and the like. A digital signal processing unit 17, a compression / decompression processing unit 18 that compresses image data generated by the digital signal processing unit 17 into a JPEG format or expands compressed image data, and a detachable recording medium 21 are connected. An external memory control unit 20 and a display control unit 22 to which a liquid crystal display unit 23 mounted on the back of the camera or the like is connected. The memory control unit 15, the digital signal processing unit 17, the compression / decompression processing unit 18, the external memory control unit 20, and the display control unit 22 are connected to each other by a control bus 24 and a data bus 25, and commands from the system control unit 11. Controlled by.

図2は、図1に示したデジタルカメラにおける固体撮像素子5の概略構成を示す平面模式図である。   FIG. 2 is a schematic plan view showing a schematic configuration of the solid-state imaging device 5 in the digital camera shown in FIG.

固体撮像素子5は、半導体基板の行方向Xとこれに交差する(図の例では直交する)列方向Yに二次元状(図の例では正方格子状)に配列された複数の光電変換素子(51,52)と、複数の垂直電荷転送部(VCCD)53と、水平電荷転送部(HCCD)54と、出力部55とを備える。   The solid-state imaging device 5 includes a plurality of photoelectric conversion elements arranged in a two-dimensional shape (square lattice shape in the example) in a row direction X of the semiconductor substrate and in a column direction Y that intersects (orthogonally in the example in the drawing). (51, 52), a plurality of vertical charge transfer units (VCCD) 53, a horizontal charge transfer unit (HCCD) 54, and an output unit 55.

固体撮像素子5は、全ての光電変換素子から信号を読み出す通常駆動と、全ての光電変換素子の一部から信号を読み出す間引き駆動とが可能となっている。間引き駆動は、例えば、動画撮像時において実施され、通常駆動は例えば静止画撮像において実施される。これらの駆動は、撮像素子駆動部10が実施する。間引き駆動は、動画撮像時に限らず、例えば静止画撮像時において解像度を落とした撮像を行うときに実施することもある。   The solid-state imaging device 5 can perform normal driving for reading signals from all the photoelectric conversion elements and thinning driving for reading signals from some of all the photoelectric conversion elements. The thinning drive is performed at the time of moving image capturing, for example, and the normal drive is performed at, for example, still image capturing. These driving operations are performed by the image sensor driving unit 10. The thinning drive is not limited to the time of moving image capturing, and may be performed, for example, when performing image capturing with reduced resolution during still image capturing.

このように、固体撮像素子5は通常駆動と間引き駆動が可能となっているため、複数の光電変換素子は、通常駆動時と間引き駆動時の両方で信号が読み出されるものと、通常駆動時にしか信号が読み出されないものとの2種類に分けることができる。   As described above, since the solid-state imaging device 5 can perform normal driving and thinning driving, a plurality of photoelectric conversion elements can read signals both during normal driving and during thinning driving, and only during normal driving. It can be divided into two types, that is, a signal that is not read out.

図2の例では、通常駆動時と間引き駆動時の両方で信号が読み出される光電変換素子を光電変換素子52(網掛けを付してある)とし、通常駆動時にしか信号が読み出されない光電変換素子を光電変換素子51としている。以下では、光電変換素子51を通常駆動専用の光電変換素子51ともいい、光電変換素子52を通常間引き兼用の光電変換素子52ともいう。   In the example of FIG. 2, a photoelectric conversion element 52 (shaded) is used as a photoelectric conversion element from which a signal is read out during both normal driving and thinning driving, and photoelectric conversion in which a signal is read only during normal driving. The element is a photoelectric conversion element 51. Hereinafter, the photoelectric conversion element 51 is also referred to as a normal drive dedicated photoelectric conversion element 51, and the photoelectric conversion element 52 is also referred to as a normal thinning-out photoelectric conversion element 52.

図2では、複数の光電変換素子の上方にはベイヤ状にカラーフィルタが配置されている例を示している。赤色の光を透過するカラーフィルタを上方に持つ光電変換素子には“R”の文字を付し、緑色の光を透過するカラーフィルタを上方に持つ光電変換素子には“G”の文字を付し、青色の光を透過するカラーフィルタを上方に持つ光電変換素子には“B”の文字を付してある。   FIG. 2 shows an example in which color filters are arranged in a Bayer shape above a plurality of photoelectric conversion elements. The letter “R” is attached to the photoelectric conversion element having a color filter that transmits red light above, and the letter “G” is attached to the photoelectric conversion element having a color filter that transmits green light above. A photoelectric conversion element having a color filter that transmits blue light on the upper side is marked with a letter “B”.

この固体撮像素子5では、間引き駆動時に得られる信号でカラー画像を生成できるように、行方向Xに並ぶ複数の光電変換素子からなる光電変換素子行のうち、2つの光電変換素子行おきに通常間引き兼用の光電変換素子52を配置し、残りの光電変換素子行に通常駆動専用の光電変換素子51を配置している。なお、通常駆動専用の光電変換素子51と通常間引き兼用の光電変換素子52の配置はこれに限定されない。間引き駆動の仕方によって、最適な数の光電変換素子52を配置しておけばよい。   In this solid-state imaging device 5, every two photoelectric conversion element rows among the photoelectric conversion element rows composed of a plurality of photoelectric conversion elements arranged in the row direction X are usually used so that a color image can be generated with a signal obtained at the time of thinning driving. The thinning-out photoelectric conversion elements 52 are arranged, and the photoelectric conversion elements 51 dedicated for normal driving are arranged in the remaining photoelectric conversion element rows. The arrangement of the photoelectric conversion element 51 dedicated for normal driving and the photoelectric conversion element 52 for normal thinning-out is not limited to this. The optimum number of photoelectric conversion elements 52 may be arranged according to the thinning driving method.

例えば、現在のデジタルカメラは、光電変換素子の数が1000万個以上のものが主流であるが、動画撮像時には、VGAサイズを取得するときで480×640=30万個強の光電変換素子から信号を読み出せば十分である。また、HD動画を撮る場合であっても、720×1280=92万個強の光電変換素子から信号を読み出せば十分である。また、フルHD動画を撮る場合であっても、1080×1920=200万個強の光電変換素子から信号を読み出せば十分である。このようなモードを考慮して、動画撮像時において読み出すべき位置に通常間引き兼用の光電変換素子52を配置しておけばよい。   For example, the current digital camera has a mainstream number of photoelectric conversion elements of 10 million or more, but when capturing a moving image, when acquiring a VGA size, from 480 × 640 = a little over 300,000 photoelectric conversion elements. It is sufficient to read the signal. Even in the case of taking HD moving images, it is sufficient to read signals from 720 × 1280 = 920,000 photoelectric conversion elements. Even when a full HD moving image is taken, it is sufficient to read out signals from 1080 × 1920 = 2 million photoelectric conversion elements. In consideration of such a mode, the photoelectric conversion element 52 that is also used for normal thinning may be arranged at a position to be read out during moving image capturing.

なお、動画撮像時には、光電変換素子から読み出した同色信号を加算する場合もあるため、これも考慮して通常間引き兼用の光電変換素子52を設けておく。例えば2画素加算を行う場合には、VGAサイズであれば、60万個強の光電変換素子を通常間引き兼用の光電変換素子52としておけばよい。   Note that the same color signals read from the photoelectric conversion elements may be added when capturing a moving image. Therefore, the photoelectric conversion element 52 for normal thinning is provided in consideration of this. For example, when adding two pixels, if it is VGA size, just over 600,000 photoelectric conversion elements may be used as the normal thinning-out photoelectric conversion element 52.

各光電変換素子51,52の上方には、図示しない遮光膜が設けられ、この遮光膜には、光電変換素子51上方と光電変換素子52上方とに開口が形成されている。そして、この開口の平面視における面積は、光電変換素子51と光電変換素子52とで同じになっている。   A light shielding film (not shown) is provided above each of the photoelectric conversion elements 51 and 52, and openings are formed in the light shielding film above the photoelectric conversion element 51 and above the photoelectric conversion element 52. The area of the opening in plan view is the same between the photoelectric conversion element 51 and the photoelectric conversion element 52.

垂直電荷転送部53は、列方向Yに並ぶ複数の光電変換素子からなる各光電変換素子列に対応してその側方(図2の例では右側方)に設けられている。垂直電荷転送部53は、それに対応する光電変換素子列の各光電変換素子に蓄積された電荷を読み出して列方向Yに転送するものであり、半導体基板内に形成された電荷転送チャネルとこの上方に設けられた転送電極とからなるCCDで構成されている。   The vertical charge transfer unit 53 is provided on the side (right side in the example of FIG. 2) corresponding to each photoelectric conversion element column formed of a plurality of photoelectric conversion elements arranged in the column direction Y. The vertical charge transfer unit 53 reads out charges accumulated in the respective photoelectric conversion elements of the corresponding photoelectric conversion element column and transfers them in the column direction Y. The charge transfer channel formed in the semiconductor substrate and above this It is comprised with CCD which consists of the transfer electrode provided in.

水平電荷転送部54は、複数の垂直電荷転送部53を転送されてきた電荷を行方向Xに転送するものであり、半導体基板内に形成された電荷転送チャネルとこの上方に設けられた転送電極とからなるCCDで構成されている。   The horizontal charge transfer unit 54 transfers charges transferred from the plurality of vertical charge transfer units 53 in the row direction X, and includes a charge transfer channel formed in the semiconductor substrate and a transfer electrode provided above the channel. It is comprised with CCD which consists of.

出力部55は、水平電荷転送部54を転送されてきた電荷を、その電荷量に応じた電圧信号に変換して固体撮像素子5外部に出力する。   The output unit 55 converts the charge transferred from the horizontal charge transfer unit 54 into a voltage signal corresponding to the charge amount, and outputs the voltage signal to the outside of the solid-state imaging device 5.

図3は、図2に示した固体撮像素子における52a−52a線の断面模式図である。図3では半導体基板内の構成のみを図示した。   3 is a schematic cross-sectional view taken along the line 52a-52a in the solid-state imaging device shown in FIG. FIG. 3 shows only the configuration in the semiconductor substrate.

n型シリコン基板56の表面にはPウェル層57が形成されている。このpウェル層57は、N型シリコン基板56にイオン注入によって形成されたものであるため、N型シリコン基板56の一部であると言うことができる。   A P well layer 57 is formed on the surface of the n-type silicon substrate 56. Since the p well layer 57 is formed by ion implantation in the N type silicon substrate 56, it can be said that the p well layer 57 is a part of the N type silicon substrate 56.

Pウェル層57の表面から少し下には、N型不純物層からなる電荷蓄積部60が形成されており、この電荷蓄積部60とPウェル層57とのPN接合で発生する電荷がこの電荷蓄積部60に蓄積される。電荷蓄積部60と、この電荷蓄積部60とPウェル層57とのPN接合により、通常間引き兼用の光電変換素子52が形成されている。電荷蓄積部60の上には、Pウェル層57よりも高濃度のP型不純物層からなる表面シールド領域59が形成されている。   A charge storage portion 60 made of an N-type impurity layer is formed slightly below the surface of the P well layer 57, and the charge generated at the PN junction between the charge storage portion 60 and the P well layer 57 is this charge storage. Stored in the unit 60. The photoelectric conversion element 52 that is also used for normal thinning is formed by the charge storage unit 60 and the PN junction between the charge storage unit 60 and the P well layer 57. A surface shield region 59 made of a P-type impurity layer having a higher concentration than that of the P well layer 57 is formed on the charge storage portion 60.

電荷蓄積部60の右隣には、Pウェル層57よりも高濃度のP型不純物層からなる電荷読み出し領域61が形成されている。   A charge readout region 61 made of a P-type impurity layer having a concentration higher than that of the P well layer 57 is formed on the right side of the charge storage unit 60.

電荷読み出し領域61の右隣には、垂直電荷転送部53を構成するN型不純物層からなる電荷転送チャネル62が形成されている。   A charge transfer channel 62 made of an N-type impurity layer constituting the vertical charge transfer portion 53 is formed on the right side of the charge readout region 61.

電荷転送チャネル62の右隣には、この電荷転送チャネル62に対応しない行方向Xで隣の光電変換素子52との分離を図るための、Pウェル層57よりも高濃度のp型不純物層からなる素子分離領域63が形成されている。   On the right side of the charge transfer channel 62 is a p-type impurity layer having a concentration higher than that of the P well layer 57 for separation from the adjacent photoelectric conversion element 52 in the row direction X not corresponding to the charge transfer channel 62. An element isolation region 63 is formed.

電荷転送チャネル62の下方には、Pウェル層57よりも高濃度のp型不純物層からなる素子分離領域64が形成されている。この素子分離領域64によって、行方向Xに隣接する光電変換素子52同士が分離されている。   Below the charge transfer channel 62, an element isolation region 64 made of a p-type impurity layer having a higher concentration than the P well layer 57 is formed. The element isolation regions 64 separate the photoelectric conversion elements 52 adjacent in the row direction X.

図4は、図2に示した固体撮像素子における51a−51a線の断面模式図である。図4では半導体基板内の構成のみを図示した。   4 is a schematic cross-sectional view taken along line 51a-51a in the solid-state imaging device shown in FIG. FIG. 4 shows only the configuration in the semiconductor substrate.

図4に示した断面において52a−52a線断面との違いは、Pウェル層57のn型シリコン基板56側の端部に、Pウェル層57よりも濃度の薄いP型不純物層58が形成されている点である。   The difference between the cross section shown in FIG. 4 and the cross section taken along the line 52a-52a is that a P-type impurity layer 58 having a concentration lower than that of the P-well layer 57 is formed at the end of the P-well layer 57 on the n-type silicon substrate 56 side. It is a point.

通常駆動専用の光電変換素子51は、図4に示す電荷蓄積部60と、この電荷蓄積部60とPウェル層57とのpn接合とにより形成されている。   The photoelectric conversion element 51 dedicated for normal driving is formed by the charge storage section 60 shown in FIG. 4 and a pn junction between the charge storage section 60 and the P well layer 57.

光電変換素子51と光電変換素子52は、それぞれ、その電荷蓄積部60の形成範囲(平面視におけるサイズ及び基板深部方向の深さ)及び不純物濃度が同一となっており、その電荷蓄積部60下方のPウェル層57の濃度分布が異なる点を除いては、全く同じ構成となっている。   The photoelectric conversion element 51 and the photoelectric conversion element 52 have the same formation range (size in plan view and depth in the depth direction of the substrate) and impurity concentration of the charge storage unit 60, respectively, and below the charge storage unit 60. Except for the fact that the concentration distribution of the P well layer 57 is different, the structure is exactly the same.

図3及び図4に示した断面構成においては、光電変換素子51及び光電変換素子52の各々の下方に存在するN型シリコン基板56が、電荷蓄積部60に蓄積された電荷を排出する電荷排出部(オーバーフロードレイン)として機能する。そして、電荷蓄積部60と、この電荷排出部との間のP型不純物層(図3の例ではPウェル層57、図4の例ではPウェル層57及びP型不純物層58)が、電荷蓄積部60と電荷排出部との間にポテンシャル障壁を形成する障壁形成部として機能する。   3 and 4, the N-type silicon substrate 56 existing below each of the photoelectric conversion element 51 and the photoelectric conversion element 52 discharges charges accumulated in the charge accumulation unit 60. Part (overflow drain). Then, the P-type impurity layer (P well layer 57 in the example of FIG. 3, P well layer 57 and P type impurity layer 58 in the example of FIG. 4) between the charge storage unit 60 and the charge discharging unit is charged. It functions as a barrier forming part that forms a potential barrier between the storage part 60 and the charge discharging part.

この固体撮像素子5では、電荷蓄積部60下方のPウェル層57の濃度分布に違いを持たせることで、障壁形成部によって形成されるポテンシャル障壁の高さを、光電変換素子51と光電変換素子52とで異ならせている。   In this solid-state imaging device 5, the height of the potential barrier formed by the barrier forming unit is set to be different from that of the photoelectric conversion device 51 and the photoelectric conversion device by giving a difference in the concentration distribution of the P well layer 57 below the charge storage unit 60. Different from 52.

図5は、図3に示した52b−52b’線断面における基板深さ方向のポテンシャル分布と、図4に示した51b−51b’線断面における基板深さ方向のポテンシャル分布とを併せて示した図である。   5 shows the potential distribution in the substrate depth direction in the section taken along the line 52b-52b ′ shown in FIG. 3 and the potential distribution in the substrate depth direction in the section taken along the line 51b-51b ′ shown in FIG. FIG.

図5中、52b−52b’の符号を付したものが52b−52b’線断面における基板深さ方向のポテンシャル分布であり、51b−51b’の符号を付したものが51b−51b’線断面における基板深さ方向のポテンシャル分布である。図5では、固体撮像素子5のN型シリコン基板56に所定のオーバーフロードレイン(OFD)電圧を印加したときのポテンシャル分布を示した。   In FIG. 5, the reference numeral 52b-52b ′ is the potential distribution in the substrate depth direction in the cross section of the line 52b-52b ′, and the reference numeral 51b-51b ′ is in the cross section of the line 51b-51b ′. It is a potential distribution in the substrate depth direction. FIG. 5 shows a potential distribution when a predetermined overflow drain (OFD) voltage is applied to the N-type silicon substrate 56 of the solid-state imaging device 5.

図5に示したように、通常駆動専用の光電変換素子51の電荷蓄積部60が形成するポテンシャルの底部の深さと、通常間引き兼用の光電変換素子52の電荷蓄積部60が形成するポテンシャルの底部の深さは略一致している。一方、通常駆動専用の光電変換素子51の電荷蓄積部60とその下方のN型シリコン基板56との間のポテンシャル障壁の頂部の位置は、通常間引き兼用の光電変換素子52の電荷蓄積部60とその下方のN型シリコン基板56との間のポテンシャル障壁の頂部の位置よりも深くなっている。   As shown in FIG. 5, the depth of the bottom of the potential formed by the charge storage unit 60 of the photoelectric conversion element 51 dedicated to normal driving and the bottom of the potential formed by the charge storage unit 60 of the photoelectric conversion element 52 also used for normal thinning-out. The depths of these are substantially the same. On the other hand, the position of the top of the potential barrier between the charge storage unit 60 of the photoelectric conversion element 51 dedicated for normal driving and the N-type silicon substrate 56 below the photoelectric storage element 51 is the same as It is deeper than the position of the top portion of the potential barrier between the N-type silicon substrate 56 below.

この結果、通常駆動専用の光電変換素子51の電荷蓄積部60とその下方のN型シリコン基板56との間のポテンシャル障壁(以下、通常駆動専用ポテンシャル障壁という)の高さは、通常間引き兼用の光電変換素子52の電荷蓄積部60とその下方のN型シリコン基板56との間のポテンシャル障壁(以下、通常間引き兼用ポテンシャル障壁という)の高さよりも低くなっている。   As a result, the height of the potential barrier (hereinafter referred to as a normal drive dedicated potential barrier) between the charge storage unit 60 of the photoelectric conversion element 51 dedicated for normal drive and the N-type silicon substrate 56 therebelow is usually used for both the thinning-out. It is lower than the height of the potential barrier between the charge storage section 60 of the photoelectric conversion element 52 and the N-type silicon substrate 56 below (hereinafter referred to as a normal thinning-out potential barrier).

このように構成されたデジタルカメラでは、静止画撮像モードに設定されると、撮像素子駆動部10が、固体撮像素子5のN型シリコン基板56に所定のオーバーフロードレイン(OFD)電圧(VOFD1)を印加する。そして、静止画撮像指示があると、固体撮像素子5の全ての光電変換素子から信号を読み出す通常駆動を実施する。そして、デジタル信号処理部17が、この駆動によって得られた信号から静止画像データを生成する。   In the digital camera configured as described above, when the still image capturing mode is set, the image sensor driving unit 10 applies a predetermined overflow drain (OFD) voltage (VOFD1) to the N-type silicon substrate 56 of the solid-state image sensor 5. Apply. When there is a still image capturing instruction, normal driving for reading signals from all the photoelectric conversion elements of the solid-state image capturing element 5 is performed. Then, the digital signal processing unit 17 generates still image data from the signal obtained by this driving.

図6は、静止画撮像モード時における固体撮像素子のポテンシャル分布を示す図であり、FIG6Aは、図3の52b−52b’線のポテンシャル分布を示し、FIG6Bは、図4の51b−51b’線のポテンシャル分布を示す。   6 is a diagram illustrating the potential distribution of the solid-state imaging device in the still image capturing mode. FIG. 6A represents the potential distribution of the line 52b-52b ′ in FIG. 3, and FIG. 6B represents the line 51b-51b ′ in FIG. Shows the potential distribution of.

静止画撮像モード時においてN型シリコン基板56に印加する電圧VOFD1は、通常駆動専用の光電変換素子51が静止画撮像時に最低限必要な飽和量Q1を確保できるような値に設定しておく。このようにした場合でも、通常間引き兼用の光電変換素子52の飽和量は、通常駆動専用の光電変換素子51よりも大きくなっている。このため、通常間引き兼用の光電変換素子52にも飽和量Q1を蓄積することができ、全ての光電変換素子を用いて静止画撮像を行うことができる。   The voltage VOFD1 applied to the N-type silicon substrate 56 in the still image capturing mode is set to a value such that the photoelectric conversion element 51 dedicated for normal driving can secure the minimum saturation amount Q1 necessary for capturing a still image. Even in this case, the saturation amount of the photoelectric conversion element 52 that is also used for normal thinning is larger than that of the photoelectric conversion element 51 dedicated for normal driving. For this reason, the saturation amount Q1 can also be accumulated in the photoelectric conversion element 52 that is also used for normal thinning, and still image imaging can be performed using all the photoelectric conversion elements.

一方、動画撮像モードに設定されると、撮像素子駆動部10は、固体撮像素子5のN型シリコン基板56に電圧VOFD1よりも大きい電圧VOFD2を印加する。そして、動画撮像指示があると、通常間引き兼用の光電変換素子52のみから信号を読み出す間引き駆動を実施する。そして、デジタル信号処理部17が、この駆動によって得られた信号から動画像データを生成する。   On the other hand, when the moving image capturing mode is set, the image sensor driving unit 10 applies a voltage VOFD2 larger than the voltage VOFD1 to the N-type silicon substrate 56 of the solid-state image sensor 5. When there is a moving image imaging instruction, thinning driving is performed to read out signals only from the photoelectric conversion element 52 that is also used for normal thinning. Then, the digital signal processing unit 17 generates moving image data from the signal obtained by this driving.

図7は、動画撮像モード時における固体撮像素子のポテンシャル分布を示す図であり、FIG7Aは、図3の52b−52b’線のポテンシャル分布を示し、FIG7Bは、図4の51b−51b’線のポテンシャル分布を示す。   7 is a diagram showing the potential distribution of the solid-state imaging device in the moving image capturing mode. FIG. 7A shows the potential distribution of the line 52b-52b ′ in FIG. 3, and FIG. 7B shows the potential distribution of the line 51b-51b ′ in FIG. The potential distribution is shown.

動画撮像モード時においてN型シリコン基板56に印加する電圧VOFD2は、通常間引き兼用の光電変換素子52が動画撮像時に最低限必要な飽和量Q2を確保できるような値に設定しておく。このようにした場合、通常駆動専用の光電変換素子51の飽和量は、静止画撮像モード時よりも小さくなる。この結果、通常駆動専用の光電変換素子51の表面のポテンシャルと通常駆動専用のポテンシャル障壁の頂部との差ΔV2は、通常間引き兼用の光電変換部52の表面のポテンシャルと通常間引き兼用のポテンシャル障壁の頂部との差ΔV1よりも大きくなる。   The voltage VOFD2 applied to the N-type silicon substrate 56 in the moving image capturing mode is set to such a value that the normal thinning-out photoelectric conversion element 52 can secure the minimum saturation amount Q2 necessary for moving image capturing. In this case, the saturation amount of the photoelectric conversion element 51 dedicated for normal driving is smaller than that in the still image capturing mode. As a result, the difference ΔV2 between the potential of the surface of the photoelectric conversion element 51 dedicated for normal driving and the top of the potential barrier dedicated for normal driving is equal to the potential of the surface of the photoelectric conversion unit 52 for normal thinning and the potential barrier for normal thinning. It becomes larger than the difference ΔV1 from the top.

スミアの主要因の1つに、光電変換素子51,52の表面(表面シールド領域59表面)で発生した電荷が電荷蓄積部60に移動せずに、垂直電荷転送部53の電荷転送チャネル62に移動してしまうことがあげられる。したがって、この電荷を電荷蓄積部60に移動しやすくすれば、スミアを低減することが可能である。   One of the main causes of smear is that the charges generated on the surfaces of the photoelectric conversion elements 51 and 52 (the surface of the surface shield region 59) do not move to the charge accumulation unit 60 but enter the charge transfer channel 62 of the vertical charge transfer unit 53. It can be moved. Therefore, smear can be reduced by making it easier to move this charge to the charge storage section 60.

固体撮像素子5では、図7に示したように、動画撮像モード時には、ΔV2をΔV1よりも大きくすることによって、通常駆動専用の光電変換素子51表面で発生する電荷を電荷蓄積部60に移動しやすくして、スミアの発生を抑制することができる。   As shown in FIG. 7, in the solid-state imaging device 5, in the moving image imaging mode, ΔV <b> 2 is made larger than ΔV <b> 1 to move charges generated on the surface of the photoelectric conversion element 51 dedicated for normal driving to the charge storage unit 60. This makes it possible to suppress the occurrence of smear.

前述したように、固体撮像素子における通常駆動専用の光電変換素子51の数は、通常間引き兼用の光電変換素子52の数と同数以上であることが多い。このため、動画撮像モード時には、画像データの生成に使用しない通常駆動専用の光電変換素子51の表面で発生する電荷に起因するスミアの影響が無視できなくなる。この固体撮像素子5によれば、図6,7に示したようなポテンシャル構造を持っているため、動画撮像モード時には、通常駆動専用の光電変換素子51の表面で発生する電荷に起因するスミアを格段に減らすことができ、スミアの少ない動画撮像が可能となる。   As described above, the number of photoelectric conversion elements 51 dedicated to normal driving in a solid-state imaging device is often equal to or more than the number of photoelectric conversion elements 52 that are also used for normal thinning. For this reason, in the moving image capturing mode, the influence of smear caused by charges generated on the surface of the photoelectric conversion element 51 dedicated for normal driving that is not used for generating image data cannot be ignored. Since the solid-state imaging device 5 has the potential structure as shown in FIGS. 6 and 7, smear caused by charges generated on the surface of the photoelectric conversion device 51 dedicated to normal driving is not generated in the moving image imaging mode. It can be remarkably reduced, and moving image capturing with less smear becomes possible.

なお、動画撮像モード時における通常間引き兼用の光電変換素子52の飽和量Q2を確保できるのであれば、電圧VOFD2を通常駆動専用のポテンシャル障壁を消滅させる値としてもよい。   Note that the voltage VOFD2 may be a value that eliminates the potential barrier dedicated to normal driving as long as the saturation amount Q2 of the photoelectric conversion element 52 that is also used for normal thinning in the moving image capturing mode can be secured.

図8は、図7に示した電圧VOFD2を更に大きくした場合のポテンシャル分布を示す図であり、FIG8Aは、図3の52b−52b’線のポテンシャル分布を示し、FIG8Bは、図4の51b−51b’線のポテンシャル分布を示す。   8 is a diagram showing the potential distribution when the voltage VOFD2 shown in FIG. 7 is further increased. FIG. 8A shows the potential distribution of the line 52b-52b ′ in FIG. 3, and FIG. 8B shows the potential distribution in FIG. The potential distribution of line 51b ′ is shown.

FIG8Bに示したように、通常駆動専用のポテンシャル障壁を消滅させる程度の電圧VOFD2をN型シリコン基板56に印加すれば、通常駆動専用の光電変換素子51の表面のポテンシャルと通常駆動専用のポテンシャル障壁の頂部との差をΔV2よりも更に大きいΔV3にすることができる。この結果、動画撮像モード時において、通常駆動専用の光電変換素子51の表面で発生する電荷に起因するスミアを更に減らすことができ、より高画質の動画撮像が可能となる。   As shown in FIG. 8B, if a voltage VOFD2 that can eliminate the potential barrier dedicated to normal driving is applied to the N-type silicon substrate 56, the potential of the surface of the photoelectric conversion element 51 dedicated to normal driving and the potential barrier dedicated to normal driving are applied. It is possible to make the difference from the top of ΔV3 larger than ΔV2. As a result, in the moving image capturing mode, it is possible to further reduce smear caused by the charge generated on the surface of the photoelectric conversion element 51 dedicated for normal driving, and it is possible to capture a higher quality moving image.

次に、固体撮像素子5の製造方法について説明する。   Next, a method for manufacturing the solid-state imaging device 5 will be described.

まず、N型シリコン基板56上に、通常駆動専用の光電変換素子51と通常間引き兼用の光電変換素子52を形成すべき領域に開口を有するマスクを形成し、このマスクを介して、N型シリコン基板56内にドーズ量I1でP型不純物を注入する。このとき、通常駆動専用の光電変換素子51を形成すべき領域の下方と、通常間引き兼用の光電変換素子52を形成すべき領域の下方とにおいて所望の不純物濃度となるように、P型不純物の注入を行う。これにより、Pウェル層57が形成される。   First, on the N-type silicon substrate 56, a mask having an opening in a region where the photoelectric conversion element 51 dedicated for normal driving and the photoelectric conversion element 52 for normal thinning-out are to be formed is formed. P-type impurities are implanted into the substrate 56 with a dose amount I1. At this time, the P-type impurity concentration is adjusted so that a desired impurity concentration is obtained below the region where the photoelectric conversion element 51 dedicated for normal driving is to be formed and below the region where the photoelectric conversion element 52 for normal thinning is to be formed. Make an injection. Thereby, a P well layer 57 is formed.

次に、N型シリコン基板56上に図9に示したようなマスクM1を形成する。マスクM1は、図2に示した平面視において、通常間引き兼用の光電変換素子52を形成すべき領域を覆い、通常駆動専用の光電変換素子51を形成すべき領域に開口Kを有するものとなっている。次に、このマスクM1を介して、N型シリコン基板56内にドーズ量I2でN型不純物を注入する。このとき、通常駆動専用の光電変換素子51を形成すべき領域の下方において所望の不純物濃度となるように、N型不純物の注入を行う。   Next, a mask M 1 as shown in FIG. 9 is formed on the N-type silicon substrate 56. In the plan view shown in FIG. 2, the mask M1 covers a region where the photoelectric conversion element 52 for normal thinning-out is to be formed, and has an opening K in a region where the photoelectric conversion element 51 dedicated for normal driving is to be formed. ing. Next, N-type impurities are implanted into the N-type silicon substrate 56 at a dose amount I2 through the mask M1. At this time, N-type impurities are implanted so as to obtain a desired impurity concentration below the region where the photoelectric conversion element 51 dedicated for normal driving is to be formed.

これにより、N型不純物が注入された箇所がPウェル層57よりも濃度の薄いP型不純物層58となる。   As a result, the portion where the N-type impurity is implanted becomes the P-type impurity layer 58 having a lower concentration than the P-well layer 57.

この後は、従来から知られている方法でpウェル層57内に各領域を形成すればよい。   Thereafter, each region may be formed in the p-well layer 57 by a conventionally known method.

このように、固体撮像素子5は、pウェル層57を形成するときの不純物注入を2回に分けて行うだけで簡単に製造することができる。   As described above, the solid-state imaging device 5 can be easily manufactured by performing the impurity implantation for forming the p-well layer 57 in two steps.

なお、固体撮像素子5は、次のようにして製造することもできる。   In addition, the solid-state image sensor 5 can also be manufactured as follows.

まず、N型シリコン基板56上に、通常駆動専用の光電変換素子51と通常間引き兼用の光電変換素子52を形成すべき領域に開口を有するマスクを形成し、このマスクを介して、N型シリコン基板56内にドーズ量I3でP型不純物を注入する。このとき、通常駆動専用の光電変換素子51を形成すべき領域の下方と、通常間引き兼用の光電変換素子52を形成すべき領域の下方とにおいて所望の不純物濃度となるように、P型不純物の注入を行う。これにより、Pウェル層57が形成される。   First, on the N-type silicon substrate 56, a mask having an opening in a region where the photoelectric conversion element 51 dedicated for normal driving and the photoelectric conversion element 52 for normal thinning-out are to be formed is formed. P-type impurities are implanted into the substrate 56 with a dose amount I3. At this time, the P-type impurity concentration is adjusted so that a desired impurity concentration is obtained below the region where the photoelectric conversion element 51 dedicated for normal driving is to be formed and below the region where the photoelectric conversion element 52 for normal thinning is to be formed. Make an injection. Thereby, a P well layer 57 is formed.

次に、N型シリコン基板56上に図10に示したようなマスクM2を形成する。マスクM2は、図2に示した平面視において、通常駆動専用の光電変換素子51を形成すべき領域を覆い、通常間引き兼用の光電変換素子52を形成すべき領域に開口Kを有するものとなっている。   Next, a mask M 2 as shown in FIG. 10 is formed on the N-type silicon substrate 56. In the plan view shown in FIG. 2, the mask M2 covers an area where the photoelectric conversion element 51 dedicated for normal driving is to be formed, and has an opening K in an area where the photoelectric conversion element 52 for normal thinning-out is to be formed. ing.

次に、このマスクM2を介して、N型シリコン基板56内にドーズ量I4でP型不純物を注入する。このとき、通常間引き兼用の光電変換素子52を形成すべき領域の下方において所望の不純物濃度となるように、P型不純物の注入を行う。これにより、P型不純物が注入された箇所が、Pウェル層57よりも濃度の濃いP型不純物層となる。この結果、通常間引き兼用の光電変換素子52の電荷蓄積部60とN型シリコン基板56との間のP型不純物層の濃度を、通常駆動専用の光電変換素子51の電荷蓄積部60とN型シリコン基板56との間のP型不純物層の濃度よりも濃くすることができ、図5に示したようなポテンシャル分布を得ることができる。   Next, a P-type impurity is implanted into the N-type silicon substrate 56 with a dose amount I4 through the mask M2. At this time, a P-type impurity is implanted so that a desired impurity concentration is obtained below a region where the photoelectric conversion element 52 for normal thinning-out is to be formed. Thereby, the portion where the P-type impurity is implanted becomes a P-type impurity layer having a concentration higher than that of the P well layer 57. As a result, the concentration of the P-type impurity layer between the charge storage unit 60 of the photoelectric conversion element 52 for normal thinning-out and the N-type silicon substrate 56 is set to the charge storage unit 60 of the photoelectric conversion element 51 dedicated for normal driving and the N-type. The concentration can be higher than the concentration of the P-type impurity layer between the silicon substrate 56 and the potential distribution as shown in FIG. 5 can be obtained.

また、固体撮像素子5は、次のようにして製造することもできる。   Moreover, the solid-state image sensor 5 can also be manufactured as follows.

まず、N型シリコン基板56上に、図9に示したマスクM1を形成する。次に、このマスクM1を介して、N型シリコン基板56内にドーズ量I5でP型不純物を注入する。このとき、通常駆動専用の光電変換素子51を形成すべき領域の下方において所望の不純物濃度となるように、P型不純物の注入を行う。   First, the mask M1 shown in FIG. 9 is formed on the N-type silicon substrate 56. Next, a P-type impurity is implanted into the N-type silicon substrate 56 with a dose amount I5 through the mask M1. At this time, P-type impurities are implanted so as to obtain a desired impurity concentration below the region where the photoelectric conversion element 51 dedicated for normal driving is to be formed.

次に、N型シリコン基板56上に、図10に示したマスクM2を形成する。次に、このマスクM2を介して、N型シリコン基板56内にドーズ量I6(>I5)でP型不純物を注入する。このとき、通常間引き兼用の光電変換素子52を形成すべき領域の下方において所望の不純物濃度となるように、P型不純物の注入を行う。   Next, the mask M <b> 2 shown in FIG. 10 is formed on the N-type silicon substrate 56. Next, a P-type impurity is implanted into the N-type silicon substrate 56 with a dose amount I6 (> I5) through the mask M2. At this time, a P-type impurity is implanted so that a desired impurity concentration is obtained below a region where the photoelectric conversion element 52 for normal thinning-out is to be formed.

このようにすることで、通常間引き兼用の光電変換素子52の電荷蓄積部60とN型シリコン基板56との間のP型不純物層の濃度を、通常駆動専用の光電変換素子51の電荷蓄積部60とN型シリコン基板56との間のP型不純物層の濃度よりも濃くすることができ、図5に示したようなポテンシャル分布を得ることができる。   In this way, the concentration of the P-type impurity layer between the charge storage unit 60 of the photoelectric conversion element 52 for normal thinning-out and the N-type silicon substrate 56 is set to the charge storage unit of the photoelectric conversion element 51 dedicated for normal driving. It can be made higher than the concentration of the P-type impurity layer between 60 and the N-type silicon substrate 56, and a potential distribution as shown in FIG. 5 can be obtained.

なお、通常駆動専用の光電変換素子51の電荷蓄積部60のポテンシャルの底部と、通常間引き兼用の光電変換素子52の電荷蓄積部60のポテンシャルの底部とは異なる深さにあってもよい。   Note that the bottom of the potential of the charge storage unit 60 of the photoelectric conversion element 51 dedicated to normal driving may be at a different depth from the bottom of the potential of the charge storage unit 60 of the photoelectric conversion element 52 commonly used for thinning-out.

例えば、図5に示したポテンシャル分布を、図11に示したようにしてもよい。このようにした場合でも、通常間引き兼用のポテンシャル障壁の高さが、通常駆動専用のポテンシャル障壁の高さよりも高くなっていれば、スミア低減の効果を得ることができる。このような条件を満たしていれば、例えば動画撮像モード時に通常駆動専用のポテンシャル障壁を消滅させるようなOFD電圧を印加しても、通常間引き兼用のポテンシャル障壁を残しておくことができ、動画撮像時に必要な飽和量を確保することができるからである。   For example, the potential distribution shown in FIG. 5 may be as shown in FIG. Even in this case, if the height of the potential barrier that is also used for normal thinning is higher than the height of the potential barrier dedicated for normal driving, the effect of reducing smear can be obtained. If these conditions are satisfied, for example, even if an OFD voltage that eliminates the potential barrier dedicated to normal driving is applied in the moving image capturing mode, a potential barrier that is also used for normal thinning can be left. This is because a saturation amount necessary sometimes can be secured.

また、これまでの説明では、光電変換素子で発生した電子を信号に変換して読み出すことを前提にしたが、正孔を信号に変換して読み出す場合には、これまでの説明においてp型とn型を全て逆にすればよい。また、この場合は、OFD電圧が負の値となるため、OFD1とOFD2の関係は、その絶対値がOFD<OFD2となるように設定すればよい。   In the description so far, it is assumed that electrons generated in the photoelectric conversion element are converted into a signal and read out. However, in the case where holes are converted into a signal and read out, the p-type is used in the description so far. All n-types may be reversed. In this case, since the OFD voltage has a negative value, the relationship between OFD1 and OFD2 may be set so that the absolute value thereof is OFD <OFD2.

また、図2では、複数の光電変換素子が正方格子状に配列されたものを例示したが、これに限らない。例えば、奇数行の光電変換素子行を、偶数行の光電変換素子行に対し、各光電変換素子の行方向配列ピッチの1/2だけ行方向Xにずらした配置としてもよい。   Further, although FIG. 2 illustrates an example in which a plurality of photoelectric conversion elements are arranged in a square lattice pattern, the present invention is not limited to this. For example, the odd-numbered photoelectric conversion element rows may be arranged so as to be shifted in the row direction X by ½ of the row-direction arrangement pitch of each photoelectric conversion element with respect to the even-numbered photoelectric conversion element rows.

また、カラーフィルタ配列は原色のベイヤ配列に限らず、その他の公知の配列を採用してもよい。また、カラーフィルタを設けずに、モノクロ撮像を行う固体撮像素子としてもよい。   Further, the color filter array is not limited to the primary color Bayer array, and other known arrays may be adopted. Further, a solid-state imaging device that performs monochrome imaging without providing a color filter may be used.

以上説明してきたように、本明細書には次の事項が開示されている。   As described above, the following items are disclosed in this specification.

開示された固体撮像素子は、半導体基板内に形成された複数の光電変換素子と、前記各光電変換素子で発生した電荷を転送する電荷転送部とを含む固体撮像素子であって、前記各光電変換素子の下方に設けられた、前記各光電変換素子の電荷蓄積部に蓄積された電荷を排出する電荷排出部を備え、前記複数の光電変換素子は、第一の光電変換素子と第二の光電変換素子に分けられ、前記第一の光電変換素子の前記電荷蓄積部と当該第一の光電変換素子下方の前記電荷排出部との間の第一のポテンシャル障壁の高さが、前記第二の光電変換素子の前記電荷蓄積部と当該第二の光電変換素子下方の前記電荷排出部との間の第二のポテンシャル障壁の高さよりも低くなっているものである。   The disclosed solid-state imaging device is a solid-state imaging device including a plurality of photoelectric conversion elements formed in a semiconductor substrate, and a charge transfer unit that transfers charges generated in the photoelectric conversion elements. A charge discharging unit provided below the conversion element for discharging the charge stored in the charge storage unit of each photoelectric conversion element, wherein the plurality of photoelectric conversion elements include a first photoelectric conversion element and a second photoelectric conversion element; Divided into photoelectric conversion elements, the height of the first potential barrier between the charge storage part of the first photoelectric conversion element and the charge discharge part below the first photoelectric conversion element is the second The height of the second potential barrier between the charge storage part of the photoelectric conversion element and the charge discharge part below the second photoelectric conversion element is lower.

開示された固体撮像素子は、前記第一の光電変換素子の電荷蓄積部のポテンシャルの底部の深さが、前記第二の光電変換素子の電荷蓄積部のポテンシャルの底部の深さと略一致し、前記第一のポテンシャル障壁の頂部が、前記第二のポテンシャル障壁の頂部よりも深い位置にあるものである。   In the disclosed solid-state imaging device, the bottom depth of the potential of the charge storage portion of the first photoelectric conversion element substantially matches the bottom depth of the potential of the charge storage portion of the second photoelectric conversion element, The top of the first potential barrier is deeper than the top of the second potential barrier.

開示された撮像装置は、前記固体撮像素子と、前記固体撮像素子の全ての前記光電変換素子から信号を読み出す通常駆動と、前記固体撮像素子の前記第二の光電変換素子のみから信号を読み出す間引き駆動とを行う駆動部を備えるものである。   The disclosed imaging apparatus includes: the solid-state imaging element; normal driving for reading signals from all the photoelectric conversion elements of the solid-state imaging element; and thinning-out for reading signals only from the second photoelectric conversion element of the solid-state imaging element. A drive unit that performs driving is provided.

開示された撮像装置は、前記駆動部が、前記電荷排出部に印加する電圧の絶対値を、前記間引き駆動時には前記通常駆動時よりも高くするものである。   In the disclosed imaging apparatus, the driving unit increases the absolute value of the voltage applied to the charge discharging unit at the time of the thinning driving than at the time of the normal driving.

開示された撮像装置は、前記駆動部が、前記間引き駆動時には、前記第一のポテンシャル障壁を消滅させる電圧を前記電荷排出部に印加するものである。   In the disclosed imaging apparatus, the driving unit applies a voltage that causes the first potential barrier to disappear during the thinning driving to the charge discharging unit.

開示された固体撮像素子の駆動方法は、前記固体撮像素子の駆動方法であって、前記固体撮像素子の全ての前記光電変換素子から信号を読み出す通常駆動と、前記固体撮像素子の前記第二の光電変換素子のみから信号を読み出す間引き駆動とを行う駆動ステップを備えるものである。   The disclosed solid-state imaging device driving method is a driving method of the solid-state imaging device, wherein normal driving for reading signals from all the photoelectric conversion elements of the solid-state imaging device, and the second driving of the solid-state imaging device A driving step for performing thinning driving for reading a signal only from the photoelectric conversion element is provided.

開示された固体撮像素子の駆動方法は、前記駆動ステップでは、前記電荷排出部に印加する電圧の絶対値を、前記間引き駆動時には前記通常駆動時よりも高くするものである。   In the driving method of the disclosed solid-state imaging device, in the driving step, the absolute value of the voltage applied to the charge discharging unit is set higher during the thinning driving than during the normal driving.

開示された固体撮像素子の駆動方法は、前記駆動ステップでは、前記間引き駆動時には、前記第一のポテンシャル障壁を消滅させる電圧を前記電荷排出部に印加するものである。   In the driving method of the disclosed solid-state imaging device, in the driving step, a voltage for eliminating the first potential barrier is applied to the charge discharging unit during the thinning driving.

開示された固体撮像素子の製造方法は、前記固体撮像素子の製造方法であって、前記半導体基板内の前記第一の光電変換素子を形成すべき領域下方の領域に前記半導体基板とは反対導電型の不純物を第一の注入量で注入するステップと、前記半導体基板内の前記第二の光電変換素子を形成すべき領域下方の領域に前記反対導電型の不純物を前記第一の注入量よりも多い第二の注入量で注入するステップとを備えるものである。   The disclosed method for manufacturing a solid-state imaging device is a method for manufacturing the solid-state imaging device, wherein a conductive material opposite to the semiconductor substrate is formed in a region below the region in which the first photoelectric conversion element is to be formed in the semiconductor substrate. And implanting the opposite conductivity type impurity in a region below the region where the second photoelectric conversion element is to be formed in the semiconductor substrate from the first implantation amount. And a step of injecting with a large second injection amount.

開示された固体撮像素子の製造方法は、前記固体撮像素子の製造方法であって、前記半導体基板内の前記第一の光電変換素子及び前記第二の光電変換素子を形成すべき領域下方の領域に、前記半導体基板とは反対導電型の不純物を注入するステップと、前記ステップの後、前記半導体基板内の前記第二の光電変換素子を形成すべき領域下方の領域に前記反対導電型の不純物を注入するステップとを備えるものである。   The disclosed method for manufacturing a solid-state imaging device is a method for manufacturing the solid-state imaging device, wherein the region under the region in which the first photoelectric conversion device and the second photoelectric conversion device are to be formed in the semiconductor substrate. A step of implanting an impurity having a conductivity type opposite to that of the semiconductor substrate; and after the step, an impurity having a conductivity type opposite to that of the semiconductor substrate in a region below the region where the second photoelectric conversion element is to be formed. And injecting.

開示された固体撮像素子の製造方法は、前記固体撮像素子の製造方法であって、前記半導体基板内の前記第一の光電変換素子及び前記第二の光電変換素子を形成すべき領域下方の領域に、前記半導体基板とは反対導電型の不純物を注入するステップと、前記ステップの後、前記半導体基板内の前記第一の光電変換素子を形成すべき領域下方の領域に前記半導体基板と同じ導電型の不純物を注入するステップとを備えるものである。   The disclosed method for manufacturing a solid-state imaging device is a method for manufacturing the solid-state imaging device, wherein the region under the region in which the first photoelectric conversion device and the second photoelectric conversion device are to be formed in the semiconductor substrate. A step of implanting an impurity having a conductivity type opposite to that of the semiconductor substrate; and after the step, in the region under the region where the first photoelectric conversion element is to be formed in the semiconductor substrate, the same conductivity as the semiconductor substrate is formed. Injecting a mold type impurity.

5 固体撮像素子
10 撮像素子駆動部
51 通常駆動専用の光電変換素子
52 通常間引き兼用の光電変換素子
53 垂直電荷転送部
57 pウェル層
58 p型不純物層
56 n型シリコン基板
60 電荷蓄積部
DESCRIPTION OF SYMBOLS 5 Solid-state image sensor 10 Image sensor drive part 51 Photoelectric conversion element 52 for exclusive use of normal drive Photoelectric conversion element 53 used also for normal thinning out Vertical charge transfer part 57 p well layer 58 p type impurity layer 56 n type silicon substrate 60 Charge storage part

Claims (11)

半導体基板内に形成された複数の光電変換素子と、前記各光電変換素子で発生した電荷を転送する電荷転送部とを含む固体撮像素子であって、
前記各光電変換素子の下方に設けられた、前記各光電変換素子の電荷蓄積部に蓄積された電荷を排出する電荷排出部を備え、
前記複数の光電変換素子は、第一の光電変換素子と第二の光電変換素子に分けられ、
前記第一の光電変換素子の前記電荷蓄積部と当該第一の光電変換素子下方の前記電荷排出部との間の第一のポテンシャル障壁の高さが、前記第二の光電変換素子の前記電荷蓄積部と当該第二の光電変換素子下方の前記電荷排出部との間の第二のポテンシャル障壁の高さよりも低くなっている固体撮像素子。
A solid-state imaging device including a plurality of photoelectric conversion elements formed in a semiconductor substrate, and a charge transfer unit that transfers charges generated in each of the photoelectric conversion elements,
Provided below each photoelectric conversion element, comprising a charge discharging unit that discharges charges accumulated in the charge storage unit of each photoelectric conversion element,
The plurality of photoelectric conversion elements are divided into a first photoelectric conversion element and a second photoelectric conversion element,
The height of the first potential barrier between the charge storage part of the first photoelectric conversion element and the charge discharge part below the first photoelectric conversion element is equal to the charge of the second photoelectric conversion element. A solid-state imaging device that is lower than a height of a second potential barrier between an accumulation unit and the charge discharging unit below the second photoelectric conversion element.
請求項1記載の固体撮像素子であって、
前記第一の光電変換素子の電荷蓄積部のポテンシャルの底部の深さが、前記第二の光電変換素子の電荷蓄積部のポテンシャルの底部の深さと略一致し、
前記第一のポテンシャル障壁の頂部が、前記第二のポテンシャル障壁の頂部よりも深い位置にある固体撮像素子。
The solid-state imaging device according to claim 1,
The depth of the bottom of the potential of the charge storage portion of the first photoelectric conversion element substantially matches the depth of the bottom of the potential of the charge storage portion of the second photoelectric conversion element;
A solid-state imaging device in which a top portion of the first potential barrier is deeper than a top portion of the second potential barrier.
請求項1又は2記載の固体撮像素子と、
前記固体撮像素子の全ての前記光電変換素子から信号を読み出す通常駆動と、前記固体撮像素子の前記第二の光電変換素子のみから信号を読み出す間引き駆動とを行う駆動部を備える撮像装置。
The solid-state image sensor according to claim 1 or 2,
An imaging apparatus including a drive unit that performs normal driving for reading signals from all the photoelectric conversion elements of the solid-state imaging element and thinning driving for reading signals only from the second photoelectric conversion element of the solid-state imaging element.
請求項3記載の撮像装置であって、
前記駆動部が、前記電荷排出部に印加する電圧の絶対値を、前記間引き駆動時には前記通常駆動時よりも高くする撮像装置。
The imaging apparatus according to claim 3,
An imaging apparatus in which the driving unit sets an absolute value of a voltage applied to the charge discharging unit to be higher during the thinning driving than during the normal driving.
請求項4記載の撮像装置であって、
前記駆動部が、前記間引き駆動時には、前記第一のポテンシャル障壁を消滅させる電圧を前記電荷排出部に印加する撮像装置。
The imaging apparatus according to claim 4,
The image pickup apparatus that applies a voltage for eliminating the first potential barrier to the charge discharging unit when the driving unit performs the thinning driving.
請求項1又は2記載の固体撮像素子の駆動方法であって、
前記固体撮像素子の全ての前記光電変換素子から信号を読み出す通常駆動と、前記固体撮像素子の前記第二の光電変換素子のみから信号を読み出す間引き駆動とを行う駆動ステップを備える固体撮像素子の駆動方法。
A method for driving a solid-state imaging device according to claim 1 or 2,
Driving of a solid-state imaging device including a driving step of performing normal driving for reading signals from all the photoelectric conversion elements of the solid-state imaging device and thinning driving for reading signals only from the second photoelectric conversion elements of the solid-state imaging device Method.
請求項6記載の固体撮像素子の駆動方法であって、
前記駆動ステップでは、前記電荷排出部に印加する電圧の絶対値を、前記間引き駆動時には前記通常駆動時よりも高くする固体撮像素子の駆動方法。
A method for driving a solid-state imaging device according to claim 6,
In the driving step, the solid-state imaging device driving method wherein the absolute value of the voltage applied to the charge discharging unit is set higher during the thinning driving than during the normal driving.
請求項7記載の固体撮像素子の駆動方法であって、
前記駆動ステップでは、前記間引き駆動時には、前記第一のポテンシャル障壁を消滅させる電圧を前記電荷排出部に印加する固体撮像素子の駆動方法。
A method for driving a solid-state imaging device according to claim 7,
In the driving step, the solid-state imaging device driving method of applying a voltage for eliminating the first potential barrier to the charge discharging unit during the thinning driving.
請求項1又は2記載の固体撮像素子の製造方法であって、
前記半導体基板内の前記第一の光電変換素子を形成すべき領域下方の領域に前記半導体基板とは反対導電型の不純物を第一の注入量で注入するステップと、
前記半導体基板内の前記第二の光電変換素子を形成すべき領域下方の領域に前記反対導電型の不純物を前記第一の注入量よりも多い第二の注入量で注入するステップとを備える固体撮像素子の製造方法。
It is a manufacturing method of the solid-state image sensing device according to claim 1 or 2,
Injecting an impurity of a conductivity type opposite to that of the semiconductor substrate in a region below the region in which the first photoelectric conversion element is to be formed in the semiconductor substrate in a first implantation amount;
Injecting the opposite conductivity type impurity in a region below the region in which the second photoelectric conversion element is to be formed in the semiconductor substrate with a second implantation amount larger than the first implantation amount. Manufacturing method of imaging device.
請求項1又は2記載の固体撮像素子の製造方法であって、
前記半導体基板内の前記第一の光電変換素子及び前記第二の光電変換素子を形成すべき領域下方の領域に、前記半導体基板とは反対導電型の不純物を注入するステップと、
前記ステップの後、前記半導体基板内の前記第二の光電変換素子を形成すべき領域下方の領域に前記反対導電型の不純物を注入するステップとを備える固体撮像素子の製造方法。
It is a manufacturing method of the solid-state image sensing device according to claim 1 or 2,
Injecting an impurity having a conductivity type opposite to that of the semiconductor substrate into a region below the region where the first photoelectric conversion element and the second photoelectric conversion element are to be formed in the semiconductor substrate;
After the step, a method of manufacturing a solid-state imaging device comprising the step of injecting the impurity of the opposite conductivity type into a region below the region where the second photoelectric conversion element is to be formed in the semiconductor substrate.
請求項1又は2記載の固体撮像素子の製造方法であって、
前記半導体基板内の前記第一の光電変換素子及び前記第二の光電変換素子を形成すべき領域下方の領域に、前記半導体基板とは反対導電型の不純物を注入するステップと、
前記ステップの後、前記半導体基板内の前記第一の光電変換素子を形成すべき領域下方の領域に前記半導体基板と同じ導電型の不純物を注入するステップとを備える固体撮像素子の製造方法。
It is a manufacturing method of the solid-state image sensing device according to claim 1 or 2,
Injecting an impurity having a conductivity type opposite to that of the semiconductor substrate into a region below the region where the first photoelectric conversion element and the second photoelectric conversion element are to be formed in the semiconductor substrate;
After the step, a method for manufacturing a solid-state imaging device comprising a step of injecting an impurity having the same conductivity type as the semiconductor substrate into a region below the region in which the first photoelectric conversion device is to be formed in the semiconductor substrate.
JP2010079908A 2010-03-30 2010-03-30 Solid-state imaging element, imaging device, method of driving solid-state imaging element, and method of manufacturing solid-state imaging element Pending JP2011211121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010079908A JP2011211121A (en) 2010-03-30 2010-03-30 Solid-state imaging element, imaging device, method of driving solid-state imaging element, and method of manufacturing solid-state imaging element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010079908A JP2011211121A (en) 2010-03-30 2010-03-30 Solid-state imaging element, imaging device, method of driving solid-state imaging element, and method of manufacturing solid-state imaging element

Publications (1)

Publication Number Publication Date
JP2011211121A true JP2011211121A (en) 2011-10-20

Family

ID=44941840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010079908A Pending JP2011211121A (en) 2010-03-30 2010-03-30 Solid-state imaging element, imaging device, method of driving solid-state imaging element, and method of manufacturing solid-state imaging element

Country Status (1)

Country Link
JP (1) JP2011211121A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107924928A (en) * 2015-08-10 2018-04-17 索尼半导体解决方案公司 Solid photographic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107924928A (en) * 2015-08-10 2018-04-17 索尼半导体解决方案公司 Solid photographic device
CN107924928B (en) * 2015-08-10 2022-08-16 索尼半导体解决方案公司 Solid-state imaging device, electronic apparatus, and method for forming image sensor

Similar Documents

Publication Publication Date Title
US20240006427A1 (en) Imaging device and imaging system
US10121810B2 (en) Imaging apparatus and electronic apparatus including shielding members between photoelectric conversion regions
KR101629775B1 (en) Image pickup device and image pickup apparatus
JP5089017B2 (en) Solid-state imaging device and solid-state imaging system
KR101945052B1 (en) Solid-state imaging device, method of driving the same, and electronic system
US20140312451A1 (en) Solid-state imaging element, manufacturing method, and electronic device
USRE47392E1 (en) Solid state imaging device and manufacturing method, and electronic apparatus
JP2009055320A (en) Imaging apparatus and method for driving solid-state imaging device
JP2007221560A (en) Solid-state imaging device, driving method thereof and imaging apparatus
JP4579043B2 (en) Solid-state imaging device and imaging apparatus
JP2009070912A (en) Solid-state imaging element and imaging apparatus
JP2015213274A (en) Solid-state imaging apparatus, driving method of solid-state imaging apparatus, and electronic equipment
JP3977342B2 (en) Solid-state imaging device design method and imaging system
JP2005012007A (en) Element and apparatus for solid-state imaging and camera
JP6733159B2 (en) Imaging device and imaging device
JP2011211121A (en) Solid-state imaging element, imaging device, method of driving solid-state imaging element, and method of manufacturing solid-state imaging element
JP2008067281A (en) Digital camera and solid-state imaging element
JP5619093B2 (en) Solid-state imaging device and solid-state imaging system
JP2017037995A (en) Imaging element and imaging apparatus
JP2017208651A (en) Imaging apparatus
JP2009135208A (en) Solid-state imaging element, and imaging apparatus
JP2023067988A (en) Image pickup device
JP2024096158A (en) Image pickup element and image pickup device
JP2006216985A (en) Solid state imaging device and imaging system using the same
JP2011155306A (en) Solid state imaging device and camera

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111216